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The Walk of Maximal Planar Graphs 
 

Abstract 
Polyhedral combinatorics has been a topic of interest in modern day’s computational geometry. 
The founding of Steinitz’s Theorem in 1922 revealed consequential relations between graph 
theory and polyhedral combinatorics. It allows us to better investigate on the topology of 
convex polyhedrons. In this paper, we proposed an algorithm that generates a unique sequence 
of points, using the vertices of a triangulated polyhedron, pre-determined by the selection of 
the starting 3 vertices in the sequence. Following that, we discover an interesting relation 
between the sequence and the volume of the polyhedron itself, in which we presented in the 
form of a sufficient condition. To further investigate which polyhedrons generate sequences 
that satisfy the sufficient condition, we study the problem in the context of graph theory, that 
is, the explorer walk (corresponding to the sequence of vertices) in maximal planar graphs 
(skeletons of triangulated convex polyhedrons). With that, we uncovered a family of maximal 
planar graphs, called the explorer graphs, which exhibits volumetric properties in the 
polyhedrons constructed from them, in regard to the explorer walk. In this paper, we also 
introduce generalized methods of constructing explorer graphs of higher order from explorer 
graphs of lower order, demonstrating the prevalence of explorer graphs. As the edges of a 
maximal planar graph is of great importance in tracing an explorer walk, we investigate on the 
line graph of maximal planar graphs, and re-establish a better definition of explorer graphs. 
Lastly, our paper covers the edge contraction of explorer graphs, which allows us to solve the 
volume of polyhedrons constructed from non-explorer graphs. For this, we presented a possible 
bound for the minimum number of edge contractions a non-explorer graph requires from an 
explorer graph. This will generalize the proposed method of finding volumes to any 
triangulated convex polyhedron. 
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The Walk of Maximal Planar Graphs 
 

Introduction 
It is known in computational geometry that any n-gon (for n ≥ 4) can be divided into n – 2 
triangles, without gaps and overleaps, by the addition of n – 3 diagonals [1]. This process is 
commonly referred to as triangulation. Our research focuses solely on convex polyhedrons due 
to specific considerations that will be presented in the paper. Throughout our entire paper, a 
triangulated polyhedron refers to a convex polyhedron whose faces are triangulated. This is not 
to be confused with the triangulation of polyhedrons into tetrahedrons [6]. 
 
Explorer Order 
Consider a convex polyhedron with n vertices. Any means of 
the triangulations can be applied to its faces such that every 
existing and new edge is shared by exactly two triangular faces. 
Now, suppose that we want to generate a sequence of points 
using the set of vertices from the polyhedron, and we desire 
such a sequence to be as unique as possible. The order of points 
in this sequence can be generated via the following algorithm 
(we call it the “explorer order”): 

1. The starting three points corresponds to a triangular 
face in the anticlockwise manner 

2. Any consecutive 3 points in the sequence corresponds 
to a triangular face 

3. Any consecutive 4 points in the sequence are distinct 
4. The sequence ends when 

a. The last 2 points in the sequence is the replica 
of the first two points in the same order and 

b. The 3rd point and the 3rd last point are distinct 
It is easily observable that the order of points in the sequence is 
pre-determined by the selection of the first three points. 
In Figure 2, we have triangulated BCDE from Figure 1 by 
adding the edge CE. Suppose we let “ABC” be the first three 
points. The following sequence can be obtained through 
explorer order: 

“ABCEDACBEADCEBACDEAB” 

In Figure 3, we have a tetrahedron that contains only triangular 
faces. Suppose we let “ABD” be the first three points. The 
following sequence can be obtained through explorer order: 

“ABDCAB” 

The explorer order has undoubtedly provided a systematic way 
of tracing the vertices of a polyhedron, but at the same time, it 
appears to have properties for volume computation. 
 
Alternating Shoelace Multiplication 
Here, we introduce a set of notations for the polarity of the cross multiplication in a matrix. 
For any 3 points (may not be distinct) P1, P2 and P3: 

Figure 3 

Figure 1 

Figure 2 
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1 2 3
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z z z
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The above matrixes can be interpreted as products represented by diagonal arrows pointing 
downwards subtracting products represented by diagonal arrows pointing upwards. 
For matrices containing n ≥ 4 points (P1, P2, P3, ..., Pn): 

 
We define such multiplication method within a matrix to be the “Alternating Shoelace 
Multiplication”. This method of multiplication is specially designed for matrices containing 
sequences of points generated through explorer order. 
Suppose the pyramid shown in Figure 2 has vertices with coordinates A(2, 2, 2), B(6, 7, 6), C(6, 
15, 4), D(11, 3, 1) and E(16, –17, 0). We have, by applying the alternating shoelace method on 
a matrix containing the sequence generated through explorer order in preceding section, 

1 2 3 5 4 1 3 2 5 1 4 3 5 2 1 3 4 5 1 2

1 2 3 5 4 1 3 2 5 1 4 3 5 2 1 3 4 5 1 2

1 2 3 5 4 1 3 2 5 1 4 3 5 2 1 3 4 5 1 2

2 6 6 16 11 2 6 6 16 2 11 6 16 6 2 6 11 16 2 6
2 7 15 17 3 2 15 7 17 2 3 15 17 7 2 15 3 17 2

ABCEDACBEADCEBACDEAB

x x x x x x x x x x x x x x x x x x x x
y y y y y y y y y y y y y y y y y y y y
z z z z z z z z z z z z z z z z z z z z

=

= - - - - 7
2 6 4 0 1 2 4 6 0 2 1 4 0 6 2 4 1 0 2 6
1206=

 

The obtained value is discovered to have relations with the volume of the pyramid, which can 
be calculated through the summation of the determinants of all triangular faces of the 
triangulated pyramid in the anticlockwise manner [4]. 
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3
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It is observable that the volume of the pyramid is one sixth of 1026 itself. 

31 201 
6

Volume ABCEDACBEADCEBACDEAB units= =  

It is natural for one to question the generality of using the explorer order in the computation of 
a polyhedron’s volume. In fact, it can be easily verified that this method doesn’t work for any 
triangulated polyhedron in general. Using the tetrahedron ABCD illustrated in Figure 3 as an 
example, let the coordinates of the vertices be A(1, 2, 3), B(3, 10, –1), C(8, 5, 5), and D(11, 2, 
2). Using the existing formula, the volume of the tetrahedron is: 

( )
3

1 det det det det
6

55 

Volume ABD ADC ACB BCD

units

= + + +

=

	

However, the value calculated from inputting the sequence of points that we have generated 
earlier into the matrix is: 

3

1 3 11 8 1 3
1 1 2 10 2 5 2 10
6 6

3 1 2 5 3 1
155  

6

ABDCAB

units

=
- -

= -

 

 
Problem Statement 
Our research aims to find which triangulated convex polyhedrons whose volume can be 
calculate via the means of explorer order. 
 
Sufficient Condition 
Like the case of tetrahedrons, the proposed explorer order doesn’t solve for the volumes of 
many triangulated polyhedrons that we verified. For example, it doesn’t solve the volume of 
polyhedrons with 4 or 6 vertices, no matter how they are triangulated. It is therefore challenging 
to find more cases in which the explorer order can be used to calculate volumes like the pyramid. 
We must have an indication, without verifying using other methods, that the value obtained via 
the means of explorer order on a certain triangulated polyhedron is the volume. We, hence, 
arrive at the following sufficient condition:	

Result 1: 
Using the vertices of any triangulated polyhedron with F triangular faces, we will be able to 
find a sequence of points via explorer order. 1/6 of the value obtained by applying the 
Alternating Shoelace Multiplication on a matrix containing the sequence is volume of the 
polyhedron if the sequence contains 3F + 2 points. (For proof, see “Appendix”) 

Our counter example of tetrahedron satisfies the contrapositive of the condition. It is true that 
the explorer order did not generate 3F + 2 = 14 points since the resulting value doesn’t not 
match the volume of the tetrahedron. The Euler’s Polyhedral Formula states that the number 
of faces F (in our case, we are considering triangular faces of the triangulated polyhedrons), 
vertices V, and edges E of a convex polyhedron must satisfy V + F – E = 2. [3] Hence, the 
condition can also be restated as “the explorer order calculates the volume of a triangulated 
polyhedron if it generates 3E – 3V + 8 points in the matrix.” 
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Triangulated Polyhedrons to Maximal Planar Graphs 
Steiniz’s Theorem states that “every convex polyhedron forms a 3-connected planar graph, and 
every 3-connected planar graph can be represented as the graph of a convex polyhedron.” [2] 
To solve the problem of tracing vertices via explorer order in a triangulated polyhedron, we 
ignore the specific coordinates of its vertices and translate it into a planar graph (containing f 
faces, e edges and v vertices) that should be a maximal planar graph. 

There are existing methods of embedding convex polyhedrons into polyhedral graphs. We are 
only adding a restriction that all faces of the polyhedrons must already be triangulated. This 
can roughly be done by randomly selecting a triangular face and expanding it for the rest of the 
triangulated polyhedron to be flattened upon, resolving the problem into a graph theory 
question.  

 
Figure 4 shows a triangulated pyramid, where F = 6 (note that AD is an edge, with triangles 
ADE and ADC as 2 faces), E = 9 and V = 5, and its corresponding maximal planar graph, where 
f = 6, e = 9 and v = 5. 

The orientation of the bounded faces in the obtained maximal planar graph is equivalent to the 
original polyhedron’s surface. (“ABC” is anti-clockwise on both the surface of the original 
polyhedron and its maximal planar graph) The outer triangle (instead of the unbounded region) 
in the graph also corresponds to a triangular face in the original polyhedron, but in the opposite 
orientation. Therefore, we may just treat the unbounded region as a face by convention. 

Definition 1: 

An explorer order of a triangulated polyhedron’s vertices corresponds to a walk in its graph, 
we call it an “explorer walk”. 

Other polyhedrons that are not convex polyhedrons include toroidal polyhedrons. Such 
polyhedrons cannot be converted into maximal planar graphs. Hence, our research focuses 
solely on convex polyhedrons. 
 
Explorer Graphs 
Consider a polyhedron containing a way of triangulation that enables explorer order to 
calculate its volume. Its corresponding maximal planar graph can also be constructed into some 
other polyhedrons containing the same number of vertices but are topologically distinct. It is, 
hence, methodologically easier to work on explorer walks in maximal planar graphs than to 
apply explorer order on polyhedrons in a case-by-case basis. It is known that a maximal planar 
graph (containing v vertices) contains 3v – 6 edges [7]. 

	 	

Figure 4 
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Definition 2: 

Explorer Graphs are maximal planar graphs (containing e edges and v vertices) that 
contains an explorer walk that generates 3e – 3v + 8 = 6v – 10 points. 

 
Revised Problem Statement 1: 

Our research aims to find explorer graphs. After which, we can then find all polyhedrons 
that can be constructed from these graphs. 

A maximal planar graph is either an explorer or a non-explorer graph. 
 
Analysis of Explorer Graphs with n vertices (4 ≤ n ≤ 6) 
Now, we are in the position to analyze the existence of explorer graphs for small number of 
vertices (4 ≤ n ≤ 6). 
For n = 4, 

The complete graph on 4 vertices, K4, is the unique maximal planar graph, and it is a 
non-explorer graph (K4 is a tetrahedral graph). Hence, no explorer graph exists for n = 
4. 

For n = 5, 
In [5], it is shown that there is a unique maximal planar graph 
with 5 vertices, which is shown in Figure 5. It is an explorer 
graph (corresponding to the skeleton of both triangulated 
pyramids and triangular bipyramids). Hence, no non-explorer 
graph exists for n = 5. 

For n = 6, 
In [5], it is shown that there exist only 2 non-isomorphic maximal planar graphs, and 
both graphs (Figure 6) are non-explorer. Hence, no explorer graph exists for n = 6. 

There exist both explorer and non-explorer graphs for n > 6 vertices. We hereby provide a way 
of constructing explorer graphs of a higher order from explorer graphs of a lower order. 
 
Construction of Explorer Graphs 
Following the definition of “edge contraction” used by Kenneth H. Rosen [8], an edge 
contraction of a simple graph will remain as a simple graph, implying that the creation of 
multiple edges and loops is not allowed. 

Note that an edge contraction in a maximal planar graph is the loss of 1 vertex, 3 edges and 2 
faces. In Figure 7, for example, edge AB is contracted. Following the contraction is the merging 
of edges Ap and Bp, Aq and Bq, and the loss of two triangular faces ABp and ABq. 

Figure 5 

Figure 6 



	 8	

	
Figure 7 

Hence, we define the “inverse” edge contraction on a plane graph to be the creation of 1 vertex, 
3 edges and 2 faces. (Not to be confused with vertex cleaving) Referring to Figure 8, for 
example, we can choose vertex A and the two incident edges pA and qA to be involved in the 
operation. Ap and Aq divide the other vertices, which are adjacent to A, into 2 sides, say X = 
{x1, x2, x3, …, xm} and Y = {y1, y2, y3, …, yn}, for some non-negative integers m and n. 

The operation begins with the creation of a new vertex, B, and the edge AB. Accompanying 
that is the splitting of edges Ap into Ap and Bp, and Aq into Aq and Bq. In the case of Figure 8, 
Y = {y1, y2} is reconnected to B, for the resulting graph to remain as a plane graph. 

	
Figure 8 

Result 2a: 

For a plane graph of an explorer graph, P, applying the following string of “inverse” edge 
contractions on any vertex produces another explorer graph. 

 
Result 2b: 

For a plane graph of an explorer graph, P, applying the following string of “inverse” edge 
contractions on any vertex produces another explorer graph. 
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1-directional classes 
In this section, 3 examples of “1-directional classes” of explorer graphs are constructed as a 
corollary of Result 2a. Now, the idea of edge subdivision operation shall be introduced as 
follows: 

Let G = (V, E) be a graph. The edge subdivision operation for an edge uv ∈ E is the deletion 
of uv from G and the addition of two edges uw and wv along with the new vertex w. 
Note that this operation generates a new graph H:	

H = (V∪{w}, (E\{uv})∪{uw, wv}) 

Class 1: 
The following graph G = (V, E), is the core graph in this class.	

	
The members in this class can be generated by a series of edge subdivision operation for the 
edge pq in G and joining every new vertex to vertices x and y. 
G1 is a graph obtained by an edge subdivision operation for the edge pq in G and joining the 
new vertex v1 to vertices x and y. 

G1 = (V∪{v1}, (E\{pq})∪{pv1, v1q}∪{v1x, v1y}) 

A graph of G1 is provided below:  

	
G2 is a graph obtained by applying edge subdivision operation twice for the edge pq in G and 
joining every new vertex v1 and v2 to vertices x and y. 

G2 = (V∪{v1, v2}, (E\{pq})∪{pv1, v1v2, v2q})∪{v1x, v1y, v2x, v2y}) 

A graph of G2 is provided: 

x 

p 

q 

y 
G 

x 

p 

q 

y 
 G1 
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In general, for integer a ≥ 1, Ga is a graph obtained by applying edge subdivision operation a 
times for the edge pq in G and joining every new vertex to vertices x and y. 

Ga = (V∪{v1, v2, …, vα}, (E\{pq})∪{pv1, v1v2, v2v3, …, vα-1vα, vαq} 
∪{v1x, v1y, v2x, v2y, …, vαx, vαy})	

Note that Ga has (a + 5) vertices in its graph. 

Proposition 1a: 

A graph P is explorer if P is isomorphic to Ga, where a = 0, 2, 4, … 

	
Class 2: 
The following graph H = (V, E), is the core graph in this class. 

	
The members in this class can be generated by a series of edge subdivision operation for the 
edge pq in H and joining every new vertex to vertices x and y. 

For integer a ≥ 1, Ha is a graph obtained by applying edge subdivision operation a times for 
the edge pq in H and joining every new vertex to vertices x and y. 

Ha = (V∪{v1, v2, …, vα}, (E\{pq})∪{pv1, v1v2, v2v3, …, vα-1vα, vαq} 
∪{v1x, v1y, v2x, v2y, …, vαx, vαy}) 

A graph of H3 is provided below: 

	
Note that Ha has (a + 7) vertices in its graph. 

Proposition 1b: 

A graph P is explorer if P is isomorphic to Ha, where a = 0, 1, 2, …	
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  H3 
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Class 3: 
The following graph K = (V, E), is the core graph in this class. 

 
The members in this class can be generated by a series of edge subdivision operation for the 
edge pq in K and joining every new vertex to vertices x and y. 

For integer a ≥ 1, Ka is a graph obtained by applying edge subdivision operation a times for 
the edge pq in K and joining every new vertex to vertices x and y. 

Ka = (V∪{v1, v2, …, vα}, (E\{pq})∪{pv1, v1v2, v2v3, …, vα-1vα, vαq} 
∪{v1x, v1y, v2x, v2y, …, vαx, vαy}) 

A graph of K2 is provided: 

	
Note that Ka has (a + 10) vertices in its graph.  

Proposition 1c: 

A graph P is explorer if P is isomorphic to Ka, where a = 0, 2, 4, … 

We present explorer graphs for class 1, 2 and 3 according to its number of vertices in the 
following table. 

Table 1: List of Explorer Graphs against the number of vertices, v 

Vertices 
(v) Class 1 Class 2 Class 3 

5 

 

  

6    

K 

x 

p 

q 
y 

  K2 

x 

p 

q y 
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8  
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10  

  

11 

  

 

12  

  

13 

  

 



	 13	

14  

  

15 

  

 

16  

  
	
2-directional classes 
As a corollary of Result 2a, we are also able to construct “2-directional classes”. Class 4 is one 
such example. 
Class 4: 
The following graph M = (V, E), is the core graph in this class.	

	
The members in this class can be generated by a series of edge subdivision operation for the 
edge pq in M and joining every new vertex to vertices x and y, followed by a series of edge 
subdivision operation for the edge qr in M and joining every new vertex to vertices w and z. 

Ma,0 is a graph obtained by applying edge subdivision operation a times for the edge pq in M 
and joining every new vertex to vertices x and y. 

Ma,0 = (V∪{v1, v2, …, vα}, (E\{pq})∪{pv1, v1v2, v2v3, …, vα-1vα, vαq} 
∪{v1x, v1y, v2x, v2y, …, vαx, vαy}) 

A graph of M2,0 is provided below: 

M 

x 

p 

  q y 

				r 
				z 		w 
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M0,b is a graph obtained by applying edge subdivision operation b times for the edge qr in M 
and joining every new vertex to vertices w and z.  

M0,b = (V∪{v1, v2, …, vb}, (E\{qr})∪{qv1, v1v2, v2v3, …, vb-1vb, vbr} 
∪{v1w, v1z, v2w, v2z, …, vbw, vbz}) 

A graph of M0,2 is provided below:  

	
For integer a ³ 1 and b ³ 1, Ma,b is a graph obtained by first applying edge subdivision 
operation a times for the edge pq in M and joining every new vertex to vertices x and y, then 
applying edge subdivision operation b times for the edge qr in the resultant graph and joining 
every new vertex to vertices w and z. 

Ma,b = (V∪{v1, v2, …, vα}∪{vα+1, vα+2, …, vα+b}, (E\{pq, qr})∪{pv1, v1v2, v2v3, …, 
vα-1vα, vαq}∪{v1x, v1y, v2x, v2y, …, vαx, vαy}∪{qvα+1, vα+1vα+2, vα+2vα+3, …, vα+b-1vα+b, 

vα+br}∪{vα+1w, vα+1z, vα+2w, vα+2z, …, vα+bw, vα+bz}) 

A graph of M2,2 is provided below: 

	
Note that Ma,b has (a + b + 7) vertices in its graph. 

Proposition 2: 

A graph P is explorer if P is isomorphic to Ma,b, where 
𝛽 = 0, 2, 4, 6, … , 𝑖𝑓	𝛼 = 0, 2, 4, 6, …
𝛽 = 0, 1, 2, 3, … , 𝑖𝑓	𝛼 = 1, 3, 5, 7, …	

We present explorer graphs for class 4 according to its number of vertices in the Table 2. As 
compared to classes 1, 2 and 3, class 4 generates more non-isomorphic explorer graphs for a 
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high enough number of vertices. It is easily observable that there are infinitely many explorer 
graphs. In fact, they make up a significant portion of maximal planar graphs. There exist, for 
example, at least 6 non-isomorphic explorer graphs for 11 vertices just from Table 1 and Table 
2. 

Table 2: List of Class 4 of Explorer Graphs against the number of vertices, v 

Vertices 
(v) a = 0 a = 1 a = 2 a = 3 

7 
 

b = 0 

  

 

8  

 
b = 0 

 

 

9 

 
b = 2 

 
b = 1 

 
b = 0 

 

10  

 
b = 2 

 

 
b = 0 

11 

 
b = 4 

 
b = 3 

 
b = 2 

 
b = 1 

12  

 
b = 4 

 

 
b = 2 

13 

 
b = 6 

 
b = 5 

 
b = 4 

 
b = 3 
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Line Graph of a Maximal Planar Graph 
The rules of an explorer walk are so far directed and restrictive, but not well represented. The 
major consideration of tracing an explorer walk in a maximal planar graph is the adjacency of 
edges, and less of the orientation of vertices. This serves as a motivation for us to explore the 
problem in the context of line graphs. The definition of a line graph is as follows: 

“Each edge in a maximal planar graph is represented by a vertex in the line graph. Two vertices 
in the line graph are adjacent if and only if the corresponding two edges in the maximal planar 
graph are incident.” 
Let L(P) be a line graph of a maximal planar graph, P. An explorer walk in the maximal planar 
graph corresponds to a close walk in L(P). A restricted line graph of P, LR(P), can be 
constructed under the following definition: 

Definition 3: 

L(P) and LR(P) shares the same set of vertices. Two vertices in LR(P) are adjacent if and 
only if the corresponding two edges in the maximal planar graph are edges of a common 
face. 

Figure 9 shows an example of an explorer graph G with vertices P1, P2, P3, …, P9, and the 
corresponding LR(G). The vertices of LR(G) are labelled as “PmPn”, m, n Î ℤ2, 1 £ m < n £ 9, 
where PmPn is an edge in G that connects Pm and Pn. 

	
Figure 9 

Here, we have some necessary conditions for LR(P): 

Proposition 3: 

Given any maximal planar graph P, LR(P) must satisfy the following: 
1. It is a 4-regular planar graph 
2. Any edge is an edge of at least one C3 
3. The explorer walk in P corresponds to a restricted walk in LR(P), pre-determined by 

the first move (you don’t have to refer to P for directions while tracing the walk in 
LR(P)) 

Moreover, LR(P) is an Eulerian graph (as it is 4-regular). With that, we have the following 
result (For proof, refer to “Appendix”): 

Result 3: 
An explorer walk in P (of order n ≥ 4) corresponds to an Eulerian circuit in LR(P) if and only 
if P is an explorer graph. 
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With that, we are now able to more properly restate our problem statement as the following:  

Revised Problem Statement 2: 
Our research aims to find maximal planar graphs, P, such that the explorer walk in P 
corresponds to an Eulerian circuit in LR(P). 

 
Edge Contraction of Explorer Graphs 
The paper has, thus far, been analyzing explorer graphs due to their volumetric properties. 
Nonetheless, we are still able to calculate the volume of triangulated polyhedrons, whose 
skeletons are non-explorer graphs, via explorer graphs of higher order. This is made possible 
through edge contraction. 
It is important to note that applying an edge contraction on a maximal planar graph does not 
necessary produce another maximal planar graph. The resultant graph is, nonetheless, still a 
planar graph due to Kuratowski’s Theorem [9].  

Result 4: 
Given any vertex, v, in a maximal planar graph P of order n ≥ 4, there exists at least one 
edge, incident with v, whose contraction produces another maximal planar graph. 

The above result has important consequences. For a maximal planar graph, of order n ≥ 5, there 
always exist a way to obtain the graph of a triangular bipyramid (which is of order 5) through 
n – 5 edge contractions, without losing the identity of maximal planar graph in the process. 
Conjecture 1, which is to be presented, is built on this fact. 

Definition 4: 

A k-Induced Maximal Planar Graph is a maximal planar graph, of order n ≥ 4, whose 
construction requires at least k ∈ ℤ, k ≥ 0, edge contraction operations from any explorer 
graph. 

By convention, we define a maximal planar graph to be explorer when k = 0. A maximal planar 
graph is non-explorer when k ≥ 1. 

Figure 10 below illustrates a 1-induced maximal planar graph (on the right) obtained from only 
1 contraction of edge QR of an explorer graph (on the left).  

 
After verifications of non-explorer graphs with small number of vertices, we have the following 
result: 

  

Figure 10 
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Proposition 4: 

A maximal planar graph, P, with 4 ≤ n ≤ 8 vertices, n ∈ ℤ2, is either explorer or 1-induced. 

Not all non-explorer graphs are 1-induced. Icosahedron graph, for example, is a 2-induced 
maximal planar graph. To seek a more generalized form of Proposition 4, we have the 
following conjecture (For the incomplete proof, refer to “Appendix”): 

Conjecture 1: 

A maximal planar graph, P, of order n ≥ 5, is k-induced, where k ≤ 3n – 15, k ∈ ℤ2. 

 
Explorer Graph to Polyhedrons 
Recall that Steiniz’s Theorem states that “every 3-connected planar graph can be represented 
as the graph of a convex polyhedron”, and explorer graphs are 3-connected. We have also 
mentioned that it is possible to have two topologically distinct polyhedrons that corresponds to 
the same maximal planar graph after triangulation. For instance, a quadrilateral-based pyramid, 
after triangulation, shares the same maximal planar graph as a triangular bipyramid. 

In this section, we provide examples of polyhedrons constructed 
from explorer graphs and verify that the explorer walk in these 
graphs give rise to the volume of the constructed polyhedrons. In 
contrast, we will also provide examples of polyhedrons 
constructed from non-explorer graphs and verify that the explorer 
walk in these graphs might not give rise to the volume of the 
constructed polyhedrons. 

Figure 11 shows an explorer graph that can be constructed into 
an elongated pyramid (Figure 12) with vertices of coordinates 
A(–2, 5, 2), B(–5, –1, –5), C(3, 1, –10), D(6, 7, –3), E(–2, –8, –
3), F(6, –6, –8), G(9, 0, –1), H(1, –2, 4) and I(8, 9, 7). The volume 
is calculated to be 961cm3 using GeoGebra. The following 
sequence can be obtained through an explorer walk in the graph: 

“ECFGEHBADIGHEBCDGIHABD 
CGFECBDAIHGEFCGDIAHBEC” 

Hence, the volume can also be calculated as such: 

( ) ( ) 3

1 |
6

|
1 3694 2072 961 
6

Volume ECFGEHBADIGHEBCDGIHABD

CGFECBDAIHGEFCGDIAHBEC

cm

=

= - - =é ùë û

 

3694 is the sum of down products while –2072 is the sum of up products in the matrix. 

Similarly, the formula can be applied to any other elongated quadrilateral pyramid and 
triangulated polyhedrons sharing an isomorphic maximal planar graph as their skeletons. 

Figure 13 shows a non-explorer graph that can be constructed into a prism (Figure 14) with 
vertices of coordinates A(–3, 1, 3), B(3, –9, 1), C(3, 0, –2), D(8, –4, 4), E(8, 5, 1) and F(2, 6, 

Figure	11	

Figure 12 
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6). The volume is calculated to be 246cm3 using GeoGebra. The 
following sequence can be obtained through an explorer walk in 
the graph: 

“FEACBDFE” 

However, the value calculated from the matrix is: 

( ) ( ) 31 1 1297 174 78  
6 6 2
FEACBDFE cm= - - =é ùë û  

297 is the sum of down products while –174 is the sum of up 
products in the matrix. 
It is known that there exists no explorer graph with 6 vertices. 
Nonetheless, explorer graphs with higher number of vertices can 
still be used to calculate the prism’s volume. This is a result of 
the property of edge contraction. 
For example, the non-explorer graph shown in Figure 13 is a 
result of 3 edge contractions from the explorer graph shown in 
Figure 15, which is a relabeled graph of the elongated pyramid. 
(Edges AA’, CC’ and CC’’ are contracted). 
In the calculations, we are still making use of the matrix formed 
from the explorer walk in the explorer graph, but we now unify 
the coordinates of the vertices with those of the vertices that they 
are merged with (e.g. A’ shares the same coordinates as A): 

( ) ( ) 3

1 | ' '' ' ' ''
6

' '' ' ' ' '' |
1 790 686 246
6

Volume FEA AFBDC CC ABFDECAC BC DC

EAA FEDCC C BAFA EACC C BDFE

cm

=

= - - =é ùë û

 

790 is the sum of down products while –686 is the sum of up 
products in the matrix. 

This technique allows us to cover a significantly wider range of polyhedrons (although we 
can’t confirm the conjecture that it covers all convex polyhedrons) whose volume can be solved 
via the means of explorer graphs. 
 
Conclusion 
In this paper, we developed an explorer walk in a maximal planar graph. As a result, we 
uncovered a family of graphs, which are the explorer graphs, that contains volumetric 
properties in regard to the explorer walk. The volumetric aspect is, however, treated as a by-
product made possible through the Alternating Shoelace Method. The explorer walk 
corresponding to an Eulerian circuit in the restricted line graph is what truly defines explorer 
graphs. Despite the explorer walk being restrictive, the explorer graphs make up a significant 
portion of the maximal planar graphs. To illustrate that, we proposed different constructions of 
explorer graphs from that of a lower order. For future research, the topology of explorer graphs 
can be studied in greater details. For that, we wish to prove or disprove Conjecture 1, or find a 
better bound for the value of k for k-induced maximal planar graph of order n. 
 
  

Figure 13 

Figure 14 

Figure 15 
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Appendix 
 
Proof of “Result 1” 
We shall first prove that if the explorer order generates 3F + 2 points (mentions 3F triangular 
faces in the matrix) for a polyhedron with F faces after triangulation, it will mention each 
triangular face exactly thrice in the matrix. 

i) An explorer order is unique based on the first three chosen points in the matrix, as 
each subsequent point is determined by the three points before it. (Every edge is 
shared by exactly 2 surface triangles) 

ii) If a surface triangle P1P2P3 is mentioned in order of “P1P2P3” in the matrix, it will 
not be mentioned in the reverse order of “P3P2P1” in the same matrix. Suppose the 
reverse order exists in the same matrix. Without loss of generality, suppose “P1P2P3” 
appears before “P3P2P1”. 

|…P1P2P3…P3P2P1…| 
The subsequent points generated after “P1P2P3” and before “P3P2P1” are 
determined and symmetric, and hence does not converge to form consecutive 3 
distinct points (representing a surface triangle) that is non-symmetric. This 
contradicts with the condition that any consecutive three points in the matrix 
corresponds to a surface triangle. 

iii) No three consecutive points is mentioned twice in the matrix in the same order. It’s 
obvious that the first three chosen points will not be mentioned twice in the same 
order by the rules of an explorer order. Now, suppose “PiPjPk” is mentioned twice 
in the matrix. 

|…PiPjPk …PiPjPk …| 
The subsequent points generated before “PiPjPk” and “PiPjPk” are determined and 
unique, which means the first three points are also mentioned twice in the same 
order. This is a contradiction. 

iv) A surface triangle P1P2P3 can only be mentioned in three distinct ways (the reverse 
order is considered as equivalent) – “P1P2P3”, “P2P3P1” or “P3P1P2”. If a surface 
triangle is mentioned less than thrice, there exist some other surface triangle that is 
mentioned more than thrice, and hence in more than three distinct ways. This is a 
contradiction. 

Now we have concluded that each triangular face is mentioned exactly thrice in three distinct 
ways if the explorer order generates 3F + 2 points for a polyhedron with F faces after 
triangulation. 
For the second part of our proof, we recall the set of notations for the polarity of the cross 
multiplication in our matrix. For any 3 points (may not be distinct) P1, P2 and P3: 

( )
1 2 3

1 2 3 1 2 3 1 2 3 3 2 1

1 2 3

x x x
PP P y y y x y z x y z

z z z

+ = = -  and ( )
1 2 3

1 2 3 1 2 3 3 2 1 1 2 3

1 2 3

x x x
PP P y y y x y z x y z

z z z

- = = -  

The above matrixes can be interpreted as products represented by diagonal arrows pointing 
downwards subtracting products represented by diagonal arrows pointing upwards. 
It’s clear that 

1 2 3 3 2 1PPP PPP+ -=  
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Referring to Figure A1, we have two adjacent triangular faces P1P2P3 
and P2P3P4 where P1, P2, P3 and P4 are distinct. According to the 
explorer order, if the first three points in the matrix is not “P2P3P4”, 
and “P1P2P3” is mentioned in the matrix, the next mentioned point 
must be P4. If “P1P2P3” is anti-clockwise on the surface triangle 
P1P2P3, then “P2P3P4” must be clockwise on the surface triangle 
P2P3P4, and vice versa. 
According to the explorer order, the first three points in the matrix 
corresponds to a triangular face in the anti-clockwise manner. Suppose 
our matrix generated by explorer order is as follows:  

1 2 3 1 2 3 2 3 4 3 4 5 4 5 6 2 1... ...n n n nPPP P PPP PPP PPP PPP P P P+ - + - ±
- -= + + + + +  

We have |P1P2P3|+ in the positive polarity. It is now obvious that any consecutive three points 
in the matrix that corresponds to a triangular face in the anti-clockwise manner is positive in 
polarity, and any consecutive three points that corresponds to a triangular face in the clockwise 
manner is negative in polarity. 

Now we have 

1 2 3 1 2 3 2 3 1 3 1 2det PPP PPP PPP PPP+ + += + +  

Since each triangular face (triangle P1P2P3 for example) is mentioned exactly thrice in three 
distinct ways if the explorer order generates 3F + 2 points for a polyhedron with F faces after 
triangulation, the matrix must also contain 1 2 3 3 2 1PPP PPP+ -= , 2 3 1 1 3 2PPP PPP+ -= and 

3 1 2 2 1 3PPP PPP+ -= . Hence, the determinants applied on all triangular surfaces in the anti-
clockwise manner will be mentioned in the matrix. 
Hence, by multiplying 1/6 to the matrix, we can conclude that an explorer order gives volume 
to a triangulated polyhedron if it generates 3F + 2 points. 
 
Proof of “Result 2a and 2b” 
For Result 2a, the string of edge contraction includes the addition of 4 new vertices B1, B2, B3 
and B4. (Figure A2) It suffices to prove that the explorer walk on the new graph generates 24 
more points, according to Definition 2 in the report. 

	
Figure A2 

In the explorer walk before the “inverse” edge contraction, “x2Aq” must be mentioned either 
in that or in the reverse order, but are treated as equivalent without loss of generality. In certain 
cases, the set X = {x1, x2, x3, …, xm} may be empty, in which we can treat x2 as p. After the 
“inverse” edge contraction, “x2Aq” is replaced by “x2AqB4B3pB2B1q” without affecting the 
subsequent points that come after and before. At the same time, 6 additional points are 
introduced. Similarly, “x2qA” is replaced by “x2qAB4pB3B2qB1” without affecting the 
subsequent points that come after and before, with 6 additional points being introduced at the 

Figure A1 
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same time. “x1pA” is replaced by “x1pAB4qB3B2pB1” without affecting the subsequent points 
that come after and before, with 6 additional points being introduced at the same time. “x1Ap” 
is replaced by “x1ApB4B3qB2B1p” without affecting the subsequent points that come after and 
before, with 6 additional points being introduced at the same time. In total, 24 new points are 
introduced. The conclusion follows. 
Similarly, for Result 2b, the string of edge contraction includes the addition of 4 new vertices 
B1, B2, B3 and B4. (Figure A3) It suffices to prove that the explorer walk on the new graph 
generates 24 more points, according to Definition 2 in the report. 

	
Figure A3 

In the explorer walk before the “inverse” edge contraction, “x2Aq” must be mentioned either 
in that or in the reverse order, but are treated as equivalent without loss of generality. In certain 
cases, the set X = {x1, x2, x3, …, xm} may be empty, in which we can treat x2 as p. After the 
“inverse” edge contraction, “x2Aq” is replaced by “x2AqB4B2AB3pB2B1q” without affecting the 
subsequent points that come after and before. At the same time, 8 additional points are 
introduced. Similarly, “x2qA” is replaced by “x2qAB4B2qB1” without affecting the subsequent 
points that come after and before, with 4 additional points being introduced at the same time. 
“x1pA” is replaced by “x1pAB3B2pB1” without affecting the subsequent points that come after 
and before, with 4 additional points being introduced at the same time. “x1Ap” is replaced by 
“x1ApB3B2AB4qB2B1p” without affecting the subsequent points that come after and before, with 
8 additional points being introduced at the same time. In total, 24 new points are introduced. 
The conclusion follows. 
 
Proof of “Result 3” 
The proof revolves around the equivalence of tracing an explorer walk in a maximal planar 
graph, P, and its specialized line graph, LR(P). From the proof of Result 1 we know that for an 
explorer walk in a triangulated graph: 

i) No three consecutive points is mentioned twice in the matrix in the same order 
ii) If a surface triangle P1P2P3 is mentioned in order of “P1P2P3” in the matrix, it will 

not be mentioned in the reverse order of “P3P2P1” in the same matrix 
We can therefore conclude that in LR(P), no edge will be travelled twice in an explorer walk. 
Also, it is known that P must contain 3f/2 edges since P is a maximal planar graph, where f is 
the number of faces of P. Hence, LR(P) must contain 3f/2 vertices. Since LR(P) is 4-regular, it 
contains 3f edges by handshaking lemma. 
We can now conclude that P is an explorer graph if and only if an explorer walk in P will 
generate 3f – 2 points, and therefore mention 3f – 1 edges of P (3f – 1 vertices of LR(P)) in the 
matrix. That’s is also equivalent to travelling 3f edges in LR(P), creating an Eulerian circuit. 
 
Proof of “Result 4” 
For a maximal planar graph to remain as a maximal planar graph after an edge contraction, the 
number of edges must decrease by 3 together with the loss of 1 vertex in the edge contraction. 
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We claim that given any vertex, v, in a maximal planar graph P of order n ≥ 4, there exists at 
least one edge, incident with v, whose contraction produces another maximal planar graph. 

If d(v) = 3, 
Any edge incident with v can be contracted, since the edge contraction is the loss of v 
and the 3 edges incident to it. 

If d(v) = 4, 
Suppose that v is adjacent to the set of vertices {v1, v2, v3, v4}. 
(Figure A4) Say that vv1 is the edge we choose to contract. 
Since we only desire a loss of 3 edges, it is easy to see that 
vv1 can be contracted if and only if v1 is not adjacent to v4. 
Suppose none of the edges vv1, vv2, vv3 or vv4 can be 
contracted, v1, v2, v3 and v4 must be adjacent to each other, 
forming a K5 with v. By Kuratowski’s Theorem, P is non-
planar. Contradiction! 

If d(v) ≥ 5, 
Suppose that v is adjacent to the set of vertices {v1, v2, v3, …, 
vn}, for n ≥ 5 (Figure A5). We aim to prove that if none of the 
edges vv1, vv2, vv3, …, vvn can be contracted, P must contain 
K3,3 as a minor.  
vv1 can be contracted if and only if v1 is adjacent to only v2 
and vn in the set {v1, v2, v3, …, vn}. vvn can be contracted if 
and only if vn is adjacent to only v1 and vn–1 in the set {v1, v2, 
v3, …, vn}. For 2 ≤ i ≤ n – 1, vvi can be contracted if and only 
if vi is adjacent to only vi–1 and vi+1 in the set {v1, v2, v3, …, 
vn}. 
If none of the edges vv1, vv2, vv3, …, vvn can be contracted, 
there must exist two edges vjvk and vpvq for some 1 ≤ j < p < k 
< q ≤ n, forming a crossing. Suppose no such 2 edges exist, 
let v1 be connected to vi for some 3 ≤ i ≤ n – 1 (Figure A6). v2 
must be connected to vj for some 4 ≤ j ≤ i. v3 must then be 
connected to vk for some 5 ≤ k ≤ j. v4 must then be connected 
to vp for some 6 ≤ p ≤ k. So on… In the end, there must exist 
a q such that vq can only be connected to vq+2. vq+1 can only be 
connected to vq and vq+2 in the vertices set {v1, v2, v3, …, vn}. 
Contradiction! 
Now that there must exist two edges vjvk and vpvq for some 1 
≤ j < p < k < q ≤ n, which forms a crossing, there must also 
exists a vr that is distinct from {vj, vp, vk, vq} since d(v) ≥ 5. 
WLOG, assume p < r < k. Now we contract the set of edges 
{v1v2, v2v3, v3v4, …, vp–2vp–1} into vj, {vpvp+1, vp+1vp+2, 
vp+2vp+3, …, vr–2vr–1} into vp, {vrvr+1, vr+1vr+2, vr+2vr+3, …, vk–

2vk–1} into vr, {vkvk+1, vk+1vk+2, vk+2vk+3, …, vq–2vq–1} into vk, 
and {vqvq+1, vq+1vq+2, vq+2vq+3, …, vn–1vn} into vq. Finally, a 
K3,3 can be formed by taking X = {vj, vq, vr} and Y = {vp, vk, 
v} (Figure A7). Since P contains K3,3 as a minor, P is non-
planar by Kuratowski’s Theorem. Contradiction! 

The conclusion follows. 

Figure A5 

Figure A4 

Figure A6 

Figure A7 
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Incomplete proof of “Conjecture 1” 
Suppose G is a non-explorer graph with n ≥ 5 vertices. The graph of 
triangular bipyramid (Figure A8), also known as the J12 (Johnson 
solid) skeleton, can be obtained via edge contraction of G without 
losing the identity of maximal planar graph in the process. (Result 4) 
Now we want to construct G from J12 skeleton via the “inverse” edge 
contractions. 
 
Building Vertices Groups: (Result 2a) 

For any explorer graph, P, applying the following string of “inverse” edge contraction on any 
vertex results in another explorer graph. (Figure A9) 

	
Figure A9 

The newly created 4 vertices can be treated as “vertices group B”. We can notate “vertices 
group B” as follows: 

	
Figure A10 

We construct G via the “inverse” edge contractions, in an order opposite of a certain edge 
contraction of G to J12 skeleton. However, by creating vertices groups instead of vertices, we 
hope to generate an explorer graph, G’, of order 4n – 15. If successful, G can then be obtained 
via edge contractions of all vertices groups into vertices in G’. 
A vertices group consists of 4 vertices and 2 “wings”. In Figure A10, for example, edges Bp 
and Bq are the wings of vertices group B (which contains 4 vertices). Figure A11 is a further 
illustration on “vertices groups”: 

	
Figure A11 

Figure A8 

		º	
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Now, it suffices to prove that it’s always possible to generate a “vertices group” instead of a 
vertex in an “inverse” edge contraction. 

Referring to Figure A9, say that the vertex A and the edges Ap and Aq are involved in the 
“inverse” edge contraction. If A is not a vertices group, “inverse” edge contraction can be 
performed as demonstrated in Figure A9. Now suppose A is a vertices group. 
Case 1:  

If Ap and Aq are wings of the vertices group A, the “inverse” edge contraction can be 
performed as follows: 

	
Figure A12 

Case 2: 
If only one of the edges, Ap or Aq, (say Ap) is a wing of the vertices group A, the other 
wing can either be on the side of X or Y (say X). (Figure A13) The “inverse” edge 
contraction can be performed in the direction of Y, opposite to the wing. 

	
Figure A13 

Case 3: 
If none of the edges, Ap or Aq, is a wing of the vertices group A, the wings can either 
be both on the same side (X or Y), or one on each side. If the wings of A are both on the 
same side (say X), the “inverse” edge contraction can be performed in the direction of 
Y, opposite to the wings. (Figure A14) 

	
Figure A14 

Case 4 (Unsolved Case): 
We have yet to find a way to perform the “inverse” edge contraction if the wings of the 
vertices group A lies on both X and Y. If there’s a way, Conjecture 1 can then be 
completely proven.  
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