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Microscopics of Extremal Kerr from Spinning M5 Branes
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We show that the spinning magnetic one-brane in minimal five-dimensional supergravity admits
a decoupling limit that interpolates smoothly between a self-dual null orbifold of AdS3×S

2 and the
near-horizon limit of the extremal Kerr black hole times a circle. We use this interpolating solution
to understand the field theory dual to spinning M5 branes as a deformation of the Discrete Light
Cone Quantized (DLCQ) Maldacena-Stominger-Witten (MSW) CFT. In particular, the conformal
weights of the operators dual to the deformation around AdS3 × S

2 are calculated. We present
pieces of evidence showing that a CFT dual to the four-dimensional extremal Kerr can be obtained
from the deformed MSW CFT.

PACS numbers: 04.50.Gh, 04.60.Cf, 04.70.Dy

Extremal rotating black holes lie in between the
best understood but not realistic supersymmetric black
holes and the less understood but realistic neutral non-
extremal black holes. For certain supersymmetric black
holes, string theory has been used to identify the mi-
crostates with those of two-dimensional conformal field
theories (CFTs) [1, 2]. It has been conjectured that the
extremal Kerr black hole possesses a CFT description as
well [3]. Recent progress has been made on the micro-
scopic description of the five-dimensional extremal Kerr-
Newman black hole [4][23]. In this work, we aim at mak-
ing progress in the microscopic description of the four-
dimensional extremal Kerr black hole. Our construction
shares many qualitative features with the one of [4] but
differs significantly in details.

We proceed as follows. After reviewing the spinning
magnetic one-brane in minimal supergravity we discuss
the near-horizon solution. Our crucial observation is that
this solution smoothly interpolates between the maxi-
mally supersymmetric self-dual null orbifold of AdS3×S2

and the near-horizon limit of the extremal Kerr black hole
times a circle. Using the CFT description of the dual of
string theory on AdS3 ×S2 we infer that at zero angular
momentum the dual description of the solution is in terms
of the discrete light-cone quantized (DLCQ) Maldacena-
Strominger-Witten (MSW) CFT [2]. Upon turning on
the angular momentum, the CFT is deformed by a rele-
vant and an irrelevant operator whose conformal weights
and R-charges are identified. At small values of angular
momentum, we observe that the generalized Kerr-CFT
along the z circle (z-CFT) has the same Virasoro gen-
erators and central charge as the deformed MSW CFT
(DMSW). Therefore, we simply claim that DMSW is the

microscopic definition of the z-CFT in the small angular
momentum limit. The derivation of the finite deforma-
tions of the CFT is beyond the aspirations of this paper.
We end with the observation that the central charge is
not modified at leading order from the MSW CFT. We
interpret this as an indication that the deformed theory
is still a CFT. We provide one consistency numerical test
and discuss the classical Virasoro symmetry implement-
ing the conformal symmetry at finite deformation.

SPINNING M5 BRANES

Consider M-theory on T 6 × S1. Upon wrapping M5
branes appropriately on the internal 4-cycles of T 6, one
obtains a charged string (one-brane) in the transverse
five-dimensional space. The M5 charge is understood as
a magnetic one-brane charge QM = 1

4π

∫

S2 F along the
string. When an equal number of branes are wrapped
along three four-tori of the T 6, the configuration is de-
scribed in the low energy limit by five-dimensional min-
imal supergravity [5]. The resulting finite temperature
rotating black string was found in [6]. The solution de-
pends on three parameters (m,β, a). The five dimen-
sional metric and gauge field take the form

ds2 = h̄

[

−∆2

ξ
(dt+ ωφdφ)

2 +
dr2

∆
+ dθ2 +

∆

∆2

sin2 θdφ2

]

+ ξh̄−2
(

dz + Âtdt+ Âφdφ
)2

, At = −
√
3F3h̄

−1

Az = −
√
3
F2

h̄
, Aφ = −

√
3F0

∆

∆2

+ ĀφAz + ωφAt (1)
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where we have defined the following functions

Ât = −F2F3

ξ
, Âφ = Āφ + Âtωφ, ξ = h̄(F4 +∆2)− F 2

2

ωφ =
2amc3

∆2

r sin2 θ, Āφ =
2ams3

∆2

(r − 2m) sin2 θ,

h̄ = ∆2 + 2m(r(c2 − s2) + 2ms4), F0 = 2mcs cos θ

F2 = asF0, F3 = −acF0, F4 = 2mc2r

∆ = r2 − 2mr + a2, ∆2 = ∆− a2 sin2 θ (2)

and we have introduced s := sinhβ, c := coshβ. The
orientation is ǫtrzθφ = −√−g. The extremal solution
m = a has zero Hawking temperature but is not super-
symmetric for a > 0. For β = 0, the solution reduces
to extremal Kerr black hole times a circle. When a > 0
there is a horizon at r+ = a but when a = 0 the solution
reduces to flat space R3,1 × S1.
The mass, magnetic charge, angular momentum

and entropy of the extremal solution from the five-
dimensional perspective are

M =
πLza(2 + 3s2)

G5

, QM = 2
√
3asc, (3)

Jφ =
2πLza

2c3

G5

, S = 2πJφ. (4)

The five-dimensional Newton’s constant is related to the
four-dimensional and eleven-dimensional Newton’s con-
stants as G5 = (2πLz)G4 = G11/(V6), where Lz is the
length of the circle S1 and V6 is the volume of the six-
torus T 6. We introduce the number of free M5 branes
as

n =
2QM√
3lp

=
2a sinh(2β)

lp
, (5)

where lp = (4G5/π)
1/3 is the five-dimensional Planck

length. Both the angular momentum Jφ and the number
of M5 branes are expected to be quantized as n ∈ Z,
Jφ ∈ Z/2.
The angular and linear velocity at the horizon are

Ωφ =
1

2a cosh3 β
, vz = − tanh3 β. (6)

Note that even though the ADM linear momentum is
zero, the solution exhibits frame dragging along the
string direction near the horizon due to the linear velocity
[6]. This indicates that there is an interesting dynamics
close to the horizon to which we now turn our attention.

NEAR HORIZON LIMIT

Let us take a near-horizon limit of the solution (1) in
comoving coordinates

r → a+ µr, t → t

µ
, φ → φ+Ωφ

t

µ
, z → z + vz

t

µ
(7)

by sending µ → 0. This limit is a decoupling limit where
the asymptotically flat region is no longer part of the
spacetime. It is also convenient to rescale the coordinates
and the parameter a as

t → l2pR̂
2t/2 a → lpâ, z → lpR̂z. (8)

where R̂ is a constant. We denote by 2πL̂z = 2πLz/(R̂ lp)
the length of the circle along the final z coordinate.
The resulting geometry and gauge field is a solution of

minimal supergravity. The geometry has enhanced isom-
etry SL(2,R)×U(1)×U(1), as familiar from the attractor
mechanism [7, 8] and general near-horizon limits [9]. The
solution reads as

ds2

R2 l2p
= Γ(θ)

[

−(kφ)
2r2dt2 +

dr2

r2
+ dθ2

]

+γφφ(θ)e
2
φ + 2γφz(θ)eφ ez + γzz(θ)e

2
z

A

R lp
= fφ(θ)eφ + fz(θ)ez , (9)

where eφ = dφ+kφrdt, ez = dz+kzrdt and all functions
are more easily expressed in terms of the variables R > 0
and Φ ∈ [0, π

2
] defined by

n = R cosΦ ≡ RcΦ, â =
1

2
R sinΦ ≡ 1

2
RsΦ. (10)

When one chooses R̂ = R in (8), one finds that all
functions only depend on Φ as

Γ(θ) =
1

4
(1 + s2Φc

2
θ), fφ(θ) =

√
3

8Γ(θ)
cθcΦ(c

2
Φ − 2),

kφ =
8(1 + cΦ)

3/2

s
1/2
Φ

(1 + cΦ + sΦ)3
, kz = − 2(1− sΦ + cΦ)

3

sΦ(1 + sΦ + cΦ)3
,

fz(θ) = −
√
3cθ(−sΦ + cΦ + 1)s

1/2
Φ

cΦ
8Γ(θ)(cΦ + 1)1/2

, (11)

γφφ(θ) =
(

64Γ(θ)2
)−1

sin2 θ[s4Φ(3 + s2Φ)c
2
θ + 3s2Φ + 1],

γφz(θ) = −
(

32kφΓ(θ)
2
)−1

sΦkz sin
2 θ

(

1− s3Φc
2
θ

)

,

γzz(θ) =
sΦ

(

2s3Φc
4
θ − (1 + sΦ)(s

2
Φ − 4sΦ + 1)c2θ + 2

)

32Γ(θ)2
,

where cθ ≡ cos θ. Note that kφ and kz diverge as â
approaches zero.

INTERPOLATING GEOMETRY

We now present two limits of the decoupled solution
(9) when either the number of M5 branes n or the angular
momentum Jφ is zero. When there is no M5 brane charge
(n = 0 or Φ = π

2
), the solution (9) reduces to the NHEK

geometry [10] times a circle

ds2

4G4Jφ
= Γ(θ)

(

dr2

r2
+ dθ2 − r2dt2

)

(12)

+γφφ(θ)(dφ + rdt)2 + dz2, A = 0,
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where

Γ(θ) =
1

4
(1 + cos2 θ), γφφ(θ) =

sin2 θ

1 + cos2 θ
. (13)

This is expected since the original extremal spinning one-
brane solution reduces to the extremal Kerr spacetime
times a circle.
Now, the crucial observation is that the decoupled so-

lution (9) is smooth upon setting Jφ = 0 at fixed brane
number n = R (equivalently, Φ = 0, or a → 0, β → ∞
and n fixed in the original parameterization (5)). This
decoupled solution for Φ = 0 is just the null orbifold of
AdS3 times S2,

ds2 = l2
(

dr2

4r2
− 2rdtdz

)

+ l2S2
dΩ2,

A = −
√
3lS2

cos θdφ, z ∼ z + 2πL̂z, (14)

where the two sphere has radius lS2
= 1

2
R lp half of the

AdS3 radius l = R lp. The solution has zero entropy
and angular momentum. The local isometry group is
SL(2,R)L × SL(2,R)R × SO(3)R, with the SL(2,R)R
generators

H̄−1 = ∂t H̄0 = −t∂t + r∂r (15)

H̄1 = t2∂t − 2tr∂r +
1

2r
∂z (16)

and with the SL(2,R)L generators Hn, n = −1, 0, 1 ob-
tained by exchanging t ↔ z. The null identification
z ∼ z + 2πL̂z breaks the SL(2,R)L to U(1)L generated
by ∂z .
The isometry supergroup of AdS3×S2 is SU(1, 1|2)R×

SL(2,R)L. This can be checked by explicitly construct-
ing Killing spinors. The Killing spinors for (14) (without
the null identification) are given in [11]. The null identi-
fication does not bring in any change; and the geometry
(14) is maximally supersymmetric admitting 8 z-periodic
Killing spinors. For Jφ > 0, supersymmetry is completely
broken. This is because the existence of a Killing spinor
implies the existence of a global timelike or null Killing
vector [11], but there is no such vector in the decoupled
geometry (8) at Jφ > 0. This is consistent with the fact
that the BPS bound

4G4M√
3QM

= secΦ +
1

3
tanΦ ≥ 1 (17)

is saturated if and only if Φ = 0.
In summary, one can understand the decoupled solu-

tion as a solution interpolating smoothly between the
near horizon limit of the extremal Kerr black hole times
a circle and the supersymmetric null orbifold of AdS3

times a two-sphere.

ADS3, TEMPERATURE AND DLCQ

String theory on AdS3 × S2 is dual to the MSW CFT
[2] [24]. The null orbifold (14) has its dual description

in terms of discrete light-cone quantized (DLCQ) MSW
CFT [12, 13].
To see this, it is more convenient to redefine t′ = kφt.

Let us fix R and consider â = Rǫ2 where ǫ is a small
expansion parameter. We find that up to terms O(ǫ4),
the metric can be written as

ds2 = ds23 + l2S2
(dyi −Aijyj)2, (18)

4ds23
l2

= −(1ǫ)
2r2dt′2 +

dr2

r2
+ (2ǫdz − 1ǫrdt

′)
2
,(19)

where yi with i = 1, 2, 3,
∑

(yi)2 = 1 are coordinates
on the unit two-sphere, 1ǫ ≡ 1 + 3ǫ2 and z ∼ z + 2πL̂z.
The SU(2) gauge fields Aij = −Aji are presented below.
The three dimensional metric (19) is a spacelike quotient
of AdS3. The quotient is defined by the group element

ei2πL̂z∂z . Then L̂z∂z ≡ πTLHL, where HL is a unit nor-
malized SL(2,R)L generator in global AdS3, and TL is
defined as a dimensionless left moving temperature [14].
One finds

TL =
ǫL̂z

π
+O(ǫ3). (20)

To get back to (14), we need to rescale back using t′ =
2t/(1ǫǫ) and take the limit ǫ → 0. In this limit the right-
moving sector freezes due to the infinite redshift in t. The
allowed excitations are only in the left-moving sector.
One thus obtains the DLCQ MSW CFT. Also note that
both TL and the entropy S approach zero in this limit.
The Virasoro generators reproducing Cardy formula in
this limit are

Lz
n = L̂ze

inz/L̂z∂z − ineinz/L̂zr∂r + · · ·+O(ǫ2) (21)

where . . . indicate subleading terms in r. The Brown-
Henneaux central charge of AdS3 is cL = 3l

2G3

+O(ǫ2) =

6R3 + O(ǫ2). The entropy is indeed reproduced by

Cardy’s formula Smicro =
π2

3
cLTL = 2πJφ +O(ǫ3).

We conclude that the DLCQ MSW CFT with c = 6R3

controls the physics of string theory on the interpolating
solution in the limit Jφ → 0.

OPERATOR DEFORMATIONS

Let us now consider the U(1) gauge field (9) and the
SU(2) gauge fields (18), and keep them up to order ǫ3 in
the t′ coordinates. Part of this analysis is inspired by [15].
Choosing y1 = sin θ cosφ, y2 = sin θ sinφ, y3 = cos θ, we
find

A12 = 2ǫ
(

(1− 3ǫ2)dz + 3ǫrdt′
)

, (22)

A = −
√
3

2
ly3

(

dφ+ 2ǫ
(

(1− ǫ2)dz + 2ǫrdt′
))

.(23)

The perturbation can be written as the sum
(δAij , δA, δds23) = ǫM− + ǫ2M+ − ǫ3M− + N.L.
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where the two linear modes are

M+ = (δA12 = 6rdt′,
δA

ly3
= −2

√
3rdt′, δds23 = 0),

M− = (δA12 = 2dz,
δA

ly3
= −

√
3dz, δds23 = 0), (24)

and the non-linear terms are

N.L. = (δA12 = −4ǫ3dz,
δA

ly3
= 0, δds23 = ǫ2l2dz2).(25)

Note the following properties of these linear modes under
the conformal group

LH̄0
M± = 0, LH0

M± = ±M±. (26)

The first property is a consequence of the invariance of
the perturbation under the rescaling r → λr, t′ → t′/λ.
It implies that the dual operator sourced by M± has
right-moving conformal weight hR = 1. The second prop-
erty implies that the left-moving conformal weights are
hL = 1±1. Since these perturbations are both expressed
in terms of the k = 1 vector harmonics upon dimensional
reduction on the sphere, the R-charge is q = k = 1.
In summary, the perturbation are sources to operators
with conformal weights (hL, hR, q) = (2, 1, 1) for M+ and
(hL, hR, q) = (0, 1, 1) for M−. Their spin is respectively
s ≡ hR − hL = ∓1.
In terms of the representations of SU(1, 1|2)R ×

SL(2,R)L, the mode M+ corresponds to a chiral primary
operator of a vector multiplet while M− corresponds to
a chiral primary operator of a graviton multiplet [16]. In
both cases they lie in the so-called ‘quarteton’ represen-
tation.
We note that the M− perturbation is generated by the

large coordinate transformation φ → φ+2ǫz. Therefore,
the (0, 1, 1) operator can be recognized as an operator
generating a spectral flow along a U(1) ⊂ SU(2)R [17].
The nature of the irrelevant operator (2, 1, 1) remains to
be investigated.

FROM MSW CFT TO KERR-CFT AT SMALL Jφ

Up to order ǫ3 in the metric, we saw that there are
two consequences of turning on the angular momentum.
First, it changes the three dimensional metric to (19),
which amounts to turning on a left moving temperature
(20). Second, it changes the gauge fields (23), which
amounts to deforming the DLCQ MSW CFT by two op-
erators. Supersymmetry is broken at second order in ǫ
as can be seen from (17) with Φ = 2ǫ2. By analyzing
the operator deformation, one should be able to know
the nature of the deformed CFT. We leave a systematic
investigation for the future. Let us call the deformed the-
ory DMSW. At this order in the deformation, we have
a set of Virasoro generators (21) with the central charge

c = 6R3 + O(ǫ2), and the Cardy formula holds. There-
fore, DMSW is still a CFT at least in the classical limit.
On the other hand, boundary analysis in the spirit of
Kerr-CFT [3, 18] predicts the existence of a boundary
CFT. In particular, we can define Virasoro generators
along the z-circle, which are the same as (21) without
the O(ǫ2) terms. The central charge and temperature

are cz = 6n3 = 6R3 + O(ǫ4), Tz =
Jφ

πn3 = ǫL̂z

π + O(ǫ3).
Up to this order, we see that DMSW and the z-CFT have
the same known properties. We therefore simply claim
DMSW as the microscopic definition of z-CFT as ǫ → 0.

EXTRAPOLATION TO FINITE DEFORMATION

Starting from ǫ4 the three dimensional metric (19) is
no longer locally AdS3. Without knowing the effect of
the operator deformations of the CFT, we cannot say
anything conclusive. Let us propose, however, in line
with the Kerr-CFT conjecture [3], that the DMSW is
still a CFT at all orders of ǫ. Moreover, let us extrapo-
late the fact that the central charge is not modified by
linear ǫ terms, into the conjecture that the classical cen-
tral charge of the DMSW is exactly cD = 6R3 at all
orders in ǫ, so that we have

cD = 6R3, TD =
Jφ
πR3

, Smicro =
π2

3
cDTD. (27)

We now present a consistency check for this conjecture
and discuss classical Virasoro algebras in the bulk that
reproduce (27).
The brane charge n is integer quantized. At Jφ = 0,

R = n, so R is integer quantized as well. Moreover, the
angular momentum Jφ should be half-integer quantized.
We consider the DMSW at fixed central charge 6R3 but
we allow n and Jφ to vary. In the classical limit, n and
Jφ are both associated with the angle Φ ranging from 0
to π/2. The angular momentum at Φ = π/2 is maximal
and given by Jmax

φ = 2R3L̂z. Let us fix L̂z such that
Jmax
φ is a fixed half-integer. In order to have a non-

trivial theory, there must exist half-integer intermediate
angular momenta with 0 ≤ Jφ ≤ Jmax

φ , which correspond
classically to geometries with 0 < Φ < π/2. Using the
classical formula for the angular momentum, they have
to obey

Jφ
Jmax
φ

=
(

1− n2/R2
)1/4

(

1

2
+

1

2
(1− n2/R2)1/2

)3/2

.

(28)
There are clearly a large number of solutions to this
equation. For example, R = (r2 + s2)2 + 4r2s2, n =
4rs(r2+s2), Jmax

φ = tR2/2 and Jφ = (r2+s2)3(r2−s2)t/2
are all solutions for r, s, t taking any integer values.
There are many sets of Virasoro generators and associ-

ated boundary conditions in the decoupled geometry such
that the Virasoro algebra has central charge 6R3. One
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can perform the SL(2,Q) transformation u = 1

q (p1φ −
p2

z
L̂z

), v = 1

q (−p3φ+ p4
z
L̂z

) where p1p4 − p2p3 = q2 and

consider the following vector fields

Lu
n = fn(u)∂u − f ′

n(u)r∂r , fn(u) = −e−inu. (29)

In order for (29) to be single valued, we need to restrict
to the subset where n = kq, k ∈ Z. When q = 1, one
can choose the boundary conditions to make (29) the
Virasoro generators of the asymptotic symmetry group
[19, 20]. For some subtleties in the definition of charges,
see also [21]. When q > 1, it can be understood as a
long string picture of the q = 1 case [4, 22]. The central
charge for u = φ is cφ = 12Jφ, while for u = − z

L̂z

is

cz = 6n3. More generally, cu = 1

q (p1cφ+p2cz). Given the

charges satisfying (28), there are always integers q, p1, p2
satisfying the equation

R3q = 2Jφp1 + n3p2. (30)

Plugging these solutions into (29), and choosing bound-
ary conditions correspondingly, we get a family of Vira-
soro generators with the central charge cu = 6R3, which
define a family of CFTs labeled by (q, p1, p2). The corre-
sponding temperature can be obtained by analyzing the
Frolov-Thorne vacuum, and it is Tu =

Jφ

πR3 . If DMSW
exists and has the property (27), then we should be able
to identify it with one particular member of the family of
(q, p1, p2) Kerr-CFTs [25]. As Jφ → 0, the Virasoro gen-
erators and the central charge of the DMSW agree with
that of the (generalized) Kerr-CFT along the z circle, or
equivalently, (q, p1, p2) Kerr-CFT with p1 → 0, p2

q → 1.
Therefore, we simply claim that the DMSW CFT is the
microscopic definition of the Kerr-CFT along the z cir-
cle in the small angular momentum limit. As n → 0, the
original Kerr-CFT analysis in four dimensions shows that
the Virasoro generators are parameterized by φ. Thus,
we expect that the DMSW has p2 = 0 in this limit and is
related to the four dimensional Kerr-CFT by going to the
long or short string picture. It remains a puzzle that ex-
tra considerations are needed to uniquely fix the Virasoro
algebra.
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