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Abstract
The variation of the functional U of a convex body in R

n introduced by Lutwak–
Yang–Zhang is derived. It becomes the first mixed volume of Minkowski when the
convex body is strictly convex. A Minkowski-type inequality for the variation of the
of U is proved, which implies the LYZ conjecture for the functional U directly.

Keywords U -functional · Minkowski first mixed volume · LYZ conjecture

Mathematics Subject Classification 52A40

1 Introduction

The setting of this article is then-dimensional Euclidean space,Rn . A convex body (i.e.,
a compact convex subset with nonempty interior) K in Rn is uniquely determined by
its support function hK : Sn−1 → R, hK (u) = max{u · x : x ∈ K }, where Sn−1 is the
unit sphere and u ·x denotes the standard inner product of u and x . The projection body
�K of K is defined as the convex body whose support function, for u ∈ S

n−1, is given
by h�K (u) = voln−1(K |u⊥), where voln−1 denotes the (n − 1)-dimensional volume
and K |u⊥ denotes the image of the orthogonal projection of K onto the codimension
1 subspace orthogonal to u. The support function of �K can also be represented as
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h�K (u) = 1

2

∫
Sn−1

|u · v| dSK (v), u ∈ S
n−1, (1.1)

where SK is the surface area measure of the convex body K . Formula (1.1) follows
from the Cauchy projection formula. See, e.g., [19, p. 569] for details.

The projection body is one of the most important objects in convex geometry
and has been intensively investigated during the past three decades. See, e.g., [1,6–
8,13–15,23,24], etc. It is centro-affine invariant; that is, for T ∈ SL(n), �(T K ) =
T−t (�K ), where T−t denotes the inverse of the transpose of T . It is worthmentioning
that there remains a celebrated unsolved problem regarding projection bodies, called
the Schneider projection problem: as K ranges over the class of origin-symmetric
convex bodies in Rn , what is the least upper bound of the volume ratio

V (�K )/V (K )n−1,

where V (K ) denotes the n-dimensional volume of K ? See, e.g., [18,20] for details.
The greatest lower bound for this volume ratio is also unknown, although Petty [17]
conjectured that the minimum of this quantity is attained precisely by ellipsoids.

An effective tool to study Schneider’s projection problem is the cone-volume func-
tional U , which was introduced by Lutwak, Yang, and Zhang (LYZ) [16]: If P is a
convex polytope in R

n that contains the origin o in its interior, then U (P) is defined
by

U (P)n = 1

nn
∑

ui1∧···∧uin �=0

hi1 . . . hin ai1 . . . ain , (1.2)

where u1, . . . , uN are the outer normal unit vectors to the facets of P , h1, . . . , hN

are the corresponding distances of the facets from the origin, and a1, . . . , aN are the
corresponding areas of the facets.

Note that the functional U is centro-affine invariant, i.e., U (T P) = U (P), for
T ∈ SL(n). Let Vi = ai hi/n, i = 1, . . . , N ; then

U (P)n =
∑

ui1∧···∧uin �=0

Vi1 · · · Vin .

Since V (P) = ∑N
i=1 Vi , it follows that U (P) < V (P). It is interesting that, using

this functionalU , LYZ [16] presented an affirmative answer to the modified Schneider
projection problem: If P is an origin-symmetric polytope in R

n , then

V (�P)

U (P)n/2 V (P)n/2−1 � 2n
(
nn

n!
)1/2

, (1.3)

with equality if and only if P is a parallelotope. Inequality (1.3) provides an asymp-
totically optimal bound for V (�K )/V (K )n−1: If K is a convex body in R

n that is
symmetric about some point, then V (�K )/V (K )n−1 � 2n

( nn
n!

)1/2. See [16, Cor. 4.7]
for details.
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The finding of the lower bound of the functionalU in terms of the volume V makes
an interesting story. LYZ [16] conjectured that, for polytopes P with centroid at the
origin, there holds

U (P) � (n!)1/n
n

V (P), (1.4)

with equality if and only if P is a parallelotope.
It tookmore than a dozen years to completely settle this conjecture. In [10], He et al.

proved (1.4) for origin-symmetric polytopes, including its equality condition. In [22],
the third author of this article gave a simplified proof for symmetric polytopes and
proved (1.4), including the equality case, for two- and three-dimensional polytopes
with centroid at the origin. A complete and final solution to this conjecture is attributed
to Henk and Linke [11].

In 2015, Böröczky and LYZ [4] extended the domain of the cone-volume functional
U toKn

o , i.e., the set of convex bodies K inRn with origin in their interiors, and defined

U (K )n = 1

nn

∫
u1∧···∧un �=0

hK (u1) · · · hK (un) dSK (u1) . . . dSK (un). (1.5)

Since V (K ) = 1
n

∫
Sn−1 hK dSK , it follows that U (K ) � V (K ). U (K ) is still centro-

affine invariant, i.e., U (T K ) = U (K ), for T ∈ SL(n). In 2016, Böröczky and Henk
[2] proved that the LYZ conjecture is also true for convex bodies with centroid at the
origin.

In light of the volume attribute of the cone-volume functional U , together with its
strong applications, the main goal of this article is to calculate the variation of U . In
Sect. 4, we first show that the limit

1

n
lim

λ→0+
U (K + λL) −U (K )

λ

indeed exists. Naturally, we name the limit the mixed cone-volume functional
U1(K , L).

It is striking that, when K is strictly convex, U1(K , L) becomes the classical
Minkowski first mixed volume V1(K , L). Recall that V1(K , L) results from the varia-
tion of the volume functional V and is the most fundamental and important among all
the mixed volumes of the convex bodies K and L . Both the volume and surface area
are unified by V1(K , L) for the special cases of K = L and when L is the unit ball.
See Sect. 2 for details.

Observe that U (K ) = V (K ) when K is strictly convex, but in general U (K ) <

V (K ), in particular when K is a polytope. So, in some sense, we provide a new
approach to the Minkowski first mixed volume V1(K , L).

In view of the close resemblance betweenU1(K , L) and V1(K , L), and the signif-
icance of the extremal property of U (K )

V (K )
, we aim to study the extremum of U1(K ,L)

V1(K ,L)

in this article. It is interesting that we obtain its sharp bounds in terms of U (K )
V (K )

, as
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follows. Moreover, from the sharp lower bound, we can deduce the LYZ conjecture
(1.4) directly.

Recall that a finite Borel measure μ on Sn−1 is said to have positive subspace mass
if μ(ξ ∩ S

n−1) > 0, for some subspace ξ of codimension 1. Refer to [4, p. 409] for
more details.

Theorem 1.1 Suppose that K and L are convex bodies in R
n with the origin in their

interiors. Then

U1(K , L)

V1(K , L)
�

(
V (K )

U (K )

)n−1

,

with equality if and only if VK does not have positive subspace mass.

Theorem 1.2 Suppose K and L are convex bodies in R
n with the origin in their

interiors. If the centroid of K is at the origin, then

U1(K , L)

V1(K , L)
� n!

nn

(
V (K )

U (K )

)n−1

,

with equality if and only if K is a parallelotope and supp S1(K , L, ·) ⊆ supp SK .

Letting L = K in Theorem 1.2, we obtain the following LYZ conjecture [16],
which was completely settled by Böröczky–Henk [2] in 2016:

Corollary 1.3 Suppose K is a convex body in R
n with the origin in its interior. If the

centroid of K is at the origin, then

U (K )

V (K )
�

(
n!
nn

)1/n

,

with equality if and only if K is a parallelotope.

This article is organized as follows: For quick later reference, we collect some basic
facts on convex bodies in Sect. 2. One can also refer to excellent books by Gardner [5],
Gruber [9], Schneider [19], and Thompson [21]. In Sect. 3, we show some fundamental
properties of cone-volume measures which are needed for later use. Then, the main
results are proved in Sect. 4.

2 Preliminaries

WriteKn,Kn
o for the set of convex bodies and the set of convex bodies with the origin

in their interiors in Rn , respectively. A polytope in Rn is the convex hull of a finite set
of points in Rn . Write V for the n-dimensional volume, i.e., n-dimensional Lebesgue
measure. For i < n, the i-dimensional volume is denoted by voli . Let Hk be the
k-dimensional Hausdorff measure.
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For u ∈ S
n−1, the support set of K ∈ Kn in the direction u is defined by

FK (u) = {x ∈ K : x · u = hK (u)}.

K is strictly convex if, for each u ∈ S
n−1, the support set FK (u) contains only one

point.
The Minkowski combination of K , L ∈ Kn is defined by

t K + sL = {t x + sy : x ∈ K , y ∈ L}, t, s � 0.

From the definition of support set, it follows that

FtK+sL(u) = t FK (u) + sFL(u), u ∈ S
n−1. (2.1)

Denote by K |ξ the orthogonal projection of K onto a subspace ξ of Rn . For any
u ∈ S

n−1 ∩ ξ , we have

hK |ξ (u) = hK (u). (2.2)

The surface area measure SK of K ∈ Kn is a finite Borel measure on Sn−1, defined
for the Borel set ω ⊆ S

n−1 by SK (ω) = Hn−1(ν−1
K (ω)), where νK : ∂ ′K → S

n−1 is
the Gauss map of K , defined on ∂ ′K , viz. the set of points of ∂K that have a unique
outer unit normal. Recall thatHn−1(∂K \ ∂ ′K ) = 0. See, e.g., [19, p. 84] for details.

By the definition of support set, it follows that SK ({u}) = Hn−1(FK (u)), for
u ∈ S

n−1.
The cone-volumemeasure VK of K ∈ Kn

o is a finite Borel measure on Sn−1, defined
for the Borel set ω ⊆ S

n−1 by

VK (ω) = 1

n

∫
ω

hK (u) dSK (u). (2.3)

In particular,

V (K ) = VK (Sn−1) = 1

n

∫
Sn−1

hK (u) dSK (u). (2.4)

Let K , L ∈ Kn and L contain the origin. The mixed cone-volume measure VK ,L of
K , L , first defined by Hu and Xiong [12], is

VK ,L(ω) = 1

n

∫
ω

hL(u) dSK (u), for a Borel set ω ⊆ S
n−1. (2.5)

Observe that VK ,B = SK
n and VK ,K = VK . Thus, the mixed cone-volume measure

contains two fundamental measures in geometry: the surface area measure SK and the
cone-volume measure VK. For its properties and applications, refer to [12].
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The cone-volume functional of K ∈ Kn
o is defined by

U (K )n =
∫
u1∧···∧un �=0

dVK (u1) . . . dVK (un). (2.6)

U (K ) is positively homogeneous of degree n and SL(n)-invariant, that is,

U (t K ) = tnU (K ), t > 0, and U (T K ) = U (K ), T ∈ SL(n).

Themixed areameasure S(K1, . . . , Kn−1, ·) of compact convex sets K1, . . . , Kn−1
in Rn is defined by

S(K1, . . . , Kn−1, ·) = 1

(n − 1)!
n−1∑
k=1

(−1)n+k−1
∑

1�i1<···<ik�n−1

SKi1+···+Kik
(·).

For simplicity, let

Si (K , L, ·) = S(K , . . . , K︸ ︷︷ ︸
n−1−i

, L, . . . , L︸ ︷︷ ︸
i

, ·), i = 0, . . . , n − 1.

For K , L ∈ Kn , there is the following Steiner-type formula for the surface area
measure:

SK+λL(·) =
n−1∑
j=0

(
n − 1

j

)
S j (K , L, ·) λ j , λ � 0. (2.7)

The Minkowski first mixed volume V1(K , L) of K , L ∈ Kn is defined by

V1(K , L) = 1

n
lim

λ→0+
V (K + λL) − V (K )

λ
,

which can be represented as the following integral formula:

V1(K , L) = 1

n

∫
Sn−1

hL(u) dSK (u) = 1

n

∫
Sn−1

hK (u) dS1(K , L, u). (2.8)

Observe that V1(K , L) = VK ,L(Sn−1) and V1(K , K ) = V (K ).
A finite Borel measure μ on S

n−1 is said to have positive subspace mass if μ(ξ ∩
S
n−1) > 0, for some subspace ξ of codimension 1; μ is said to satisfy the subspace

concentration inequality if, for every subspace ξ of Rn such that 0 < dim ξ < n,

μ(ξ ∩ S
n−1)

μ(Sn−1)
� dim ξ

n
; (2.9)
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μ is said to satisfy the subspace concentration condition if, in addition to satisfying
(2.9) whenever

μ(ξ ∩ S
n−1)

μ(Sn−1)
= dim ξ

n

for some subspace ξ , there exists a subspace ξ ′ that is complementary to ξ in Rn such
that also

μ(ξ ′ ∩ S
n−1)

μ(Sn−1)
= dim ξ ′

n
,

or equivalently such that μ is concentrated on S
n−1 ∩ (ξ ∪ ξ ′). It is worth mention-

ing that Böröczky–LYZ [3] initially posed this subspace concentration condition and
completely solved the existence of the solutions to the even logarithmic Minkowski
problem in 2013.

3 Some Properties of Cone-VolumeMeasures

In this section, we prove some properties of cone-volume measures for later use.

Lemma 3.1 Suppose that K is a strictly convex body in R
n. Then SK does not have

positive subspace mass.

Proof It suffices to show that, for any u ∈ S
n−1, there holds SK (u⊥ ∩ S

n−1) = 0.
Let y ∈ ∂K . Assume its outer normal vector νK (y) ∈ u⊥. From (2.2), it follows

that

hK |u⊥(νK (y)) = hK (νK (y)) = y · νK (y) = (y|u⊥ + y|lu) · νK (y) = (y|u⊥) · νK (y),

where lu = span{u}. So, y|u⊥ ∈ ∂(K |u⊥), and νK |u⊥(y|u⊥) = νK (y).
Thus,

SK (u⊥ ∩ S
n−1) =

∫
y∈∂K

νK (y)∈u⊥
dHn−1(y)

=
∫

x∈∂(K |u⊥)

νK |u⊥ (x)∈u⊥
dHn−2(x)

∫
(x+tu)∈K

dt

=
∫

x∈∂(K |u⊥)

νK |u⊥ (x)∈u⊥
vol1((x + lu) ∩ K ) dHn−2(x).

For any x ∈ ∂(K |u⊥), since (x + lu) ∩ K ⊆ FK (νK |u⊥(x)) and FK (νK |u⊥(x))
contains only one point by the strict convexity of K , it follows that vol1((x+lu)∩K ) =
0. Hence, SK (u⊥ ∩ S

n−1) = 0. ��
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Proposition 3.2 Suppose that K and L are convex bodies in R
n and o ∈ L. If K is

strictly convex, then VK ,L does not have positive subspace mass.

Proof Let c = maxu∈Sn−1 hL(u). From (2.5) and the strict convexity of K together
with Lemma 3.1, it follows that, for each subspace ξ of codimension 1,

0 � VK ,L(ξ ∩ S
n−1) = 1

n

∫
ξ∩Sn−1

hL(u) dSK (u) � c

n

∫
ξ∩Sn−1

dSK (u)

= c

n
SK (ξ ∩ S

n−1) = 0,

as desired. ��
Taking L = K in Proposition 3.2, we obtain the following:

Corollary 3.3 Suppose K is a convex body in Rn with the origin in its interior. If K is
strictly convex, then VK does not have positive subspace mass.

Theorem 3.4 (Böröczky–Henk [2]) Suppose K is a convex body in R
n with centroid

at the origin. Then its cone-volume measure VK satisfies the subspace concentration
condition.

Lemma 3.5 Suppose P is an n-dimensional polytope inRn with centroid at the origin.
If, for any u1, . . . , un−1 ∈ suppVP with u1 ∧ · · · ∧ un−1 �= 0, the implication

VP (span{u1, . . . , un−1} ∩ S
n−1)

V (P)
= n − 1

n

holds, then P is a parallelotope.

For the proof of Theorem 3.4 and Lemma 3.5, refer to [2, Thm. 1.1] and [22, Lem.
2.3], respectively.

4 The Variational Formula for the Cone-Volume Functional

Lemma 4.1 Suppose that K and L are convex bodies in R
n with the origin in their

interiors. Then the limit

lim
λ→0+

U (K + λL) −U (K )

λ
(4.1)

exists.

Proof Let Kλ = K + λL, λ � 0. From (2.6), (2.3), and (2.7), it follows that

U (Kλ)
n =

∫
u1∧···∧un �=0

dVKλ(u1) . . . dVKλ(un)
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= 1

nn

∫
u1∧···∧un �=0

(
n∏

i=1

hKλ(ui )

) (
n∏

i=1

dSKλ(ui )

)

= 1

nn

∫
u1∧···∧un �=0

[
n∏

i=1

(hK (ui ) + λhL(ui ))

]

×
⎡
⎣ n∏
i=1

⎛
⎝n−1∑

j=0

(
n − 1

j

)
dS j (K , L, ui ) λ j

⎞
⎠

⎤
⎦

= 1

nn

∫
u1∧···∧un �=0

hK (u1) · · · hK (un) dSK (u1) . . . dSK (un)

+ λ

nn

(
n

1

)[ ∫
u1∧···∧un �=0

hL(u1)hK (u2) · · · hK (un) dSK (u1) . . . dSK (un)

+
(
n − 1

1

)∫
u1∧···∧un �=0

hK (u1) · · · hK (un)

dS1(K , L, u1) dSK (u2) . . . dSK (un)

]
+ λ2P(λ)

= 1

nn

∫
u1∧···∧un �=0

hK (u1) · · · hK (un) dSK (u1) . . . dSK (un)

+ λ

nn−1

( ∫
u1∧···∧un �=0

hL(u1)hK (u2) · · · hK (un) dSK (u1) . . . dSK (un)

+ (n − 1)
∫
u1∧···∧un �=0

hK (u1) · · · hK (un)

dS1(K , L, u1) dSK (u2) . . . dSK (un)

)
+ λ2P(λ)

= U (K )n + λ

(∫
u1∧···∧un �=0

hL(u1) dSK (u1) dVK (u2) . . . dVK (un)

+ (n − 1)
∫
u1∧···∧un �=0

hK (u1) dS1(K , L, u1) dVK (u2) . . . dVK (un)

)

+ λ2P(λ),

where P(λ) is a polynomial of degree n2 − 2. Thus, limλ→0+ U (Kλ) = U (K ).
Combining the above with (2.8), it follows that

lim
λ→0+

U (K + λL) −U (K )

λ
= lim

λ→0+
U (Kλ) −U (K )

λ

= 1

n
U (K )1−n lim

λ→0+
U (Kλ)

n −U (K )n

λ

= U (K )1−n
(
1

n

∫
u1∧···∧un �=0

hL(u1) dSK (u1) dVK (u2) . . . dVK (un)
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+ n − 1

n

∫
u1∧···∧un �=0

hK (u1) dS1(K , L, u1) dVK (u2) . . . dVK (un)

)

� U (K )1−n
(
1

n

∫
(Sn−1)n

hL(u1) dSK (u1) dVK (u2) . . . dVK (un)

+ n − 1

n

∫
(Sn−1)n

hK (u1) dS1(K , L, u1) dVK (u2) . . . dVK (un)

)

= nV1(K , L)

(
V (K )

U (K )

)n−1

. (4.2)

This completes the proof. ��
In light of the relation between the volume and theMinkowski first mixed volume, we

introduce the following notion and naturally name it themixed cone-volume functional.

Definition 4.2 Suppose that K and L are convex bodies in Rn with the origin in their
interiors. The mixed cone-volume functional U1(K , L) of K and L is defined by

U1(K , L) = 1

n
lim

λ→0+
U (K + λL) −U (K )

λ
. (4.3)

If L = K , then U1(K , K ) = U (K ), which becomes the cone-volume functional
U originally introduced by Böröczky and LYZ [4].

Proposition 4.3 Suppose that K and L are convex bodies inRn with the origin in their
interiors. Then

(1) U1(t K , sL) = stn−1U1(K , L), for t, s > 0.
(2) U1(T K , T L) = U1(K , L), for T ∈ SL(n).

Proof By (4.3) and the affine invariance of U , it follows that

U1(t K , sL) = lim
λ→0+

U (t K + λsL) −U (t K )

λ

= stn−1 lim
λ→0+

U (K + λs
t L) −U (K )

λs
t

= stn−1U1(K , L).

Similarly,

U1(T K , T L) = lim
λ→0+

U (T K + λT L) −U (T K )

λ

= lim
λ→0+

U (K + λL) −U (K )

λ
= U1(K , L).

This completes the proof. ��
Since the functional U is not always greater than the volume functional V , we

are naturally interested in the size relation between U1(K , L) and V1(K , L). In the
following, we provide two concrete examples.
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Example 1 Let K = [−1, 1]2, L = conv{±e1,±e2}. By (4.3) and (4.2), we have

2U1(K , L) = U (K )−1
(
1

2

∫
u1∧u2 �=0

hL(u1) dSK (u1) dVK (u2)

+ 1

2

∫
u1∧u2 �=0

hK (u1) dSL(u1) dVK (u2)

)

= (2
√
2)−1(8 + 16) = 6

√
2.

Since V1(K , L) = 4, it follows that

U1(K , L)

V1(K , L)
= 3

√
2

4
> 1.

Example 2 Let K = [−1, 1]2, L = [−2, 2] × [−1, 1]. By (4.3) and (4.2), we have

2U1(K , L) =(2
√
2)−1(12 + 12) = 6

√
2.

Since V1(K , L) = 6, it follows that

U1(K , L)

V1(K , L)
= 3

√
2

6
=

√
2

2
< 1.

Now, we prove Theorems 1.1 and 1.2, which heavily depend on the upper and
lower bounds of V (K ) − VK (ξk ∩ S

n−1), respectively, where ξk = span{u1, . . . , uk},
u1, . . . , uk ∈ S

n−1 and k = 1, . . . , 2.

Theorem 4.4 Suppose that K and L are convex bodies in R
n with the origin in their

interiors. Then

U1(K , L)

V1(K , L)
�

(
V (K )

U (K )

)n−1

, (4.4)

with equality if and only if VK does not have positive subspace mass.

Proof From (4.3), (4.2), and (2.5), it follows that

U1(K , L) = 1

n
U (K )1−n

( ∫
u1∧···∧un �=0

dVK ,L(u1) dVK (u2) . . . dVK (un)

+ (n − 1)
∫
u1∧···∧un �=0

dμK ,L(u1) dVK (u2) . . . dVK (un)

)
,

where dμK ,L = 1
n hK dS1(K , L, ·).

In the following, we separately estimate the two integrals. From (2.4) and (2.8), it
follows that
∫
u1∧···∧un �=0

dVK ,L(u1) dVK (u2) . . . dVK (un)
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=
∫
u1∧···∧un−1 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−1)

∫
un /∈ξn−1

dVK (un)

=
∫
u1∧···∧un−1 �=0

(V (K ) − VK (ξn−1 ∩ S
n−1)) dVK ,L(u1) dVK (u2) . . . dVK (un−1)

� V (K )

∫
u1∧···∧un−1 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−1)

= V (K )

∫
u1∧···∧un−2 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−2)

∫
un−1 /∈ξn−2

dVK (un−1)

= V (K )

∫
u1∧···∧un−2 �=0

(V (K ) − VK (ξn−2 ∩ S
n−1))

dVK ,L(u1) dVK (u2) . . . dVK (un−2)

� V (K )2
∫
u1∧···∧un−2 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−2)

· · ·
� V (K )n−2

∫
u1∧u2 �=0

dVK ,L(u1) dVK (u2)

= V (K )n−2
∫
u1 �=0

dVK ,L(u1)
∫
u2 /∈ξ1

dVK (u2)

= V (K )n−2
∫
u1∈Sn−1

(V (K ) − VK (ξ1 ∩ S
n−1)) dVK ,L(u1)

� V (K )n−1
∫
u1∈Sn−1

dVK ,L(u1)

= V (K )n−1V1(K , L). (4.5)

Similarly, from (2.4) and (2.8), it follows that

∫
u1∧···∧un �=0

dμK ,L(u1) dVK (u2) . . . dVK (un)

=
∫
u1∧···∧un−1 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−1)

∫
un /∈ξn−1

dVK (un)

=
∫
u1∧···∧un−1 �=0

(V (K ) − VK (ξn−1 ∩ S
n−1)) dμK ,L(u1) dVK (u2) . . . dVK (un−1)

� V (K )

∫
u1∧···∧un−1 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−1)

= V (K )

∫
u1∧···∧un−2 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−2)

∫
un−1 /∈ξn−2

dVK (un−1)

= V (K )

∫
u1∧···∧un−2 �=0

(V (K ) − VK (ξn−2 ∩ S
n−1))

dμK ,L(u1) dVK (u2) . . . dVK (un−2)

123

Author's personal copy



134 Discrete & Computational Geometry (2021) 66:122–139

� V (K )2
∫
u1∧···∧un−2 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−2)

· · ·
� V (K )n−2

∫
u1∧u2 �=0

dμK ,L(u1) dVK (u2)

= V (K )n−2
∫
u1 �=0

dμK ,L(u1)
∫
u2 /∈ξ1

dVK (u2)

= V (K )n−2
∫
u1∈Sn−1

(V (K ) − VK (ξ1 ∩ S
n−1)) dμK ,L(u1)

� V (K )n−1
∫
u1∈Sn−1

dμK ,L(u1)

= V (K )n−1V1(K , L). (4.6)

Therefore,

U1(K , L) � 1

n
U (K )1−n(V (K )n−1V1(K , L) + (n − 1)V (K )n−1V1(K , L))

=
(
V (K )

U (K )

)n−1

V1(K , L).

That is,

U1(K , L)

V1(K , L)
�

(
V (K )

U (K )

)n−1

,

as desired.
Finally, we consider the equality condition. Assume that the equality in (4.4) holds.

Then, each equality in (4.5) has to hold. From the equality condition of the first
inequality in (4.5), it follows that VK (span{u1, . . . , un−1} ∩ S

n−1) = 0 for any u1 ∈
supp VK ,L = supp VK , u2, . . . , un−1 ∈ supp VK , u1 ∧ · · · ∧ un−1 = 0. Then, for each
subspace ξn−1 of dimension n − 1, VK (ξn−1 ∩ S

n−1) = 0; that is, VK does not have
positive subspace mass.

Conversely, if VK does not have positive subspace mass, then VK (ξn−1∩S
n−1) = 0

for each subspace ξn−1 of dimension n − 1. It follows that VK (ξk ∩ S
n−1) = 0 for

each subspace ξk of dimension k, k = 1, 2, . . . , n − 1. So, each equality in (4.5) and
(4.6) holds. Therefore, the equality in (4.4) holds. ��
Theorem 4.5 Suppose that K and L are convex bodies in R

n with the origin in their
interiors. If K is strictly convex, then U1(K , L) = V1(K , L).

Proof Letting L = K in Theorem 4.4, it follows that

U (K )

V (K )
� 1, (4.7)
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with equality if and only if VK does not have positive subspace mass. From Theo-
rem 4.4, the strict convexity of K , together with Corollary 3.3 and (4.7), it follows
that

U1(K , L)

V1(K , L)
=

(
V (K )

U (K )

)n−1

= 1,

as desired. ��

Remark If K is strictly convex, thenU (K ) = V (K ), while for a general convex body
L and λ > 0, U (K + λL) is usually less than V (K + λL).

Indeed, if L has an (n − 1)-dimensional facet, then there exists a u ∈ S
n−1 such

that Hn−1(FL(u)) > 0. By (2.1), it follows that

SK+λL({u}) = Hn−1(FK+λL(u)) = Hn−1(FK (u) + λFL(u))

� Hn−1(λFL(u)) = λn−1Hn−1(FL(u)) > 0.

So, VK+λL({u}) > 0, and therefore VK+λL has positive subspace mass. From the
proof of Theorem 4.5, it follows that U (K + λL) < V (K + λL).

However, if K is strictly convex, there still holds

U1(K , L) = 1

n
lim

λ→0+
U (K + λL) −U (K )

λ

= 1

n
lim

λ→0+
V (K + λL) − V (K )

λ
= V1(K , L).

Theorem 4.6 Suppose that K and L are convex bodies in R
n with the origin in their

interiors. If the centroid of K is at the origin, then

U1(K , L)

V1(K , L)
� n!

nn

(
V (K )

U (K )

)n−1

, (4.8)

with equality if and only if K is a parallelotope and supp S1(K , L, ·) ⊆ supp SK .

Proof Recall that

U1(K , L) = 1

n
U (K )1−n

( ∫
u1∧···∧un �=0

dVK ,L(u1) dVK (u2) . . . dVK (un)

+ (n − 1)
∫
u1∧···∧un �=0

dμK ,L(u1) dVK (u2) . . . dVK (un)

)
,

where dμK ,L = 1
n hK dS1(K , L, ·). In the following, we separately estimate the two

integrals.
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Since the centroid of K is at the origin, it follows that VK satisfies the subspace
concentration condition by Theorem 3.4. So,

VK (ξk ∩ S
n−1) � k

n
V (K ). (4.9)

From (2.4), (4.9), and (2.8), it follows that

∫
u1∧···∧un �=0

dVK ,L(u1) dVK (u2) . . . dVK (un)

=
∫
u1∧···∧un−1 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−1)

∫
un /∈ξn−1

dVK (un)

=
∫
u1∧···∧un−1 �=0

(V (K ) − VK (ξn−1 ∩ S
n−1)) dVK ,L(u1) dVK (u2) . . . dVK (un−1)

� V (K )

n

∫
u1∧···∧un−1 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−1)

= V (K )

n

∫
u1∧···∧un−2 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−2)

∫
un−1 /∈ξn−2

dVK (un−1)

= V (K )

n

∫
u1∧···∧un−2 �=0

(V (K ) − VK (ξn−2 ∩ S
n−1))

dVK ,L(u1) dVK (u2) . . . dVK (un−2)

� 2!
n2

V (K )2
∫
u1∧···∧un−2 �=0

dVK ,L(u1) dVK (u2) . . . dVK (un−2)

· · ·
� (n − 2)!

nn−2 V (K )n−2
∫
u1∧u2 �=0

dVK ,L(u1) dVK (u2)

= (n − 2)!
nn−2 V (K )n−2

∫
u1 �=0

dVK ,L(u1)
∫
u2 /∈ξ1

dVK (u2)

= (n − 2)!
nn−2 V (K )n−2

∫
u1∈Sn−1

(V (K ) − VK (ξ1 ∩ S
n−1)) dVK ,L(u1)

� (n − 1)!
nn−1 V (K )n−1

∫
u1∈Sn−1

dVK ,L(u1)

= n!
nn

V (K )n−1V1(K , L). (4.10)

Similarly, from (2.4) and (2.8), it follows that

∫
u1∧···∧un �=0

dμK ,L(u1) dVK (u2) . . . dVK (un)

=
∫
u1∧···∧un−1 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−1)

∫
un /∈ξn−1

dVK (un)
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=
∫
u1∧···∧un−1 �=0

(V (K ) − VK (ξn−1 ∩ S
n−1)) dμK ,L(u1) dVK (u2) . . . dVK (un−1)

� V (K )

n

∫
u1∧···∧un−1 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−1)

= V (K )

n

∫
u1∧···∧un−2 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−2)

×
∫
un−1 /∈ξn−2

dVK (un−1)

= V (K )

n

∫
u1∧···un−2 �=0

(V (K ) − VK (ξn−2 ∩ S
n−1))

dμK ,L(u1) dVK (u2) . . . dVK (un−2)

� 2!
n2

V (K )2
∫
u1∧···∧un−2 �=0

dμK ,L(u1) dVK (u2) . . . dVK (un−2)

· · ·
� (n − 2)!

nn−2 V (K )n−2
∫
u1∧u2 �=0

dμK ,L(u1) dVK (u2)

= (n − 2)!
nn−2 V (K )n−2

∫
u1 �=0

dμK ,L(u1)
∫
u2 /∈ξ1

dVK (u2)

= (n − 2)!
nn−2 V (K )n−2

∫
u1∈Sn−1

(V (K ) − VK (ξ1 ∩ S
n−1)) dμK ,L(u1)

� (n − 1)!
nn−1 V (K )n−1

∫
u1∈Sn−1

dμK ,L(u1)

= n!
nn

V (K )n−1V1(K , L). (4.11)

Therefore,

U1(K , L) � 1

n
U (K )1−n

(
n!
nn

V (K )n−1V1(K , L) + (n − 1)
n!
nn

V (K )n−1V1(K , L)

)

= n!
nn

(
V (K )

U (K )

)n−1

V1(K , L).

That is,

U1(K , L)

V1(K , L)
� n!

nn

(
V (K )

U (K )

)n−1

,

as desired.
Finally, we consider the equality condition. Assume the equality in (4.8) holds.

Then each equality in (4.10) has to hold. From the equality condition of the last
inequality in (4.10), it follows that VK (span{u} ∩ S

n−1) = 1
n V (K ) for any u ∈

supp VK ,L = supp VK . So, supp VK contains at most 2n unit vectors, and hence K is
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a polytope. From the equality condition of the first inequality in (4.10), it follows that
VK (span{u1, . . . , un−1} ∩ S

n−1) = n−1
n V (K ) for any u1, . . . , un−1 ∈ supp VK with

u1 ∧· · ·∧un−1 �= 0. From Lemma 3.5, it follows that K is a parallelotope. Moreover,
each equality in (4.11) has to hold. From the equality condition of the last inequal-
ity in (4.11), it follows that VK (span{u}) = 1

n V (K ) for any u ∈ supp S1(K , L, ·).
Therefore, supp S1(K , L, ·) ⊆ supp VK = supp SK .

Conversely, suppose K is a parallelotope and supp S1(K , L, ·) ⊆ supp SK =
supp VK . Then VK (span{u1, . . . , uk} ∩ S

n−1) = k
n V (K ) for any u1, . . . , uk ∈

supp VK with u1 ∧ · · · ∧ uk �= 0 or for any u1 ∈ supp S1(K , L) ⊆ supp VK and
u2, . . . , uk ∈ supp VK with u1 ∧ · · · ∧ uk �= 0. It follows that each equality in (4.10)
and (4.11) holds. Therefore, the equality in (4.8) holds. ��
Remark (1) If n = 2, i.e., in R

2, the equality condition in (4.8) becomes “K and
L are parallel parallelograms.” Indeed, since S1(K , L, ·) = SL(·), it follows that
supp SL ⊆ supp SK = {±u1,±u2}, where u1, u2 ∈ S

1 and u1 �= ±u2. Therefore, K
and L are parallel parallelograms.

(2) Let K = [−1, 1]3 and L be the same cube with a corner missing. By (5.22) and
[19, Thm. 5.1.8], it follows that supp S1(K , L, ·) = supp SK (·) = {±e1,±e2,±e3}.
So, in general, the fact that supp S1(K , L, ·) ⊆ supp SK (·) does not imply that K and
L are parallel parallelotopes.

Letting L = K in Theorem 4.6, we immediately obtain the LYZ conjecture on the
functional U .

Corollary 4.7 Suppose that K is a convex body in R
n with its centroid at the origin.

Then

U (K )

V (K )
�

(
n!
nn

)1/n

, (4.12)

with equality if and only if K is a parallelotope.

If the centroid of K is at the origin, combining (4.8), (4.7), (4.4), and (4.12), then

n!
nn

� U1(K , L)

V1(K , L)
�

(
nn

n!
)(n−1)/n

.

Problem 4.8 Suppose that K and L are convex bodies in R
n with their centroids at

the origin. What are the sharp bounds for U1(K , L)/V1(K , L)?
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