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1. Introduction

String theory has been successful in resolving some longstanding problems, such as

the existence of a consistent theory of quantum gravity. However, many problems remain

unsolved [1]. One of the most important problems is that by far string theory has not made

any concrete predictions verifiable by experiments, thus we do not know whether string

theory is a realistic physical theory or not. Cosmology may be an important arena to

test string theory. For example, any evidence of the existence of topological defects such

as cosmic superstrings, can be an important support for string theory. Cosmic strings

can have two different origins, the field theoretic one and fundamental string theory. The

discovery of fundamental cosmic strings would be a spectacular way to verify string theory

[2]. Cosmic strings from string theory are characterized by some properties not shared by

GUT cosmic strings [3].

In 1980’s, it was generally believed that the perturbative fundamental strings can

not become cosmic strings, due to an argument of Witten [4]. Moreover, the tension of a

fundamental string is close to the Planck scale, while cosmic strings with such a tension are

ruled out by experiments. Recently, research of compactifications in string theory shows

that the string tension measured in the four-dimensional Einstein frame can be much

smaller, and in some situations the instability problem is evaded. Thus cosmic strings as

fundamental strings may indeed exist and can be observed in the future experiments.

The current research interest of the creation of strings at the end of inflation is focused

on the investigation of the final results of collision of branes. Cosmic strings are inevitably

produced in this process as topological defects. Research along this direction is spearheaded

by Polchinski and Tye, and their collaborators [5][6][2].

In this paper, we will study creation of strings in a more traditional fashion, namely,

through gravitational pair production in a time-dependent background. Related work has

been done by Gubser [7] with an effective field theory viewpoint, and a steepest descent

contour method has been developed to estimate the production rate of the strings.

As discussed in [7], in a regime of parameter space where a spacetime description

gives a good approximation of string dynamics, the on-shell constraint for a given string

state boils down to a differential equation describing an oscillator with a time-dependent

frequency. When the quantization of strings is carried out in a particular background, the

“frequency” ω(t) is determined. The quantization of strings in a de Sitter background was

recently done by Li et al. [8], and the spectrum of such “small strings” is obtained. We
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will use the method developed in [7] to estimate the total rate of string creation, using

the spectrum i.e. the equation of motion of string state obtained in [8], which is different

from that of [7]. The original equation of motion derived in [8] is in de Sitter space where

the Hubble parameter is a constant, but as we will show that in fact it is also valid at the

end of inflation and during reheating, where the Hubble parameter is a function of time

instead of a constant (see Appendix A). We will show this in Appendix B.

The main result of our investigation can be summarized as follows. Strings are gener-

ally produced gravitationally at the end of inflation and during reheating, and the energy

density of strings produced is highly suppressed by an exponential factor multiplied by an

power factor. Since the Hubble parameter is much smaller than 1 in the unit of α′ = 1,

this energy density is very small. Our estimate is approximate quantitatively, due to the

fact that there are some approximations used in deriving the string spectrum derived in

[8] and in our analytic method in estimating the string production rate. However, this

semi-quantitative result strongly suggests to us the picture that highly excited strings are

hardly produced during reheating and the production rate is very small.

The organization of this paper is as follows. In section 2 the density of string states

is calculated, based on the spectrum obtained in [8]. In section 3 the creation rate and

the energy density of strings are estimated. The final section is devoted to discussions. In

Appendix A we solve the Friedmann equation directly to get the Hubble parameter as a

function of time at the end of inflation and during reheating. In Appendix B We show

that the spectrum and equation of motion of strings obtained in [8] are valid in a general

flat FRW background, not only in pure de Sitter space.

2. Degeneracy of String States

The spectrum of strings in a near de Sitter background is different from the one in

flat spacetime, and depends on two integers (we shall consider the bosonic sector only in

this paper), as will be shown in the next section. These integers are eigenvalues of two

operators: the number operator N and the other operator L, defined respectively as follows

N =
d
∑

i=1

∞
∑

m=1

m
(

N i
m + Ñ i

m

)

L =
d
∑

i=1

∞
∑

m=1

(

N i
m + Ñ i

m + 2N i
mÑ i

m

)

,

(2.1)
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where d = D − 1 and D is the number of dimensions of spacetime, N i
m and Ñ i

m are the

occupation numbers of the left-mover and the right-mover respectively, i is the space index

and m is the oscillator index. We denote n as the eigenvalue of N and l as the eigenvalue

of L. The degeneracy of states at level n and fixed l is denoted by Dn,l, which is encoded

in a generating function as the coefficient of znwl

Z(z, w) ≡ trzNwL, (2.2)

or

Z(z, w) =
∞
∑

n,l=0

Dn,lz
nwl. (2.3)

Using (2.1) and (2.2) , the generating function can be evaluated by an elementary method

of quantum statistical mechanics as follows

Z(z, w) =

d
∏

i=1

∞
∏

m=1

∞
∑

Ni
m,Ñ

i
m=0

zm(Ni
m+Ñi

m)wN
i
m+Ñi

m+2Ni
mÑ

i
m . (2.4)

Summing over 1 Ñ i
m

Z(z, w) =

d
∏

i=1

∞
∏

m=1

∞
∑

Ni
m=0

zmN
i
mwN

i
m

1 − zmw2Ni
m+1

=

d
∏

i=1

∞
∏

m=1

∞
∑

Ni
m=0

zmN
i
m

1 − zm
f(w, N i

m),

(2.5)

where

f(w, N i
m) =

(1 − zm)wN
i
m

1 − zmw2Ni
m+1

. (2.6)

If w = 1, (2.5) is just the usual generating function of the degeneracy of bosonic string

states [9]. The effect of w is to deform this generating function. This deformation is small

when it comes to evaluate the coefficient Dn,l by the steepest descent method. We will

expand the generating function i.e. (2.6) near w = 1 to the second order, with higher

order terms truncated. This assumption is reasonable as we will show in the saddle point

calculation.

f(w, N i
m) = 1 + (w − 1)

[

zm

1 − zm
+ N i

m

(

1 + zm

1 − zm

)]

+ O((w − 1)2). (2.7)

1 Of course one can sum over N i

m first.
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Thus the summation in (2.5) reads:

∞
∑

Ni
m=0

zmN
i
m

1 − zm
f(w, N i

m) ≈ 1

(1 − zm)2

[

1 + (w − 1)
2zm

(1 − zm)2

]

, (2.8)

then the generating function is

Z(z, w) ≈
{ ∞
∏

m=1

1

(1 − zm)2

[

1 + (w − 1)
2zm

(1 − zm)2

]

}d

. (2.9)

Let z ≡ exp(− 1
T ) and x ≡ m

T . Thus x is continuous when T is large enough. In

our following calculation, around the saddle points, z is close to 1 thus T is indeed large.

The infinite product in (2.9) is approximated by an exponential of an integral. Taking

logarithm of both sides of (2.9) we obtain

lnZ(z, w)

d
≈ −2T

∫ ∞

1

T

dx ln(1 − e−x) + T

∫ ∞

1

T

dx ln

(

1 + (w − 1)
2e−x

(1 − e−x)2

)

≈ π2T

3
+ 2(w − 1)T

∫ ∞

1

T

dxe−x

(1 − e−x)2

= − π2

3 ln z
− 2(w − 1)z

(1 − z) ln z
,

(2.10)

in the second line we have truncated higher orders of w − 1 in the logarithm function.

By definition, the degeneracy of string states is

Dn,l =

∮

dw

2πi

∮

dz

2πi

Z(z, w)

zn+1 wl+1.
(2.11)

Here Z(z, w) vanishes rapidly as z → 1 when w < 1, and zn+1 is very small for z < 1

when n is very large. Consequently, for large n, there is a sharply defined saddle point for

z near 1. Indeed, the factor 2

exp[− 2π2

3 ln z
− 4(w − 1)z

(1 − z) ln z
− (n + 1) ln z − (l + 1) lnw] (2.12)

is stationary for

ln z = −
√

1

n + 1

(

2π2

3
− 8(w − 1)

ln z

)

∼ −
√

1

n + 1

2π2

3
. (2.13)

Therefore one finds that as n → ∞

Dn,l ∼ n−5/4 exp

(

2π

3

√
6n

)

δ

(

l − 6n

π2

)

. (2.14)

where the δ-function comes from the integration over w, and the exponential factor is the

ordinary degeneracy of bosonic string states in four-dimensional spacetime.

2 Here d = 2 is the dimension of physical states, i.e. the transverse oscillators are N i

m, i = 1, 2.
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3. Energy Density of Cosmic Strings

In this section we will use the steepest descent contour method developed in [7][10] to

estimate the energy density of strings produced during reheating. In [8], the quantization

of bosonic strings has been done in a de Sitter background. The on-shell constraint for

quantum states of a string leads to an equation of the form:

{

∂2
t + 3H∂t + k2e−2Ht + 4N + 2E0

−
∑

m,i

H2
(

1 + 2N i
m Ñ i

m + N i
m + Ñ i

m

)}

φ(N i
m, Ñ i

m, ω, ki) = 0,
(3.1)

where we take α′ = 1. H is the Hubble parameter, N i
m, Ñ i

m are occupation number

operators and N ≡
∑

i,mm(N i
m+Ñ i

m), ki is the momentum vector in the four-dimensional

spacetime and E0 is the center-of-mass energy. A general physical state |φ〉 corresponding

to the string modes is related to φ(N i
m, Ñ i

m, ω, ki) as follows,

|φ〉 =
∑

Ni
m,Ñ

i
m

|N i
m, Ñ i

m, ω, ki〉φ(N i
m, Ñ i

m, ω, ki), (3.2)

where the definition of |N i
m, Ñ i

m, ω, ki〉 can be found in [8]. Eq.(3.1) is regarded as the

equation of motion for the field of the corresponding string state. As we mentioned in the

introduction, this equation is different from that used in [7], this difference makes our new

result different from others.

There is no string production in pure de Sitter space with a constant Hubble param-

eter, even with the modified string spectrum as in (3.1). The only chance for string pro-

duction to occur is the short period of reheating during which H becomes time-dependent.

Thus we have to make a step forward, i.e. to generalize the equation of motion (3.1) to the

case when H varies with time. This is developed in Appendix B. From now on (ki)2e−2Ht

in (3.1) is replaced by (ki)2/a(t)2, where a(t) is the cosmological scale factor.

It is convenient to introduce φ(t) via Φ(t) ≡ aφ(t), thus the equation of motion for

φ(t) is:

φ̈ + Hφ̇ +

[

(

ki

a(t)

)2

+ 4N + 2E0 − C2H2

]

φ = 0 (3.3)

where

C2 ≡
∑

m,i

(

3 − ǫ + N i
m + Ñ i

m + 2N i
mÑ i

m

)

(3.4)
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and

ǫ ≡ − Ḣ

H2
(3.5)

defined as the so-called slow-roll parameter, which is roughly equal to 1 at the end of

inflation, and the dot denotes the derivative with respect to t. The slow-roll parameter is

not larger than 2 in the case under study, see Appendix A.

In conformal time η defined by adη = dt, we can eliminate the first order derivative

term, and we will use prime to denote the derivative with respect to the conformal time.

Thus (3.3) becomes:

φ(η)′′ + W (η)2φ(η) = 0, (3.6)

where

W (η)2 ≡ k2 + (4N + 2E0)a(η)2 − C2a(η)2H(η)2. (3.7)

Having obtained the equation of motion (3.6) , now we use the steepest descent method

to extract the approximate string pair production rate from (3.6) . The steepest descent

method was developed by various authors, especially, it was used to estimate the string

production rate by Gubser [7] . The key assumption is that the occupation number |β|2

for a given mode is always much less than 1, where β is the Bogliubov coefficient. Setting

φ(η) =
α(η)

√

2W (η)
e−i
∫

η
duW (u) +

β(η)
√

2W (η)
ei
∫

η
duW (u) , (3.8)

with the requirement |α(η)|2 − |β(η)|2 = 1, we recast the equation (3.6) into

α′(η) =
W ′

2W
e2i
∫

η
duW (u)β(η) β′(η) =

W ′

2W
e−2i

∫

η
duW (u)α(η) . (3.9)

Using the assumption β(η) ≪ 1 and α(η) ≈ 1, we obtain an approximate formula for β

β ≈
∫ ∞

−∞
dη

W ′

2W
exp

(

−2i

∫ η

du W (u)

)

. (3.10)

The integral in the exponential of (3.10) can be calculated as follows

∫ η

ηi

duW (u) =

[

∫ η⋆

ηi

+

∫ η

η⋆

]

duW (u) (3.11)
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where ηi is some initial time and η⋆ is defined to make W (η⋆) = 0. Here the second term

on the right hand side of (3.11) can be calculated as follows:

∫ η

η⋆

duW (u) =

∫ η

η⋆

du
√

k2 + (4N + 2E0)a(η)2 − C2a(η)2H(η)2

≈
∫ η

η⋆

du
√

[(4N + 2E0)2aa′ − C22aa′H2 − C2a22HH ′](u − η⋆)

=
2

3
δ3/2

√

(4N + 2E0)2aa′ − C22aa′H2 − C2a22HH ′

(3.12)

where we have expanded terms in the square root around η⋆, and defined δ ≡ η−η⋆. Thus

β ≈ I0 exp(−2i

∫ η⋆

ηi

duW (u)) (3.13)

where

I0 ≡
∫ ∞

−∞
dη

W ′

2W
exp(−4i

3
δ3/2

√

S(η⋆)) (3.14)

and

S(η⋆) = (4N + 2E0)2aa′ − C22aa′H2 − C2a22HH ′. (3.15)

Expanding W (η) around η⋆, we get

I0 =
1

4

∫ ∞

−∞

dδ

δ
exp

(

−4i

3
δ3/2

√

S(η⋆)

)

. (3.16)

From [10] we know that integrals such as (3.16) can be calculated by the contour integral

method, and the result for (3.16) is simply I0 = iπ/3.

Now (3.13) can be written as:

β ≈ iπ

3
exp

(

−2i

∫ r

ηi

duW (u)

)

exp

(

−2i

∫ η⋆

r

duW (u)

)

(3.17)

where r is the real part of η⋆ ≡ r − iu, and r, u are real with u > 0 . Since what we need

is the modulus of β, the main contribution comes from the second exponential function in

(3.17) whose argument is the following integral and can be expanded as:

∫ η⋆

r

duW (u) = W (r)(−iu) + W ′(r)
(−iu)2

2
+ W ′′(r)

(−iu)3

6
+ · · · . (3.18)
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As long as |W ′′

W | ≪ | 6
u2 |, we can truncate this expansion to the first term (even terms

do not contribute to the modulus of β since they are real), and indeed in the following

calculation one will see that |W ′′

W | ≪ | 6
u2 | is satisfied in our case. Thus we get

|β|2 ≈
(π

3

)2

exp (−4uW (r)) . (3.19)

Here the imaginary part of η⋆ can be derived by using (3.7) and expanding W (η⋆) around

r as follows3

0 ≡W 2(η⋆) = W 2(r) + 2W (r)W ′(r)(−iu) +
[

W (r)W ′′(r) + W ′2(r)
]

(−iu)2

+ [W ′′′(r)W (r) + W ′(r)W ′′(r) + 2W ′(r)W ′′(r)]
(−iu)3

3

(3.20)

We solve these equations as follows

W 2(r) − [W (r)W ′′(r) + W ′2(r)]u2 = 0

6W (r)W ′(r) − [W ′′′(r)W (r) + 3W ′′(r)W ′(r)]u2 = 0
. (3.21)

Then

|β|2 ≈
(π

3

)2

exp





−4W (r)
√

W ′′(r)/W (r) + (W ′(r)/W (r))
2



 . (3.22)

In our case W (η) is expressed in (3.7), thus we get

W ′

W
=

a′

a
−
(

k2(
a′

a
) + C2[

a′′

a
− 2(

a′

a
)2]

)

/W 2 ≈ a′

a
, (3.23)

and
W ′′

W
=

(

W ′

W

)′
+

(

W ′

W

)2

≈ a′′

a
. (3.24)

Thus we write approximately:

|βk(n, l)|2 ≈ exp

{

−4
(

k2/a2
r + 4n − a2

rH
2
r l
)

√

4n (H2
r + Rr/6)

}

, (3.25)

where we wrote β as function of comoving momentum k and excitation modes n, l explicitly,

where n and l are eigenvalues of operators in (2.1) respectively. We have dropped the

3 We truncate the expansion up to the fourth term because one can check that the next order

terms are much smaller than these terms. And one can see that the condition |W
′′

W
| ≪ | 6

u2 | is also

satisfied.
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factor of (π/3)2, Hr and Rr correspond to the Hubble expansion rate and Ricci scalar for

the metric ds2 = a(η)2(dη2 − dxi
2
) respectively. We emphasize that all time-dependent

quantities in (3.25) are evaluated at η = r, where r is the real part of η⋆ given by W (η⋆) = 0.

From (3.25) we can see that indeed the production of highly-excited strings i.e. strings

with large n and l are exponentially suppressed.

The total energy density of strings produced may be written as

ρ(η) =
1

2π2a(η)
3

∫

dk k2
∑

n,l

Dn,l |βk(n, l)|2 Mn,l(η), (3.26)

where k is the comoving momentum, Mn,l(η) is the energy of a single string with excitation

modes (n, l), given by

Mn,l(η)2 = 4N + 2E0 −
∑

m,i

H2(1 + 2N i
mÑ i

m + N i
m + Ñ i

m)

= 4n + 2E0 − H2(1 + l)

≈ 4n − H2l

. (3.27)

Now insert (3.25) and (3.27) into (3.26) , we obtain approximate formulas:

ρ(η) ≈ 1

2πa3

∫

dkk2
∑

n,l

n− 5

4 exp

(

2π

3

√
6n

)

δ(l − 6n

π2
)×

exp

(

−4
k2/a2

r + 4n − a2
rH

2
r l

√

4n(H2
r + Rr/6)

)

√

4n − H2l

∼ 1

a3

∫

dkk2
∑

n

n− 5

4 exp

(

2π

3

√
6n

)

×

exp

(

−4
k2/a2

r + 4n − a2
rH

2
r

6n
π2

√

4n(H2
r + Rr/6)

)

√

4n − H2
6n

π2

. (3.28)

For highly excited string states, neglecting k is a good approximation, though not a uniform

one if a(η) becomes arbitrary small in the past. We get:

ρ(η) ∼ 1

a3

∫

dkk2

∫ nmax

1

dnn− 3

4 exp

{

−
(

8 − 12a2
rH

2
r /π2

√

H2
r + Rr/6

− 2
√

6π

3

)

√
n

}

. (3.29)

where we have dropped the constant factor. We define A =

(

8−12a2

rH
2

r/π
2√

H2
r +Rr/6

− 2
√

6π
3

)

for

short, the above integral can be approximated as:

ρ(η) ∼ 1

a3A

∫

dkk2
(

Erf
(√

An
1

4

max

)

− Erf
(√

A
))

, (3.30)
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where Erf(x) is the error function. For very large x, approximately we have

Erf(x) ≈ 1 − e−x
2

x
√

π

[

1 +
∞
∑

n=1

(−1)n
1 · 3 · 5 · · · (2n − 1)

(2x2)n

]

∼ 1 − e−x
2

x
√

π
. (3.31)

Thus we have

ρ(η) ∼ 1

a(η)3A3/2

(

e−A − e−A
√
nmax

n
1/4
max

)

, (3.32)

where A is given by A =

(

8−12a2

rH
2

r/π
2√

H2
r+Rr/6

− 2
√

6π
3

)

. Since we consider the highly excited

strings, i.e. strings with small momentum k, the integral in (3.30) with respect to the

comoving momentum k will contribute a small factor which we have dropped. This result

will not affect the qualitative behavior of the production rate of strings with respect to the

string excitation modes n and l. The upper limit of n is roughly nmax ∼ H−2/4 ≫ 1(See

Appendix B), thus ρ ∼ e−A

a(η)3A3/2
. We emphasize that indeed Hr ≪ 1√

α′
. Thus in unit

where α′ = 1, Hr ≪ 1 and A ≫ 1, the above approximation is qualitatively correct.

Especially, since A ≫ 1, from (3.32) we can see that the energy density of strings produced

is very small and exponentially suppressed, i.e., highly excited strings are hardly produced

in our case.

4. Discussion

We have estimated the energy density of strings produced at the end of inflation and

during reheating, our main result is

ρ(η) ∼ α′−2

a(η)3A3/2

(

e−A − e−A
√
nmax

n
1/4
max

)

, (4.1)

here A is given by A =

(

8−12a2

rH
2

rα
′/π2√

H2
rα

′+Rrα′/6
− 2

√
6π

3

)

. We have reinstated α′ which has been

set to 1 in our paper. Although it is difficult to get the explicit form of Hr due to the

complicated equations of (3.21), one can make sure that Hr

√
α′ must be much smaller

than 1, i.e. the Hubble scale in string production process is much lower than the string

scale. In other words, the curvature radius is much larger than the string length, and a

spacetime description gives a good approximation. In the case of a small Hr, due to the

large exponential factor in (4.1) , one can see that the energy density of strings produced

is exponentially suppressed and indeed highly excited strings are hardly produced. (3.7).
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Planck scale, otherwise the effective field theory viewpoint we used will broken down, so

that the energy density is also small.

In conclusion, we have shown in this paper that highly excited strings are hardly

produced at the end of inflation, because |β|2 is highly suppressed by a exponential factor

within and the degeneracy of highly excited strings is not sufficiently large to compensate

it, thus the energy density is also suppressed by this exponential factor.
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Appendix A. Hubble Parameter During Reheating

In most of popular inflation scenarios, the temperature is practically zero during

inflation, relativistic matter is produced during the short reheating period when the inflaton

oscillates coherently and decays to matter. Generally it is not known how the inflaton is

coupled to a generic string state, so the usual reheating mechanism is not easily applied

to the production of strings.

However, the spacetime metric is also coupled to strings, the details of the coupling

can be seen from the string spectrum directly. When H remains nearly a constant, there

is no string production. During the reheating period, the Hubble parameter is no longer

a constant, and can be estimated by solving the Friedmann equation. In solving this

equation, we should also take radiation into account. A more rigorous treatment should

also take strings produced in the process into account, however, we do not know how to

compute string energy density as a function of time (to this end, it is required to compute

the string production rate per unit time). The Friedmann equation reads

3H2 = ρφ + ργ , (A.1)

where we set 8πG = 1, and ρφ(t) and ργ(t) are the energy densities of the inflaton and

radiation respectively, their equations of motion are

ρ̇φ + 3Hρφ + Γρφ = 0, (A.2)

and

ρ̇γ + 4Hργ − Γρφ = 0, (A.3)
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where Γ is the decay rate of the inflaton and dot denotes the derivative with respect to

the comoving time t.

Taking derivative of (A.1) with respect to t and using (A.2) (A.3) to eliminate ρ̇φ and

ρ̇γ , and then using (A.1) again, we find

ργ =
2ǫ − 3

4 − 2ǫ
ρφ, (A.4)

where ǫ ≡ −Ḣ/H2. Now the Friedmann equation is

3H2 =
1

4 − 2ǫ
ρφ. (A.5)

Combining (A.4) and (A.5), we get 1.5 < ǫ < 2. This result can be generalized when there

are more energy components in the Universe.

We solve (A.2) in the limit4 of Γ ≫ H, which means that the inflaton decays very

fast, indeed this is the case during reheating. Thus (A.2) is simplified to

ρ̇φ + Γρφ = 0. (A.6)

The general solution is

ρφ = ρ0 exp (−Γt) , (A.7)

where ρ0 is an integration constant. Using solution (A.7), (A.5) can be rewritten as a

differential equation of H explicitly

6Ḣ + 12H2 − ρ0 exp (−Γt) = 0. (A.8)

This equation can be cast into the standard form of Bessel equation by changing variable

t into τ = exp(−Γt/2),
d2(a2)

dτ2
+

1

τ

d(a2)

dτ
− 4ρ0

3Γ2
(a2) = 0. (A.9)

The general solution to this equation is a linear combination of the modified Bessel func-

tions of the first kind I0 and of the second kind K0:

a2 = c1I0

(
√

ρ0

3

2τ

Γ

)

+ c2K0

(
√

ρ0

3

2τ

Γ

)

, (A.10)

where c1 and c2 are integration constants.

4 Of course one can exactly solve the equation, but that is not necessary.
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Appendix B. Constraint Equation with Arbitrary H(t)

The equation of motion of bosonic string states derived in [8] is valid in pure de Sitter

space, of which the Hubble parameter is a constant. In order to study string production,

we focus on the reheating phase, where the Hubble parameter is varying with time, the

spectrum formula of [8] cannot be used directly for our purpose. In this appendix we

generalize the original result of [8] to the case of arbitrary H(t) ≡ ˙a(t)/a(t). We refer the

readers to the original paper [8] for more details of deriving the equation of motion when

H is a constant.

The key point of the generalization is to re-calculate cm in (3.16) of [8] in arbitrary

H(t) case. The general definition of cm is

cm = ei(φm−ψm)

{

α∗
mβ̇∗

m − β∗
mα̇∗

m +

[

α∗2e−2i
∫

t
duλm(u) − β∗2e+2i

∫

t
duλm(u)

]

λ̇m
2λm

}

,

(B.1)

where the most general form of αm and βm are given by (3.7) and (3.8) of [8],

αm = cosh(γm)eiδm+iφm , α̃m = cosh(γm)eiδm+iψm ,

βm = sinh(γm)eiφm , β̃m = sinh(γm)eiψm .
(B.2)

λm in (B.1) is defined as

λm ≡ sgn(m)

√

m2

ω2
− η∂2

t η
−1, (B.3)

where η ≡ 1
eHt

√
ω

as in [8], and should be replaced by a formula in which exp(Ht) is

replaced by a(t), and γm and δm in (B.2) can be solved directly from (3.9-3.10) of [8].

γm = cosh−1

√

ω

4mλm

[

Γ2 + λ2
m +

m2

ω2

]

+
1

2
(B.4)

δm = arctan

(−2λmΓ

2Γ2 − Γ̇

)

− 2

∫ t

duλm(u). (B.5)

here we define Γ ≡ η̇/η for short. Insert (B.2) into (B.1) and use (B.3)-(B.5), after a

tedious calculation we finally get

cm = e−i(δm+ψm+φm)

(

ȧ

a

)

[

ä
a + ∂t

(

ω̇
2ω

)

−
(

ȧ
a

)2
]

− i2m
ω

(

ȧ
a + ω̇

2ω

)

√

[

ä
a + ∂t

(

ω̇
2ω

)

−
(

ȧ
a

)2
]

+ 4m2

ω2

(

ȧ
a + ω̇

2ω

)

. (B.6)

13



What is needed in the calculation of the main context is the modulus of cm

|cm| =
ȧ

a
≡ H(t), (B.7)

it agrees with the original result of [8] where H is a constant. (B.7) tells us that the equation

of motion of string states in the reheating phase where Hubble parameter is varying with

time H = H(t) is simply given by the equation of motion of [8] when H is replaced by

H(t) = ȧ(t)/a(t).

At the end of this appendix we want to recall that the real condition of each λm is

m2

ω2
− (H +

ω̇

2ω
)2 − ∂t(

ω̇

2ω
) > 0 (B.8)

where ω2 = 4N + 2E0 + (pi/a)2. In fact if λ1 is real, so are λm for m > 1. Then the

condition becomes
1

ω2
−
[

1 +
ǫ

2

(

pi

aω

)2

− 3

4

(

pi

aω

)4
]

H2 > 0. (B.9)

Because
( p

aω

)2

=
(pi/a)2

4N + 2E0 + (pi/a)2
≪ 1 (B.10)

and ǫ ∈ (1.5, 2), the condition (B.9) is approximated by

1

ω2
−
[

1 +
ǫ

2

(

pi

aω

)2
]

H2 > 0. (B.11)

Thus we get the upper limit of n as

n < nmax =
1

4

(

H−2 −
(

1 +
ǫ

2

)

k2 − 2E0

)

. (B.12)

where ki = pi/a is the physical momentum.
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