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Sharp affine isoperimetric inequalities for the
Minkowski first mixed volume

Qiang Sun and Ge Xiong

Abstract

The sharp bounds for the affine invariant ratio of the mixed cone-volume functional to the
Minkowski first mixed volume are obtained, and therefore new affine isoperimetric inequalities
for the Minkowski first mixed volume are established.

1. Introduction

The setting of this article is the n-dimensional Euclidean space, Rn. A convex body (that
is, a compact convex subset with nonempty interior) K in Rn, is uniquely determined by its
support function hK : Sn−1 → R, hK(u) = max{u · x : x ∈ K}, where Sn−1 is the unit sphere
and u · x denotes the standard inner product of u and x. The projection body ΠK of K is a
convex body with support function hΠK(u) = voln−1(K|u⊥), u ∈ Sn−1, where voln−1 denotes
the (n− 1)-dimensional volume and K|u⊥ denotes the image of orthogonal projection of K
onto the codimension 1 subspace orthogonal to u. The support function of ΠK can also be
represented as

hΠK(u) =
1
2

∫
Sn−1

|u · v|dSK(v), u ∈ Sn−1, (1.1)

where SK is the surface area measure of convex body K. Formula (1.1) follows from the Cauchy
projection formula; see, for example, [19, p. 569] for details.

The projection body is one of the most important objects in convex geometry, and has been
intensively investigated during the past three decades; see, for example, [1, 5–7, 13–15, 23, 24],
etc. It is centro-affine invariant, that is, for T ∈ SL(n), Π(TK) = T−t(ΠK), where T−t denotes
the inverse of the transpose of T . It is worth mentioning that there stands a celebrated unsolved
problem regarding projection bodies, called the Schneider projection problem: as K ranges
over the class of origin-symmetric convex bodies in Rn, what is the least upper bound of the
affine-invariant ratio

[V (ΠK)/V (K)n−1]1/n,

where V denotes the n-dimensional volume; see, for example, [18, 20] for details. The lower
bound for this affine-invariant ratio is also unknown, Petty [17] conjectured that the minimum
of this quantity is attained precisely by ellipsoids.

An effective tool to study Schneider’s projection problem is the cone-volume functional U ,
which was introduced by Lutwak, Yang and Zhang (LYZ) [16]: If P is a convex polytope in
Rn that contains the origin o in its interior, then U(P ) is defined by

U(P )n =
1
nn

∑
ui1∧···∧uin �=0

hi1 · · ·hinai1 · · · ain ,
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where u1, . . . , uN are the outer normal unit vectors to the facets of P , h1, . . . , hN are the
corresponding distances from the origin to facets, and a1, . . . , aN are the corresponding areas
of the facets.

Let Vi = aihi/n, i = 1, . . . , N . Then,

U(P )n =
∑

ui1∧···∧uin �=0

Vi1 · · ·Vin .

Since V (P )n = (
∑N

i=1 Vi)n, it follows that U(P ) < V (P ). U is centro-affine invariant, that is,
U(TP ) = U(P ), for T ∈ SL(n). It is interesting that using this functional U , LYZ [16] presented
an affirmative answer to the modified Schneider projection problem: If P is an origin-symmetric
polytope in Rn, then

V (ΠP )
U(P )n/2V (P )(n/2)−1

� 2n
(
nn

n!

)1/2

, (1.2)

with equality if and only if P is a parallelotope.
That showing the lower bound of functional U in terms of volume V makes an interesting

story. LYZ [16] conjectured that if the centroid of polytope P in Rn is at the origin, then

U(P ) � (n!)1/n

n
V (P ), (1.3)

with equality if and only if P is a parallelotope.
It took more than one dozen years to completely settle this conjecture. In [9], He, Leng and

Li proved (1.3) for origin-symmetric polytopes, including its equality condition. In [22], the
second author of this article gave a simplified proof for symmetric polytopes and proved (1.3),
including the equality case, for two- and three-dimensional polytopes. A complete and final
solution to this conjecture was attributed to Henk and Linke [10].

In 2015, Böröczky and LYZ [3] extended the domain of functional U from the class of
polytopes to the set of convex bodies in Rn with origin in their interiors, Kn

o , and defined

U(K)n =
1
nn

∫
u1∧···∧un �=0

hK(u1) · · ·hK(un)dSK(u1) · · · dSK(un).

Since V (K)n = ( 1
n

∫
Sn−1 hKdSK)n, it follows that U(K) � V (K). It is still centro-affine

invariant, that is, U(TK) = U(K), for T ∈ SL(n). U(K) is positive homogeneity of degree
n, that is, U(tK) = tnU(K), for t > 0. In 2016, Böröczky and Henk [2] further proved that
the LYZ conjecture is also affirmative for convex bodies with centroid at the origin. Very
recently, Hu and Xiong [11] extended the inequality (1.2) and the Minkowski first mixed
volume was involved.

Let K ∈ Kn
o and L be a convex body in Rn. In [12], Lu, Sun and Xiong calculated the

variation of U functional and showed that

U1(K,L) =
1
n

lim
λ→0+

U(K + λL) − U(K)
λ

=
(n− 1)

∫
u1∧u2∧···∧un �=0

1
nhK(u1) dS1(K,L, u1)dVK(u2) · · · dVK(un)

nU(K)n−1

+

∫
u1∧u2∧···∧un �=0

1
nhL(u1) dSK(u1)dVK(u2) · · · dVK(un)

nU(K)n−1
, (1.4)

where S1(K,L, ·) is the first mixed area measure; see equation (2.2) in Section 2 for more details.
In view of the fact that the Minkowski first mixed volume V1(K,L), the most important

one among Vi(K,L), i = 1, 2, . . . , n, is arising from the variation of the volume functional,
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we naturally call U1(K,L) the mixed cone-volume functional of K and L. Note that
U1(K,K) = U(K). U1(K,L) is centro-affine invariant, that is, U1(TK, TL) = U1(K,L), for
T ∈ SL(n). It is striking that when K is strictly convex, U1(K,L) = V1(K,L). So, in some
sense, the functional U1 gives a new connection to the Minkowski first mixed volume V1(K,L).
One can refer to [12] for details.

In [12], the authors investigated the affine invariant ratio U1(K,L)/V1(K,L), and proved
that if the centroid of K is at the origin and L contains the origin in its interior, then

n!
nn

(
V (K)
U(K)

)n−1

� U1(K,L)
V1(K,L)

�
(
V (K)
U(K)

)n−1

.

Let L = K. The inequality on the left side, including its equality conditions, yields LYZ’s
conjectured inequality (1.3) directly.

In this article, we further study the extremal problem for the affine invariant ratio U1(K,L)
V1(K,L)

over the polytopes in Rn, and established the following sharp affine isoperimetric inequalities.
Particularly, the parallelogram is uniquely characterized.

Theorem 1.1. Let K be a parallelotope in Rn with the origin in its interior, and L be a
convex body in Rn with the origin in its interior. Then

n
√
n!
n

� U1(K,L)
V1(K,L)

� n2 − n + 1
n

n
√
n!
n

,

with equality on the left if and only if suppS1(K,L) ⊆ suppSK ; with equality on the right if
and only if S1(K,L, span{vi1 , . . . , vin−1} ∩ Sn−1) = 0, for each {vi1 , . . . , vin−1} ⊆ {v1, . . . , vn},
where {±v1, . . . ,±vn} is the set of the outer normal unit vectors of K.

Theorem 1.2. Let K and L be origin-symmetric polygons in R2. Then

U1(K,L)
V1(K,L)

�
√

2
2

,

with equality if and only if K and L are parallel parallelograms.

Here parallel parallelograms refer to a pair of parallelograms with the same set of outer
normal unit vectors.

This article is organized as follows. For quick later reference, we collect some basic facts
on convex bodies in Section 2. One can refer to excellent books by Gardner [4], Gruber
[8], Schneider [19] and Thompson [21]. To prove Theorems 1.1 and 1.2, we provide several
preparatory lemmas in Section 3. It is worth mentioning that Lemma 3.4, which is essentially
proved by using the method of Lagrange multiplier, is crucial. The main results are proved in
Section 4.

2. Preliminaries

Write Kn for the set of convex bodies in Rn. A polytope in Rn is the convex hull of a finite set
of points in Rn. Write Hk for the k-dimensional Hausdorff measure.

The Minkowski combination of K,L ∈ Kn is defined by

tK + sL = {tx + sy : x ∈ K, y ∈ L}, t, s � 0.

From the definition of support function, it follows that

htK+sL(u) = thK(u) + shL(u), u ∈ Sn−1. (2.1)
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The support set of K ∈ Kn in the direction u, u ∈ Sn−1, is defined by

FK(u) = {x ∈ K : x · u = hK(u)}.
K is said to be strictly convex, if for each u ∈ Sn−1 the set FK(u) contains only one point.

The surface area measure SK of K ∈ Kn is a finite Borel measure on Sn−1, defined for
Borel ω ⊆ Sn−1 by SK(ω) = Hn−1(ν−1

K (ω)), where νK : ∂′K → Sn−1 is the Gauss map of K,
defined on ∂′K, the set of points of ∂K that have a unique outer unit normal. Recall that
Hn−1(∂K \ ∂′K) = 0; see, for example, [19, p. 84] for details.

By the definition of support set, it follows that SK({u}) = Hn−1(FK(u)), for u ∈ Sn−1.
The mixed area measure S(K1, . . . ,Kn−1, ·) of K1, . . . ,Kn−1 ∈ Kn is defined by

S(K1, . . . ,Kn−1, ·) =
1

(n− 1)!

n−1∑
k=1

(−1)n+k−1
∑

1�i1<···<ik�n

SKi1+···+Kik
(·).

For brevity, let

Si(K,L) = S(K, . . . ,K︸ ︷︷ ︸
n−1−i

, L, . . . , L︸ ︷︷ ︸
i

, ·), i = 0, . . . , n− 1. (2.2)

The cone-volume measure VK of K ∈ Kn
o is a finite Borel measure on Sn−1, defined for Borel

ω ⊆ Sn−1 by

VK(ω) =
1
n

∫
ω

hK(u) dSK(u).

In particular,

VK(Sn−1) = V (K) =
1
n

∫
Sn−1

hK(u) dSK(u).

The mixed cone-volume measure VK,L of K,L ∈ Kn
o , originally defined by Hu and Xiong in

[11], is

VK,L(ω) =
1
n

∫
ω

hL(u) dSK(u), for Borel set ω ⊆ Sn−1.

Observe that VK,L(Sn−1) = V1(K,L), VK,B = 1
nSK and VK,K = VK . Thus, VK,L contains two

most fundamental measures in convex geometry: the surface area measure SK and the cone-
volume measure VK . For its properties and applications, one can refer to [11].

The Minkowski first mixed volume V1(K,L) of K,L ∈ Kn is defined by

V1(K,L) =
1
n

lim
λ→0+

V (K + λL) − V (K)
λ

,

which has the following integral formula:

V1(K,L) =
1
n

∫
Sn−1

hL(u) dSK(u) =
1
n

∫
Sn−1

hK(u) dS1(K,L, u). (2.3)

Since V1(K,L1 + L2) = V1(K,L1) + V1(K,L2), it follows that

S1(K,L1 + L2, ·) = S1(K,L1, ·) + S1(K,L2, ·). (2.4)

By (2.3), it yields that for n = 2,

V1(K,L) = V1(L,K). (2.5)
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When K ∈ K2
o and L be a convex set in R2, by (1.4), we have

U1(K,L) =

∫
u1∧u2 �=0

1
2hK(u1) dSL(u1)dVK(u2) +

∫
u1∧u2 �=0

1
2hL(u1) dSK(u1)dVK(u2)

2U(K)
. (2.6)

3. Preparatory lemmas

Lemma 3.1. Let K ∈ Kn
o , and L1, L2 be compact convex sets in Rn containing the origin.

Then, U1(K,L1 + L2) = U1(K,L1) + U1(K,L2).

Proof. From the representation (1.4) of U1(K,L), (2.4) and (2.1), it follows that

nU(K)n−1U1(K,L1 + L2)

= (n− 1)
∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L1 + L2, u1)dVK(u2) · · · dVK(un)

+
∫
u1∧u2∧···∧un �=0

1
n
hL1+L2(u1) dSK(u1)dVK(u2) · · · dVK(un)

= (n− 1)
∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L1, u1)dVK(u2) · · · dVK(un)

+ (n− 1)
∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L2, u1)dVK(u2) · · · dVK(un)

+
∫
u1∧u2∧···∧un �=0

1
n
hL1(u1) dSK(u1)dVK(u2) · · · dVK(un)

+
∫
u1∧u2∧···∧un �=0

1
n
hL2(u1) dSK(u1)dVK(u2) · · · dVK(un)

= { (n− 1)
∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L1, u1)dVK(u2) · · · dVK(un)

+
∫
u1∧u2∧···∧un �=0

1
n
hL1(u1) dSK(u1)dVK(u2) · · · dVK(un)}

+ { (n− 1)
∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L2, u1)dVK(u2) · · · dVK(un)

+
∫
u1∧u2∧···∧un �=0

1
n
hL2(u1) dSK(u1)dVK(u2) · · · dVK(un)}

= nU(K)n−1(U1(K,L1) + U1(K,L2)).

That is,

U1(K,L1 + L2) = U1(K,L1) + U1(K,L2),

which is as desired. �
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Lemma 3.2. If nonnegative real ai are not all zeros, and bi, ci > 0, i = 1, . . . , N , then∑N
i=1 aibi∑N
i=1 aici

� min
1�i�N

bi
ci
.

Proof. ∑N
i=1 aibi∑N
i=1 aici

=

∑N
i=1 aici · bi

ci∑N
i=1 aici

�
min1�i�N

bi
ci

∑N
i=1 aici∑N

i=1 aici
= min

1�i�N

bi
ci
,

which is as desired. �

One can refer to [22, p. 3222] for the proof of the following lemma.

Lemma 3.3. Let P be a polytope in Rn with its centroid at the origin and outer normal
unit vectors u1, u2, . . . , uN . Then

VP ({±ui}) � 1
n
V (P ), i = 1, . . . , N. (3.1)

If P is a parallelotope, then the equality of (3.1) holds. Conversely, if the equalities of (3.1)
hold for all i simultaneously, then P is a parallelotope.

Lemma 3.4. Let 2 � N ∈ N and

f(x1, x2, . . . , xN ; y2, y3, . . . , yN ) =

(
1 − 1

2x1 −
∑N

j=2 xjyj

)2

1 −∑N
i=1 x

2
i

,

where xi, yj ∈ [0, 1
2 ], i = 1, 2, . . . , N ; j = 2, . . . , N . Then,

min f � 1
2

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

xi = 1

N∑
j=2

yj =
1
2

.

Moreover, f = 1
2 if and only if there exists a j0 ∈ {2, . . . , N}, such that x1 = xj0 = yj0 = 1

2 .

Proof. Since f is continuous on the compact set

A =

⎧⎨
⎩(x1, . . . , xN , y2, . . . , yN ) ∈

[
0,

1
2

]2N−1

:
N∑
i=1

xi = 1,
N∑
j=2

yi =
1
2

⎫⎬
⎭ ,

f attains its minimum on the set A.
Assume that f attains its minimum at X̄ = (x̄1, x̄2, . . . , x̄N ; ȳ2, ȳ3, . . . , ȳN ), and

ȳj > 0, j = 2, . . . , l; ȳj = 0, j = l + 1, . . . , N,

where l ∈ {2, . . . , N}. In the following, we recognize the extremal point X̄ by two cases.
Case 1. Assume that there exists a j0 ∈ {2, . . . , l}, say j0 = 2, such that ȳj0 = 1

2 . Then

f(X̄) =

(
1 − 1

2 x̄1 − 1
2 x̄2

)2
1 −∑N

i=1 x̄
2
i

�
(
1 − 1

2 x̄1 − 1
2 x̄2

)2
1 − (x̄2

1 + x̄2
2)

, (3.2)
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with equality if and only if x̄3 = · · · = x̄N = 0; by
∑N

i=1 x̄i = 1, with equality if and only if
x̄1 + x̄2 = 1. In terms of x̄1, x̄2 ∈ [0, 1

2 ], so the equality holds if and only if x̄1 = x̄2 = 1
2 .

Let g(x1, x2) = (1− 1
2x1− 1

2x2)
2

1−(x2
1+x2

2)
. For x1, x2 ∈ (0, 1

2 ),

∂g

∂x1
=

−(1 − 1
2x1 − 1

2x2)(1 − x2
1 − x2

2) + 2x1

(
1 − 1

2x1 − 1
2x2

)2
(1 − x2

1 − x2
2)

2

=
(1 − 1

2x1 − 1
2x2)[−1 + x2

1 + x2
2 + 2x1(1 − 1

2x1 − 1
2x2)]

(1 − x2
1 − x2

2)
2

=
(1 − 1

2x1 − 1
2x2)[−1 + x2

2 + 2x1(1 − 1
2x2)]

(1 − x2
1 − x2

2)
2

<
(1 − 1

2x1 − 1
2x2)[−1 + x2

2 + (1 − 1
2x2)]

(1 − x2
1 − x2

2)
2

=
x2(1 − 1

2x1 − 1
2x2)(x2 − 1

2 )

(1 − x2
1 − x2

2)
2

< 0.

By the symmetry of the function g in x1 and x2, we also have ∂g
∂x2

< 0, x1, x2 ∈ (0, 1
2 ).

Thus, for x1, x2 ∈ [0, 1
2 ], we have

g(x1, x2) � g

(
1
2
, x2

)
� g

(
1
2
,
1
2

)
=

1
2
, (3.3)

with equality if and only if x1 = x2 = 1
2 . Combining (3.2) with (3.3), we obtain f(X̄) � 1

2 , with
equality if and only if x̄1 = x̄2 = 1

2 . By the assumption that X̄ is a minimal point, we conclude
that f(X̄) = 1

2 , and x̄1 = x̄2 = 1
2 .

Case 2. Assume that ȳj <
1
2 , for each j ∈ {2, . . . , l}. Under the constrained condition that∑l

j=2 yj = 1
2 , the function f(x̄1, x̄2, . . . , x̄N , y2, y3, . . . , yl, 0, . . . , 0) in y2, y3, . . . , yl has to attain

its minimum at the interior point of the compact set [0, 1
2 ]l−1, say (ȳ2, ȳ3, . . . , ȳl). Thus, we can

use the Lagrange multipliers method.
Let F (y2, y3, . . . , yl, λ) = f(x̄1, x̄2, . . . , x̄N , y2, y3, . . . , yl, 0, . . . , 0) + λ( 1

2 −∑l
j=2 yj). Then,

∂F

∂yk

∣∣∣∣
(ȳ2,ȳ3,...,ȳl)

=
−2x̄k

(
1 − 1

2 x̄1 −
∑l

j=2 x̄j ȳj

)
1 −∑N

i=1 x̄
2
i

− λ = 0, k = 2, . . . , l. (3.4)

By solving the above equations, we obtain

x̄2 = − 1 −∑N
i=1 x̄

2
i

2
(
1 − 1

2 x̄1 −
∑l

j=2 x̄j ȳj

)λ = x̄3 = · · · = x̄l.

So,

f(X̄) =

(
1 − 1

2 x̄1 −
∑l

j=2 x̄j ȳj

)2

1 −∑N
i=1 x̄

2
i
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=

(
1 − 1

2 x̄1 − x̄2

∑l
j=2 ȳj

)2

1 −∑N
i=1 x̄

2
i

=

(
1 − 1

2 x̄1 − 1
2 x̄2

)2
1 −∑N

i=1 x̄
2
i

.

Observe that when Ȳ = (x̄1, x̄2, . . . , x̄N , 1
2 , 0, . . . , 0),

f(Ȳ ) =

(
1 − 1

2 x̄1 − 1
2 x̄2

)2
1 −∑N

i=1 x̄
2
i

= f(X̄),

which implies that Ȳ is also a minimal point of f . Since Ȳ satisfies the condition in Case 1, it
follows that x̄1 = x̄2 = 1

2 , f(Ȳ ) = 1
2 . So, f(X̄) = f(Ȳ ) = 1

2 . However,

f(X̄) =

(
1 − 1

4 − 1
2 ȳ2

)2
1 − 1

4 − 1
4

>

(
1 − 1

4 − 1
4

)2
1 − 1

4 − 1
4

=
1
2
,

which is a contradiction. Hence, Case 2 does not exist.
Consequently, f attains its minimum 1

2 if and only if there exists a j0 ∈ {2, . . . , N}, such
that x1 = xj0 = yj0 = 1

2 . �

4. Proofs of the main results

Now, we finish the proofs of the main results.

Proof of Theorem 1.1. Since K is a parallelotope, it follows that for any {vi1 , . . . , vik} ⊆
{v1, . . . , vn}, k = 1, 2, . . . , n− 1,

VK(span{vi1 , . . . , vik} ∩ Sn−1) =
k∑

j=1

1
n
SK({vij})(hK(vij ) + hK(−vij )) =

k

n
V (K). (4.1)

So, by (4.1) and (1.3), if follows that

U(K)n =
n!
nn

V (K)n (4.2)

and ∫
u1∧u2∧···∧un �=0

1
n
hL(u1) dSK(u1)dVK(u2) . . . dVK(un) =

n!
nn

V (K)n−1V1(K,L). (4.3)

Since v1, v2, . . . , vn are the outer normal unit vectors of the parallelotope K, it follows that
v1, v2, . . . , vn consist of a basis of Rn. So, for any k-dimensional subspace ξ of Rn, 1 � k � n− 1,
there are at most k pairs of vectors from {±v1, v2, . . . ,±vn} lying in ξ. Hence, by (4.1), it yields
that

VK(ξ ∩ Sn−1) = VK(ξ ∩ {±v1, . . . ,±vn}) =
∑
vi∈ξ

VK({±vi}) � k

n
V (K).

Therefore, ∫
u/∈ξ

dVK(u) = V (K) − VK(ξ ∩ Sn−1) � n− k

n
V (K), (4.4)

with equality if and only if ξ precisely contains k pairs of vectors from {±v1, v2, . . . ,±vn}.
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By using (4.4), it follows that∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L, u1)dVK(u2) . . . dVK(un)

=
∫
u1∧u2∧···∧un−1 �=0

∫
un /∈span{u1,u2,...,un−1}

dVK(un)
1
n
hK(u1) dS1(K,L, u1)dVK(u2)

· · · dVK(un)

� 1
n
V (K)

∫
u1∧u2∧···∧un−1 �=0

1
n
hK(u1) dS1(K,L, u1)dVK(u2) · · · dVK(un)

· · ·

� (n− 2)!
nn−2

V (K)n−2

∫
u1∈Sn−1

∫
u2 �=±u1

1
n
hK(u1) dS1(K,L, u1)dVK(u2)

� n!
nn

V (K)n−1V1(K,L). (4.5)

Thus,

U1(K,L)
V1(K,L)

�
(n− 1) n!

nnV (K)n−1V1(K,L) + n!
nnV (K)n−1V1(K,L)

nU(K)n−1V1(K,L)

=
n!
nn

V (K)n

U(K)n
U(K)
V (K)

=
n
√
n!
n

. (4.6)

Assume that suppS1(K,L) ⊆ suppSK . By the equality condition of (4.4), it follows that
VK(span{u1, . . . , uk} ∩ Sn−1) = k

nV (K), for any u1, . . . , uk ∈ suppSK with u1 ∧ · · · ∧ uk �= 0;
or for any u1 ∈ suppS1(K,L) ⊆ suppSK and u2, . . . , uk ∈ suppSK with u1 ∧ · · · ∧ uk �= 0. So,
each equality in (4.5) holds. Therefore, the equality in (4.6) holds.

Conversely, from the equality condition of the last inequality in (4.5), it follows that
VK(span{u}) = 1

nV (K), for any u ∈ suppS1(K,L). Added that K is a parallelotope, it yields
that suppS1(K,L) ⊆ suppSK .

For the upper bound we observe that∫
u1∧u2∧···∧un �=0

1
n
hK(u1) dS1(K,L, u1)dVK(u2) · · · dVK(un)

=
∫
u2∧···∧un �=0

∫
u1 /∈span{u2,...,un}

1
n
hK(u1) dS1(K,L, u1)dVK(u2) · · · dVK(un)

=
∫
u2∧···∧un �=0

(
V1(K,L) −

∫
u1∈span{u2,...,un}

1
n
hK(u1) dS1(K,L, u1)

)
dVK(u2) · · · dVK(un)

�
∫
u2∧···∧un �=0

V1(K,L) dVK(u2) · · · dVK(un)

= V1(K,L)
∫
u2∧···∧un−1 �=0

(
V (K) − VK(span{u2, . . . , un−1} ∩ Sn−1)

)
dVK(u2) · · · dVK(un−1)
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=
2
n
V1(K,L)V (K)

∫
u2∧···∧un−1 �=0

dVK(u2) · · · dVK(un−1)

· · ·

=
2
n

3
n
· · · n− 1

n
V1(K,L)V (K)n−1

=
n!

nn−1
V1(K,L)V (K)n−1.

Thus,

U1(K,L)
V1(K,L)

�
(n− 1) n!

nn−1V (K)n−1 + n!
nnV (K)n−1

nU(K)n−1

=
n(n− 1) + 1

n

n!
nn

V (K)n

U(K)n
U(K)
V (K)

=
n2 − n + 1

n

n
√
n!
n

,

with equality if and only if S1(K,L, span{vi1 , . . . , vin−1} ∩ Sn−1) = 0, for any {vi1 , . . . , vin−1} ⊆
{v1, . . . , vn}. �

When n = 2, the equality condition of Theorem 1.1 becomes simple.

Corollary 4.1. Let K be a parallelogram in R2 with the origin in its interior, and L be
a convex set in R2 with the origin in its interior. Then,

√
2

2
� U1(K,L)

V1(K,L)
� 3

√
2

4
,

with equality on the left if and only if K and L are parallel parallelograms; with equality on
the right if and only if SL({±v1,±v2}) = 0, where {±v1,±v2} is the set of the outer normal
unit vectors of K.

Proof. The inequalities are derived from Theorem 1.1 directly. In the following, we show the
equality conditions. Observe that when n = 2, S1(K,L, ·) = SL(·). By Theorem 1.1, the equality
on the left holds if and only if suppSL ⊆ suppSK . Assume that suppSL � suppSK . In light of
K is a parallelogram, it follows that suppSL must concentrate on a closed hemisphere, which is
impossible. Hence, suppSL = suppSK , which implies that L and K are parallel parallelograms.

By Theorem 1.1, the equality on the right holds if and only if SL(span{v} ∩ S1) = 0, for each
v ∈ {±v1,±v2}. Hence, SL({±v1,±v2}) = 0. �

Now we present the proof of Theorem 1.2.

Proof of Theorem 1.2. The crucial point of the proof is to show that U1(K,L)
V1(K,L) � U1(K,L′)

V1(K,L′) �
U1(K,L′′)
V1(K,L′′) , where L′ and L′′ are constructed from L.

Step 1. Assume that suppSK = {±v1, . . . ,±vN}. Let

L′ = {x ∈ R2 : |x · vi| � hL(vi), i = 1, . . . , N}.
Then, L ⊆ L′, suppSL′ ⊆ suppSK , and hL′(±vi) � hL(±vi), i = 1, . . . , N . In light of L ⊆ L′,
it follows that hL′ � hL, and therefore hL′(±vi) = hL(±vi), i = 1, . . . , N . Hence,

V1(K,L′) = V1(K,L) (4.7)
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and ∫
u1∧u2=0

1
2
hL′(u1) dSK(u1)dVK(u2) =

∫
u1∧u2=0

1
2
hL(u1) dSK(u1)dVK(u2). (4.8)

In the following, we aim to show that U1(K,L′) � U1(K,L).
By (2.6) and (2.5), we have

2U(K)U1(K,L′)

=
∫
u1∧u2 �=0

1
2
hK(u1) dSL′(u1)dVK(u2) +

∫
u1∧u2 �=0

1
2
hL′(u1) dSK(u1)dVK(u2)

= V (K)V1(L′,K) −
∫
u1∧u2=0

1
2
hK(u1) dSL′(u1)dVK(u2)

+ V (K)V1(K,L′) −
∫
u1∧u2=0

1
2
hL′(u1) dSK(u1)dVK(u2)

= 2V (K)V1(K,L′) −
∫
u1∧u2=0

1
2
hK(u1) dSL′(u1)dVK(u2)

−
∫
u1∧u2=0

1
2
hL′(u1) dSK(u1)dVK(u2).

Similarly, we have

2U(K)U1(K,L) = 2V (K)V1(K,L) −
∫
u1∧u2=0

1
2
hK(u1) dSL(u1)dVK(u2)

−
∫
u1∧u2=0

1
2
hL(u1) dSK(u1)dVK(u2).

Combining the above two equalities with (4.8), we obtain

2U(K)(U1(K,L′) − U1(K,L))

=
∫
u1∧u2=0

1
2
hK(u1) (dSL(u1) − dSL′(u1))dVK(u2)

=
∫
u1∈suppSK

∫
u2=±u1

1
2
hK(u1)(dSL(u1) − dSL′(u1))dVK(u2).

So, it suffices to show that SL′({u}) � SL({u}), for any u ∈ suppSK .
For u ∈ suppSK , let Hu = {x ∈ R2 : x · u = hL(u)}. Since hL′(u) = hL(u), it follows that Hu

is the support hyperplane of L′ with outer normal u. So,

SL′({u}) = vol1(L′ ∩Hu), SL({u}) = vol1(L ∩Hu),

here vol1 is the one-dimensional Lebesgue measure. From L ⊆ L′, it follows that L ∩Hu ⊆
L′ ∩Hu. So, SL′({u}) � SL({u}). Hence, U1(K,L′) � U1(K,L). By (4.7), it yields that

U1(K,L)
V1(K,L)

� U1(K,L′)
V1(K,L′)

. (4.9)
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Step 2. By the definition of L′, we can rewrite L′ =
∑N

i=1 aiT [−vi, vi], here T is the orthogonal
transform by anticlockwise rotation π

2 ; ai � 0 are not all zeros, i = 1, . . . , N . From Lemmas 3.1
and 3.2, it follows that

U1(K,L′)
V1(K,L′)

=
∑N

i=1 aiU1(K,T [−vi, vi])∑N
i=1 aiV1(K,T [−vi, vi])

� min
1�i�N

U1(K,T [−vi, vi])
V1(K,T [−vi, vi])

. (4.10)

Assume that min1�i�N
U1(K,T [−vi,vi])
V1(K,T [−vi,vi])

= U1(K,T [−v1,v1])
V1(K,T [−v1,v1])

. Let L′′ = T [−v1, v1]. Then,

suppSL′′ = {±v1}, hL′′(u) = |u · Tv1|, ∀u ∈ S1.

So, ∫
u1∧u2=0

1
2
hK(u1) dSL′′(u1)dVK(u2) =

∫
u1∈{±v1}

VK({±u1})1
2
hK(u1) dSL′′(u1)

= hK(v1)SL′′({v1})VK({±v1})
= V1(L′′,K)VK({±v1})
= V1(K,L′′)VK({±v1}).

In light of the fact that v1 · Tv1 = 0, it yields that∫
u1∧u2=0

1
2
hL′′(u1) dSK(u1)dVK(u2) =

∫
u1∈supp SK

VK({±u1})1
2
|u1 · Tv1| dSK(u1)

= 2
N∑
i=1

1
2
|vi · Tv1|SK({vi})VK({±vi})

=
N∑
j=2

hL′′(vj)SK({vj})VK({±vj}).

Thus,

U1(K,L′′) =
2V (K)V1(K,L′′) − V1(K,L′′)VK({±v1}) −

∑N
j=2 hL′′(vj)SK(vj)VK({±vj})

2U(K)
.

Since U(K)2 = V (K)2 − ∫
u1∧u2=0

dVK(u1)dVK(u2) = V (K)2 −∑N
i=1 VK({±vi})2, it follows

that

U1(K,L′′)
V1(K,L′′)

=
V (K) − 1

2VK({±v1}) −
∑N

j=2
hL′′ (vj)SK(vj)

2V1(K,L′′) VK({±vj})√
V (K)2 −∑N

i=1 VK({±vi})2

=
1 − 1

2
VK({±v1})

V (K) −∑N
j=2

hL′′ (vj)SK(vj)
2V1(K,L′′)

VK({±vj})
V (K)√

1 −∑N
i=1

(
VK({±vi})

V (K)

)2
.

By Lemma 3.3, it follows that VK({±vi})
V (K) � 1

2 ; by
∑N

i=1
VK({±vi})

V (K) = 1, it yields that∑N
j=2

hL′′ (vj)SK(vj)
2V1(K,L′′) = 1

2 . Therefore, by Lemma 3.4, it follows that

U1(K,L′′)
V1(K,L′′)

�
√

2
2

. (4.11)
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Consequently, combining (4.9), (4.10) with (4.11), it follows that

U1(K,L)
V1(K,L)

� U1(K,L′)
V1(K,L′)

� U1(K,L′′)
V1(K,L′′)

�
√

2
2

.

Now, we show the equality conditions.
On one hand, assume the equality holds. By the equality conditions in Lemma 3.4,

there exists a j0 ∈ {2, . . . , N} such that VK({±v1}) = VK({±vj0}) = 1
2V (K). By Lemma 3.3,

it follows that K is a parallelogram. By Corollary 4.1, it follows that K and L are
parallel parallelograms.

Assume that K and L are parallelograms. By Corollary 4.1, then the equality holds. �

Let K = L, we immediately obtain the following LYZ’s conjectured inequality for n = 2.

Corollary 4.2. Let K be an origin-symmetric polygon in R2. Then,

U(K)
V (K)

�
√

2
2

,

with equality if and only if K is a parallelogram.

From the Minkowski inequality, we immediately obtain the following.

Corollary 4.3. Let K,L be origin-symmetric polygons in R2. Then

U1(K,L)2 � 1
2V (K)V (L),

with equality if and only if K and L are dilated parallelograms.

An obvious question regarding the functionals V1 and U1 begs to be asked.

Conjecture. Let K, L be convex bodies in Rn with centroid at the origin. Then

U1(K,L)
V1(K,L)

�
n
√
n!
n

,

with equality if and only if K is a parallelotope and supp S1(K,L) ⊆ supp SK .
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and J. Wills; Birkhäuser, Basel, 1983) 296–317.
21. A. Thompson, Minkowski geometry (Cambridge University Press, Cambridge, 1996).
22. G. Xiong, ‘Extremum problems for the cone volume functional of convex polytopes’, Adv. Math. 225

(2010) 3214–3228.
23. G. Zhang, ‘Restricted chord projection and affine inequalities’, Geom. Dedicata 39 (1991) 213–222.
24. D. Zou and G. Xiong, ‘The Orlicz Brunn-Minkowski inequality for the projection body’, J. Geom. Anal.

(2019), https://doi.org/10.1007/s12220–019-00182–7.

Qiang Sun and Ge Xiong
School of Mathematical Sciences
Tongji University
Shanghai 200092
China

1553428@tongji.edu.cn
xiongge@tongji.edu.cn

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form of research
grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

https://doi.org/10.1093/imrn/rnz090
https://doi.org/10.1007/s00454\205019-00148\2050
https://doi.org/10.1007/s12220\205019-00182\2057
mailto:1553428@tongji.edu.cn
mailto:xiongge@tongji.edu.cn

	1. Introduction
	2. Preliminaries
	3. Preparatory lemmas
	4. Proofs of the main results
	References

