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Bruxelles, Belgium

♠ Institute for Theoretical Physics, University of Amsterdam,

1090 GL Amsterdam, The Netherlands

♥ Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract

In the context of recently proposed holographic dualities between higher spin the-

ories in AdS3 and (1 + 1)-dimensional CFTs with W symmetry algebras, we revisit

the definition of higher spin black hole thermodynamics and the dictionary between

bulk fields and dual CFT operators. We build a canonical formalism based on three

ingredients: a gauge-invariant definition of conserved charges and chemical potentials

in the presence of higher spin black holes, a canonical definition of entropy in the bulk,

and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We

show that our canonical formalism shares the same formal structure as the so-called

holomorphic formalism, but differs in the definition of charges and chemical potentials

and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a

consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and

generalize our construction to theories based on the hs[λ] algebra, and on the sl(N,R)

algebra for any choice of sl(2,R) embedding.
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1 Introduction and summary of results

The recent surge in the study of holographic dualities involving higher spin theories has

allowed us to better understand the relationship between gravity and quantum field theories

in different regimes of parameters. Starting with the proposal of Klebanov and Polyakov

[1] linking the Fradkin-Vasiliev theories in AdS4 [2, 3] and O(N) vector models in three

dimensions, it has become increasingly clear that higher spin theories in AdS are dual

to “simple” CFTs, in the sense that the structure of correlators is strongly constrained



by the symmetries along the lines discussed e.g. in [4, 5]. In fact, dualities involving

higher spin fields are examples of weak-coupling/weak-coupling dualities, in contrast with

the complicated strongly-coupled field theories which are usually studied in the context

of AdS/CFT via standard classical gravity duals [6, 7]. Ultimately, we expect the study

of these complementary regimes of the correspondence to improve our understanding of

quantum gravity and gauge theories alike.

It is in general difficult to define physical observables in a higher spin gauge theory

that contains a gravitational sector. One obstacle stems from the fact that additional

higher spin gauge transformations blur the notion of geometry: curvature singularities and

geodesics are not gauge-invariant quantities, for example. Furthermore, Vasiliev’s theory

[8, 9] does not have a known action formulation, which complicates the definition of an

ADM-type energy (see [10, 11] for recent partial proposals, however). The latter difficulty

can nonetheless be circumvented in the pure higher spin theory in three dimensions [12, 13],

making the lower-dimensional setup a promising arena to explore this class of holographic

dualities. Motivated by this fact, in the present paper we will propose gauge-invariant

definitions of conserved charges in three-dimensional higher spin theories which agree with

those obtained via canonical methods, and moreover show that these definitions lead to a

natural CFT interpretation of the higher spin black hole thermodynamics.

It was conjectured [14] that a version of Vasiliev’s higher spin theory on AdS3 [15, 16] is

holographically dual to certain coset minimal model CFTs in the large-N limit. A consistent

truncation is possible where the matter sector decouples, and the pure higher spin theory

then reduces to a Chern-Simons theory based on the Lie algebra hs[λ]⊕hs[λ] , or its further

truncations to sl(N,R) ⊕ sl(N,R) when λ = ±N (with N an integer). The dual (1 + 1)-

dimensional CFTs enjoy (two copies of) W∞[λ] and WN symmetry, respectively. Notably,

these Chern-Simons theories have been shown to admit black hole solutions carrying higher

spin charges [17, 18, 19]. However, as we will now review, the current status of the higher

spin black hole thermodynamics and microscopic entropy counting is in some ways still

unsatisfactory.

From the bulk point of view, two formalisms have been proposed in order to define

the higher spin thermodynamics, which however disagree on their definition of entropy

as well as on the physical observables. The so-called “holomorphic formalism” was orig-

inally developed in [17, 20]. There, it was noted that higher spin black holes violate the

Brown-Henneaux boundary conditions [21, 22, 23]. The offending terms are induced by two

deformation parameters µj , µ̄j for each spin-j field, which are closely related to chemical po-

tentials in the Euclidean formulation (which are the thermodynamic conjugate of the higher

spin charges). The physical charges (or more generally the observables) in the holomorphic
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formalism are obtained from the gauge connections in the same way as in standard asymp-

totically AdS3 solutions, namely, when µj = µ̄j = 0 . In Euclidean signature, requiring that

the holonomy around the thermal circle is trivial gives the relation between the charges and

their conjugate chemical potentials. The entropy can be then defined by integrating the

first law of thermodynamics, and the partition function in the saddle point approximation

can be obtained as a Legendre transform of the entropy. For additional developments, see

[24, 25, 26, 27, 28].

An alternative formalism was developed using canonical methods along the lines of

[29, 30, 31, 32, 33]. The canonical entropy, which turns out to disagree with the proposed

holomorphic definition, can be obtained in various ways. First, it can be derived using

Wald’s formula [34] after formulating Chern-Simons higher spin theory in the metric for-

malism [35, 36, 37], at least perturbatively in the higher spin sources. In [36, 38], boundary

terms that make the variational principle well-defined for fixed µj , µ̄j were constructed and

the canonical entropy was defined as the Legendre transform of the resulting free energy.

Recently, the canonical entropy was also found as the thermal limit of entanglement en-

tropy [39, 40, 41] and in particular obtained from a generalization of the conical deficit

method [39]. The discrepancies in the notion of entropy can be traced back to different

definitions of conserved charges and chemical potentials, an issue that has remained some-

what controversial. In [42, 37] the energy was defined as the conserved charge associated

with the timelike Killing vector of the asymptotically undeformed AdS3 metric. Another

definition based on the free energy and the Euclidean time periodicity was proposed in [36].

A boundary stress-tensor was defined in [38] which led to an energy agreeing with [42, 37]

after additional considerations on the variational principle. A different proposal [43], that

we use as a guiding line here, is to associate the energy with the zero mode generators of

the asymptotic symmetry algebra in the presence of the deformation. While the definition

of entropy is natural from the canonical perspective, it is clear that a universal definition

of physical observables that is well motivated from both the bulk and CFT perspectives is

lacking.

Before stating our results, let us comment on the interpretation of higher spin black

holes in terms of the conjectured dual CFT. On the one hand, in the holomorphic formalism,

higher spin black holes are interpreted as states in a CFT deformed by an irrelevant operator.

The states are then proposed to be counted using conformal perturbation theory around

the undeformed CFT [17]. Since the asymptotic symmetry algebra at µj = µ̄j = 0 consists

of the direct sum of holomorphic and anti-holomorphic W algebras [44, 45, 46, 47], the

partition function in the saddle point approximation is holomorphically factorized. Using

as bulk-to-boundary dictionary the undeformed AdS/CFT dictionary (see [48] for a review),
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the CFT calculation reproduces the macroscopic calculation in the holomorphic formalism.

It is however striking that the resulting entropy disagrees with the canonical definitions. We

will argue that this mismatch points to the need for a refinement of the bulk-to-boundary

dictionary in the holomorphic formalism. On the other hand, the connection between the

canonical formalism and the dual CFT interpretation is so far unclear. To sum it up loosely,

it appears that the holomorphic formalism is more friendly with a CFT interpretation while

the canonical formalism is more natural from the gravity (bulk) perspective. Since these

two formalisms are associated with different partition functions, it is crucial to understand

which one is the preferred formulation from the gravitational perspective, while achieving

a clear understanding of the same picture from the dual CFT perspective.

Our main objective in this paper is to propose a unified formalism to define the ther-

modynamics of higher spin black holes, consistent both with canonical methods and with

a microscopic CFT interpretation. The first pillar of our construction is the definition of

conserved charges Q̃j and their dual sources α̃j , for each spin-j field (the definitions are

similar in the barred sector and will be omitted here). To distinguish these from quantities

in the undeformed theory, we put a tilde on these new observables. We will sometimes

refer to these variables as “the tilded variables”. We will denominate µj solely as deforma-

tion parameters, while keeping the terminology of chemical potentials for µ̃j and bound-

ary sources for α̃j . We define the conserved charges from the holonomies of the reduced

gauge connection1 a = azdz + az̄dz̄ around the spatial boundary circle parameterized by

ϕ = (z + z̄)/2 ∼ ϕ+ 2π . For constant a the canonical charges are defined as

Q̃j = kcsTr
[
V j
j−1aϕ

]
= kcsNjTr [aϕbj−1(aϕ)] , (1.1)

where kcs is the level of the Chern-Simons theory, V j
j−1 is the highest-weight generator for

the sl(2,R) spin-(j − 1) multiplet, bj−1 = aj−1
ϕ + · · · is a polynomial in aϕ and Nj is a

normalization factor; both bj−1 and Nj are uniquely fixed by matching the second with the

first definition. The first definition is only valid in the highest-weight gauge for aϕ , while

the second definition is manifestly invariant under any regular large gauge transformation,

since the latter expression only depends on holonomies around the boundary ϕ circle. For

the spin-3 case, it was found in [43] using perturbative canonical and integrability methods

that the asymptotic symmetry algebra that describes Dirichlet boundary conditions in the

principal embedding consists of two copies of the W3 algebra, even in the presence of µ3, µ̄3

deformations. It turns out that the gauge-invariant definition exactly matches with the

zero modes of the W3⊕W3 algebra obtained in perturbation theory in [43]. (Note that the

1By reduced gauge connection we mean one where the gauge freedom has been employed to gauge away

the dependence on the bulk radial coordinate, leaving a connection that depends on the boundary coordinates

z, z̄ only.
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non-zero modes cannot be written as holonomies since they correspond to local boundary

excitations).

The second guiding principle behind our formalism is the canonical definition of en-

tropy. We propose to define the entropy as the canonical charge associated with, as gauge

parameter, the component of the connection along the thermal Euclidean circle. Much like

Wald’s entropy formula [34], this definition is independent of boundary terms in the action

and relies on fundamental properties of the black hole only. Furthermore, we show that

this definition is consistent with the first law of thermodynamics and recover the general

formula

S = −2πikcsTr
[
(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)

]
, (1.2)

first derived in [38], which gives the entropy of higher spin black holes in terms of the

reduced connection.

The third and last pillar in our construction is the bulk-to-boundary dictionary. We align

the dictionary to the asymptotic symmetry algebra analysis, as usually done in holographic

correspondences [49]. In the spin-3 case, the asymptotic symmetry algebra was computed

in [43] and led to identify the tilded variables as the dual CFT variables. In this paper we

provide further evidence for this proposal for the theory based on the general hs[λ] algebra,

and in particular the sl(N,R) theory with any choice of sl(2,R) embedding. We will obtain

that the partition function for higher spin black holes in the saddle point approximation

can be written as2

lnZbulk = −2πi
∑
j

(j − 1)α̃jQ̃j (1.3)

(with a similar contribution from the barred sector) while the CFT partition function com-

puted in [18, 50] is given by

lnZCFT = ln TrH

[
e2πi

∑
j αj;CFTQ̂j;CFT

]
= −2πi

∑
j

(j − 1)αj;CFTQj;CFT (1.4)

where TrH denotes a trace over the Hilbert space of the CFT, Q̂j;CFT is the zero mode of

the dimension-j current, αj;CFT its conjugate source, and Qj;CFT denotes the expectation

value of the corresponding conserved charge in the thermodynamic limit. We will argue in

favor of the following bulk-to-boundary dictionary:

α̃→ αj;CFT , Q̃j → Qj;CFT . (1.5)

2As written here, this formula is appropriate for the theory based on the hs[λ] algebra or the sl(N,R)

theory in the principal embedding (in which the sum terminates at j = N). Similar expressions apply in

other embeddings.
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It is then obvious that a CFT calculation would reproduce the canonical formalism calcu-

lation. We will illustrate the exact correspondence between bulk and boundary partition

functions in the example of the hs[λ] black hole studied in [18, 50].

The main idea underlying our construction of observables is that the conformal W-

symmetry structure prevails in the presence of non-trivial deformation parameters. To

a certain extent, this structure can be made more explicit using field redefinitions and

gauge transformations; while technically hard to achieve for higher spin gauge theories,

this is straightforward in the spin-2 case. There, the Virasoro Ward identities appear as

the equations of motion when one imposes Dirichlet boundary conditions with fixed µ2, µ̄2

deformation parameters [51]. We show that a combined field redefinition and gauge trans-

formation exists that maps the system to the usual Brown-Henneaux boundary conditions,

where the standard thermodynamics and microscopic counting apply [21, 49]. If instead

one uses the holomorphic formalism to compute the BTZ black hole entropy, one finds a

result which contradicts the standard bulk entropy given by the area of the horizon divided

by 4G3 (namely the Bekenstein-Hawking entropy). This example illustrates the conflict

between the holomorphic formalism in its current formulation and the canonical entropy,

and the importance of tilded variables to uncover the conformal symmetry preserved after

the deformation.3

The discussion of higher spin algebras requires more care. In the principal embedding,

the addition of deformation parameters corresponds to the addition of irrelevant operators

to the original dual CFT, as opposed to marginal ones as in the spin-2 case. Nevertheless,

it was shown in [43] that there is a W3 structure in perturbation theory in the deformation

parameters. A natural concern is whether or not the analysis of [43] has a finite radius of

convergence. Here we will provide further evidence that it does, by deriving the vacua of the

sl(3,R) theory in the principal embedding at finite values of the deformation parameters.

It is natural to define vacua as solutions which have trivial holonomy around the boundary

ϕ circle, much like the global AdS3 solution of the standard (spin-2) gravity theory. We

will show that two classes of vacua exist for deformation parameters µ3, µ̄3 below a critical

value, and prove that they admit the same number of symmetries as the original AdS3

vacuum.

Extrapolating to arbitrary gauge algebras, the final picture that emerges from our anal-

ysis is the following. Since conceptually nothing changes for higher spins, we expect that the

tilded charges will be identified with the zero modes of the asymptotic symmetry generators

3We thank P. Kraus for pointing out that in the spin-2 case the holomorphic entropy formula can be

reconciled with the Bekenstein-Hawking entropy at the price of changing the holonomies of the BTZ solution.

This suggests that there might be a map between the two formalisms that remains to be fully understood.
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for any gauge algebra and any embedding. Given a µj , µ̄j deformation of the original CFT,

appropriate variables (the tilded variables) will exist such that the conformal W symmetry

is preserved. The entropy of thermal states could then be counted by relating the behavior

of the partition function at large and small temperature (generalizing Cardy’s analysis [52]

for higher spin algebras) in terms of these appropriate tilded variables. By construction,

this computation is exactly the one performed in [50] and it has exactly the same form as

the entropy obtained in the holomorphic formulation [17, 20], but written in tilded variables

instead. Since the bulk-to-boundary dictionary is aligned with the asymptotic symmetry

algebra, the CFT zero-modes are the conserved charges carried by the black hole, and the

bulk entropy is reproduced by the CFT counting. We therefore reconcile the holomorphic

and canonical formalisms by keeping the formal structure of the holomorphic theory, but

changing the holographic bulk-boundary dictionary to tilded variables. As a non-trivial

check of these claims, we will show explicitly for the spin-3 case how to map the holomor-

phic entropy of the generic rotating black hole of [17] to the canonical entropy of [38] once

the variables in the holomorphic formalism are replaced by tilded variables.

The layout of the paper is as follows. In section 2 we consider the sl(2,R) ⊕ sl(2,R)

Chern-Simons theory with modified Brown-Henneaux boundary conditions where the bound-

ary metric is deformed. We compute the asymptotic symmetry algebra, derive the ther-

modynamics, and give a microscopic counting of the entropy. It provides a technically

straightforward summary of our methodology, that we further develop for the spin-3 case

(i.e. the sl(3,R) algebra in the principal embedding) in section 3. There, we present our

definition of conserved charges and chemical potentials, and prove that the canonical en-

tropy takes the form of the holomorphic entropy in tilded variables. We also discuss the

maximally-symmetric vacua at finite µ3, µ̄3 deformations. We extend our discussion to the

more general sl(N,R) and hs[λ] Chern-Simons theories in section 4 and show explicitly the

matching to CFT calculations done in [50]. Our conventions are summarized in the appen-

dices. We keep our conventions for hs[λ] parameterized in terms of two arbitrary c-numbers

(q, γ), to allow for easier comparison with other references in the literature.

2 Warm-up: sl(2,R) with deformations

Before studying the thermodynamics of higher spin black holes in the presence of deforma-

tions by higher spin currents, it is instructive to consider a closely related problem in the

pure gravity theory, corresponding to SL(2,R) × SL(2,R) gauge group [53, 54]. We start

with the Lorentzian theory, where the boundary is topologically a cylinder, and employ

light-cone coordinates x± = t/`± ϕ , where ϕ is the angular variable with period 2π . Our
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conventions for the sl(2,R) algebra can be found in appendix A.1.

As pointed out in [55], under the standard Brown-Henneaux boundary conditions [21]

the line element

ds2 = `2
[
dρ2 +

L
k

(dx+)2 +
L̄
k

(dx−)2 −
(
e2ρ +

LL̄
k2
e−2ρ

)
dx+dx−

]
(2.1)

with k = `/(4G3) represents the whole space of asymptotically AdS3 solutions with a flat

boundary metric at ρ→∞, and L and L̄ are seen to correspond to the stress tensor in the

dual CFT (see [48] for a review of the AdS3/CFT2 correspondence). In this light, Einstein’s

equations are equivalent to the holomorphicity properties

∂−L = 0 , ∂+L̄ = 0 , (2.2)

encoding the conservation of the stress tensor. In the Chern-Simons formulation of the

theory, the metric (2.1) corresponds to the gauge connections

A =

(
eρL1 − e−ρ

L
k
L−1

)
dx+ + L0 dρ , (2.3)

Ā = −
(
eρL−1 − e−ρ

L̄
k
L1

)
dx− − L0 dρ . (2.4)

Let us now modify the theory by adding spin-2 deformation parameters µ2(x±), µ̄2(x±),

i.e. we change the metric on which the field theory is defined as

ds2
(0) = −`2

(
dx+ + µ2dx

−) (dx− + µ̄2dx
+
)
, (2.5)

where we restrict −1 < µ2 < 1 and −1 < µ̄2 < 1 in order to preserve the boundary light-

cone structure. In the Chern-Simons formulation, this deformation amounts to turning on

the A− and Ā+ components of the connections, which now read

A =

(
eρL1 − e−ρ

L
k
L−1

)
dx+ + L0 dρ

+

(
eρµ2 L1 + e−ρ

(
−µ2
L
k

+
1

2
∂2

+µ2

)
L−1 − ∂+µ2 L0

)
dx−, (2.6)

Ā = −
(
eρL−1 − e−ρ

L̄
k
L1

)
dx− − L0 dρ

+

(
−eρµ̄2 L−1 + e−ρ

(
µ̄2
L̄
k
− 1

2
∂2
−µ̄2

)
L1 + ∂−µ̄2 L0

)
dx+. (2.7)

The equations of motion (flatness of the gauge connections) further imply

∂−L = µ2 ∂+L+ 2L∂+µ2 −
k

2
∂3

+µ2 ,

∂+L̄ = µ̄2 ∂−L̄+ 2L̄∂−µ̄2 −
k

2
∂3
−µ̄2 , (2.8)
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which we recognize as the Virasoro Ward identities associated with a deformation
∫
d2x
(
µ2L

−µ̄2L̄
)

of the boundary field theory action.

Several natural questions arise: defining boundary conditions with fixed deformation pa-

rameters, what are the conserved charges and the asymptotic symmetry algebra? Moreover,

can one give a microscopic interpretation of the BTZ black hole entropy? In order to answer

these questions, we propose to perform a field redefinition in order to map the system to

the standard Brown-Henneaux form. We will first discuss explicitly the case of constant

deformation parameters which is the main point of interest in the context of stationary

higher spin black holes. We will then briefly discuss the case of arbitrary deformations.

First, we would like to undo the twisting of the light-cone generated by the sources

(µ2, µ̄2), while preserving the identifications of x± under ϕ→ ϕ+ 2π , so that the angular

coordinate of the boundary cylinder remains canonically normalized. We are then led to

consider the following change of coordinates:

x̃+ =
x+ + µ2 x

−

1− µ2
, x̃− =

x− + µ̄2 x
+

1− µ̄2
, ρ̃ = ρ+

1

2
ln
[
(1− µ2) (1− µ̄2)

]
, (2.9)

followed by a gauge transformation

Ã = e−∆L0Ae∆L0 , ¯̃A = e−∆L0Āe∆L0 with ∆ =
1

2
ln

(
1− µ̄2

1− µ2

)
. (2.10)

Notice that this gauge transformation belongs to the diagonal subgroup of SL(2,R) ×
SL(2,R) and it is therefore a rotation of the local Lorentz frame (in particular, it does not

change the line element). The gauge connections are now

Ã =

(
eρ̃L1 − e−ρ̃

L̃
k
L−1

)
dx̃+ + L0 dρ̃ , (2.11)

¯̃A = −

(
eρ̃L−1 − e−ρ̃

¯̃L
k
L1

)
dx̃− − L0 dρ̃ , (2.12)

and the associated metric reads

ds2 = `2

[
dρ̃2 +

L̃
k

(dx̃+)2 +
¯̃L
k

(dx̃−)2 −

(
e2ρ̃ +

L̃ ¯̃L
k2
e−2ρ̃

)
dx̃+dx̃−

]
, (2.13)

where we defined the tilded quantities

L̃ = (1− µ2)2 L , ¯̃L = (1− µ̄2)2 L̄ . (2.14)

Therefore, we find that the metric (as well as the gauge connections) goes back to its

original form, but written in terms of L̃, ¯̃L and in terms of tilded coordinates. One can then

repeat the Brown-Henneaux analysis and obtain that the asymptotic symmetry algebra
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consists of two copies of the Virasoro algebra with central charge c = 6k as usual. Constant

deformations do not therefore modify the asymptotic symmetry algebra nor break any

symmetries. They merely transform the stress-tensor and boundary coordinates in a non-

trivial way.

Notice that the zero modes of the Virasoro algebra can be defined from the Aϕ, Āϕ

components of the connection as

L̃ =
k

2
Tr
[
Ã2
ϕ̃

]
=
k

2
Tr
[
A2
ϕ

]
, ¯̃L =

k

2
Tr
[ ¯̃A2

ϕ̃

]
=
k

2
Tr
[
Ā2
ϕ

]
, (2.15)

where Ã, ¯̃A can be found in (2.11), while A, Ā are given in (2.6). We see that this definition

of the zero modes is in fact invariant under the coordinate transformation and gauge trans-

formation we performed, and more generally under any gauge transformation that preserves

the periodicity of the boundary spatial circle.

Among the metrics of the form (2.13), a solution of particular interest is the BTZ black

hole [56] with mass M and angular momentum J , obtained for constant L̃, ¯̃L, given as

L̃BTZ =
1

2
(M`− J) , ¯̃LBTZ =

1

2
(M`+ J) . (2.16)

In order to discuss its thermodynamics, let us now pass to Euclidean signature by a Wick

rotation x+ → z and x− → −z̄ , with the identifications

z ' z + 2π ' z + 2πτ , (2.17)

where τ is the modular parameter of the torus on which the undeformed dual CFT is

defined.

As usual, we can use the gauge freedom to isolate the radial dependence by defining the

reduced connection a(z, z̄) (and similarly for ā) as

A = b−1ab+ b−1db , with b = eρL0 . (2.18)

From the equations of motion and the sl(2,R) algebra, one finds that τaz + τ̄ az̄ is propor-

tional to aϕ . Let us define the coefficient of proportionality as τ̃ ,

τaz + τ̄ az̄ = τ̃ aϕ , (2.19)

which we will interpret shortly. It is easy to verify that

τ̃ =
τ − τ̄µ2

1− µ2
. (2.20)

This expression can be understood as follows: the deformed metric is conformally equivalent

to the standard flat metric dz̃d¯̃z on the torus, but where the identifications are now z̃ '
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z̃ + 2π ' z̃ + 2πτ̃ , with τ̃ given by (2.20). Smoothness at the horizon is equivalent to the

holonomy condition along the thermal circle

Tr
[
(τaz + τ̄ az̄)

2
]

= −1

2
, (2.21)

which amounts to

L̃ = − k

4τ̃2
. (2.22)

Since the metric written in terms of the tilde charges is again that of a usual BTZ black

hole we immediately know that the Bekenstein-Hawking entropy, computed with any of the

traditional methods, will be

S =
Area

4G3
= 2π

√
k L̃+ 2π

√
k ¯̃L . (2.23)

We then see that τ̃ is actually the chemical potential conjugate to L̃, satisfying

τ̃ =
i

2π

δS

δL̃
. (2.24)

The partition function is now defined as4

Z(τ̃ , ¯̃τ) ≡ TrH

[
exp

(
2πiτ̃ L̃ − 2πi¯̃τ ¯̃L

)]
. (2.25)

Modular invariance relates the partition function at high temperature to the degeneracy of

the ground state

lnZ(τ̃ , ¯̃τ) = lnZ (−1/τ̃ ,−1/¯̃τ) ∼ −2πi

τ̃
L̃0 +

2πi
¯̃τ

¯̃L0 =
πik

2

(
1

τ̃
− 1

¯̃τ

)
(2.26)

where the ∼ symbol denotes the saddle point approximation, and we used the ground state

stress tensor L̃0 = ¯̃L0 = −k/4 . After a Legendre transformation, and using the holonomy

condition (2.22), we see that the microscopic entropy in the Cardy regime reproduces the

macroscopic Bekenstein-Hawking entropy (2.23). In other words, in the presence of the

deformation, the black hole entropy takes the usual form as predicted by Cardy’s asymptotic

growth of states in a unitary CFT, when written in terms of the rescaled stress tensor defined

in (2.15).

For the sake of comparison, one could define a “holomorphic” entropy as

τ − τ̄µ2 =
i

2π

δShol

δL
, −τ̄ + τ µ̄2 =

i

2π

δShol

δL̄
, (2.27)

4In order to simplify the notation, L and W (and their barred counterparts) will be understood as

operators when written inside traces, and as the expectation values of said operators otherwise.
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associated with the partition function

Zhol(τ, α, τ̄ , ᾱ) = TrH

[
e2πi(τL+αL−τ̄ L̄−ᾱL̄)

]
, (2.28)

where we defined α = −τ̄µ2 and ᾱ = −τ µ̄2 . While these quantities are perfectly well-defined

in terms of a CFT with zero modes L, L̄ and action deformed by
∫
d2x

(
µ2L − µ̄2L̄

)
, the

resulting entropy

Shol = 2π
√
kL+ 2π

√
k L̄ (2.29)

does not agree with the standard BTZ entropy (2.23). The insight that we gain here is that

the bulk-to-boundary dictionary that allows to microscopically reproduce the BTZ entropy

involves the tilded zero modes (2.15) instead of the original zero modes L, L̄ . In [43], two

of the authors argued that the deformations for the higher spin fields behaves qualitatively

in the same way, and we will explore this in detail in the next sections.

Let us finally comment on boundary conditions with fixed spacetime dependent defor-

mation parameters µ2(x±), µ̄2(x±). The boundary metric is written in (2.5), and we assume

that the boundary topology is a cylinder as before. Applying the uniformization theorem,

there exists a Liouville field Φ(x±) and coordinates x̃± such that the metric is explicitly

conformally flat

ds2
(0) = −l2eΦ(x±)dx̃+dx̃− . (2.30)

We then apply the change of coordinates

x± = x±(x̃+, x̃−) +O(e−ρ), (2.31)

ρ = ρ̃− 1

2
ln Φ(x±) +O(ρ−1). (2.32)

Since the leading behavior of the metric is AdS3 , the Fefferman-Graham theorem holds, and

one can choose the subleading terms in ρ in the diffeomorphism such that the Fefferman-

Graham form of the metric is restored. Note that since the integrated conformal anomaly

vanishes, radial diffeomorphisms do not modify the on-shell action [57, 58]. We can then

use the observation of [55] that the most general solution of Einstein’s equations with

a flat boundary metric is given by (2.1). We therefore mapped the Dirichlet problem

with arbitrary deformations to the standard Brown-Henneaux form (with tilded fields and

coordinates). Following the field redefinition, the two fluctuating functions L, L̄ which obey

the Virasoro Ward identities (2.8) can be therefore mapped to the two holomorphic and

anti-holomorphic fluctuating functions L̃, ¯̃L in terms of tilded coordinates. The discussion

of thermodynamics and microscopic counting from a CFT is then similar to the case of

constant deformations.
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3 The sl(3,R) case

The simplest higher spin gauge theory is the Chern-Simons sl(3,R) ⊕ sl(3,R) theory in

the principal embedding. From the 3d bulk point of view, this theory contains a spin-2

field (i.e. the metric) non-linearly coupled to a spin-3 field. The spectrum of the dual

(1 + 1)-dimensional CFT contains the stress tensor and two currents of weight (3, 0) and

(0, 3), respectively. The asymptotic symmetry algebra in the presence of non-trivial spin-3

deformation parameters (µ, µ̄) 5 was obtained in perturbation theory in [43] where it was

shown to consist of two copies of theW3 algebra, exactly as when no deformation is present

[44, 45]. One outcome of the analysis of [43] is the identification of the energy from the

zero modes of the W3 algebra at finite µ, µ̄ which differs from previous definitions in the

literature [42, 36, 37, 38].

In this section, we will first identify a gauge-invariant definition of the W3 zero modes

obtained with canonical methods. We will then show that the canonical entropy proposed in

[36, 37] and generalized in [38] can be given a microscopic interpretation using the formalism

of [17, 18, 50] together with our definition of zero modes. Since our main interest is in

black hole thermodynamics, we will restrict our analysis to stationary and axisymmetric

configurations. From now on, all quantities will be independent of the boundary coordinates

x±, unless otherwise stated.

We will focus our attention on the spin-3 black hole solution constructed in [17, 20].

Using the basis of sl(3,R) generators introduced in appendix A.2, the reduced connections

are6

a =
(
L1 −

L
k
L−1 −

W
4k

W−2

)
dx+

+ µ

(
W2 +

2W
k

L−1 +

(
L
k

)2

W−2 −
2L
k
W0

)
dx− , (3.1)

ā = −
(
L−1 −

L̄
k
L1 −

W̄
4k

W2

)
dx−

− µ̄
(
W−2 +

2W̄
k

L1 +

(
L̄
k

)2

W2 −
2L̄
k
W0

)
dx+ . (3.2)

Here, k is the level of the embedded sl(2,R) theory, given by k = `/(4G3), and related to

the level kcs of the full theory via kcs = k/(2Tr [L0L0]) = k/4 . The traces here and below

are understood to be taken in the fundamental representation, with the conventions of A.2.

5In order to simplify the notation and facilitate comparison with the recent literature, in the present

section we adopt the notation µ3 → −µ, µ̄3 → −µ̄ .
6Note that we have rescaled the charges with respect to [17, 20] as follows: 2πLthere = Lhere and

2πWthere =Where, and similarly for the barred quantities.
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Notice that the BTZ black hole connections are recovered by setting W = W̄ = µ = µ̄ = 0.

From the holographic perspective, the black hole solution describes the CFT partition

function at finite temperature and finite chemical potentials for the higher spin currents

[18].

3.1 Summary of the holomorphic formalism

The thermodynamics of spin-3 black holes was first studied in the so-called holomorphic

formalism [17]. There, one starts in highest-weight gauge for the a+ component of the

connection,

a+ = L1 +Q (3.3)

with Q constrained by the highest-weight condition [Q,L−1] = 0. Since the µ, µ̄ deformation

does not affect a+, see (3.1), the charges defined from Q are defined independently of µ, µ̄

as

L =
k

4
Tr[L1Q] =

k

8
Tr
[
a2

+

]
, (3.4)

W = −k
2

Tr[L2
1Q] = −k

6
Tr
[
a3

+

]
. (3.5)

For future reference, we note that in the highest-weight gauge (3.3) the sources (τ, α) con-

jugate to the holomorphic charges (L,W) can be identified as the lowest weights in the

component of the connection along the contractible cycle of the boundary torus upon Wick

rotation to Euclidean signature (c.f. (2.17)), namely

τaz + τ̄ az̄ = τL1 − αW2 + . . . (3.6)

where α = τ̄µ and the dots represent higher-weight terms fixed by the equations of motion.

In the case of constant connections we can use the fact [az, τaz + τ̄ az̄] = 0 by the equations

of motion and therefore expand τaz + τ̄ az̄ in a basis of sl(3,R) elements built from az as

τaz + τ̄ az̄ = τaz − 2α

(
a2
z −

1

3
Tr
[
a2
z

]
1

)
. (3.7)

The holomorphic higher spin black hole entropy is a sum of contributions from the

unbarred and barred connections. The contribution from the Ā sector is obtained by simply

putting bars on all the charges. The chiral half Shol
A of the entropy in the holomorphic

formalism can be written as

Shol
A (L,W) = 2π

√
kL
√

1− 3

4C
, (3.8)
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where C is defined fromW = 4C−3/2(C−1)L3/2k−1/2 . We see that the holomorphic entropy

is expressed in terms of L,W, the zero modes of the W3 algebra at µ = µ̄ = 0 (with a

similar contribution from the barred sector). Using the holographic dictionary between

AdS3 and its dual CFT, it was found that calculations in the holomorphic formalism can

be mapped to perturbative calculations in the undeformed CFT. However, what is unclear

in this formalism is whether this proposed entropy is really the higher spin generalization of

the Bekenstein-Hawking entropy in some sense (see however footnote 3). On the contrary, as

mentioned in the introduction, canonical approaches lead to a different “canonical entropy”

[35, 36, 37, 38]. In the following, we will present a canonical formalism that will reproduce

the canonical entropy and that will also admit a CFT interpretation. Quite remarkably,

we will show that the canonical entropy takes the same functional form as the holomorphic

entropy (3.8), but with all variables replaced via a field redefinition that follows from the

redefinition of the CFT zero modes at finite µ, µ̄ deformation.

3.2 Canonical charges and conjugate potentials

We propose to define the zero modes of the W3 algebra (L̃, W̃) in terms of the component

of the connection along the spatial circle as

L̃ =
k

8
Tr
[
a2
ϕ

]
, (3.9)

W̃ = −k
6

Tr
[
a3
ϕ

]
. (3.10)

Evaluated on the black hole solution (3.1)-(3.2), we obtain

L̃ = L+ 3µW +
16

3k
µ2L2, (3.11)

W̃ = W +
32L2µ

3k
+

16LWµ2

k
− 512L3µ3

27k2
+

16W2µ3

k
. (3.12)

This definition agrees with the zero modes obtained from the asymptotic symmetry algebra

analysis performed in [43], up to possible O(µ4) corrections. Since the definition (3.10) is

gauge-invariant, however, it is natural to conjecture that the zero modes of L̃ and W̃ as

computed in [43] will not get any corrections to order 4 and higher in the µ expansion,

which would result in a complete agreement. Note that the horizon holonomy, depending

on the eigenvalues of aϕ , was computed in appendix C of [20] (see also [36]). Here, we

further identify that these holonomies encode the zero modes of the conformal generators.

In the Euclidean formulation of the theory, regularity of the black hole solution is en-

forced by requiring that the holonomies of the connection around the contractible cycle

of the boundary torus are identical to those of the BTZ black hole, which in the present
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context implies

Tr
[
h2
]

= −8π2 , Tr
[
h3
]

= 0 , (3.13)

where h = 2π (τaz + τ̄ az̄) . In order to solve the holonomy conditions (3.13), it proves

convenient to parameterize the W, W̄ in terms of L, L̄ and auxiliary variables C, C̄ as

follows

W =
4(C − 1)

C3/2
L
√
L
k
, W̄ = −4(C̄ − 1)

C̄3/2
L̄
√
L̄
k
. (3.14)

Solving (3.13) for τ, τ̄ , µ, µ̄ then yields

− τ̄
τ
µ =

3
√
C

4(2C − 3)

√
k

L
, τ =

i(2C − 3)

4(C − 3)
√

1− 3
4C

√
k

L
, (3.15)

τ

τ̄
µ̄ =

3
√
C̄

4(2C̄ − 3)

√
k

L̄
, −τ̄ =

i(2C̄ − 3)

4(C̄ − 3)
√

1− 3
4C̄

√
k

L̄
. (3.16)

In the non-rotating limit L̄ = L and C̄ = C, so that τ̄ = −τ , W = −W̄, µ̄ = −µ,

reproducing the known results. The solution is defined for 3 < C, C̄ <∞ where the upper

bound is reached at the BTZ point and the lower bound corresponds to the extremal black

hole. For the purposes of comparing results with perturbative expansions in µ, µ̄, it is useful

to also present the perturbative solution of the holonomy conditions:

L = − k

4τ2
+

5kµ2τ̄2

3τ6
+O(µ4),

W = −2kµτ̄

3τ5
+

160kµ3τ̄3

27τ9
+O(µ4),

L̄ = − k

4τ̄2
+

5kµ̄2τ2

3τ̄6
+O(µ̄4), (3.17)

W̄ = −2kµ̄τ

3τ̄5
+

160kµ̄3τ3

27τ̄9
+O(µ̄4).

Having identified the canonical charges as described above, we now turn our attention

to the definition of sources which are canonically conjugate to these charges. The more

straightforward way to define the sources, that we denote as τ̃ , α̃, ¯̃τ, ¯̃α, is as follows. We

can use the gauge freedom to write aϕ in highest-weight gauge, namely

aϕ = L1 + Q̃ (3.18)

where the matrix Q̃ is linear in the canonical charges and satisfies [L−1, Q̃] = 0 . The sources

can then be identified as the lowest weights in the component of the connection τaz + τ̄ az̄

as

τaz + τ̄ az̄ = τ̃L1 − α̃W2 + . . . , (3.19)
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where the dots represent higher-weight terms that are fixed by the equations of motion.

This definition can be motivated by the fact that in standard gravity coupled to matter,

the thermodynamic conjugate variables to the black hole conserved charges are defined from

local properties of the geometry and matter fields close to the Killing horizon. In Chern-

Simons theory, it is therefore natural to define the conjugate variables to the charges using

the connection along the Euclidean thermal circle, which characterizes the properties of the

black hole. More fundamentally, the expression (3.19) is consistent with the variational

principle with fixed sources. One can indeed find a boundary term that supplements the

Euclidean action in a way such that the variation of the sum of its bulk and boundary pieces

leads (on-shell) to

δI(E)
∣∣∣
os

= −2πi

∫
∂M

d2z

4π2Im(τ)

(
L̃δτ̃ + W̃δα̃− ¯̃Lδ ¯̃τ − ¯̃Wδ ¯̃α

)
. (3.20)

This derivation uniquely fixes the coefficients of the lowest-weight generators in (3.19).

Instead of presenting the details of this derivation for the spin-3 case, we refer the reader

to section 4.3 where the variational principle is discussed in full generality.

In the special case of constant connections, the equations of motion imply

[τaz + τ̄ az̄ , aϕ] = 0 . (3.21)

Since aϕ contains all the information about the charges, it is natural to expand the com-

ponent of the connection along the Euclidean thermal circle in a basis of sl(3,R) elements

built out of aϕ as (see [36] also)

τaz + τ̄ az̄ = τ̃ aϕ − 2α̃

(
a2
ϕ −

1

3
Tr
[
a2
ϕ

]
1

)
, (3.22)

where 1 is the three-dimensional identity matrix, and similarly for the barred sector. The

numerical coefficients in the latter expression cannot be fixed from these arguments alone,

but can be adjusted so that the definitions (3.19) and (3.22) exactly agree. As opposed to

(3.19), (3.22) does not require to be in highest-weight gauge for aϕ , so in particular it can

be evaluated in the gauge used in (3.1), which leads to

τ̃ =
τ − 16µ2

3k

(
(τ + 2τ̄)L+ 3µτ̄W

)
1− 16µ2

k (L+ µW)
, (3.23)

α̃ =
µ(τ̄ − τ)

1− 16µ2

k (L+ µW)
. (3.24)

This is the analogue for spin-3 of the expression (2.20) for the spin-2 case. The chiral

temperatures are therefore modified in the presence of spin-3 deformations, in parallel with

the modification of the conformal zero modes. Note that contrary to the spin-2 case, the
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chemical potentials are now field-dependent. In terms of the perturbative µ, µ̄ expansion

we obtain

τ̃ = τ +
8

3

τ̄ − τ
τ2

µ2 +O(µ4), (3.25)

α̃ = (τ̄ − τ)µ− 4
τ̄ − τ
τ2

µ3 +O(µ5). (3.26)

Given that the structure of (3.7) and (3.22) is formally the same, we can immediately

write down the solution to the holonomy conditions in tilded variables as (3.14)-(3.16) with

tildes on everything,

W̃ =
4(C̃ − 1)

C̃3/2
L̃

√
L̃
k
, (3.27)

−
¯̃τ

τ̃
µ̃ =

3
√
C̃

4(2C̃ − 3)

√
k

L̃
, (3.28)

τ̃ =
i(2C̃ − 3)

4(C̃ − 3)
√

1− 3
4C̃

√
k

L̃
, (3.29)

and similarly for the barred sector. Using the definition of C̃, L̃ and W̃ and substituting µ

using (3.16) we find the additional relation

C̃ =
C(2C − 3)2 − 9 ττ̄ (2C − 3)(C − 1) + 3

(
τ
τ̄

)2
C2

(2C − 3)2
(
1− τ

τ̄

)2 . (3.30)

3.3 Canonical entropy

Let us first quickly review Wald’s derivation [34] of the stationary black hole entropy in the

metric formalism for general diffeomorphic-invariant theories without matter. The main

point in Wald’s derivation is the identification of the canonical charge Qξ associated with

the Killing symmetry

ξ = β

(
∂

∂t
+ Ω

∂

∂ϕ

)
(3.31)

as the entropy S, i.e.

S = Qξ . (3.32)

The Killing symmetry is naturally defined in terms of the properties of the horizon: β is

the inverse of the Hawking temperature and Ω is the angular velocity. Defining

τ =
iβ

2π
(1 + Ω) , τ̄ =

iβ

2π
(−1 + Ω) , (3.33)
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the Killing generator can be written as

ξ = −2πi
(
τ l0 − τ̄ l̄0

)
(3.34)

where ∂t = l0 + l̄0 and ∂ϕ = l0 − l̄0 . Since the Noether charge is linear in its symmetry

generator and conserved, and since l0, l̄0 are associated with the L0, L̄0 charges, the first

law

δS = −2πi
(
τδL0 − τ̄ L̄0

)
(3.35)

holds by construction. Specializing to sl(2,R) Chern-Simons theory, the gauge symmetry

(Λ, Λ̄) = (ξµAµ, ξ
µĀµ) associated with the Killing symmetry reads

(Λ, Λ̄) = −2πi
(
τA+ − τ̄A−, τ Ā+ − τ̄ Ā−

)
. (3.36)

We will now show that the same gauge symmetry (3.36) is more generally canonically

associated with the black hole entropy in sl(3,R) Chern-Simons theory.

In the case of sl(3,R) Chern-Simons theory in the principal embedding, the first law

should read

δS = −2πi
(
τ̃ δL̃+ α̃δW̃ − barred

)
(3.37)

where the barred sector has the same structure (with barred variables). It was shown in

[43] that the infinitesimal canonical Noether charge associated with the constant gauge

parameter generators (ε̃, χ̃) in the black hole background (3.1) can be written as

δQ(ε̃,χ̃) = ε̃δL̃ − χ̃δW̃ . (3.38)

One has therefore to prove that the Noether charge associated with

(ε̃, χ̃) = −2πi(τ̃ ,−α̃) (3.39)

is integrable (i.e. a δ-exact quantity); since the result (after summing up the unbarred and

barred sectors) would obey the first law (3.37), it would be identified as the black hole

entropy.

The relationship between the gauge transformation δAµ = ∂µΛ and the gauge parameter

generators (ε̃, χ̃) was worked out in [43] up to O(µ4) in perturbation theory. The gauge

transformation parameter Λ = e−ρL0λeρL0 is given by

λ = εL1 + χW2 + · · · (3.40)

where the dots denote higher-weight sl(3,R) generators and (ε, χ) are given by(
ε

χ

)
=

(
1 −32L

3k µ−
16µ2

k W
−µ 1− 16L

3k µ
2

)(
ε̃

χ̃

)
+O(µ4) . (3.41)

20



This non-trivial linear transformation arises from the requirement that the conserved charges

L̃, W̃ are the zero modes of the W3 algebra up to O(µ4) corrections. After using the holon-

omy conditions (3.17) we find(
ε

χ

)
=

(
−2πiτ

2πiµτ̄

)
+O(µ4) . (3.42)

We now recognize that the lowest sl(3,R) weights in the connection τa+ − τ̄ a− match

with (3.40) up to O(µ4). Therefore, we showed that the gauge symmetry that gives the

right-hand side of the first law (3.37) is generated by

λ = −2πi (τa+ − τ̄ a−) , (3.43)

up to O(µ4) corrections. This generator has a very natural interpretation in Euclidean

signature: it is λ = −ih , where h = 2π(τaz + τ̄ az̄) =
∮
a is the integral of the reduced

connection around the thermal circle. It is therefore natural to conjecture that the O(µ4)

corrections will vanish.

It remains to prove that the left-hand side of the first law (3.37) is integrable and derive

the actual formula for the entropy. Restoring the barred sector, the infinitesimal canonical

charge integrated over the ϕ circle is given by [29]

/δQλ=−ih,λ̄=−ih̄ = − ikcs
2π

∫ 2π

0
dϕTr

[
δaϕ h− δāϕ h̄

]
, (3.44)

where the notation /δ emphasizes that we do not yet know whether the quantity is δ-exact.

Since [aϕ, h] = 0 from the equations of motion and since smoothness of the solution implies

that there exists a group element u such that h = u−1 (2πiL0)u , one has [38]

Tr [aϕδh] = Tr
[
āϕδh̄

]
= 0 . (3.45)

Therefore, the charge is integrable and its integral /δQΛ = δS is given by the entropy

S = −ikcsTr
[
aϕh− āϕh̄

]
, (3.46)

where h = 2π (τaz + τ̄ az̄), h̄ = 2π (τ āz + τ̄ āz̄). The result exactly matches with the canon-

ical entropy derived in [38].

3.4 Matching to the (deformed) CFT

According to the asymptotic symmetry algebra analysis [43], the deformed dual theory is

still governed by W3 ⊕ W3 symmetry with central charge c = 6k . The zero modes of
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symmetry generators are given by L̃, W̃, ¯̃L, ¯̃W. This suggests the following dictionary from

the bulk variables to CFT variables

L̃ = L0;CFT , W̃ =W0;CFT , (3.47)

τ̃ = τCFT , α̃ = αCFT . (3.48)

It is then natural to rewrite the canonical entropy in terms of the tilded variables, and see

whether it suggests any interpretation in the deformed CFT. It turns out that by using the

relations between the tildes variables and untilded variables, the canonical entropy in (3.46)

takes exactly the same functional form as the holomorphic entropy of [17], but as a function

of the tilded charges:

S = SA + SĀ = 2π
√
kL̃
√

1− 3

4C̃
+ 2π

√
k ¯̃L

√
1− 3

4 ¯̃C
. (3.49)

This formula can be more easily proven by using as intermediate expressions

SA = 2π
√
kL
(

1− 3

2C

)−1
√

1− 3

4C

(
1− 3

2C

(
1 +

τ

τ̄

))
(3.50)

= −2πi

(
2τL+

32

3k
τ̄µ2L2 + 3(τ + τ̄)µW

)
. (3.51)

The free energy, which is as usual related to the entropy by a Legendre transformation,

can be written as

lnZbh = −2πi
(
τ̃ L̃+ α̃W̃

)
. (3.52)

It should then correspond to the logarithm of the CFT partition function

lnZCFT = ln TrH

[
e2πi(τCFTL̂0;CFT+αCFTŴ0;CFT)

]
. (3.53)

For sl(3,R), a direct CFT calculation is not available. However, as we will see explicitly in

the next section, our formalism matches exactly with a direct CFT calculation for spin-3

black holes in the theory based on the hs[λ] algebra.

3.5 AdS3 vacua in the presence of higher spin deformations

A natural question that arises when considering µ, µ̄ deformations is the existence of a

vacuum. Is there a natural definition of an sl(2,R) ⊕ sl(2,R) invariant vacuum for each

value of µ, µ̄? From the analysis of [43], the asymptotic symmetry algebra was shown to be

isomorphic to the undeformed asymptotic symmetry algebra in perturbation theory in µ, µ̄.

It shows that the global AdS3 vacuum can still be defined by fixing the holonomies around
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the ϕ circle to be trivial, and equal to their values for the undeformed AdS3 vacuum. A

first hint that the symmetry algebra is preserved at finite µ, µ̄ is that the zero modes of

the asymptotic symmetry algebra are defined in a gauge-invariant way for any finite µ, µ̄ as

shown in (3.10). We will propose here a gauge-invariant definition of vacua at finite µ, µ̄.

As a non-trivial check, we will show from first principles that these vacua have the same

number of symmetries as the undeformed AdS3 vacuum. This suggests that the symmetry-

preserving perturbative expansion has a finite radius of convergence, providing evidence, at

finite µ µ̄, of the picture advocated in [43].

We propose the definition of vacua at finite values of µ, µ̄ as the connections which have

a trivial holonomy around the ϕ circle, so that the eigenvalues of aϕ match the ones of the

global AdS3 solution. This amounts to set the values of the zero modes to the values of the

undeformed global AdS3 vacuum,

L̃ = ¯̃L = −k
4
, W̃ = ¯̃W = 0 . (3.54)

Let us consider the unbarred sector. Using the definition of the zero modes in terms of

the holonomies we can solve for W in terms of L ,

W = − 1

3µ

(
L+

k

4

)
− 16µ

9k
L2 , (3.55)

and one is left with the following quartic equation for L (and similarly for L̄),

0 =
(
36µ2 − 27

)
−
(
144µ2 + 108

)
L+

(
1536µ4 + 1728µ2

)
L2

− 9216µ4L3 + 16384µ6L4 . (3.56)

Note that the equations (3.55)-(3.56) can also be formally obtained by writing the holonomy

conditions for the spin-3 black holes with τ = τ̄ = 1 . It turns out that there are two real

branches of solutions around µ = 0 . One branch starts at the undeformed AdS3 vacuum

value L = −k
4 while the other starts at L = ∞ . The two branches merge at the critical

values for the deformation parameter

µc = ±3

8

√
3 + 2

√
3 ≈ ±0.95 . (3.57)

There is no real solution to the holonomy conditions for |µ| > |µc| . The values for L,W
are plotted as a function of µ in figures 1-2. Interestingly, the bound |µ| ≤ µc is close to

the bound |µ2| < 1 for the spin-2 case. In conclusion, for all values −µc ≤ µ ≤ µc there are

two independent vacua which coincide at ±µc .

Gauge symmetries, also called reducibility parameters, are defined as gauge generators

which leave the fields invariant. The vacuum solution which asymptotes to the ordinary
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AdS3 vacuum at µ = 0 is sl(2,R) ⊕ sl(2,R) invariant around µ = 0 as a consequence

of the existence of a W3 ⊕ W3 asymptotic symmetry algebra in the perturbative µ, µ̄

expansion [43]. Indeed, using the conventions of [43] and looking at the unbarred sector, the

conditions δε0,χ0L̃ = 0 , δε0,χ0W̃ = 0 have three linearly independent solutions for the gauge

parameters (ε0, χ0) = (1, 0), (e±ix
+
, 0) which generate the sl(2,R)-left algebra. In sl(3,R)

Chern-Simons theory, the vacuum AdS3 has five additional symmetries (ε0, χ0) = (0, 1) ,

(0, e±ix
+

) , (0, e±2ix+) which correspond to symmetries associated with the spin-3 field.

Here, we will investigate if the number of symmetries (8 in the left sector) is preserved upon

turning on the µ deformation.

Symmetry generators obey the following equations

0 = δε,χL = −2L∂+ε+
k

2
∂3

+ε+ 3W∂+χ , (3.58)

0 = δε,χW = −3W∂+ε−
10

3
L∂3

+χ+
k

6
∂5

+χ+
32

3k
L2∂+χ , (3.59)

for L,W solutions to (3.55)-(3.56). Moreover, the gauge generators are restricted to obey

the boundary conditions, which amounts to

∂−χ = 2µ∂+ε , ∂−ε = −2µ

3
∂3

+χ+
32µ

3k
L ∂+χ . (3.60)

Let us solve these equations. Since L is constant, the latter system is a linear wave equation

with a non-linear dispersion relation. Imposing periodicity along the ϕ coordinate, we find

that the most general solution to (3.60) at finite µ (besides ε or χ constant) is labeled by

the wave number m ∈ Z0 along ϕ and the momentum k+ along x+ as

(ε, χ) = (k+ −m, 2µk+) ei(k+−m)x−+ik+x+ (3.61)
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where the dispersion relation can be written as a quartic equation for k+,

(k+ −m)2 =
4µ2

3
k2

+

(
k2

+ +
16L
k

)
. (3.62)

Note that this general solution at µ 6= 0 reproduces only 6 out of the 8 reducibility pa-

rameters in the limit µ → 0 , since it fixes the relative coefficient between ε and χ when

m = ±1. The remaining two reducibility parameters for m = ±1 can be obtained by taking

the limit µ → 0 in the equations first. Nevertheless, we will see below that there will be 8

independent solutions at finite µ , which degenerate to 6 solutions in the µ→ 0 limit.

Plugging the solution (3.61) into the symmetry equations we obtain

12k+
W
k
µ = (k+ −m)

(
k2

+ + 4
L
k

)
, (3.63)

9 (k+ −m)
W
k

= k+

(
k2

+ +
4L
k

)(
k2

+ +
16L
k

)
µ . (3.64)

After some algebra we find that, given (3.55)-(3.56), a solution to (3.62)-(3.64) exists only

for m = ±1 or m = ±2 . For m = ±1 , the solution can be constructed after solving

9∓ 72k+ + 198k2
+ ∓ 216k3

+ + k4
+

(
168µ2 + 81

)
∓ 96k5

+µ
2 + 72k6

+µ
2 + 16k8

+µ
4 = 0 . (3.65)

For m = ±2 , one has to solve instead

12∓ 24k+ + 9k2
+ + 4k4

+µ
2 = 0 . (3.66)

Moreover, one has to choose the branches for k+ such that L given by

L
k

= −
k2

+

16
+

3 (k+ −m)2

64k2
+µ

2
(3.67)

is real. For m = 1 and |µ| < |µc|, we find two pairs of complex conjugate momenta k+ that

obey the requirements. These two pairs reproduce the two branches of L of figure 1. The

imaginary part of these complex roots degenerate to 0 in the limit µ→ 0 . For m = 2 , we

obtain two real solutions for k+ . These two solutions also reproduce the two branches of

L of figure 1. The analysis is similar for m = −1,−2 since only the sign of k+ flips. In

conclusion, on the lowest branch of figure 1 (connected to the undeformed AdS3), we found

8 reducibility parameters: the 2 constants (ε, χ), the complex conjugate pair for m = 1 and

the one for m = −1 , and the real solution for m = 2 and for m = −2 . Following the same

logic, there are also 8 reducibility parameters on the upper branch of figure 1. Therefore,

the number of gauge symmetries is preserved upon turning a finite value of |µ| ≤ |µc| . The

vacua are maximally symmetric, and therefore gauge-equivalent to global AdS3 .
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4 Generalization to sl(N,R) and hs[λ]

Building on the spin-2 and spin-3 examples that we examined in detail in the previous

sections, we will now extend these considerations to arbitrary N and more generally to the

theory based on the infinite-dimensional hs[λ] algebra. Moreover, we will build a variational

principle that is appropriate to the canonical definition of charges and chemical potentials we

have provided. We will write the entropy as a bulk Noether charge, and show that it can be

obtained as the Legendre transform of the free energy under these boundary conditions. As a

first step, we will review and slightly reformulate the holomorphic formalism, which will help

to contrast our respective definitions. Our approach here will be based on the treatment in

[38], which extended and generalized earlier work in [36]. For concreteness, when discussing

the sl(N,R)⊕ sl(N,R) theory we will focus on the principal sl(2,R) embedding. As it will

be clear from the manipulations below, when written in terms of the connection components

our final results will apply to other embeddings as well.

In the Euclidean formulation of the theory we consider the boundary of the bulk man-

ifold M to be topologically a torus with modular parameter τ . The Lorentzian light-cone

coordinates are analytically continued as x+ → z and x− → −z̄ , with the identifications

z ' z + 2π ' z + 2πτ . (4.1)

The volume of the boundary torus is then Vol(∂M) = 4π2Im(τ) . We define

kcs =
k

2Tr[L0L0]
, (4.2)

such that the Virasoro algebra acting on the standard Brown-Henneaux boundary conditions

for the principal sl(2,R) embedding has central charge c = 6k .

4.1 Summary of the holomorphic formalism

In this subsection we review and reformulate how thermodynamics works in the holomorphic

formalism. We will generically denote the spin-j charge in the holomorphic formalism by

Qj (and similarly for the barred sector), so (Q2, Q̄2) corresponds to the stress tensor zero

modes at zero deformation parameters (µj , µ̄j), (Q3, Q̄3) to the zero modes of the spin-3

current, and so forth. The treatment of both chiral sectors is entirely analogous, so below

we will focus on the unbarred sector for simplicity. The traces in the hs[λ] algebra are

understood to be evaluated according to the conventions in appendix A.3. When λ = N ,

these reduce to matrix traces in the fundamental representation of sl(N,R) . Elements in

hs[λ]⊕C are understood to be multiplied using the ? product defined in appendix A.3, but

we omit the explicit ? symbol in order to simplify the notation.
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In the holomorphic formulation, the charge Qj can be read off from the az component

of the connection. Note that az is usually written in the highest-weight gauge

az = L1 +Q (4.3)

with

Q =
1

kcs

∞∑
j=2

Qj

N j
j−1(λ)

V j
−(j−1) , (4.4)

where we used the normalization N j
j−1(λ) defined in (A.19). The latter expression is similar

to the one used in [59], for example. From the highest-weight form for Q we easily obtain

Qj = kcsTr
[
V j
j−1Q

]
= kcs(4q)

j−2Tr
[
(L1)j−1Q

]
, (4.5)

where the second equality follows from (A.23). The first few terms in the expansion of Q

read7

Q = −Q2

k
L−1 +

5Q3

16kq2 (λ2 − 4)
W−2 −

35Q4

384kq4 (λ4 − 13λ2 + 36)
J−3 + . . . (4.6)

In the λ = N = 3 example, our conventions for the sl(3,R) generators in appendix A.2

correspond to q = 1/2, γ = 1, and we find

Q = −Q2

k
L−1 +

Q3

4k
W−2 =

2

k


0 Q2 Q3

0 0 Q2

0 0 0

 , (4.7)

where Q2 and Q3 have simple expressions in terms of traces of az , i.e.

Q2 =
k

4
Tr[L1Q] =

k

8
Tr
[
a2
z

]
, Q3 =

k

2
Tr[L2

1Q] =
k

6
Tr
[
a3
z

]
. (4.8)

These definitions match the charges in the holomorphic formalism Q2 = L , Q3 = −W up

to an irrelevant sign for the spin-3 charge.

Starting at j = 4, the expression for Qj involves more terms than just (az)
j . After some

algebra one obtains, for example,

Q4 = kcs(4q)
2 Tr

[
L3

1Q
]

=
kcs
4

(4q)2

(
Tr
[
a4
z

]
− 3

5γ

3λ2 − 7

λ (λ2 − 1)

(
Tr
[
a2
z

])2)
. (4.9)

7We note that, when written in terms of k (rather than kcs), the expression for Q is independent of the

normalization of the trace (γ) chosen in (A.17).
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We would now like to write down the sources that are conjugate to the charges defined

above. To this end, we first notice that one can also express the charge Qj in terms of az as

Qj = kcs
(4q)j−2

j
Tr [azbj−1(az)] , (4.10)

where bj−1(az) is a traceless polynomial of degree j − 1 in az , i.e. satisfying

d

dλ
bj−1(λaz)|λ=1 = (j − 1)bj−1(az) , Tr [bj−1] = 0 . (4.11)

More explicitly, we can write

bj−1(az) = aj−1
z +

j−2∑
m=2

cm[az]a
j−1−m
z + cj−1[az]V

1
0 , (4.12)

where the coefficients cm[az] are in general products of traces of powers of az, of total degree

m, which are fixed by requiring (4.10) to be satisfied. The last term is proportional to the

identity element V 1
0 and its coefficient is adjusted to make bj−1 traceless. Let us write

down some of these polynomials explicitly. From the above relations for Q2, Q3 and Q4 it

immediately follows that

b1(az) = az , (4.13)

b2(az) = a2
z − Tr

[
a2
z

]( 4q

γλ
V 1

0

)
, (4.14)

b3(az) = a3
z −

3

5γ

3λ2 − 7

λ (λ2 − 1)

(
Tr
[
a2
z

])2
az − Tr

[
a3
z

]( 4q

γλ
V 1

0

)
. (4.15)

Our next observation is that the set {bj−1}j≥2 form a complete basis to the solutions of

the equations of motion for constant connections:

[az, τaz + τ̄ az̄] = 0 . (4.16)

Hence, we can expand the component of the connection along the contractible cycle using

these polynomials. In the holomorphic formalism, we define the sources αj (with j ≥ 2)

conjugate to the charges Qj as the coefficients in this expansion, i.e.

(τaz + τ̄ az̄) =
∑
j≥2

(4q)j−2αjbj−1(az) . (4.17)

It follows that

Tr [az (τaz + τ̄ az̄)] = k−1
cs

∑
j≥2

jαjQj . (4.18)
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Next, using the definition of bj−1 we have

Tr [L1bj−1] = Tr
[
L1(L1 +Q)j−1 + . . .

]
= Tr

[
Lj1 + (j − 1) (L1)j−1Q

]
, (4.19)

where the dots in the first line denote terms which are quadratic and higher in the charges

Qk , whose contribution to the trace is canceled by similar terms coming from the L1(az)
j−1

term (by definition of bj−1). Since Tr[Lj1] = 0 , we conclude

Tr[L1bj−1(az)] = (j − 1)Tr
[
(L1)j−1Q

]
. (4.20)

Together with (4.10) the latter equation implies

Tr [L1 (τaz + τ̄ az̄)] = k−1
cs

∑
j≥2

(j − 1)αjQj , (4.21)

Tr [Q (τaz + τ̄ az̄)] = k−1
cs

∑
j≥2

αjQj . (4.22)

When restricting to the sl(N,R) theory, similar expressions apply for non-principal embed-

dings, where the sums now run over the appropriate spectrum, and j is replaced by the

conformal weight of the corresponding operators.

Going back to the N = 3 example (where q = 1/2, γ = 1), the component of the

connection along the contractible cycle reads

τaz + τ̄ az̄ =


−4α3Q2

3k
2α2Q2

k + 4Q3α3

k
2α2Q3

k +
8α3Q2

2
k2

α2
8α3Q2

3k
2α2Q2

k + 4Q3α3

k

2α3 α2 −4α3Q2

3k

 . (4.23)

It is worth emphasizing that this is precisely the structure of the spin-3 black hole solution

(3.1)-(3.2), provided we identify

α2 = τ , α3 = −τ̄µ . (4.24)

Since τ couples to the stress tensor and τ̄µ to the (3, 0) current, we recognize the spin-2

and spin-3 sources as defined in [17] (the extra minus sign in α3 is related to the fact that

Q3 = −W as was pointed out before).

As usual, in a thermodynamic equilibrium configuration the sources (chemical poten-

tials) and expectation values (charges) form conjugate pairs whose values are related in a

way compatible with the laws of thermodynamics. In the context of black hole thermody-

namics, these relations are obtained by applying smoothness conditions on the solution. For

higher spin black holes, the smoothness conditions can be formulated as the requirement
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that the gauge connections have trivial holonomy around the contractible cycle of the torus

[17, 18], which in particular implies

Tr [hn] = Tr [hnBTZ] , n = 2, 3, . . . (4.25)

where h = 2π (τaz + τ̄ az̄) as before, and hBTZ denotes the holonomy matrix evaluated in the

BTZ solution (this is, with all the higher spin charges and sources turned off). The solution

to these equations determines the charges as a function of the sources (or viceversa), so we

have

Qj = fj ({α}) , j ≥ 2 , (4.26)

where {α} denotes the set of sources that are switched on in the solution. Given the

structure of the hs[λ] algebra, for non-integer λ the holonomy conditions demand that the

solution carry all the higher spin charges even if they are not explicitly sourced (this is, a

charge Qj is generated even if is not supported by the corresponding source αj). This is to

be contrasted with the sl(N,R) theory, where a solution in the BTZ branch carries a higher

spin charge only if the corresponding source is turned on. The perturbative expansion of

the solution to the holonomy conditions for the hs[λ] black hole with a source for spin-3

charge can be found in [18].

It was shown in [38] that the holomorphic free energy and entropy can be written entirely

in terms of the connection as8

−βFhol = − 2πikcs Tr

[
τ

(
a2
z

2

)
− τ̄

(
ā2
z̄

2

)
+ (τ̄L1az̄ − τL−1 āz)

]
(4.27)

Shol = − 2πikcs Tr
[
az (τaz + τ̄ az̄)− āz̄ (τ āz + τ̄ āz̄)

]
. (4.28)

We remark that the holomorphic formulation of the bulk theory reviewed here has been

shown to be in good agreement with independent CFT calculations [18, 50, 60, 28]. However,

as we have discussed, the resulting black hole entropy differs from that computed with

canonical methods. We will now turn our attention to a formulation of the theory that

utilizes a set of canonical definitions that generalizes those of the spin-3 case discussed in

section 3.

4.2 Canonical charges and conjugate potentials

In this subsection we propose a gauge-invariant definition of the conserved charges and

conjugate potentials that is consistent with the canonical structure of the theory. As we

8When restricting to the sl(N,R) theory, the generator L1 depends on the choice of sl(2,R) embedding

under consideration.
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discussed in detail in the spin-2 and spin-3 examples, the starting observation is that in the

presence of higher spin deformations the canonical charges are encoded in the holonomies of

the connections along the ϕ circle. Therefore, there exists a (constant) gauge transformation

U such that

aϕ = az + az̄ = U
(
L1 + Q̃

)
U−1 (4.29)

where the matrix Q̃ is linear in the higher spin charges and satisfies[
L−1, Q̃

]
= 0 . (4.30)

In other words, Q̃ is a highest-weight matrix that is linear in the charges. It is natural to

work in highest-weight gauge for aϕ ,

ãϕ = U−1aϕU = L1 + Q̃ , (4.31)

as we did in section 2, see (2.10), but we will keep the gauge arbitrary here for easier

comparison with the highest-weight gauge for az that we used in the discussion of the

holomorphic formalism. The definition (4.29) is to be contrasted with the holomorphic

definition of charges summarized in last subsection, where the charges are introduced in the

az component of the connection. Here the charge matrix directly encodes all the non-trivial

information on the holonomies of the connection around the non-contractible ϕ circle.

Once we have identified the highest-weight matrix that contains the charges, the rest

of the analysis is similar to that of the last subsection. In a effort of clarity for the reader,

we just repeat here what we did before in terms of the new variables. First, we can write

Q̃ as a sum over the highest-weight generators in each sl(2,R) multiplet appearing in the

decomposition of the adjoint into sl(2,R) representations as

Q̃ =
1

kcs

∞∑
j=2

Q̃j

N j
j−1(λ)

V j
−(j−1) , (4.32)

where we used the normalization N j
j−1(λ) defined in (A.19). Using the formulae in appendix

A we obtain

Q̃j = kcsTr
[
V j
j−1Q̃

]
= kcs(4q)

j−2Tr
[
(L1)j−1Q̃

]
, (4.33)

where the second equality follows from (A.23). We mention that a related definition of the

charges was put forward in [36], where the spin-j charge was identified (up to a constant)

with the trace Tr
[
(aϕ)j

]
. In the present case, starting at j = 4 we have instead expressions

like

Q̃4 = kcs(4q)
2 Tr

[
L3

1Q̃
]

=
kcs
4

(4q)2

(
Tr
[
a4
ϕ

]
− 3

5γ

3λ2 − 7

λ (λ2 − 1)

(
Tr
[
a2
ϕ

])2)
, (4.34)
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so our definition of the charges will differ from that of [36] starting at N = 4 .

Generically, one can express the charge Q̃j in terms of aϕ as

Q̃j = kcs
(4q)j−2

j
Tr [aϕbj−1(aϕ)] , (4.35)

where the polynomials bj−1 are defined exactly as in section 4.1, with the only difference

that now they depend on aϕ rather than az . In particular, for the first few values of j we

obtain

b1(aϕ) = aϕ , (4.36)

b2(aϕ) = a2
ϕ − Tr

[
a2
ϕ

]( 4q

γλ
V 1

0

)
, (4.37)

b3(aϕ) = a3
ϕ −

3

5γ

3λ2 − 7

λ (λ2 − 1)

(
Tr
[
a2
ϕ

])2
aϕ − Tr

[
a3
ϕ

]( 4q

γλ
V 1

0

)
. (4.38)

Let us now define the sources that are conjugate to the canonical charges. We observe

that the set {bj−1(aφ)}j≥2 form a complete basis of solutions of the equations of motion for

constant connections:

[aϕ, τaz + τ̄ az̄] = 0 . (4.39)

Hence, we can expand the component of the connection along the contractible cycle of the

torus in terms of these polynomials, and the coefficients in this expansion are identified with

the sources α̃j as

(τaz + τ̄ az̄) =
∑
j≥2

(4q)j−2α̃jbj−1(aϕ) , (4.40)

or, equivalently, as

U (τaz + τ̄ az̄)U
−1 =

∑
j≥2

(4q)j−2α̃jbj−1(ãϕ) . (4.41)

Note that the sources α̃j are defined independently of the normalization of the action (∼ kcs)
as they should.

Momentarily going back to our N = 3 example we find for example

U−1(τaz + τ̄ az̄)U =


−4α̃3Q̃2

3k
2α̃2Q̃2

k + 4Q̃3α̃3

k
2α̃2Q̃3

k +
8α̃3Q̃2

2
k2

α̃2
8α̃3Q̃2

3k
2α̃2Q̃2

k + 4Q̃3α̃3

k

2α̃3 α̃2 −4α̃3Q̃2

3k

 , (4.42)

while the N = 2 case was derived in (2.19).

It is worth emphasizing the general logic at this point: the definition of these chemical

potentials (sources or intensive variables) is analogous to that used in the holomorphic for-

malism, in the sense that in both cases the sources are identified as the lowest weights in
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the component of the connection along the contractible cycle (up to a gauge transforma-

tion). The crucial difference is that the canonical charges (expectation values or extensive

variables) conjugate to these sources are included in the aϕ component of the connection,

while in the holomorphic formalism they are included in az instead.

Next, we note that (4.40) implies

Tr [aϕ (τaz + τ̄ az̄)] = k−1
cs

∑
j≥2

jα̃jQ̃j . (4.43)

Repeating the manipulations that lead to (4.21)-(4.22), in the present case we arrive at

Tr
[
L1U

−1 (τaz + τ̄ az̄)U
]

= k−1
cs

∑
j≥2

(j − 1)α̃jQ̃j , (4.44)

Tr
[
QU−1 (τaz + τ̄ az̄)U

]
= k−1

cs

∑
j≥2

α̃jQ̃j . (4.45)

When restricting to the sl(N,R) theory similar expressions apply in non-principal embed-

dings, where the sums would now run over the appropriate spectrum and j gets replaced

by the conformal weight of the corresponding operators.

We also notice that the definition of charges immediately gives a definition of vacua. In

the Chern-Simons context, the vacua are simply defined as solutions with trivial holonomy

around the ϕ circle, just like the global AdS3 solution of the pure gravity theory. Comparing

to the usual AdS3 vacuum, an equivalent definition is in terms of the following charge

assignments

Q̃2 = −kcs
2

Tr [L0L0] = −k
4
, Q̃j = 0 ∀j ≥ 3 . (4.46)

As we have reviewed, gauge connections representing smooth black geometries have

trivial holonomy when transported around the contractible cycle of the torus, which in the

present context implies

Tr [hn] = Tr [hnBTZ] , n = 2, 3, . . . (4.47)

where h = 2π (τaz + τ̄ az̄) as before, and hBTZ denotes the holonomy matrix evaluated in the

BTZ solution (this is, with all the higher spin charges and sources turned off). The solution

to these equations determines the charges as a function of the sources (or viceversa), so we

have

Q̃j = fj ({α̃}) , j ≥ 2 , (4.48)

where the function fj is the same as in (4.26). In other words, the relation between the

tilded charges and tilded chemical potentials has the same functional form as the relation
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between the charges and chemical potentials in the holomorphic formalism. For black holes

in the hs[λ] theory with spin 3 µ3, µ̄3 deformations, the explicit expression for the function

fj up to eighth order in the spin-3 source was given in [18]. As we have argued, in terms

of our canonical charges and chemical potentials, we just need to replace the expressions in

[18] by their tilded counterparts. For instance, up to the sixth order in the canonical spin

3 source α̃ = −α̃3 , the spin-2 and spin-3 charges can be expanded as9

Q̃2 = L̃ (4.49)

= − k

4τ̃2
+

5k

3τ̃6
α̃2 − 100k

3τ̃10

λ2 − 7

λ2 − 4
α̃4 +

5200k

27τ̃14

5λ4 − 85λ2 + 377

(λ2 − 4)2
α̃6 + · · ·

−Q̃3 = W̃ (4.50)

=
2k

3τ̃5
α̃− 400k

27τ̃9

λ2 − 7

λ2 − 4
α̃3 +

800k

9τ̃13

5λ4 − 85λ2 + 377

(λ2 − 4)2
α̃5 + · · ·

4.3 Boundary term and free energy

Having identified the canonical charges and their conjugate sources, we will now construct a

variational principle appropriate to the Dirichlet problem with fixed sources. In this section

we will work directly in the highest-weight gauge for aϕ . As we shall see, physical quantities

such as the free energy can be written in terms of traces which are independent of the gauge

choice.

In the saddle-point approximation, valid for large temperatures and large central charges,

the CFT partition function is obtained from the Euclidean on-shell action as

lnZ = −I(E)
os = −

(
I

(E)
CS + I

(E)
Bdy

)∣∣∣
os
, (4.51)

where

I
(E)
CS =

ikcs
4π

∫
M

Tr
[
CS(A)− CS(Ā)

]
(4.52)

is the Euclidean Chern-Simons action, and the boundary term I
(E)
Bdy has to be constructed

such that the boundary conditions (fixed sources) are enforced. Since we are going to take

variations of the action, it is convenient to employ coordinates with fixed periodicity, so that

the variations act on the connections (fields) only, but not on the coordinates themselves.

To this end, it is useful to consider the following change of coordinates [48]:

z =
1− iτ

2
w +

1 + iτ

2
w̄ (4.53)

so that the boundary torus is now defined by the identifications

w ' w + 2π ' w + 2πi , (4.54)

9In the language of appendix A.3, the conventions used in [18] amount to q = 1/4 and γ = 24/
(
λ(λ2 − 1)

)
.
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and the components of the connection corresponding to the non-contractible and con-

tractible cycles of the torus are given respectively by

az + az̄ = aw + aw̄ , τaz + τ̄ az̄ = i (aw − aw̄) . (4.55)

The volume elements are related by

i dw ∧ dw̄ =
2

(τ̄ − τ)
dz ∧ dz̄ = i

dz ∧ dz̄
Im (τ)

= 2
d2z

Im(τ)
, (4.56)

where d2z is the standard measure on the Euclidean plane.

Consider now the following boundary term:

I
(E)
Bdy =

ikcs
8π

∫
∂M

dw ∧ dw̄Tr
[

(aw + aw̄ − 2L1) (aw − aw̄)

− (āw + āw̄ − 2L−1) (āw − āw̄)
]
. (4.57)

Equivalently, in terms of the (z, z̄) coordinates it reads as

I
(E)
Bdy = − ikcs

4π

∫
∂M

d2z

Im(τ)
Tr
[

(az + az̄ − 2L1) (τaz + τ̄ az̄)

− (āz + āz̄ − 2L−1) (τ āz + τ̄ āz̄)
]
. (4.58)

Writing the on-shell variation of the Euclidean Chern-Simons action (4.52) in the (w, w̄)

coordinates we find

δI
(E)
CS

∣∣∣
os

= − ikcs
4π

∫
∂M

Tr
[
a ∧ δa− ā ∧ δā

]
(4.59)

= − ikcs
4π

∫
∂M

dw ∧ dw̄Tr
[
awδaw̄ − aw̄δaw − barred

]
. (4.60)

Combining this result with the variation of the boundary term (4.57) we find that the

variation of the full action, evaluated on-shell, is

δI(E)
∣∣∣
os

=
ikcs
4π

∫
∂M

dw ∧ dw̄Tr
[
(aw + aw̄ − L1) δ (aw − aw̄)− barred

]
. (4.61)

As a first check, let us explicitly show that this variation is indeed the one corresponding

to fixed sources. Going back to the (z, z̄) coordinates using (4.55) we have that (4.61) is

δI(E)
∣∣∣
os

= −2πikcs

∫
∂M

d2z

4π2Im(τ)
Tr
[
(az + az̄ − L1) δ (τaz + τ̄ az̄)− barred

]
. (4.62)

We now plug (4.29) into this expression and obtain

δI(E)
∣∣∣
os

= −2πikcs

∫
∂M

d2z

4π2Im(τ)
Tr
[
Q̃ δ (τaz + τ̄ az̄)− barred

]
. (4.63)
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From (4.45) it then follows that

δI(E)
∣∣∣
os

= −2πi

∫
∂M

d2z

4π2Im(τ)

∑
j≥2

(
Q̃jδα̃j − barred

)
, (4.64)

showing that the boundary term (4.58) is the correct one.

We emphasize that the result holds even when the solutions are non-constant: even

though the polynomials bj−1(aϕ) are not a basis of solutions for non-constant connections

(so that (4.40) would not hold in that case), the lowest/highest-weight structure of the

solutions is still the same for spacetime-dependent connections, and as a consequence (4.64)

still holds given our choice of boundary term. Now, when the connections are constant

we can go one step further and evaluate the on-shell action explicitly. The evaluation of

the bulk Chern-Simons piece is subtle, but in [36] it was shown how to perform it. In the

present case we obtain

I
(E)
CS

∣∣∣
os

= − πkcsTr
[
(aw + aw̄) (aw − aw̄)− (āw + āw̄) (āw − āw̄)

]
= iπkcsTr

[
(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)

]
. (4.65)

Adding the boundary term (4.57) evaluated for a constant connection, we find that the full

on-shell action is

I(E)
∣∣∣
os

= 2πikcsTr
[
L1 (τaz + τ̄ az̄)− L−1 (τ āz + τ̄ āz̄)

]
. (4.66)

Using lnZ = −I(E)|os we then find the free energy as

− βF = lnZ = −2πikcsTr
[
L1 (τaz + τ̄ az̄)− L−1 (τ āz + τ̄ āz̄)

]
. (4.67)

Notice that this formula depends on the connection only, and it is invariant under gauge

transformations that preserve the form (4.31) of aϕ . In the λ = N case, (4.67) gives the

free energy for any N and any choice of sl(2,R) embedding provided the generator L1 is

chosen appropriately.

As a second consistency check, plugging (4.44) into (4.67) we find explicitly

− βF = lnZ = −2πi
∑
j≥2

(j − 1)
(
α̃jQ̃j − barred

)
(4.68)

which is the right form obtained from dimensional analysis, in terms of the new charges

and new sources.

For black holes solutions in the hs[λ] theory deformed by a spin 3 source α̃ we have

α̃2 ≡ τ̃ , α̃3 ≡ −α̃ , α̃j = 0 , j > 3 . (4.69)
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Plugging the solution to the holonomy condition (4.49) into the free energy (4.68), we get

the free energy as a function of chemical potentials

lnZ(τ̃ , α̃) =
iπk

2τ̃

[
1− 4

3

α̃2

τ̃4
+

400

27

λ2 − 7

λ2 − 4

α̃4

τ̃8
− 1600

27

5λ2 − 85λ2 + 377

(λ2 − 4)2

α̃6

τ̃12
+ · · ·

]
(4.70)

which reproduces the result of [18] when the original variables are replaced by the tilded

ones.

4.4 Canonical entropy

We can define the canonical entropy as the conserved charge associated with transformations

generated using the component of the connection along the thermal Euclidean circle. This

definition depends in a canonical fashion on the bulk action and the properties of the black

hole only, just as Wald’s formula [34]. Since this definition is expressed in terms of the

connection only, it is valid for any gauge algebra and any embedding, and it is gauge-

invariant. More precisely, the gauge parameters are given by λ = −ih and λ̄ = −ih̄ ,

where

h = 2π (τaz + τ̄ az̄) , h̄ = 2π (τ āz + τ̄ āz̄) . (4.71)

We showed in section 3.3 that for the spin-3 case these gauge parameters can be obtained

from the asymptotic symmetry algebra analysis. The asymptotic symmetry analysis re-

mains to be performed for the generic case. Here, we will content ourselves to define the

entropy from this gauge symmetry, check that it agrees with previously obtained canonical

definitions, with the Legendre transformation of the free energy, and also check that the

first law is obeyed.

The infinitesimal charge for Chern-Simons theory is [29]

/δQλ,λ̄ =
kcs
2π

∫ 2π

0
dϕTr

[
δaϕ λ− δāϕ λ̄

]
, (4.72)

where the thermodynamic notation /δ emphasizes that the quantity is not necessarily δ-

exact. Since [aϕ, h] = 0 from the equations of motion and since smoothness of the solution

implies that there exists a group element u such that h = u−1(2πiL0)u , one has [38]

Tr [aϕδh] = Tr
[
āϕδh̄

]
= 0 . (4.73)

Therefore, the charge (4.72) is integrable (/δQΛ = δS is a total differential) and its integral

is given by the entropy

S = −ikcsTr
[
aϕh− āϕh̄

]
. (4.74)
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This general expression for the canonical entropy in terms of the connection was first found

in [38] by performing a Legendre transform of the free energy obtained from the on-shell

value of the bulk action supplemented with boundary terms. The boundary conditions used

in [38] were such that the definition of the higher spin charges was the same as that employed

in the holomorphic formalism, while their conjugate sources in the Euclidean setup were

determined via analytic continuation of the Lorentzian variational principle appropriate for

fixed deformation parameters µj , µ̄j . Here, we found the free energy (4.67) adapted to the

variational problem with fixed chemical potentials α̃j , ¯̃αj . By consistency, the canonical

entropy should be given by the Legendre transform of the free energy under these boundary

conditions. From (4.62) we can immediately read off the term that implements the Legendre

transformation:

S = lnZ − 2πikcsTr
[
(az + az̄ − L1) (τaz + τ̄ az̄)− (āz + āz̄ − L−1) (τ āz + τ̄ āz̄)

]
(4.75)

and using (4.67) we recover (4.74).

As a further check, let us explicitly derive the first law. Using the holonomy conditions,

from (4.73) we immediately know that

δS = − 2πikcsTr
[
(τaz + τ̄ az̄) δ (az + az̄) − barred

]
= − 2πikcsTr

[
(τaz + τ̄ az̄) δ (az + az̄ − L1) − barred

]
= − 2πikcsTr

[
(τaz + τ̄ az̄) δQ̃ − barred

]
(4.76)

and using (4.45) we then conclude

δS = −2πi
∑
j≥2

(
α̃jδQ̃j − barred

)
(4.77)

which explicitly shows that the first law is indeed satisfied. As a final check, we evaluate

the entropy explicitly using (4.44)-(4.45) to obtain

S = −2πi
∑
j≥2

j
(
α̃jQ̃j − barred

)
(4.78)

which also has the right form from dimensional analysis.

In the λ = N case, it was shown in [38] that the canonical entropy can be written quite

compactly as

S = 2πkcsTr
[(
λϕ − λ̄ϕ

)
L0

]
, (4.79)

where the trace is taken in the N -dimensional representation, and λϕ and λ̄ϕ are diagonal

matrices whose entries contain the eigenvalues of aϕ and āϕ . We now recall that the entropy
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is a function of the charges (extensive variables), while the free energy is a function of the

sources (intensive variables). Given that the matrices aϕ and āϕ depend on the charges

exclusively (and not on the sources), we see that, quite conveniently, (4.79) immediately

provides the entropy as a function of the charges, without the need to solve the holon-

omy conditions that allow to express the chemical potentials in terms of the charges (or

viceversa).

4.5 Matching to the (deformed) CFT

In [50], a CFT computation for the spin three hs[λ] black holes was carried out up to sixth

order in the chemical potential,

lnZCFT ≡ ln TrH

[
e2πi(τCFTL̂0;CFT+αCFTŴ0;CFT)

]
(4.80)

=
iπc

12τCFT

[
1− 4

3

αCFT
2

τ4
CFT

+
400

27

λ2 − 7

λ2 − 4

α4
CFT

τ8
CFT

− 1600

27

5λ2 − 85λ2 + 377

(λ2 − 4)2

α6
CFT

τ12
CFT

+ · · ·
]

where the conventions q = 1/4, γ = 24/(λ(λ2 − 1)) were used.

As was shown in [43], the tilded charges are the zero modes of the asymptotic symmetry

generators, which suggests that the tilded variables should corresponds to the dual CFT

symmetry generators. More precisely, the dictionary from bulk to the boundary CFT is the

following

6k = c (4.81)

Q̃2 = L̃ → L0;CFT (4.82)

Q̃3 = −W̃ → −W0;CFT (4.83)

Q̃j → Q0;CFT, j > 3 . (4.84)

Since charges are related to chemical potential by the smoothness condition, the dictionary

for the chemical potentials follows

α̃j → αj;CFT . (4.85)

Under the above dictionary, the free energy of the black hole (4.70) is immediately matched

to the logarithm of the CFT partition function (4.80). We expect this matching to hold for

any higher spin black hole.
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A Conventions

A.1 sl(2,R) algebra

The so(2, 1) algebra is

[Ja, Jb] = εabcJ
c , (A.1)

where Ja ≡ ηabJb and ε012 = −1 . The generators {L0, L±} defined through

J0 =
L+ + L−

2
, J1 =

L+ − L−
2

, J2 = L0 , (A.2)

satisfy the sl(2,R) ' so(2, 1) algebra

[L±, L0] = ±L± , [L+, L−] = 2L0 .

We employ the usual two-dimensional representation of sl(2,R) in terms of matrices

L0 =
1

2

(
1 0

0 −1

)
, L+ =

(
0 0

1 0

)
, L− =

(
0 −1

0 0

)
. (A.3)

Note in particular that Tr [L0L0] = 1/2 . The so(2, 1) generators in this representation are

J0 = −iσy/2, J1 = σx/2, J2 = σz/2, where the σ’s are the Pauli matrices.

A.2 sl(3,R) algebra

We can parameterize the sl(3,R) algebra in terms of the generators {L0, L±} plus five Wj

generators (j = −2,−1, 0, 1, 2) that transform as a spin-2 multiplet under the triplet {L0,

L±1}, with commutation relations

[Lj , Lk] = (j − k)Lj+k

[Lj ,Wm] = (2j −m)Wj+m

[Wm,Wn] = −1

3
(m− n)

(
2m2 + 2n2 −mn− 8

)
Lm+n .
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With this parameterization the principal and diagonal embeddings correspond to identifying

the sl(2,R) generators as

principal embedding: {L0, L±1} (A.4)

diagonal embedding:

{
1

2
L0,±

1

4
W±2

}
(A.5)

Following the conventions in [45, 17], in the three-dimensional defining representation of

sl(3,R) (often called fundamental representation) we use the following matrix realization

of the generators

L0 =


1 0 0

0 0 0

0 0 −1

 , L1 =


0 0 0

1 0 0

0 1 0

 , L−1 = −2


0 1 0

0 0 1

0 0 0

 ,

W2 = 2


0 0 0

0 0 0

1 0 0

 , W1 =


0 0 0

1 0 0

0 −1 0

 , W−2 = 8


0 0 1

0 0 0

0 0 0

 ,

W−1 = 2


0 −1 0

0 0 1

0 0 0

 , W0 =
2

3


1 0 0

0 −2 0

0 0 1

 .

In the above representation, the non-zero traces are given by

Tr [L0L0] = 2 , Tr [L1L−1] = −4 ,

Tr [W1W−1] = −4 , Tr [W2W−2] = 16 , (A.6)

Tr [W0W0] =
8

3
.

We denote the identity matrix as 1 with trace Tr [1] = 3.

A.3 hs[λ] algebra

The higher spin algebra hs[λ] has generators

V s
n , s ≥ 2 , |n| < s , (A.7)

We define as usual the lowest order generators as

Lm = V 2
m , Wm = V 3

m , Jm = V 4
m . (A.8)

The commutators are

[Lm, V
s
n ] = (−n+m(s− 1))V s

m+n , (A.9)

[V s
m, V

t
n] =

s+t−1∑
u=2,even

gstu (m,n;λ)V s+t−u
m+n (A.10)

41



with the following structure constants

gstu (m,n;λ) =
qu−2

2(u− 1)!
φstu (λ)N st

u (m,n) , (A.11)

N st
u (m,n) =

u−1∑
k=0

(−1)k

(
u− 1

k

)
[s− 1 +m]u−1−k[s− 1−m]k

[t− 1 + n]k[t− 1− n]u−1−k (A.12)

φstu (λ) = 4F3

[
1
2 + λ, 1

2 − λ,
2−u

2 , 1−u
2

3
2 − s,

3
2 − t,

1
2 + s+ t− u

∣∣∣1] (A.13)

where [a]n ≡ Γ(a+1)/Γ(a+1−n) is the descending Pochhammer symbol. These definition

match with the ones of [18]. The conventions of [46] are obtained after the substitution

V s
n → V s

n /4. The number q is arbitrary and can be scaled away by taking V s
n → qs−2V s

n .

If λ = N with any integer N ≥ 2, an ideal χN appears, consisting of all generators V s
n

with s > N . Factoring over this ideal truncates to the finite algebra sl(N),

sl(N) =
hs(N)

χN
(N ≥ 2). (A.14)

The relation

φstu

(
1

2

)
= φst2 (λ) = 1 , (A.15)

implies the isomorphism hs
[

1
2

]
∼ hs(1, 1). The property N st

u (0, 0) = 0 implies that all zero

modes V s
0 commute.

The lone star product is defined on hs[λ]⊕ C as

V s
m ? V t

n =
1

2

s+t−1∑
u=1,2,3

gstu (m,n;λ)V s+t−u
m+n . (A.16)

One can in fact restrict the upper bound in the sum to s + t − 1 − |s − t| since the rest

vanishes. The additional generator V 1
0 is central and formally equal to the identity. We

will omit the explicit ? symbol in the main text when considering products of generators.

Powers of the generators are defined using the star product.

We define the trace of the generators as

Tr
[
V 1

0

]
= γ

λ

4q
, Tr [V s

m] = 0 , ∀(s,m) 6= (1, 0) , (A.17)

where γ is an arbitrary parameter which encodes the different possible conventions for the

trace. An invariant symmetric bilinear trace can then be defined as

Tr[V s
m, V

t
n] = Tr

[
V s
m ? V t

n

]
. (A.18)
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The trace is explicitly

Tr
[
V s
m, V

t
n

]
= N s

m(λ)δstδm,−n , (A.19)

with N s
m(λ) ≡ γ λ

8q
gss2s−1(m,−m;λ) . (A.20)

The sl(3,R) generators written down in appendix A.2 are consistent with the choice

q = 1/2 and γ = 1 . The identity matrix is 1 = 2V 1
0 and the star product reduces to matrix

multiplication. When γ = 1 and q = 1/4, the normalization agrees with that of [59]. When

γ = 24
λ(λ2−1)

we have Tr [L0, L0] = 2 which reproduces the convention used in [50]. Unless

explicitly noted, we will keep γ and q arbitrary so that our expressions can be easily adapted

to different conventions.

The relation

N st
u (m,n) = (−1)u+1N ts

u (n,m) (A.21)

shows the consistency of the lone star product with the hs[λ] algebra[
V s
m, V

t
n

]
= V s

m ? V t
n − V t

n ? V
s
m . (A.22)

Note that j − 1 times the star product of L1 gives

V j
j−1 = (4q)j−2(L1)j−1 . (A.23)

This property matches the one discussed in [46] where q = 1/4 is used.
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