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A new affine invariant geometric functional for convex polytopes is introduced. Some

new sharp affine isoperimetric inequalities are established for this new functional,

which are extensions of Lutwak–Yang–Zhang’s results on their celebrated cone-volume

functional.

1 Introduction

A convex body (i.e., a compact convex subset with nonempty interior) K in n-

dimensional Euclidean space R
n is uniquely determined by its support function

hK : Sn−1 → R, which is defined for u ∈ Sn−1 by hK(u) = max{u · x : x ∈ K}, where

Sn−1 is the unit sphere and u · x denotes the standard inner product of u and x. The

projection body �K of K is defined as the convex body whose support function, for

u ∈ Sn−1, is given by h�K(u) = voln−1(K|u⊥), where voln−1 denotes (n − 1)-dimensional

volume and K|u⊥ denotes the image of orthogonal projection of K onto the codimension

1 subspace orthogonal to u. The support function of �K can also be represented as

h�K(u) = 1

2

∫
Sn−1

|u · v|dSK(v), u ∈ Sn−1, (1.1)

where SK is the surface area measure of convex body K. Formula (1.1) follows from the

Cauchy projection formula. See, for example, [28, page 569] for details.
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The projection body is one of the most important objects in convex geometry, and

has been intensively investigated during the past three decades. See, for example, [1], [6],

[7], [14], [16], [17], [33], etc. It is centro-affine invariant, that is, for T ∈ SL(n), �(TK) =
T−t(�K), where T−t denotes the inverse of the transpose of T. It is worth mentioning

that there stands a celebrated unsolved problem regarding projection bodies, called

Schneider’s projection problem: as K ranges over the class of origin-symmetric convex

bodies in R
n, what is the least upper bound of the affine-invariant ratio

[
V(�K)/V(K)n−1] 1

n ,

where V(K) denotes the n-dimensional volume of K. See, for example, [27], [28], and [29].

The lower bound for the affine-invariant ratio is also unknown; Petty [24] conjectured

that the minimum of this quantity is attained precisely by ellipsoids.

An effective tool to study Schneider’s projection problem is the cone-volume

functional U, which was introduced by Lutwak, Yang, and Zhang (LYZ) [19]: if P is a

convex polytope in R
n that contains the origin o in its interior, then U(P) is defined as

U(P)n = 1

nn

∑
ui1∧···∧uin �=0

hi1 · · · hinai1 · · · ain , (1.2)

where u1, . . . , uN are the outer normal unit vectors to the faces of P, h1, . . . , hN

are the corresponding distances of the faces from the origin and a1, . . . , aN are the

corresponding areas of the faces.

It is interesting that the functional U is centro-affine invariant, that is, U(TP) =
U(P), for T ∈ SL(n). Let Vi = aihi/n, i = 1, . . . , N, then

U(P)n =
∑

ui1∧···∧uin �=0

Vi1 · · · Vin .

Since V(P)n = (
∑N

i=1 Vi)
n, it follows that U(P) < V(P). If P is a random polytope with a

large number of faces, U(P) is very close to V(P). See LYZ [19, page 1772] for details. It

is this important property of the functional U that makes it so powerful.
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For instance, using the functional U, LYZ [19] presented an affirmative answer

to the modified Schneider projection problem: if P is an origin-symmetric polytope in

R
n, then

V(�P)

U(P)
n
2 V(P)

n
2 −1

≤ 2n
(

nn

n!

) 1
2

, (1.3)

with equality if and only if P is a parallelotope. This statement is especially interesting

as for an origin-symmetric convex body K, it is known that V(�K)/V(K)n−1 is not maxi-

mized by parallelotopes on one hand and (1.3) yields an upper bound on V(�K)/V(K)n−1

of optimal order on the other hand. See, for example, Schneider [28, page 578] for details.

LYZ [19] also proved that for an origin-symmetric convex polytope P in R
n, it

holds

V(�∗P)U(P)
n
2 V(P)

n
2 −1 ≥ 2n

(nnn! )
1
2

, (1.4)

with equality if and only if P is a parallelotope. Here, �∗P is the polar body of �P.

Similarly, for a convex polytope P in R
n with its John point at the origin, LYZ [19]

established

V(�P)

U(P)
n
2 V(P)

n
2 −1

≤ nn(n + 1)
n+1

2

(n! )
3
2

, (1.5)

with equality if and only if P is a simplex. Recall that the John point of a convex body

is precisely the center of its John ellipsoid, which is the ellipsoid contained in the body

with maximal volume. See, for example, [13] and [21].

Showing the lower bound of functional U in terms of volume V makes an

interesting story. LYZ [19] conjectured that for polytopes P with centroid at the origin,

there holds

U(P) ≥ (n! )
1
n

n
V(P), (1.6)

with equality if and only if P is a parallelotope.

It took more than a dozen years to completely settle this conjecture. In [10],

He, Leng, and Li proved (1.6) for origin-symmetric polytopes, including its equality

condition. In [31], the 2nd author of this article gave a simplified proof for symmetric

polytopes and proved (1.6), including the equality case, for 2D and 3D polytopes with

centroid at the origin. A complete solution to this conjecture was attributed to Henk

and Linke [11].
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In 2015, Böröczky and LYZ [4] extended the domain of cone-volume functional U

to the class of convex bodies K in R
n with the origin in their interiors and defined

U(K)n = 1

nn

∫
u1∧···∧un �=0

hK(u1) · · · hK(un)dSK(u1) · · · dSK(un). (1.7)

Since V(K)n = ( 1
n

∫
Sn−1 hKdSK)n, it follows that U(K) ≤ V(K). U(K) is still centro-

affine invariant, that is, U(TK) = U(K), for T ∈ SL(n). Recently, Böröczky and Henk [2]

proved that LYZ’s conjecture is also affirmative for convex bodies with centroid at the

origin.

In view of its volume attribute of the cone-volume functional U, together with

its strong applications, the main goal of this article is to further generalize the cone-

volume functional U(K) to the so-called mixed cone-volume functional U1(K, L) as

U1(K, L)n =
∫

u1∧···∧un �=0
dVK,L(u1) · · · dVK,L(un),

where VK,L(·) is the newly introduced mixed cone-volume measure. See Definition 3.1

and Definition 3.2 for details.

It is striking that as the important geometric functional 1st mixed volume

V1(K, L) (see Section 2 for its definition) generalizes the volume functional V(K), the

mixed cone-volume functional U1(K, L) not only generalizes the cone-volume functional

U(K) but also has very similar properties to V1(K, L). However, what we want to

emphasize here is that U1(K, L) and V1(K, L) have different features. As an illustration,

we can see later that if K and L are polytopes, then U1(K, L) < V1(K, L). Thus, U1 is

indeed a new geometric functional for polytopes.

In this article, several sharp affine isoperimetric inequalities for U1(K, L) are

established.

Theorem 1.1. If P, Q are convex polytopes in R
n and Q is origin-symmetric, then

V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ 2n
(

nn

n!

) 1
2

, (1.8)

with equality if and only if P and Q are parallel parallelotopes.
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Theorem 1.2. If P, Q are convex polytopes in R
n and Q is origin-symmetric, then

V(�∗P)U1(P, Q)
n
2 V1(P, Q)

n
2 ≥ 2n

(nnn! )
1
2

V(Q), (1.9)

with equality if and only if P and Q are parallel parallelotopes.

Theorem 1.3. If P, Q are convex polytopes in R
n and the John point of Q is at the

origin, then

V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ nn(n + 1)
n+1

2

(n! )
3
2

, (1.10)

with equality if and only if P and Q are parallel simplices.

It is clear that if Q = P in the above theorems, then the inequalities (1.8), (1.9),

and (1.10) precisely turn to the inequalities (1.3), (1.4), and (1.5), respectively.

This paper is organized as follows. After listing some basic facts on convex

bodies in Section 2, we introduce the notion of mixed cone-volume measure VK,L, as well

as the mixed cone-volume functional U1(K, L), of convex bodies K and L in Section 3.

Then some fundamental properties of VK,L and U1(K, L) are established. The proofs of

Theorem 1.1, Theorem 1.2, and Theorem 1.3 are provided in Section 4.

2 Preliminaries

For quick later reference, we collect some basic facts on convex bodies. Excellent

references are the books by Gardner [5], Gruber [9], Schneider [28], and Thompson [30].

Write Kn and Kn
o for the set of convex bodies and the set of convex bodies with

the origin in their interior in R
n, respectively. Let Pn ⊆ Kn denote the class of convex

polytopes. The standard unit ball of R
n is denoted by B = {x ∈ R

n : |x| ≤ 1}. Its volume

is ωn = πn/2/�(1 + n/2). For x ∈ R
n \ {o}, let 〈x〉 = |x|−1x.

Let K ∈ Kn. By the definition of support function, it follows that for λ ≥ 0 and

T ∈ GL(n),

hK(λx) = λhK(x), hTK(x) = hK(Ttx), x ∈ R
n. (2.1)
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8982 J. Hu and G. Xiong

The radial function ρK of K ∈ Kn
o is defined by

ρK(x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n \ {o}.

For λ > 0 and T ∈ GL(n), it yields that

ρK(λx) = λ−1ρK(x), ρTK(x) = ρK(T−1x), x ∈ R
n \ {o}. (2.2)

The polar body K∗ of K ∈ Kn
o is defined by

K∗ = {x ∈ R
n : x · y ≤ 1, y ∈ K}.

For K ∈ Kn and T ∈ GL(n), we have

ρK∗ = h−1
K and (TK)∗ = T−tK∗. (2.3)

The surface area measure SK of K ∈ Kn is a finite Borel measure on Sn−1, defined

for the Borel set ω ⊆ Sn−1 by

SK(ω) = Hn−1(ν−1
K (ω)),

where νK : ∂ ′K → Sn−1 is the Gauss map of K, defined on ∂ ′K, the set of points of

∂K that have a unique outer unit normal. Recall that the Gauss map νK exists almost

everywhere on ∂K with respect to the (n − 1)-dimensional Hausdorff measure Hn−1,

that is, Hn−1(∂K \ ∂ ′K) = 0. Thus, for any continuous f : Sn−1 → R, it holds

∫
Sn−1

f (u)dSK(u) =
∫

∂K
f (νK(x))dHn−1(x). (2.4)

The cone-volume measure VK of K ∈ Kn is a finite Borel measure on Sn−1,

defined for the Borel set ω ⊆ Sn−1 by

VK(ω) = 1

n

∫
ω

hK(u)dSK(u). (2.5)

Observe that VK is SL(n)-invariant, that is,

VTK(ω) = VK(〈Ttω〉), for T ∈ SL(n), (2.6)

where 〈Ttω〉 = {〈Ttu〉 : u ∈ ω}.
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The Minkowski combination of K, L ∈ Kn is defined by

λK + μL = {λx + μy x ∈ K, y ∈ L}, λ, μ ≥ 0.

The 1st mixed volume V1(K, L) of convex bodies K, L is defined by

V1(K, L) = 1

n
lim

ε→0+
V(K + εL) − V(K)

ε
= 1

n

∫
Sn−1

hL(u)dSK(u). (2.7)

From the affine invariance of volume, it follows that V1(TK, TL) = | det T|V1(K, L), for

T ∈ GL(n). Thus, for any continuous f : Sn−1 → R, we have

∫
Sn−1

f (u)dSTK(u) = | det T|
∫

Sn−1
f (〈T−tu〉)|T−tu|dSK(u). (2.8)

See, for example, Schneider [28] for its proof.

For convenience, we introduce the U-functional for measures. Let μ be a finite

Borel measure on Sn−1. Then the U-functional U(μ) of μ is defined by

U(μ)n =
∫

u1∧···∧un �=0
dμ(u1) · · · dμ(un). (2.9)

U(μ) is centro-affine invariant in the sense that

U(Tμ) = U(μ), T ∈ SL(n), (2.10)

where Tμ is the affine image of measure μ, that is,

Tμ(ω) = μ(〈T−1ω〉), for Borel set ω ⊆ Sn−1. (2.11)

A finite positive Borel measure μ on Sn−1 is said to be isotropic if

∫
Sn−1

|u · v|2dμ(v) = 1, for all u ∈ Sn−1.

Specially, the discrete measure μ is isotropic if

∑
v∈suppμ

|u · v|2μ({v}) = 1, for all u ∈ Sn−1.
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For x1, . . . , xn ∈ R
n, [o, x1]+· · ·+ [o, xn] is a parallelotope. Write [x1, . . . , xn] for its

n-dimension volume. Suppose μ is an isotropic measure on Sn−1. Then

1

n!

∫
Sn−1

· · ·
∫

Sn−1
[u1, . . . , un]2dμ(u1) · · · dμ(un) = 1. (2.12)

See, for example, LYZ [20] or [22] for its proof.

Suppose Z is a convex body in R
n with its support function

hZ(u) =
∫

Sn−1
|u · v|dμ(v), u ∈ Sn−1,

where μ is a finite Borel measure on Sn−1. The McMullen–Matheron–Weil formula reads

V(Z) = 2n

n!

∫
Sn−1

· · ·
∫

Sn−1
[u1, . . . , un]dμ(u1) · · · dμ(un). (2.13)

See, e.g., Matheron [23] or Weil [31] for its proof.

3 The Mixed Cone-Volume Functional and the Mixed LYZ Ellipsoid

In this section, we introduce a new notion: the mixed cone-volume functional U1(K, L).

To define this functional, a new measure, called the mixed cone-volume measure VK,L,

is involved. It is pointed out that the mixed cone-volume measure VK,L is a natural

extension of the important cone-volume measure VK .

Definition 3.1. Let K, L ∈ Kn and L contains the origin. The mixed cone-volume

measure VK,L of K and L is defined by

VK,L(ω) = 1

n

∫
ω

hL(u)dSK(u), for Borel set ω ⊆ Sn−1.

Note that the total mass of VK,L is exactly the 1st mixed volume V1(K, L), that is,

VK,L(Sn−1) = V1(K, L). In additional, if L is the unit ball B, then VK,B = SK/n; if L = K,

then VK,K = VK . This means that the mixed cone-volume measure VK,L contains two

fundamental measures in geometry: the surface area measure SK and the cone volume

measure VK . It is well known that the surface area measure is characterized by the

classical Minkowski problem, which is one of the cornerstones of the Brunn–Minkowski

theory of convex bodies. In recent years, cone-volume measures have appeared and were

studied in various contexts, see, for example, [2], [3], [4], [10], [11], and [32].
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If P ∈ Pn and Q ∈ Kn with o ∈ Q, then VP,Q can be represented as

VP,Q(ω) = 1

n

∑
u∈suppSP

hQ(u)SP(u)δu(ω), for Borel set ω ⊆ Sn−1, (3.1)

where δu(·) is the Delta measure on Sn−1 concentrated on u.

Definition 3.2. Let K, L ∈ Kn and L contains the origin. The mixed cone-volume

functional U1(K, L) of K and L, is defined by

U1(K, L)n =
∫

u1∧···∧un �=0
dVK,L(u1) · · · dVK,L(un).

Observe that if L = K, it immediately yields U1(K, L) = U1(K, K) = U(K), which

turns to the U functional introduced by Böröczky and LYZ [4]. By (2.9), it follows that

U1(K, L) = U(VK,L).

Specifically, if P ∈ Pn and Q ∈ Kn with o ∈ Q, then U1(P, Q) can be represented

as

U1(P, Q)n = 1

nn

∑
u1∧···∧un �=0

hQ(u1) · · · hQ(un)SP(u1) · · · SP(un), (3.2)

where ui ∈ suppSP, i = 1 . . . , n. Moreover, if Q = P, then U1(P, Q) = U(P), which goes to

LYZ’s original definition (1.2).

Several observations for the relations between U1(K, L) and V1(K, L) are in order.

First, for general convex bodies, it always holds U1(K, L) ≤ V1(K, L), which can be seen

from the fact that V1(K, L)n = (
∫

Sn−1 dVK,L(u))n. Second, if convex body K is smooth, then

U1(K, L) = V1(K, L). See Böröczky and LYZ [4] for details. Third, if K is a polytope, in

light of

V1(K, L)n = 1

nn

∑
u1,...,un∈suppSK

hL(u1) · · · hL(un)SK(u1) · · · SK(un),

it follows that U1(K, L) < V1(K, L). Since U1(K, L) is affine invariant by Proposition 3.6,

U1 is indeed a new affine invariant geometric functional for polytopes.

To prove the main results, we need to use the mixed LYZ ellipsoid introduced

by Hu–Xiong–Zou. For more information on the mixed LYZ ellipsoid and its associated

affine isoperimetric inequalities, refer to [12].
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Definition 3.3. Let K, L ∈ Kn and L contains the origin in its interior. The mixed LYZ

ellipsoid �−2(K, L) of K and L is defined by

ρ−2
�−2(K,L)(u) = n

V1(K, L)

∫
Sn−1

( |u · v|
hL(v)

)2

dVK,L(v), for u ∈ Sn−1.

It is clear that when L = K, then �−2(K, K) = �−2K, which is precisely the

celebrated LYZ ellipsoids defined in [18]. The LYZ ellipsoid is in some sense dual

to the classical Legendre ellipsoid of inertia in mechanics. When viewed as suitably

normalized matrix-valued operators on the space of convex bodies, it was proved by

Ludwig [15] that the Legendre ellipsoid and the LYZ ellipsoid are the only linearly

invariant operators that satisfy the inclusion–exclusion principle.

Let M = (mij)n×n be the symmetric positive definite matrix with entries

mij = 1

V1(K, L)

∫
Sn−1

(v · ei)(v · ej)h
−1
L (v)dSK(v),

where ei . . . , en are the orthonormal basis for R
n. Then

�−2(K, L) = {x ∈ R
n x · Mx ≤ 1}.

If P ∈ Pn and Q ∈ Kn with the origin in its interior, then �−2(P, Q) is defined by

ρ−2
�−2(P,Q)(u) = 1

V1(K, L)

∑
v∈suppSP

|u · v|2 SP(v)

hQ(v)
, for u ∈ Sn−1. (3.3)

Recall that νK : ∂ ′K → Sn−1 is the Gauss map of K, defined on ∂ ′K, the set of

points of ∂K that have a unique outer unit normal.

Proposition 3.4. Suppose that K ∈ Kn and T ∈ GL(n). For x ∈ ∂ ′K, then

νTK(y) = 〈T−tνK(x)〉, for y = Tx ∈ ∂ ′(TK).

Proof. By the definition of support function, it follows that hK(νK(x)) = x · νK(x), for

x ∈ ∂ ′K. According to (2.1), we have

hTK(T−tνK(x)) = hK(νK(x)) = x · νK(x) = Tx · T−tνK(x).
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Thus,

hTK(〈T−tνK(x)〉) = y · 〈T−tνK(x)〉.

From y = Tx ∈ ∂ ′(TK), it follows that νTK(y) = 〈T−tνK(x)〉. �

Proposition 3.5. The mixed cone-volume measure VK,L is SL(n)-invariant. That is, for

T ∈ SL(n) and Borel ω ⊆ Sn−1, then VTK,TL(ω) = VK,L(〈Ttω〉).

Proof. Let x ∈ ∂ ′K. Then y = Tx ∈ ∂ ′(TK). Since T ∈ SL(n), from (2.6) and

Proposition 3.4, it follows that

dVTK(νTK(y)) = dVK(〈TtνTK(y)〉) = dVK(νK(x)).

Thus,

1

n
y · νTK(y)dHn−1(y) = 1

n
x · νK(x)dHn−1(x).

By Proposition 3.4, we have

dHn−1(y) = |T−tνK(x)|dHn−1(x). (3.4)

Meanwhile, if Tx = y ∈ ν−1
TK (ω), then νTK(y) ∈ ω. By Proposition 3.4, it follows

that

νK(x) ∈ 〈Ttω〉,

which is equivalent to x ∈ ν−1
K (〈Ttω〉). Thus,

ν−1
TK (ω) = T(ν−1

K (〈Ttω〉)). (3.5)
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From Definition 3.1, (2.4), (3.5), Proposition 3.4, (3.4), (2.4), and Definition 3.1

again, it follows that

VTK,TL(ω) = 1

n

∫
ω

hTL(u)dSTK(u)

= 1

n

∫
ν−1

TK (ω)

hTL(νTK(y))dHn−1(y)

= 1

n

∫
T(ν−1

K (〈Ttω〉))
hTL(νTK(y))dHn−1(y)

= 1

n

∫
ν−1

K (〈Ttω〉)
hTL(〈T−tνK(x)〉)|T−tνK(x)|dHn−1(x)

= 1

n

∫
ν−1

K (〈Ttω〉)
hL(νK(x))dHn−1(x)

= 1

n

∫
〈Ttω〉

hL(u)dSK(u)

= VK,L(〈Ttω〉).

This completes the proof. �

Proposition 3.6. The mixed cone-volume functional U1(K, L) is SL(n)-invariant. That

is, for T ∈ SL(n), then U1(TK, TL) = U1(K, L).

Proof. From Proposition 3.5 and (2.11), it follows that for Borel ω ⊆ Sn−1,

VTK,TL(ω) = VK,L(〈Ttω〉) = T−tVK,L(ω). (3.6)

So, from Definition 3.2 combining with (2.9), (3.6), and (2.10), it follows that

U1(TK, TL) = U(VTK,TL) = U(T−tVK,L) = U(VK,L) = U1(K, L).

This completes the proof. �
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Proposition 3.7. The mixed LYZ ellipsoid �−2(K, L) is affine invariant. That is, for

T ∈ GL(n), then �−2(TK, TL) = T(�−2(K, L)).

Proof. For u ∈ Sn−1, from Definition 3.3, (2.8), (2.1), and (2.2), it follows that

ρ−2
�−2(TK,TL)(u)

= n

V1(TK, TL)

∫
Sn−1

( |u · v|
hTL(v)

)2

dVTK,TL(v)

= | det T|
| det T|V1(K, L)

∫
sn−1

|u · 〈T−tv〉|2h−1
TL (〈T−tv〉)|T−tv|dSK(v)

= 1

V1(K, L)

∫
Sn−1

|u · T−tv|2h−1
TL (T−tv)dSK(v)

= 1

V1(K, L)

∫
Sn−1

|T−1u · v|2h−1
L (v)dSK(v)

= n

V1(K, L)

∫
Sn−1

( |T−1u · v|
hL(v)

)2

dVK,L(v)

= ρ−2
�−2(K,L)(T

−1u) = ρ−2
T(�−2(K,L))(u).

This completes the proof. �

4 Affine Isoperimetric Inequalities for the Mixed Cone-Volume Functional

The following inequality relates the mixed cone-volume functional U1(K, L) with the

volume of the mixed LYZ ellipsoid �−2(K, L).

Theorem 4.1. Suppose that P ∈ Pn and Q ∈ Kn with the origin in its interior.

Then

V(�−2(P, Q))V(�P)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤
(

nn

n!

) 1
2

ωn,

with equality if and only if [u1, . . . , un]/hQ(u1) · · · hQ(un) is independent of the choice of

u1, . . . , un on suppSP, whenever u1 ∧ · · · ∧ un �= 0.
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Proof. Let P ∈ Pn. From (1.1), the support function of �P is given by

h�P(u) = 1

2

∑
v∈suppSP

|u · v|SP(v), u ∈ Sn−1.

According to the McMullen–Matheron–Weil formula (2.13), we have

V(�P) = 1

n!

∑
u1,...,un∈suppSP

[u1, . . . , un]SP(u1) · · · SP(un). (4.1)

From (1.2), Propositions 3.6 and 3.7, it follows that the left side of the desired

inequality is SL(n)-invariant. In order to prove the theorem we may assume, w.l.o.g.,

�−2(P, Q) =
(

V(�−2(P, Q))

ωn

) 1
n

B.

Then from (3.3), for u ∈ Sn−1, it follows that

(
ωn

V(�−2(P, Q))

) 2
n = 1

V1(P, Q)

∑
v∈suppSP

|u · v|2 SP(v)

hQ(v)
,

which implies the discrete measure

μ := 1

V1(P, Q)

(
V(�−2(P, Q))

ωn

) 2
n SP

hQ

is isotropic on Sn−1. Thus, by (2.12), we have

(
ωn

V(�−2(P, Q))

)2

= 1

n! V1(P, Q)n

∑
u1,...,un∈suppSP

[u1, . . . , un]2
SP(u1) · · · SP(un)

hQ(u1) · · · hQ(un)
. (4.2)
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From (4.2), the Jensen inequality and (4.1), it follows that

(
ωn

V(�−2(P, Q))

)2 n! V1(P, Q)n

nnU1(P, Q)n

= 1

nnU1(P, Q)n

∑
u1,...,un∈suppSP

(
[u1, . . . , un]

hQ(u1) · · · hQ(un)

)2

hQ(u1) · · · hQ(un)SP(u1) · · · SP(un)

= 1

nnU1(P, Q)n

∑
u1∧···∧un �=0

(
[u1, . . . , un]

hQ(u1) · · · hQ(un)

)2

hQ(u1) · · · hQ(un)SP(u1) · · · SP(un)

≥
⎛
⎝ 1

nnU1(P, Q)n

∑
u1∧···∧un �=0

[u1, . . . , un]

hQ(u1) · · · hQ(un)
hQ(u1) · · · hQ(un)SP(u1) · · · SP(un)

⎞
⎠

2

=
⎛
⎝ 1

nnU1(P, Q)n

∑
u1,...,un∈suppSP

[u1, . . . , un]SP(u1) · · · SP(un)

⎞
⎠

2

=
(

n! V(�P)

nnU1(P, Q)n

)2

,

with equality if and only if

[u1, . . . , un]

hQ(u1) · · · hQ(un)

is independent of the choice of u1, . . . , un on suppSP, whenever u1 ∧ · · · ∧ un �= 0. �

To prove the main results, the following volume ratio inequality for �−2(K, L),

which was previously established by Hu–Xiong–Zou [12], is needed.

Lemma 4.2. Suppose P, Q ∈ Pn.

(1). If Q is origin symmetric, then

V(�−2(P, Q)) ≥ ωn

2n V(Q),

with equality if and only if P and Q are parallel parallelotopes.

(2). If the John point of Q is at the origin, then

V(�−2(P, Q)) ≥ n! ωn

n
n
2 (n + 1)

n+1
2

V(Q),

with equality if and only if P and Q are parallel simplices.
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Theorem 4.3. Suppose that P, Q ∈ Pn and Q is origin symmetric. Then

V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ 2n
(

nn

n!

) 1
2

,

with equality if and only if P and Q are parallel parallelotopes.

Proof. From Theorem 4.1 and Lemma 4.2 (1), we have

ωn

2n

V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ V(�−2(P, Q))V(�P)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤
(

nn

n!

) 1
2

ωn,

which yields the desired inequality.

If the equality holds in the inequality, by the equality condition of Lemma 4.2

(1), it follows that P and Q are parallel parallelotopes.

Conversely, assume Q = [−1, 1]n, then the polar body Q∗ is a cross-polytope with

vertices {uρQ∗(u) : u ∈ suppSQ}. Since suppSQ = suppSP, by the identity

[u1, . . . , un]

hQ(u1) · · · hQ(un)
= [u1ρQ∗(u1), . . . , unρQ∗(un)],

it follows that it is constant for all u1, . . . , un on suppSP, whenever u1 ∧ · · · ∧ un �= 0.

By the equality conditions of Theorem 4.1 and Lemma 4.2 (1), the equality holds. This

completes the proof. �

Recall that the Reisner inequality reads: If K is a projection body in R
n, then

V(K)V(K∗) ≥ 4n

n!
,

with equality if and only if K is a parallelotope. See, for example, Reisner [25, 26] and

Gordon–Meyer–Reisner [8].

Theorem 4.4. Suppose that P, Q ∈ Pn and Q is origin symmetric. Then

V(�∗P)U1(P, Q)
n
2 V1(P, Q)

n
2 ≥ 2n

(nnn! )
1
2

V(Q),

with equality if and only if P and Q are parallel parallelotopes.
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Proof. From Theorem 4.3 and Reisner’s inequality, it follows that

4n

n!

V(Q)

V(�∗P)U1(P, Q)
n
2 V1(P, Q)

n
2

≤ V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ 2n
(

nn

n!

) 1
2

,

which yields the desired inequality.

If P and Q are parallel parallelotopes, then �P is still a parallelotope. By the

equality conditions of Theorem 4.3 and Reisner’s inequality, the equality holds. This

completes the proof. �

Theorem 4.5. Suppose that P, Q ∈ Pn and the John point of Q is at the origin. Then

V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ nn(n + 1)
n+1

2

(n! )
3
2

,

with equality if and only if P and Q are parallel simplices.

Proof. From Theorem 4.1 and Lemma 4.2 (2), we have

n! ωn

n
n
2 (n + 1)

n+1
2

V(�P)V(Q)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤ V(�−2(P, Q))V(�P)

U1(P, Q)
n
2 V1(P, Q)

n
2

≤
(

nn

n!

) 1
2

ωn,

which yields the desired inequality.

If the equality holds in the inequality, by the equality condition of Lemma 4.2

(2), it follows that P and Q are parallel simplices.

Conversely, assume Q is a regular simplex in R
n, then the polar body Q∗ is also

a regular simplex with vertices {uρQ∗(u) : u ∈ suppSQ}. Since suppSQ = suppSP, by the

identity

[u1, . . . , un]

hQ(u1) · · · hQ(un)
= [u1ρQ∗(u1), . . . , unρQ∗(un)],

it follows that it is constant for all u1, . . . , un on suppSP, whenever u1 ∧ · · · ∧ un �= 0.

By the equality conditions of Theorem 4.1 and Lemma 4.2 (2), the equality holds. This

completes the proof. �

One obvious question regarding the functionals U1 and V1 beg to be asked.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/12/8977/5487946 by Tongji U
niversity user on 28 June 2021



8994 J. Hu and G. Xiong

Problem 4.6. Suppose K and L are convex bodies in R
n. Is there an absolute constant

c only depending on the dimension n, such that

U1(K, L)

V1(K, L)
≥ c ?
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