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1. Introduction

The setting for this article is Euclidean n-space, Rn. A convex body in Rn is a com-
pact convex set with nonempty interior. The Brunn-Minkowski theory of convex bodies, 
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also called the mixed volume theory, which was developed by Minkowski, Aleksandrov, 
Fenchel, and many others, centers around the study of geometric functionals of con-
vex bodies and the differentials of these functionals. Usually, the differentials of these 
functionals produce new geometric measures. This theory depends heavily on analytic 
tools such as the cosine transform on the unit sphere Sn−1 and Monge-Ampère type 
equations.

A Minkowski problem is a characterization problem for a geometric measure generated 
by convex bodies: It asks for necessary and sufficient conditions in order that a given 
measure arises as the measure generated by a convex body. The solution to a Minkowski 
problem, in general, amounts to solving a fully nonlinear partial differential equation. 
The study of Minkowski problems has a long history and strong influence on both the 
Brunn-Minkowski theory and fully nonlinear partial differential equations. For details, 
see, e.g., [45, Chapter 8].

The Lp Minkowski problem for volume was originated in the 90s of last century, 
and it significantly generalized the classical Minkowski problem and was intensively 
investigated.

1.1. Lp surface area measures and the Lp Minkowski problem for volume

The Lp Brunn-Minkowski theory (see, e.g., [45, Sections 9.1 and 9.2]) is an extension of 
the classical Brunn-Minkowski theory, in which the Lp surface area measure introduced 
by Lutwak [37] is one of the most fundamental notions.

Let K be a convex body in Rn with the origin in its interior and p ∈ R. Its Lp surface 
area measure Sp(K, ·) is a finite Borel measure on Sn−1, defined for Borel ω ⊆ Sn−1 by

Sp(K,ω) =
∫

x∈g−1
K (ω)

(x · gK(x))1−p dHn−1(x),

where Hn−1 is the (n − 1)-dimensional Hausdorff measure; gK : ∂′K → Sn−1 is the 
Gauss map defined on the set ∂′K of those points of ∂K that have a unique outer 
normal. Alternatively, Sp(K, ·) can be defined by

Sp(K,ω) =
∫
ω

h1−p
K (u) dS(K,u), (1.1)

where hK : Rn → R, hK(x) = max{x · y : y ∈ K} is the support function of K; dS(K, ·)
is the classical surface area measure of K.

Tracing the source, the Lp surface area measure resulted from the differential of volume 
functional of Lp combinations of convex bodies.

In 1962, Firey [28] introduced the notion of Lp sum of convex bodies. Let K, L be 
convex bodies with the origin in their interiors and 1 � p < ∞. Their Lp sum K+pL is the 
compact convex set with support function hK+pL = (hp

K+hp
L)1/p. For t > 0, the Lp scalar 
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multiplication t ·pK is the set t1/pK. Note that K+1L = K+L = {x +y : x ∈ K, y ∈ L}
is the Minkowski sum of K and L.

Using the Lp combination, Lutwak [37] established the following Lp variational for-
mula

dV (K +p t ·p L)
dt

∣∣∣∣
t=0+

= 1
p

∫
Sn−1

hp
L(u) dSp(K,u), (1.2)

where V is the n-dimensional volume, i.e., Lebesgue measure in Rn. When p = 1, it 
reduces to the celebrated Aleksandrov variational formula

dV (K + tL)
dt

∣∣∣∣
t=0+

=
∫

Sn−1

hL(u) dS(K,u). (1.3)

The integral in (1.3), divided by the factor n, is called the first mixed volume V1(K, L)
of K and L. That is,

V1(K,L) = 1
n

∫
Sn−1

hL(u) dS(K,u),

which is a generalization of the well-known volume formula

V (K) = 1
n

∫
Sn−1

hK(u) dS(K,u). (1.4)

The Lp Minkowski problem for volume. Suppose μ is a finite Borel measure on Sn−1

and p ∈ R. What are the necessary and sufficient conditions on μ such that μ is the Lp

surface area measure Sp(K, ·) of a convex body K in Rn?

The L1 Minkowski problem is precisely the classical Minkowski problem. More than 
a century ago, Minkowski himself [42] solved this problem when the given measure is 
either discrete or has a continuous density. Aleksandrov [2,3] and Fenchel-Jessen [27]
independently solved the problem for arbitrary measures: If μ is not concentrated on 
any great subsphere of Sn−1, then μ is the surface area measure of a convex body if and 
only if its centroid is at the origin o; i.e., 

∫
Sn−1 u dμ(u) = o.

Recall that the Lp Minkowski problem for volume for p < 1 was publicized by a series 
of talks by Erwin Lutwak in the 1990’s, and appeared in print in Chou and Wang [22]
for the first time. The case p = 0 is the so called logarithmic Minkowski problem. In 
[11], the authors posed the subspace concentration condition and completely solved the 
even logarithmic Minkowski problem. Additional references regarding the logarithmic 
Minkowski problem can be found in, e.g., [7–10,20,33,46–48,50]. If 0 < p < 1, the Lp

Minkowski problem is essentially solved by Chen, Li and Zhu [19]. See also [12,51], 
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for more details. It is worth mentioning that in the very recent work [6], the authors 
discussed the case −n < p < 1 for an absolutely continuous measure and provided an 
almost optimal sufficient condition for the case 0 < p < 1.

Since for strictly convex bodies with smooth boundaries, the density of the surface 
area measure with respect to the Lebesgue measure is just the reciprocal of the Gauss 
curvature of closed convex hypersurface, analytically, the classical Minkowski problem 
is equivalent to solving a Monge-Ampère equation. Establishing the regularity of the 
solution is difficult and has led to a long series of highly influential works, see, e.g., Lewy 
[36], Nirenberg [43], Cheng-Yau [21], Pogorelov [44], Caffarelli [13,14].

By now, the Lp Minkowski problem for volume has been investigated and achieved 
great developments. See, e.g., [4,11,17,18,22,32,34,37–39,41,46,50,51]. Its solutions have 
been applied to establish sharp affine isoperimetric inequalities, such as the affine Moser-
Trudinger and the affine Morrey-Sobolev inequalities, the affine Lp Sobolev-Zhang in-
equality, etc. See, e.g., [40,49], for more details.

1.2. Lp p-capacitary measures and the Lp Minkowski problem for p-capacity

Without a doubt, the Minkowski problem for electrostatic p-capacity is an extremely 
important variant among Minkowski problems. Recall that for 1 < p < n, the electro-
static p-capacity of a compact set K in Rn is defined by

Cp(K) = inf
{ ∫
Rn

|∇u|p dx : u ∈ C∞
c (Rn) and u � χK

}
,

where C∞
c (Rn) denotes the set of smooth functions with compact supports, and χK is 

the characteristic function of K. The quantity C2(K) is the classical electrostatic (or 
Newtonian) capacity of K.

For convex bodies K and L, via the variation of capacity functional C2(K), there 
appears the classical Hadamard variational formula

dC2(K + tL)
dt

∣∣∣∣
t=0+

=
∫

Sn−1

hL(u) dμ2(K,u) (1.5)

and its special case, the Poincaré capacity formula

C2(K) = 1
n− 2

∫
Sn−1

hK(u) dμ2(K,u). (1.6)

Here, μ2(K, ·) is called the electrostatic capacitary measure of K.
In his celebrated article [35], Jerison pointed out the resemblance between the Poincaré 

formula (1.6) and the volume formula (1.4) and also a resemblance between their varia-
tional formulas (1.5) and (1.3). Thus, he initiated to study the Minkowski problem for 
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electrostatic capacity: Given a finite Borel measure μ on Sn−1, what are the necessary 
and sufficient conditions on μ such that μ is the electrostatic capacitary measure μ2(K, ·)
of a convex body K in Rn?

Jerison [35] solved, in full generality, the Minkowski problem for capacity. He proved 
the necessary and sufficient conditions for existence of a solution, which are unexpectedly 
identical to the corresponding conditions in the classical Minkowski problem. Uniqueness 
was settled by Caffarelli, Jerison and Lieb [16]. The regularity part of the proof depends 
on the ideas of Caffarelli [15] for the regularity of solutions to the Monge-Ampère equa-
tion.

Jerison’s work inspired much subsequent research on this topic. In [24], the authors 
extended Jerison’s work to electrostatic p-capacity, 1 < p < n, and established the 
Hadamard variational formula for p-capacity,

dCp(K + tL)
dt

∣∣∣∣
t=0+

= (p− 1)
∫

Sn−1

hL(u) dμp(K,u) (1.7)

and therefore the Poincaré p-capacity formula

Cp(K) = p− 1
n− p

∫
Sn−1

hK(u) dμp(K,u). (1.8)

Here, the new measure μp(K, ·) is called the electrostatic p-capacitary measure of K.
Naturally, the Minkowski problem for p-capacity was posed [24]: Given a finite Borel 

measure μ on Sn−1, what are the necessary and sufficient conditions on μ such that μ is 
the p-capacitary measure μp(K, ·) of a convex body K in Rn?

In [24], the authors proved the uniqueness of the solution when 1 < p < n, and 
existence and regularity when 1 < p < 2. Very recently, the existence for 2 < p < n was 
solved by M. Akman, J. Gong, J. Hineman, J. Lewis, and A. Vogel [1].

Inspired by the developed Lp Minkowski problem for volume, D. Zou and G. Xiong 
[52] initiated to research the following Lp Minkowski problem for p-capacitary measure.

Let p ∈ R and 1 < p < n. For a convex body K in Rn with the origin in its interior, its 
Lp p-capacitary measure μp,p(K, ·) is a finite Borel measure on Sn−1, defined for Borel 
ω ⊆ Sn−1 by

μp,p(K,ω) =
∫
ω

h1−p
K (u) dμp(K,u).

Similar to the Lp surface area measure Sp(K, ·), μp,p(K, ·) is also resulted from the 
variation of p-capacity functional of Lp sum of convex bodies. Specifically, if K, L are 
convex bodies in Rn with the origin in their interiors, then for 1 � p < ∞,

dCp(K +p t ·p L)
dt

∣∣∣∣
t=0+

= p− 1
p

∫
hp
L(u) dμp,p(K,u).
Sn−1
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The Lp Minkowski problem for p-capacity. Suppose μ is a finite Borel measure on Sn−1, 
p ∈ R and 1 < p < n. What are the necessary and sufficient conditions on μ such that μ
is the Lp p-capacitary measure μp,p(K, ·) of a convex body K in Rn?

In [52], Zou and Xiong completely solved the case when p > 1 and 1 < p < n. In this 
article, we focus on the case 0 < p < 1 and 1 < p < 2, and prove the following.

Theorem 1.1. Let μ be a finite positive Borel measure on Sn−1 which is not concentrated 
on any closed hemisphere, 0 < p < 1 and 1 < p < 2. Suppose μ is discrete and satisfies 
μ({−u}) = 0 whenever μ({u}) > 0, for u ∈ Sn−1.

(1) If p +p �= n, then there exists an n-dimensional polytope P such that μp,p(P, ·) = μ;
(2) If p + p = n, then there exists an n-dimensional polytope P and a constant λ > 0

such that λμp,p(P, ·) = μ.

This article is organized as follows. In Section 2, we collect some basic facts on the 
theory of convex bodies. In Section 3, we study an extremal problem under translation 
transforms. After clarifying the relationship between this extremal problem and our 
concerned Lp Minkowski problem for capacity in Section 4, we present the proof of the 
main result in Section 5.

2. Preliminaries

2.1. Basics of convex bodies

For quick reference, we collect some basic facts on the theory of convex bodies. Good 
references are the books by Gardner [29], Gruber [31] and Schneider [45].

Write x · y for the standard inner product of x, y ∈ Rn. Let B be the standard unit 
ball of Rn. Denote by Kn the set of convex bodies in Rn, and by Kn

o the set of convex 
bodies with the origin o in their interiors.

Kn is often equipped with the Hausdorff metric δH , which is defined for compact 
convex sets K, L by

δH(K,L) = max{|hK(u) − hL(u)| : u ∈ Sn−1}.

For compact convex sets K and L, they are said to be homothetic, if K = sL + x, for 
some s > 0 and x ∈ Rn. The reflection of K is −K = {−x : x ∈ K}.

Write intK and bdK for the interior and boundary of a set K, respectively. Write 
relintK and relbdK for the relative interior and relative boundary of K, that is, the 
interior and boundary of K relative to its affine hull, respectively.

Denote by C(Sn−1) the set of continuous functions defined on Sn−1, which is equipped 
with the metric induced by the maximal norm. Write C+(Sn−1) for the set of strictly 
positive functions in C(Sn−1). For nonnegative f, g ∈ C(Sn−1) and t � 0, define
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f +p t · g =
(
fp + tgp

)1/p
,

where, without confusion and for brevity, we omit the subscript p under the dot 
thereafter. If in addition f > 0 and g is nonzero, the definition holds when t >

−
(

minSn−1 f

maxSn−1 g

)1/p
.

For nonnegative f ∈ C(Sn−1), define

[f ] =
⋂

u∈Sn−1

{x ∈ Rn : x · u � f(u)}.

The set is called the Aleksandrov body (also known as the Wulff shape) associated with 
f . Obviously, [f ] is a compact convex set containing the origin. For a compact convex 
set containing the origin, say K, we have K = [hK ]. If f ∈ C+(Sn−1), then [f ] ∈ Kn

o .
The Aleksandrov convergence lemma reads: If the sequence 

{
fj
}
j
⊆ C+(Sn−1) con-

verges uniformly to f ∈ C+(Sn−1), then limj→∞[fj ] = [f ].
For K ∈ Kn and u ∈ Sn−1, the support hyperplane H(K, u) is defined by

H(K,u) = {x ∈ Rn : x · u = h(K,u)}.

The half-space H−(K, u) in the direction u is defined by

H−(K,u) = {x ∈ Rn : x · u � h(K,u)}.

The support set F (K, u) in the direction u is defined by

F (K,u) = K ∩H(K,u).

Suppose the unit vectors u1, . . . , uN are not concentrated on any closed hemisphere 
of Sn−1, N � n + 1. Let P (u1, . . . , uN ) be the set with P ∈ P (u1, . . . , uN ) such that for 
fixed a1, . . . , aN � 0,

P =
N⋂

k=1

{x ∈ Rn : x · uk � ak}.

Obviously, for P ∈ P (u1, . . . , uN ), P has at most N facets, i.e., (n −1) dimensional faces, 
and the outer normals of P are a subset of {u1, . . . , uN}. Let PN (u1, . . . , uN ) be the 
subset of P (u1, . . . , uN ) such that a polytope P ∈ PN (u1, . . . , uN ), if P ∈ P (u1, . . . , uN )
and P has exactly N facets.

2.2. Basic facts on p-capacity

This part lists some necessary facts on p-capacity. For more details, see, e.g., [24,26,
35].
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Let 1 < p < n. The p-capacity Cp has the following properties. First, it is increasing 
with respect to set inclusion; that is, if E ⊆ F , then Cp(E) � Cp(F ). Second, it is 
positively homogeneous of degree (n − p), i.e., Cp(sE) = sn−pCp(E), for s > 0. Third, 
it is rigid motion invariant, i.e., Cp(gE + x) = Cp(E), for x ∈ Rn and g ∈ O(n).

Let K ∈ Kn. The p-capacitary measure μp(K, ·) has the following properties. First, 
it is positively homogeneous of degree (n − p − 1), i.e., μp(sK, ·) = sn−p−1μp(K, ·), for 
s > 0. Second, it is translation invariant, i.e., μp(K + x, ·) = μp(K, ·), for x ∈ Rn. 
Third, its centroid is at the origin, i.e., 

∫
Sn−1 u dμp(K, u) = o. Moveover, it is absolutely 

continuous with respect to the surface area measure S(K, ·).
For convex bodies Kj, K ∈ Kn, j ∈ N, if Kj → K ∈ Kn, then μp(Kj , ·) → μp(K, ·)

weakly, as j → ∞. This important fact was proved in [24, p. 1550].
Let K ∈ Kn

o and f ∈ C(Sn−1). There is a t0 > 0 such that hK + tf ∈ C+(Sn−1), for 
|t| < t0. The Aleksandrov body [hK + tf ] is continuous in t ∈ (−t0, t0). The Hadamard 
variational formula for p-capacity (see [24, Theorem 1.1]) states that

dCp([hK + tf ])
dt

∣∣∣∣
t=0

= (p− 1)
∫

Sn−1

f(u) dμp(K,u). (2.1)

For K, L ∈ Kn, the mixed p-capacity Cp(K, L) (see [24, p. 1549]) is defined by

Cp(K,L) = 1
n− p

dCp(K + tL)
dt

∣∣∣∣
t=0+

= p− 1
n− p

∫
Sn−1

hL(u) dμp(K,u). (2.2)

When L = K, it reduces to the Poincaré p-capacity formula (1.8). From the weak 
convergence of p-capacitary measures, it follows that Cp(K, L) is continuous in (K, L).

The p-capacitary Brunn-Minkowski inequality, proved by Colesanti-Salani [25], reads: 
If K, L ∈ Kn, then

Cp(K + L)
1

n−p � Cp(K)
1

n−p + Cp(L)
1

n−p , (2.3)

with equality if and only if K and L are homothetic. When p = 2, the inequality was 
first established by Borell [5], and the equality condition was shown by Caffarelli, Jerison 
and Lieb [16]. For more details, see, e.g., Colesanti [23] and Gardner and Hartenstine 
[30].

The inequality (2.3) is equivalent to the following p-capacitary Minkowski inequality

Cp(K,L) � Cp(K)n−p−1Cp(L), (2.4)

with equality if and only if K and L are homothetic. See [24, p. 1549] for more details.
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2.3. Basic facts on Aleksandrov bodies

For nonnegative f ∈ C(Sn−1), define

Cp(f) = Cp([f ]).

Obviously, Cp(hK) = Cp(K), for a compact set K that contains the origin.
By the Aleksandrov convergence lemma and the continuity of Cp on Kn, the functional 

Cp : C+(Sn−1) −→ (0, ∞) is continuous.
Let 0 < p < ∞ and 1 < p < n. For K ∈ Kn

o and nonnegative f ∈ C(Sn−1), define

Cp,p(K, f) = p− 1
n− p

∫
Sn−1

f(u)phK(u)1−p dμp(K,u).

For brevity, write Cp(K, f) for C1,p(K, f). Obviously, Cp,p(K, hK) = Cp(K).

Lemma 2.1. Let 0 < p < ∞ and 1 < p < n. If f ∈ C+(Sn−1), then

Cp,p([f ], f) = Cp([f ]) = Cp(f).

Proof. Note that h[f ] � f . A basic fact established by Aleksandrov is that h[f ] = f , a.e., 
with respect to S([f ], ·). That is, S([f ], {h[f ] < f}) = 0. Since μp([f ], ·) is absolutely 
continuous with respect to S([f ], ·), it follows that μp([f ], {h[f ] < f}) = 0. Combining 
this fact and the inequality h[f ] � f , it follows that

Cp,p([f ], f) − Cp(f) = p− 1
n− p

∫
h[f]<f

(fp − hp
[f ])h

1−p
[f ] dμp([f ], ·) = 0,

as desired. �
Lemma 2.2. Let 0 < p < ∞ and μ be a finite positive Borel measure on Sn−1, which is 
not concentrated on any closed hemisphere. If Q is a compact convex set in Rn containing 
the origin and dimQ � 1, then 0 <

∫
Sn−1 h

p
Q dμ < ∞.

Proof. That the integral is finite is clear, since μ is finite and hQ is nonnegative and 
bounded. To prove the positivity of the integral, we can take a line segment Q0 ⊆ Q, 
which is of the form Q0 = l{tu0 : 0 � t � 1}, with 0 < l < ∞ and u0 ∈ Sn−1. Since μ is 
not concentrated on any closed hemisphere, it implies that μ({u ∈ Sn−1 : u ·u0 > 0}) > 0. 
Therefore, ∫

Sn−1

hp
Q dμ �

∫
Sn−1

hp
Q0

dμ = l

∫
{u∈Sn−1:u·u0>0}

(u · u0)p dμ(u) > 0,

as desired. �
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Lemma 2.3. Let I ⊆ R be an interval containing 0 in its interior, and let ht(u) = h(t, u) :
I × Sn−1 −→ (0, ∞) be continuous, such that the convergence in

h′(0, u) = lim
t→0

h(t, u) − h(0, u)
t

is uniform on Sn−1. Then

dCp(ht)
dt

∣∣∣∣
t=0

= (p− 1)
∫

Sn−1

h′(0, u) dμp([h0], u). (2.5)

Lemma 2.4. The convergence limi→∞ Ki = K in Kn is equivalent to the following con-
ditions taken together:

(1) each point in K is the limit of a sequence 
{
xi

}
i
with xi ∈ Ki for i ∈ N;

(2) the limit of any convergent sequence 
{
xij

}
j

with xij ∈ Kij for j ∈ N belongs to 
K.

For the proof of the above two lemmas, see [24, Theorem 5.2] and [45, Theorem 1.8.8], 
respectively.

3. An extremal problem for Fp(Q, x) under translation transforms

Suppose c1, . . . , cN ∈ (0, ∞) and the unit vectors u1, . . . , uN are not concentrated on 
any closed hemisphere of Sn−1. Let

μ =
N∑

k=1

ckδuk
(·)

be the discrete measure on Sn−1. For Q ∈ P (u1, . . . , uN ) and 0 < p < 1, define the 
functional Fp(Q, ·) : Q −→ R by

Fp(Q, x) =
N∑

k=1

ck(hQ(uk) − x · uk)p. (3.1)

We show there exists a unique point xQ ∈ intQ such that Fp(Q, x) attains the maximum.

Lemma 3.1. Let Q ∈ P (u1, . . . , uN ) and 0 < p < 1. Then there exists a unique point 
xQ ∈ relintQ such that

Fp(Q, xQ) = max
x∈Q

Fp(Q, x).

In addition, if Q is an n-dimensional polytope, then
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N∑
k=1

ck(hQ(uk) − xQ · uk)p−1uk = o. (3.2)

Proof. First, we prove the uniqueness of the maximal point. Assume x1, x2 ∈ relintQ
and

Fp(Q, x1) = Fp(Q, x2) = max
x∈Q

Fp(Q, x).

Using the definition (3.1), the Jensen inequality and the above assumption, we have

Fp(Q,
1
2(x1 + x2)) =

N∑
k=1

ck(hQ(uk) −
1
2(x1 + x2) · uk)p

=
N∑

k=1

ck(
1
2(hQ(uk) − x1 · uk) + 1

2(hQ(uk) − x2 · uk))p

� 1
2

N∑
k=1

ck(hQ(uk) − x1 · uk)p + 1
2

N∑
k=1

ck(hQ(uk) − x2 · uk)p

= 1
2Fp(Q, x1) + 1

2Fp(Q, x2)

= max
x∈Q

Fp(Q, x).

Since Q is convex, 12(x1+x2) ∈ Q. So the equality in the third line holds. By the equality 
condition of the Jensen inequality, we have

hQ(uk) − x1 · uk = hQ(uk) − x2 · uk, for k = 1, . . . , N.

That is,

x1 · uk = x2 · uk, for k = 1, . . . , N.

Since the unit vectors u1, . . . , uN are not concentrated on any closed hemisphere, it 
follows that x1 = x2, which proves the uniqueness.

Second, we prove the existence of the maximal point. Since Fp(Q, x) is continuous in 
x ∈ Q and Q is compact, so Fp(Q, x) attains its maximum at a point of Q, say xQ. In 
the following, we prove xQ ∈ relintQ.

Assume xQ ∈ relbdQ, the boundary of Q relative to its affine hull. Fix y0 ∈ relintQ. 
Let u0 = y0−xQ

|y0−xQ| . Then for sufficiently small δ > 0, it follows that xQ + δu0 ∈ relintQ. 
Next, we aim to show that

Fp(Q, xQ + δu0) − Fp(Q, xQ)

=
N∑

ck(hQ(uk) − xQ · uk − δu0 · uk)p −
N∑

ck(hQ(uk) − xQ · uk)p

k=1 k=1
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is positive, which will contradict the maximality of Fp at xQ. Consequently, xQ ∈ relintQ.
For this aim, we divide {u1, . . . , uN} into three parts and let

U1 = {uk : xQ · uk = hQ(uk), uk · u0 �= 0, k ∈ {1, . . . , N}},

U2 = {uk : xQ · uk = hQ(uk), uk · u0 = 0, k ∈ {1, . . . , N}},

U3 = {uk : xQ · uk < hQ(uk), k ∈ {1, . . . , N}}.

We first claim U1 is nonempty.
Assume U1 is empty. Since xQ ∈ relbdQ, there exists a ui0 ∈ {u1, . . . , uN} such that 

xQ · ui0 = hQ(ui0). So, ui0 ∈ U2, and therefore U2 is nonempty. In light of the fact that 
u1, . . . , uN are not concentrated on any closed hemisphere, U3 is nonempty.

Choose a point xQ − δu0 for δ > 0. Then, xQ − δu0 /∈ Q.
On one hand, for any uk ∈ U2, it follows that (xQ − δu0) · uk = xQ · uk − δu0 · uk =

hQ(uk). Meanwhile, for any uk ∈ U3, since xQ ·uk < hQ(uk), for sufficiently small δ > 0,

(xQ − δu0) · uk = xQ · uk − δu0 · uk < hQ(uk).

Hence,

xQ − δu0 ∈
⋂

uk∈U2∪U3

{
x ∈ Rn : x · uk � hQ(uk)

}

=
N⋂

k=1

{
x ∈ Rn : x · uk � hQ(uk)

}
=Q.

That is, xQ − δu0 ∈ Q. This is a contradiction. Hence, U1 is nonempty.
Thus,

Fp(Q, xQ + δu0) − Fp(Q, xQ)

=
∑

uk∈U1∪U2∪U3

ck
[
(hQ(uk) − xQ · uk − δu0 · uk)p − (hQ(uk) − xQ · uk)p

]

=
∑

uk∈U1

ck(−δu0 · uk)p

+
∑

uk∈U3

ck
[
(hQ(uk) − xQ · uk − δu0 · uk)p − (hQ(uk) − xQ · uk)p

]

�
∑

uk∈U1

ck(−δu0 · uk)p

−
∑

uk∈U3

ck

∣∣∣(hQ(uk) − xQ · uk − δu0 · uk)p − (hQ(uk) − xQ · uk)p
∣∣∣.
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Since U1 is nonempty, and xQ + δu0 ∈ relintQ for sufficiently small δ > 0, it follows 
that for any uk ∈ U1,

−δu0 · uk = hQ(uk) − (xQ + δu0) · uk > 0.

So,
∑

uk∈U1

ck(−δu0 · uk)p > 0. (3.3)

Let

C = min
uk∈U3

(hQ(uk) − xQ · uk) .

Then for any uk ∈ U3, it follows that

hQ(uk) − xQ · uk � min
uk∈U3

(hQ(uk) − xQ · uk) = C > 0.

So, for sufficiently small δ > 0, we have

hQ(uk) − xQ · uk − δu0 · uk � C

2 > 0.

By the concavity of tp for 0 < p < 1, we have

∣∣∣(hQ(uk) − xQ · uk − δu0 · uk)p − (hQ(uk) − xQ · uk)p
∣∣∣ � p

(
C

2

)p−1 ∣∣∣− δu0 · uk

∣∣∣.
So,

∑
uk∈U3

ck

∣∣∣(hQ(uk) − xQ · uk − δu0 · uk)p − (hQ(uk) − xQ · uk)p
∣∣∣

≤δp

(
C

2

)p−1 ∑
uk∈U3

ck

∣∣∣u0 · uk

∣∣∣. (3.4)

Thus, according to (3.3) and (3.4), it follows that

Fp(Q, xQ + δu0) − Fp(Q, xQ)

�
∑

uk∈U1

ck(−δu0 · uk)p − δp

(
C

2

)p−1 ∑
uk∈U3

ck

∣∣∣u0 · uk

∣∣∣
=δp

{ ∑
uk∈U1

ck(−u0 · uk)p − δ1−pp

(
C

2

)p−1 ∑
uk∈U3

ck

∣∣∣u0 · uk

∣∣∣
}

> 0,

for sufficiently small δ > 0. So xQ ∈ relintQ. The existence is proved.
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Finally, we prove (3.2). Since Fp(Q, x) attains its maximum at the interior point xQ, 
we have

0 = ∂Fp(Q, x)
∂xi

∣∣∣∣
x=xQ

=
N∑

k=1

ckp(hQ(uk) − xQ · uk)p−1(−uk,i),

for i = 1, . . . , n, where x = (x1, . . . , xn)T and uk = (uk,1, . . . , uk,n)T . That is,

N∑
k=1

ck(hQ(uk) − xQ · uk)p−1uk = o,

as desired. �
From now on, we use xQ to denote the maximal point of the functional Fp(Q, x) on 

Q.

Lemma 3.2. Suppose Qi ∈ P (u1, . . . , uN ) and Qi → Q, as i → ∞. Then

xQi
→ xQ and Fp(Qi, xQi

) → Fp(Q, xQ), as i → ∞.

Proof. Since Qi → Q, it follows that for sufficiently large i,

xQi
∈ Qi ⊆ Q + B.

So, 
{
xQi

}
i
is a bounded sequence. Let 

{
xQij

}
j

be a convergent subsequence of 
{
xQi

}
i
.

Assume xQij
→ x′, but x′ �= xQ. By Lemma 2.4, it follows that x′ ∈ Q. Hence,

Fp(Q, x′) < Fp(Q, xQ).

From the continuity of Fp(Q, x) in Q and x, it follows that

lim
j→∞

Fp(Qij , xQij
) = Fp(Q, x′).

Meanwhile, by Lemma 2.4, for xQ ∈ Q, there exists a yij ∈ Qij such that yij → xQ. 
Hence,

lim
j→∞

Fp(Qij , yij ) = Fp(Q, xQ).

So,

lim Fp(Qij , xQij
) < lim Fp(Qij , yij ). (3.5)
j→∞ j→∞
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However, for any Qij , we have

Fp(Qij , xQij
) � Fp(Qij , yij ).

So,

lim
j→∞

Fp(Qij , xQij
) � lim

j→∞
Fp(Qij , yij ),

which contradicts (3.5). Thus, xQij
→ xQ, and therefore xQi

→ xQ. From the continuity 
of Fp, it follows that

Fp(Qi, xQi
) → Fp(Q, xQ).

This completes the proof. �
Lemma 3.3. Suppose Q ∈ P (u1, . . . , uN ). Then

(1) Fp(Q + y, xQ+y) = Fp(Q, xQ), for y ∈ Rn;
(2) Fp(λQ, xλQ) = λpFp(Q, xQ), for λ > 0.

Proof. From the definition (3.1), it follows that

Fp(Q + y, xQ+y) = max
z∈Q+y

Fp(Q + y, z)

= max
z−y∈Q

N∑
k=1

ck(hQ+y(uk) − z · uk)p

= max
z−y∈Q

N∑
k=1

ck(hQ(uk) − (z − y) · uk)p

= max
x∈Q

N∑
k=1

ck(hQ(uk) − x · uk)p

= Fp(Q, xQ).

Similarly,

Fp(λQ, xλQ) = max
z∈λQ

Fp(λQ, z)

= max
z
λ∈Q

N∑
k=1

ck (hλQ(uk) − z · uk)p

= λp max
z
λ∈Q

N∑
ck

(
hQ(uk) −

z

λ
· uk

)p
k=1
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= λp max
x∈Q

N∑
k=1

ck (hQ(uk) − x · uk)p

= λpFp(Q, xQ),

as desired. �
4. An extremal problem related to the Lp capacitary Minkowski problem

Suppose 0 < p < 1, 1 < p < 2, and μ is the discrete measure on Sn−1 such that

μ =
N∑

k=1

ckδuk
(·),

where N � n +1, ck > 0, and u1, . . . , uN are not concentrated on any closed hemisphere.
In this section, we first study the following extremal problem

inf{max
x∈Q

Fp(Q, x) : Q ∈ P (u1, . . . , uN ), Cp(Q) = 1}, (4.1)

and then demonstrate that its solution is precisely the solution to our concerned Lp

Minkowski problem for p-capacity.

Lemma 4.1. Suppose P is an n-dimensional polytope with normal vectors u1, . . . , uN . If 
P is the solution to problem (4.1) and xP = o, then

λh1−p
P dμp(P, ·) = dμ,

where λ = p−1
n−p

N∑
k=1

ckh
p
P (uk).

Proof. For δ1, . . . , δN > 0 and sufficiently small |t| > 0, let

Pt = {x : x · uk � hP (uk) + tδk, k = 1, . . . , N}

and

α(t)Pt = Cp(Pt)−
1

n−pPt.

Then, Cp(α(t)Pt) = 1, α(t)Pt ∈ PN (u1, . . . , uN ) and α(t)Pt → P , as t → 0.
For brevity, let x(t) = xα(t)Pt

. By (3.2) of Lemma 3.1, it follows that

N∑
ck(α(t)hPt

(uk) − x(t) · uk)p−1uk,i = 0, for i = 1, . . . , n,

k=1
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where uk = (uk,1, . . . , uk,n)T . Let t = 0. Then P0 = P , α(0) = 1, x(0) = o and

N∑
k=1

ckh
p−1
P (uk)uk,i = 0, for i = 1, . . . , n. (4.2)

We first show x′(t)
∣∣
t=0 exists. Let

yi(t, x1, . . . , xn) =
N∑

k=1

ck[α(t)hPt
(uk) − (x1uk,1 + . . . + xnuk,n)]p−1uk,i,

for i = 1, . . . , n. Then

∂yi
∂xj

∣∣∣∣
(0,...,0)

=
N∑

k=1

(1 − p)ckhp−2
P (uk)uk,iuk,j .

So,

(
∂y

∂x

∣∣∣∣
(0,...,0)

)
n×n

=
N∑

k=1

(1 − p)ckhp−2
P (uk)uku

T
k .

Since u1, . . . , uN are not concentrated on any closed hemisphere, for x ∈ Rn with x �= o, 
there exists a ui0 ∈ {u1, . . . , uN} such that ui0 · x �= 0. Thus,

xT

(
N∑

k=1

(1 − p)ckhp−2
P (uk)uku

T
k

)
x

=
N∑

k=1

(1 − p)ckhp−2
P (uk)(x · uk)2

�(1 − p)ci0h
p−2
P (ui0)(x · ui0)2 > 0,

which implies that 
(

∂y
∂x

∣∣∣∣
(0,...,0)

)
n×n

is positively definite. By the inverse function theo-

rem, it follows that x′(0) = (x′
1(0), . . . , x′

n(0)) exists.
Now, we can finish the proof. Since the functional Fp attains its minimum at the 

polytope P , from (2.5) and (4.2), we have

0 =1
p

dFp(α(t)Pt, x(t))
dt

∣∣∣∣
t=0

=
N∑

cjh
p−1
P (uj)

[
hP (uj)(−

1
n− p

)dCp(Pt)
dt

∣∣∣∣
t=0

+ δj − x′(0) · uj

]

j=1
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=
N∑
j=1

cjh
p−1
P (uj)

[
− p− 1

n− p
hP (uj)

( N∑
k=1

δkμp(P, {uk})
)

+ δj

]

− x′(0) ·
( N∑

j=1
cjh

p−1
P (uj)uj

)

=
N∑
j=1

cjh
p−1
P (uj)

[
− p− 1

n− p
hP (uj)

( N∑
k=1

δkμp(P, {uk})
)

+ δj

]

=
N∑
j=1

δj

[
cjhP (uj)p−1 − p− 1

n− p

( N∑
k=1

ckh
p
P (uk)

)
μp(P, {uj})

]
.

Since δ1, . . . , δN are arbitrary positive real numbers, we have

p− 1
n− p

( N∑
k=1

ckh
p
P (uk)

)
μp(P, {uj}) = cjh

p−1
P (uj), for j = 1, . . . , N.

In light of P is n-dimensional and o is in its interior, it follows that hP (uj) > 0, and 
therefore,

p− 1
n− p

( N∑
k=1

ckh
p
P (uk)

)
h1−p
P (uj)μp(P, {uj}) = cj , for j = 1, . . . , N.

That is,

λh1−p
P dμp(P, ·) = dμ,

where λ = p−1
n−p

N∑
k=1

ckh
p
P (uk). �

Now we demonstrate the solution to (4.1) is precisely the scaling of the solution to 
our concerned Lp Minkowski problem for p-capacity.

Lemma 4.2. Suppose the n-dimensional polytope P solves problem (4.1) and xP = o.
(1) If p + p �= n, then for

λ0 =
(
p− 1
n− p

N∑
k=1

ckh
p
P (uk)

) 1
n−p−p

,

we have

dμp,p(λ0P, ·) = dμ.
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(2) If p + p = n, then for any α > 0,

dμp,p(αP, ·) = dμp,p(P, ·) = dμ

p−1
n−p

N∑
k=1

ckh
p
P (uk)

.

Proof. Let α > 0 and P ∈ P (u1, . . . , uN ). Then

dμp,p(αP, ·) = αn−p−ph1−p
P dμp(P, ·) = αn−p−p dμp,p(P, ·). (4.3)

Assume p + p �= n. If P is the solution to (4.1), by Lemma 4.1, we have

λ dμp,p(P, ·) = λh1−p
P dμp(P, ·) = dμ,

where λ = p−1
n−p

N∑
k=1

ckh
p
P (uk). Combining with (4.3), it follows that

dμp,p(λ0P, ·) = dμ,

where λ0 = λ
1

n−p−p .
Assume p + p = n. (4.3) implies that dμp,p(αP, ·) = dμp,p(P, ·), for any α > 0. If P is 

the solution to (4.1), then

dμp,p(αP, ·) = dμp,p(P, ·) = dμ

p−1
n−p

N∑
k=1

ckh
p
P (uk)

.

This completes the proof. �
5. Existence of solutions to the Lp Minkowski problem for p-capacity

Recall that the extremal problem (4.1) is the following

inf{max
x∈Q

Fp(Q, x) : Q ∈ P (u1, . . . , uN ), Cp(Q) = 1}.

To finish the proof of the existence of the solution to the Lp Minkowski problem for 
p-capacity, we need to prove the following two lemmas.

Lemma 5.1. Suppose the n-dimensional polytope P solves problem (4.1) and xP = o. 
Then P has exactly N facets whose normal vectors are u1, . . . , uN .

Proof. We argue by contradiction. Assume that ui0 ∈ {u1, . . . , uN}, but the support set 
F (P, ui0) = P ∩H(P, ui0) is not a facet of P .
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Fix δ > 0, let

Pδ = P ∩ {x : x · ui0 � hP (ui0) − δ}

and

τPδ = τ(δ)Pδ = Cp(Pδ)−
1

n−pPδ.

Then, Cp(τPδ) = 1 and τPδ → P , as δ → 0+. By Lemma 3.2, it follows that xPδ
→ xP =

o ∈ intP , as δ → 0+. Thus, for sufficiently small δ > 0, we can assume that xPδ
∈ intP

and

hP (uk) − xPδ
· uk > δ > 0, for k = 1, . . . , N.

In the following, we show Fp(τPδ, xτPδ
) < Fp(P, o), which contradicts the fact that 

Fp(P, o) is the minimum. Since

Fp(τPδ, xτPδ
) = τp

N∑
k=1

ck(hPδ
(uk) − xPδ

· uk)p

= τp

(
N∑

k=1

ck(hP (uk) − xPδ
· uk)p

)
− τpci0(hP (ui0) − xPδ

· ui0)p

+ τpci0(hPδ
(ui0) − xPδ

· ui0)p

= Fp(P, xPδ
) + G(δ),

where

G(δ) = (τp − 1)
(

N∑
k=1

ck(hP (uk) − xPδ
· uk)p

)

+ ci0τ
p[(hP (ui0) − xPδ

· ui0 − δ)p − (hP (ui0) − xPδ
· ui0)p].

If we can show G(δ) < 0, then Fp(τPδ, xτPδ
) < Fp(P, xPδ

) � Fp(P, o), as desired.
Since 0 < hP (ui0) − xPδ

· ui0 − δ < hP (ui0) − xPδ
· ui0 < d0, where d0 is the diameter 

of P , by the concavity of tp on [0, ∞) for 0 < p < 1, it follows that

(hP (ui0) − xPδ
· ui0 − δ)p − (hP (ui0) − xPδ

· ui0)p < (d0 − δ)p − dp0.

Hence,

G(δ) < (τp − 1)
(

N∑
ck(hP (uk) − xPδ

· uk)p
)

+ ci0τ
p[(d0 − δ)p − dp0]
k=1
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= τp [(d0 − δ)p − dp0]
(
ci0 + τp − 1

(d0 − δ)p − dp0

1
τp

N∑
k=1

ck(hP (uk) − xPδ
· uk)p

)
.

From the variational formula for p-capacity (2.5), it follows that

lim
δ→0+

τp − 1
(d0 − δ)p − dp0

= lim
δ→0+

(Cp(Pδ))−
p

n−p − 1
(d0 − δ)p − dp0

=
−p(p−1)

n−p

N∑
k=1

μp(P, {uk})h′(uk, 0)

−pdp−1
0

= p− 1
n− p

N∑
k=1

μp(P, {uk})h′(uk, 0)

pdp−1
0

.

Here, h′(uk, 0) = lim
δ→0+

hPδ
(uk)−hP (uk)

δ .
Assume μp(P, {uk}) �= 0, for some k. Since μp(P, ·) is absolutely continuous with 

respect to the surface measure S(P, ·), it follows that P has a facet with normal vector 
uk. By the definition of Pδ, it implies hPδ

(uk) = hP (uk), for sufficiently small δ > 0. 
Thus, h′(uk, 0) = 0 and

N∑
k=1

μp(P, {uk})h′(uk, 0) = 0.

Therefore,

lim
δ→0+

τp − 1
(d0 − δ)p − dp0

= 0.

Combining (d0 − δ)p − dp0 < 0, ci0 > 0 and

1
τp

N∑
k=1

ck(hP (uk) − xPδ
· uk)p →

N∑
k=1

ckh
p
P (uk) > 0, as δ → 0+,

it follows that for sufficiently small δ > 0, G(δ) < 0.
Consequently, P has exactly N facets. This completes the proof. �

Lemma 5.2. Let μ be a finite positive Borel measure on Sn−1 which is not concentrated 
on any closed hemisphere, 0 < p < 1 and 1 < p < 2. If μ is discrete and satisfies 
μ({−u}) = 0 whenever μ({u}) > 0, for u ∈ Sn−1, then there exists an n-dimensional 
polytope P solving problem (4.1).
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Proof. Let

β = inf{max
x∈Q

Fp(Q, x) : Q ∈ P (u1, . . . , uN ), Cp(Q) = 1}.

Take a minimizing sequence 
{
Pi

}
i
such that Pi ∈ P (u1, . . . , uN ), xPi

= o, Cp(Pi) = 1
and lim

i→∞
Fp(Pi, o) = β.

First, we claim 
{
Pi

}
i
is bounded. Since xP = o, by the definition of Fp, it follows that

N∑
k=1

ckhPi
(uk)p = max

x∈Pi

N∑
k=1

ck(hPi
(uk) − x · uk)p

� max
x∈τQ

N∑
k=1

ck(hτQ(uk) − x · uk)p + 1,

where Q = {x : x · uk � 1, k = 1, . . . , N} and τ satisfies Cp(τQ) = 1. Let

M = max
x∈τQ

N∑
k=1

ck(hτQ(uk) − x · uk)p + 1.

Then M > 0 is independent of i. Hence, for any i,

hPi
(uk) �

⎛
⎝ M

min
1�k�N

ck

⎞
⎠

1
p

< ∞, for k = 1, . . . , N,

which implies that 
{
Pi

}
i

is bounded.
By the Blaschke Selection theorem, there exists a convergent subsequence 

{
Pij

}
j

of {
Pi

}
i

such that Pij → P .
In the following, we prove P is an n-dimensional polytope.
Case 1. If dimP � n − 2 < n − p, then Cp(P ) = 0 by [26, p. 179], which contradicts 

that Cp(P ) = 1.
Case 2. If dimP = n −1, there exists a unit vector u ∈ Sn−1 such that P ⊂ u⊥. Then 

u, −u ∈ {u1, . . . , uN} = suppμ. But μ satisfies μ({−u}) = 0 whenever μ({u}) > 0 for 
any u ∈ Sn−1, which is a contradiction.

So, dimP = n, as desired. �
Now, we can conclude the proof of Theorem 1.1 in this article.

Theorem 5.3. Let μ be a finite positive Borel measure on Sn−1 which is not concentrated 
on any closed hemisphere, 0 < p < 1 and 1 < p < 2. Suppose μ is discrete and satisfies 
μ({−u}) = 0 whenever μ({u}) > 0, for u ∈ Sn−1.

(1) If p +p �= n, then there exists an n-dimensional polytope P such that μp,p(P, ·) = μ;
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(2) If p + p = n, then there exists an n-dimensional polytope P and a constant λ > 0
such that λμp,p(P, ·) = μ.

Proof. For the discrete measure μ, by Lemma 5.2, there exists an n-dimensional polytope 
Q0 which solves problem (4.1). That is, Cp(Q0) = 1 and

Fp(Q0, xQ0) = inf{max
x∈Q

Fp(Q, x) : Q ∈ P (u1, . . . , uN ), Cp(Q) = 1}.

By Lemma 3.3 (1), it implies that P0 = Q0−xQ0 is still the solution to (4.1) and xP0 = o. 
Combining this with Lemma 5.1, Lemma 4.1 and Lemma 4.2 (1), if p + p �= n, we have

μp,p(λ0P0, ·) = μ,

where λ0 =
(
p−1
n−p

N∑
k=1

ckh
p
P (uk)

) 1
n−p−p . That is, P = λ0P0 is the desired solution.

By Lemma 5.1, Lemma 4.1 and Lemma 4.2 (2), if p + p = n, we have

λμp,p(Q0, ·) = μ,

where λ = p−1
n−p

N∑
k=1

ckh
p
P (uk). That is, P = Q0 is the desired solution. �
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