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Abstract

We present an ansatz which makes the equations of motion more tractable for the simplest
of Vasiliev’s four-dimensional higher spin theories. The ansatz is similar to axial gauge in elec-
tromagnetism. We present a broad class of solutions in the gauge where the spatial connection
vanishes, and we discuss the lift of one of these solutions to a full spacetime solution via a gauge
transformation.
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1 Introduction

Vasiliev’s higher spin theories in four dimensions [1, 2] are relatively simple theories involving

infinitely many fields, all with integer spin. The full non-linear equations of motion are known, and

the simplest solution to them is AdS4. Some additional solutions of the equations (2) are known:

See for example [3, 4, 5]. Finding exact solutions is challenging because the equations of motion are

non-linear and involve a non-local star product in the oscillator variables. But a broader set of exact

solutions is highly desirable in order to advance our understanding of classical higher spin theory

beyond perturbation theory. The aim of this paper is to introduce a new class of exact solutions.

In one subcase of our construction, the solutions are parametrized by an arbitrary function of three

variables, making it a remarkably large class of solutions.

Vasiliev’s equations involve auxiliary, bosonic, spinorial variables zα, and one of the equations

of motion takes the form fz1z2 = −p(b ∗K), where fz1z2 is like a Yang-Mills field strength, b ∗K is

covariantly constant in the adjoint representation, and p is a phase—for our purposes, either 1 or

i. The equation fz1z2 = −p(b ∗K) is formally similar to having a magnetic field in two dimensions:

∂1A2−∂2A1 = B12. A standard strategy is to set A1 = 0 as a gauge choice and then solve for A2 in

terms of B12. This is axial gauge. We are going to make an analogous ansatz, namely s1 = 0 = s̄1̇

where sα is the spinorial part of the gauge potential with field strength fz1z2 , and s̄α̇ corresponds

to a conjugate field strength f
z̄1̇z̄2̇

. This choice appears to be as innocuous as the choice of axial

gauge; however, our overall ansatz is more restrictive than just a gauge choice.

Setting s1 = s̄1̇ = 0 removes some star-(anti)-commutators from the equations of motion, so that

some components of these equations become linear. After solving these linear equations (in a gauge

where the spacetime components of the higher spin connection vanish), we find that the non-linear

equations reduce to quadratic constraints on the ansatz. These quadratic constraints have many

solutions, especially in a particular case where a principle of superposition operates, allowing us

to construct solutions labeled by the aforementioned arbitrary function of three variables. Related

strategies have been pursued in previous work [6, 4]; a common thread is rendering the equation

for fz1z2 effectively linear.

The structure of the rest of the paper is as follows. For the sake of a self-contained presentation,

we review in section 2 the equations of motion of the higher-spin theories that we are going to solve.

In section 3 we explain in detail the ansatz and show some examples of solutions. The treatment

of this section relies entirely on a gauge where the spacetime components of the connection vanish,

also described as the Z-space approach in [3]. In section 4 we discuss how solutions of the type

obtained in the previous section can be lifted via a gauge transformation to full spacetime solutions.

We focus on a particular route to the Poincaré patch of AdS4, but a different gauge transformation

would lead to global AdS4. An example presented in section 4.2 leads to an exact solution of the

Vasiliev equations in which the spatial part of the higher spin connection is the same as in AdS4 and
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the scalar takes a form which, in the linearized theory, is associated with a massive deformation

of the O(N) model. It is tempting to identify the exact solution as dual to the massive O(N)

model; however, we caution that the explicit breaking of Lorentz symmetry inherent in our ansatz

complicates this interpretation.

2 The equations of motion

The equations of motion of Vasiliev’s higher spin theories in four dimensions [1, 2] can be stated in

terms of a gauge field

A = Wµdx
µ + Sαdz

α + S̄α̇dz̄
α̇ (1)

and a scalar field B: following the conventions of [7], one writes

F ≡ dA+A ∗ A = p(B ∗K)dz2 + p̄(B ∗ K̄)dz̄2

DB ≡ dB +A ∗B −B ∗ π(A) = 0 ,
(2)

where K, K̄, π, dz2, dz̄2, and ∗ are defined in the paragraphs below. The phase p is 1 for the

so-called type A theory, dual to the O(N) model [8] and i for type B, dual to the Gross-Neveu

model [9]; correspondingly, p̄ = 1 or −i.

The components of A, and also B, are functions of the usual four bosonic coordinates xµ together

with spinorial oscillator coordinates (also bosonic) Y A = (yα, ȳα̇) and ZA = (zα, z̄α̇), where α and

α̇ are doublet indices for the irreducible spinor representations of SO(3, 1). The coordinates Y A do

not participate in the differential structure of the theory: in other words, the exterior derivative d

acts only on xµ and ZA, and we never encounter one-forms dY A. A and B admit series expansions

in Y A and ZA. Roughly speaking, the metric and spin connection come from the terms in A that

are quadratic in the Y A coordinates, while the part of B which depends only on the xµ is identified

as a scalar field.

To formulate the equations, one uses an associative star product, defined by

f(Y,Z) ∗ g(Y,Z) = N

∫

d4u d4v f(Y + U,Z + U)g(Y + V,Z − V )eU
AVA , (3)

where the normalization factor N is such that f ∗ 1 = f . Indices are raised and lowered according

to

UA = ΩABUB UA = UBΩBA . (4)

Here

ΩAB = ΩAB =

(

ǫαβ 0

0 ǫ
α̇β̇

)

(5)
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and

ǫαβ = ǫαβ = ǫ
α̇β̇

= ǫα̇β̇ =

(

0 1

−1 0

)

. (6)

The star product is associative, and

Y A ∗ Y B = Y AY B +ΩAB ZA ∗ ZB = ZAZB − ΩAB

Y A ∗ ZB = Y AZB − ΩAB ZA ∗ Y B = ZAY B +ΩAB .
(7)

The Kleinians

K ≡ ez
αyα K̄ ≡ ez̄

α̇ȳα̇ (8)

satisfy K ∗K = K̄ ∗ K̄ = 1, and also

f(y, ȳ; z, z̄) ∗K = Kf(−z, ȳ;−y, z̄) K ∗ f(y, ȳ; z, z̄) = Kf(z, ȳ; y, z̄) . (9)

The map π, and a closely related map π̄, are defined by

π(f(y, ȳ; z, z̄; dz, dz̄)) = f(−y, ȳ;−z, z̄;−dz, dz̄)

π̄(f(y, ȳ; z, z̄; dz, dz̄)) = f(y,−ȳ; z,−z̄; dz,−dz̄) .
(10)

For zero-forms (i.e. cases where f doesn’t depend on dz or dz̄), we have π(f) = K ∗ f ∗ K as a

consequence of (9). We also define

dz2 =
1

2
dzα ∧ dzα = −dz1 ∧ dz2 dz̄2 =

1

2
dz̄α̇ ∧ dz̄α̇ = −dz̄1̇ ∧ dz̄2̇ . (11)

All definitions needed in (2) are now explicit.

Passing locally to a gauge where the higher spin spacetime connection w vanishes, the higher

spin equations take the form

dZs+ s ∗ s = p(b ∗K)dz2 + p̄(b ∗ K̄)dz̄2

dZb+ s ∗ b− b ∗ π(s) = 0
(12)

where s = sαdz
α+ s̄α̇dz̄

α̇ is the spinorial part of the gauge field, and b, sα, and s̄α̇ are now functions

only of Y A and ZA. Dependence on xµ is prevented by the xµ components of the full equations of

motion (2) in the w = 0 gauge. By dZ we mean the exterior derivative with respect to only the ZA

variables; likewise, dx refers to the exterior derivative with respect to only the xµ variables. We

use lowercase b and s in w = 0 gauge so as to distinguish these quantities from their images in a

more general gauge.
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3 The ansatz

In components, the equations (12) read

∂s2
∂z1

−
∂s1
∂z2

+ [s1, s2]∗ = −p(b ∗K)

∂b

∂zα
+ sα ∗ b+ b ∗ π(sα) = 0

∂s̄2̇
∂z̄1̇

−
∂s̄1̇
∂z̄2̇

+ [s̄1̇, s̄2̇]∗ = −p̄(b ∗ K̄)

∂b

∂z̄α̇
+ s̄α̇ ∗ b− b ∗ π(s̄α̇) = 0

∂s̄
β̇

∂zα
−

∂sα

∂z̄β̇
+ [sα, s̄β̇]∗ = 0 ,

(13)

where [f, g]∗ = f ∗ g − g ∗ f . Let’s assume

s1 = 0 = s̄1̇
∂s2

∂z̄2̇
= 0 =

∂s̄2̇
∂z2

∂b

∂ZA
= 0 . (14)

These choices are convenient because the equations (13) reduce to

∂s2
∂z1

= −p(b ∗K)
∂s̄2̇
∂z̄1̇

= −p̄(b ∗ K̄)

{s2, b ∗K}∗ = 0 [s̄2̇, b ∗K]∗ = 0 [s2, s̄2̇]∗ = 0 ,

(15)

where {f, g}∗ = f ∗ g + g ∗ f . Given b = b(Y A), we can immediately solve the first two equations

in (15):

s2 =

∫ 1

0
dt σ2(t) where σ2(t) = −pz1 [b ∗K]z1→tz1

s̄2̇ =

∫ 1

0
dt̃ σ̄2̇(t̃) where σ̄2̇(t̃) = −p̄z̄1̇

[

b ∗ K̄
]

z̄1̇→t̃z̄1̇
.

(16)

Note that the holomorphy conditions ∂s2
∂z̄2̇

= 0 =
∂s̄

2̇

∂z2
which we assumed in (14) are automatically

satisfied by (16). Starting with b = b(Y A) and extracting S through an integration similar to (16)

is a standard beginning to the perturbative approach of solving (12): See for example [3, 7]. The

assumptions (14) make this perturbative approach exact. However, the quadratic constraints in the

second line of (15) must still be checked, and they do not hold for arbitrary functional forms b(Y A).

Before we indicate some functional forms b(Y A) for which the quadratic constraints do hold, let’s

note two final points. First, by design, the forms (16) are consistent with the requirement SA → 0

as ZA → 0, which is a standard gauge choice. Second, we could generalize (16) without spoiling the

holomorphy conditions or this standard gauge choice by adding to s2 a function only of z2 and Y A

which vanishes as z2 → 0; and likewise we could add to s̄2̇ a function of z̄2̇ and Y A which vanishes

as z̄2̇ → 0. We will not consider such generalizations in this paper, but instead restrict ourselves
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to (16) as written.

The simplest non-trivial solution to (15)-(16) is

b = b0 σ2(t) = −pb0z
1e−tz1y2+z2y1 σ̄2̇(t̃) = −p̄b0z̄

1̇e−t̃z̄1̇ȳ2̇+z̄2̇ȳ1̇ , (17)

where b0 is a constant. A stronger, unintegrated form of the quadratic constraints in (15) can be

shown to hold for this case:

{σ2(t), b ∗K}∗ = 0 [σ̄2̇(t̃), b ∗K]∗ = 0 [σ2(t), σ̄2̇(t̃)]∗ = 0 (18)

for all t and t̃. The second and third of these equations are trivially satisfied because σ2(t) and

b ∗K are fully holomorphic in Y and Z, while σ̄2̇(t̃) is fully anti-holomorphic. The general result

(9) implies in particular that K anti-commutes with yα and zα; so it is easy to see that it anti-

commutes with σ(t) as written in (17). The case of constant b case studied previously in [3]. There

however the authors imposed an SO(3, 1) symmetry, which lead to the constraint sα = zαs(u) where

u = yαzα and s(u) was expressed as an integral transform of confluent hypergeometric functions.

It is not clear to us that the solution of [3] is gauge-equivalent to ours.

An interesting generalization of the constant b solution is

b = QeqABY AY B

+RerABY AY B
(19)

where the only non-vanishing components of qAB and rAB are those with A and B taking values

in {1, 1̇}. Q, R, and the non-zero components of qAB and rAB are parameters of the solution.

Straightforward but tedious computations suffice to show that the unintegrated constraints (18)

are satisfied. The importance of being able to take linear combinations of these special Gaussian

solutions is that we need not stop at two terms: we can take arbitrarily many, or an integral of

infinitely many. In short, any function

b = b((y1)2, y1ȳ1̇, (ȳ1̇)2) (20)

together with s2 and s̄2̇ as specified in (16), provides a solution of the equations (12). A commonly

imposed projection condition on field configurations restricts to functions B which are invariant

under sending y → iy and ȳ → −iȳ. In the presence of this requirement, which is related to

requiring only even integer spins in the full theory, B must be a function of (y1)4, y1ȳ1̇, and (ȳ1̇)4.

Another interesting generalization of the constant b solution is

b = Qeqαβ̇
yαȳβ̇ , (21)

where Q and the q
αβ̇

are parameters. As before, the unintegrated constraints (18) are satisfied
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once one imposes (16). A caveat on solutions of the form (21) is that if det q
αβ̇

is a real number

less than or equal to −1 then some of the requisite star products are ill-defined, so the status of

the solution is less clear. There appears to be no general superposition principle for solutions of

the form (21) analogous to (19).

4 Gauge transformations and a mass deformation

A trivial solution to Vasiliev’s equations is w = s = b = 0. The AdS4 solution, which we review in

section 4.1, is gauge equivalent to this trivial solution. We go on in section 4.1 to explain in how to

apply the same gauge transformation to other solutions starting in the w = 0 gauge. We then work

out a particular example in section 4.2 in which B ∝ ζey
1ȳ1̇−y2ȳ2̇ , where ζ is the radial coordinate in

the Poincaré patch of AdS4. This example is interesting because the B dependence just mentioned

is, in the linearized theory, associated with a massive deformation of the O(N) model.

4.1 The spacetime connection

Let’s review how the spacetime metric and spin connection are packaged into the spatial components

W of the higher spin gauge field A. Starting from the vierbein em = emµ dxµ and spin connection

ωmn = ωµmndx
µ, we define

eαβ̇ =
1

2L
emσmαβ̇ ωαβ =

1

2
ωmnσ

mn
αβ ω̄α̇β̇ = −

1

2
ωmnσ̄

mn
α̇β̇

(22)

and

e =
1

2
e
αβ̇

yαȳβ̇ ω =
1

4
ωαβy

αyβ +
1

4
ω̄
α̇β̇

ȳα̇ȳβ̇ . (23)

We have defined

σm
αβ̇

= (1, ~σ) σ̄mα̇β = (1,−~σ)

σmn
α
β =

1

4
(σm

αγ̇ σ̄
nγ̇β − σn

αγ̇ σ̄
mγ̇β) σ̄mnα̇

β̇
=

1

4
(σ̄mα̇γσn

γβ̇
− σ̄nα̇γσm

γβ̇
) ,

(24)

where ~σ are the usual Pauli matrices. We express AdS4 in Poincaré patch coordinates:

em(0) = δmµ
L

ζ
dxµ (25)

with

ω
(0)
tζ =

dt

ζ
ω
(0)
x1ζ

= −
dx1

ζ
ω
(0)
x2ζ

= −
dx2

ζ
(26)
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and all other components of the spin connection vanishing except as required by the antisymmetry

condition ωmn = −ωnm. It is straightforward to check that

W(0) = e(0) + ω(0) (27)

satisfies the higher spin equations of motion with S = B = 0: That is,

dW(0) +W(0) ∗W(0) = 0 . (28)

In order to produce a more interesting solution of the equations of motion (2), we are going to

to gauge transform one of our w = 0 solutions. Starting with a configuration (a, b) of higher spin

fields, the general gauge transformation to another configuration (A,B) takes the form

d+A = g−1 ∗ (d+ a) ∗ g B = g−1 ∗ b ∗ π(g) , (29)

where g is a function of xµ, Y A, and ZA. A more explicit form of the transformation of the gauge

fields is

W = g−1 ∗ dxg + g−1 ∗ w ∗ g S = g−1 ∗ dZg + g−1 ∗ s ∗ g . (30)

Our focus will be to set w = 0.

The flatness of W(0) indicates that the AdS4 solution is related to the trivial solution w(0) = 0,

s(0) = 0, b(0) = 0 by a gauge transformation. For (t, x1, x2) = (0, 0, 0), the gauge function may be

represented as

g±1 = L±1 ≡
4

√

ζ0/ζ + 2 +
√

ζ/ζ0
exp

{

∓
1−

√

ζ/ζ0

1 +
√

ζ/ζ0
σζ

αβ̇
yαȳβ̇

}

, (31)

where ζ0 is a parameter. For a more complete description of this gauge transformation, including

the full xµ dependence, see for example [7].

4.2 An example

As an example of the procedure outlined in the previous section, let’s consider the solution

b = b0e
−λ(y1ȳ1̇−y2ȳ2̇)

σ2(t) = −pb0z
1e(y

1
−λȳ2̇)z2−t(y2−λȳ1̇)z1 σ̄2̇(t̃) = −p̄b0z̄

1̇e(ȳ
1̇−λy2)z̄2̇−t̃(ȳ2̇−λy1)z̄1̇ ,

(32)
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where b0 and λ are real parameters.1 In making the gauge transformation, we choose σζ = σ3 =
(

1 0

0 −1

)

, and this choice is in some sense “diagonal” with respect to our earlier choice of s2 and s̄2̇

as the preferred components of the gauge field. Nothing prevents us from making a different choice

of σζ , but the resulting solution would then be more complicated.

The easiest field to pass through the gauge transformation is B, and one finds, at (t, x1, x2) =

(0, 0, 0), that

B =
4b0ζ0
λ2
+ζ

e
−(y1ȳ1̇−y2ȳ2̇)

λ−
λ+ , (33)

where we have defined combinations

λ± = 1 + λ± (1− λ)ζ0/ζ (34)

which come up repeatedly after the gauge transformation. We are interested in taking a ζ0 → ∞

limit, because in this limit B becomes translationally invariant in the boundary directions. (Another

way to put this is that boundary variation of B takes place over a length scale ∆x ∼ ζ0, and we

are taking that length scale to infinity.) The specific limit we will consider is ǫ → 0 where

λ = 1− 2ǫ ζ0 =
1

ǫ2
(35)

with b0 held constant. Passing (33) through this limit, we find

B = b0ζe
y1ȳ1̇−y2ȳ2̇ . (36)

The scalar field in the higher spin theory is

φ ≡ B
∣

∣

∣

Y A=0
= b0ζ . (37)

The spinor part of the gauge field may be expressed as

S2 =

∫ 1

0
duΣ2(u) (38)

where

Σ2(u) =
dt

du
L−1 ∗ σ2(t) ∗ L , (39)

and u = u(t) is a conveniently chosen integration variable, with u(0) = 0 and u(1) = 1. In the

1The solution (32) obeys the projection conditions that complete the characterization of the minimal higher spin
theories, provided b0 and λ are real. In the notation of [10], these projections are π(π̄(X)) = X for X = W , S, and
B, together with ι+(W ) = −W , ι+(S) = −S, and ι−(B) = B, where ι± are linear maps which reverse the order of
star products and send (y, ȳ, z, z̄, dz, dz̄) → (iy,±iȳ,−iz,∓iz̄,−idz,∓idz̄).
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present case, a convenient definition is

u =
tλ+

2(1− t)
√

ζ0/ζ + tλ+

, (40)

because then one finds

Σ2(u) = −
4pb0ζ0/ζ

λ2
+

z1 exp

{(

y1 −
λ−

λ+
ȳ2̇
)

z2 − u

(

y2 −
λ−

λ+
ȳ1̇
)

z1
}

. (41)

Similar expressions can be found for S̄2̇ =
∫ 1
0 dũ Σ̄2̇(ũ). As before, these expressions are valid only

at (t, x1, x2) = (0, 0, 0); however, we may impose (35) and pass to the ǫ → 0 limit to obtain the

translationally invariant expressions

Σ2(u) = −pb0ζz
1e−u(y2+ȳ1̇)z1+(y1+ȳ2̇)z2 Σ̄2̇(ũ) = −p̄b0ζz̄

1̇e−ũ(ȳ2̇+y1)z̄1̇+(ȳ1̇+y2)z̄2̇ . (42)

It is possible to check directly that the full equations of motion (2) are satisfied when we set

B = b0ζe
y1ȳ1̇−y2ȳ2̇ W = W(0)

S1 = S̄1̇ = 0 S2 =

∫ 1

0
duΣ2(u) S̄2̇ =

∫ 1

0
dũ Σ̄2̇(ũ)

(43)

with Σ2(u) and Σ̄2̇(ũ) as given in (42), and with the AdS4 connection W(0) as defined in (27).

However, there is an important subtlety: star products of Σ2(u) with B, which come up in the

Dz2B = 0 component of the equations of motion, formally diverge once one has passed to the

translationally invariant limit; however, if one replaces Σ2(u) by Σ2(t, u) ≡ Σ2(u)
∣

∣

z2→tz2
, then

Dz2B is proportional to {Σ2(t, u), B ∗K}∗, which vanishes identically. A similar regulator is needed

in order to check the equation D
z̄2̇
B = 0. The other equations of motion can be handled without

recourse to this type of regulator. We caution that in other gauges, field configurations involving

projectors such as ey
1ȳ1̇−y2ȳ2̇ often lead to divergences, for instance in Fz1z2 , which do not cancel.

Thus it is challenging to find a solution analogous to (43) in a covariant gauge.

The solution (43) is interesting because in a linearization around AdS4, the natural interpre-

tation of the scalar profile (36) and (37) is that one is deforming the dual O(N) field theory by a

constant mass term for the N -dimensional vector ~φ: To see this, compare the scalar profile to the

bulk-to-boundary propagators discussed, for example, in [11, 12, 13]. Once we introduce the spino-

rial connection based on (42), we obtain an exact generalization to the full non-linear equations

of motion. It is tempting to characterize this solution as a holographic dual of the massive O(N)

model. However, caution is in order, because we do not fully understand how the explicit breaking

of Lorentz symmetry inherent in our gauge choice S1 = S̄1̇ = 0 affects the holographic interpre-

tation. Certainly it complicates the usual method [14, 15] of extracting a privileged spacetime
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metric.2

5 Conclusions

The ansatz (14) in axial gauge significantly simplifies the equations of Vasiliev’s higher spin the-

ories in four dimensions, leading to a broad class of solutions for b depending only on y1 and ȳ1̇.

Privileging one component of a spinor over the other is in some settings related to picking out a null

direction. To see this, recall the equivalence of vectors and bi-spinors: v
αβ̇

= vmσm
αβ̇

. If we choose,

for example, vm = (1, 0, 0, 1), then vαα̇y
αȳα̇ = 2y1ȳ1̇, showing that y1 and ȳ1̇ have been privileged

over y2 and ȳ2̇. Thus it is a reasonable guess that the solutions where b = b((y1)2, y1ȳ1̇, (ȳ1̇)2) are

related to shock waves, or to metrics expressed in terms of an Eddington-Finkelstein coordinate.

We hope to report further on this class of solutions in the future.

In a more limited but interesting class of solutions, b depends on all four Y A variables, but only

through the Gaussian expression given in (21). We have explained how a simple special case, b ∝

e−λ(y1 ȳ1̇−y2ȳ2̇), can be endowed with spacetime dependence through a gauge transformation. In a

suitable limit, this special case provides an exact solution improving upon the linearized description

of a uniform mass deformation of the planar O(N) model; note however that a cancellation of

divergences is required in order to verify the DB = 0 equation. It would clearly be of interest to

compute two-point correlators in this higher spin geometry. If indeed its interpretation as a dual

of the massive O(N) model is correct, then correlators should have a Lorentz invariant spectral

weight with a continuum of states above a gap. Additional solutions of the full Vasiliev equations

(2) might be constructed in a similar spirit; in particular, it is reasonable to suspect that an exact

axial gauge solution might be available in which the spatial part of the connection W is the same as

for AdS4, while the profile of the scalar master field B is the AdS4 bulk-to-boundary propagator.

Also important for future work is to generalize the Lorentz covariant treatment of the back-

ground metric to situations where as a matter of gauge choice one introduces parameters that break

Lorentz symmetry. Our gauge choice is of this type since it can be expressed as ℓαSα = 0 = ℓ̄α̇S̄α̇

where ℓα =
(

1

0

)

= ℓ̄α̇, contrasting with the Lorentz-symmetric condition zαSα = 0 = z̄α̇S̄α̇ studied

in previous works such as [14, 15].
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