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The cosmological observations provide a strong evidence that there is a positive cosmological
constant in our universe and thus the spacetime is asymptotical de Sitter space. The conjecture of
gravity as the weakest force in the asymptotical dS space leads to a lower bound on the U(1) gauge
coupling g, or equivalently, the positive cosmological constant gets an upper bound ρV ≤ g2M4

p in
order that the U(1) gauge theory can survive in four dimensions. This result has a simple explanation

in string theory, i.e. the string scale
√

α′ should not be greater than the size of the cosmic horizon.
Our proposal in string theory can be generalized to U(N) gauge theory and gives a guideline to
the microscopic explanation of the de Sitter entropy. The similar results are also obtained in the
asymptotical anti-de Sitter space.

PACS numbers:

Particle physicists have told us the low energy physics
is perfectly described by the standard model. Recent
cosmological observations provide a strong evidence that
there is a positive cosmological constant in our universe.
As the only well formulated candidate for quantum grav-
ity, string theory shall be connected with the phenomena
in our universe. A central topic along the line in string
theory is to answer why the theory for the low energy
phenomena is the standard model, why there is a cosmo-
logical constant, and why it is the value we observed.

String theory is only consistent in ten dimensions in or-
der to cancel the conformal anomaly on the string world
sheet. To understand four dimensional physics in our
real world, we must compactify string theory on some
manifolds. Recent developments for the flux compacti-
fications [1], however, suggest that a huge number of at
least semi-classically consistent string vacua emerge in
string theory, named string landscape [2]. It may or may
not provide an opportunity for us to explore the specific
low energy phenomena in the experiments from the view-
point of string theory. Given the numerous “vacua” in
the string landscape, the most urgent problem is to find
a reliable vacuum selecting principle.

In [3], Vafa proposed that self-consistence of a quan-
tum theory of gravity offers a way to pick out which ef-
fective field theories can arise. Many vacua in the string
landscape, although consistent semi-classically, are actu-
ally inconsistent on the quantum level, called swampland
in [3]. Self-consistent landscape is surrounded by the
swampland. Then the problem is translated into finding
the criteria to pick out really self-consistent landscape
from the swampland. More criteria for self-consistent ef-
fective field theory have been proposed in [4, 5]. Eventu-

ally we expect that more and more consistent conditions
will be found and the range for otherwise free parame-
ters will be narrowed down and the predictions of string
theory can be checked in the experiments.

The authors in [4, 5] proposed some criteria for the
self-consistent effective field theory in four-dimensional
asymptotical flat spacetime. However, there are a huge
number of string vacua with positive or negative cosmo-
logical constants in string landscape. What is more, our
universe is asymptotical de sitter space which is favored
by recent cosmological observations. So we are motivated
to explore the criterion for self-consistent effective field
theory in asymptotical de Sitter and Anti-de Sitter back-
ground. On the other hand, the well-defined string the-
ory and quantum field theory in asymptotical dS space
are still unknown. But we try to explore them heuristi-
cally in this note.

In [4], gravity is conjectured as the weakest force. It is
the claim that for a U(1) theory there exists a charged
particle whose mass is smaller than its charge in some
appropriate unit. The conjecture is supported by string
theory and some evidence involving black holes and sym-
metries. The conjecture leads to an intrinsic bound on
the UV cutoff Λ for a consistent U(1) gauge field theory in
asymptotical flat four dimensional spacetime which takes
the form

Λ ≤ gMp ∼ g/
√

G, (1)

where g is the U(1) gauge coupling. An intrinsic radius
of curvature appears in the asymptotical de Sitter and
Anti-de Sitter background. An infrared cut-off of the
effective field theory should be greater than, if not equal
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to, the radius of the background. Moreover, the UV cut-
off of the effective field theory should be smaller than the
curvature radius, otherwise the full quantum gravity or
string theory must be invoked to describe the situation.
We shall show that the latter condition combined with
the conjecture of gravity as the weakest force yields a
lower bound on the U(1) gauge theory; or equivalently,
an upper bound on the cosmological constant. We also
propose a heuristic explanation in string theory for this
bound of the coupling constant.

Let us start with the metric of Schwarzschild-de Sitter
solution in four dimensional spacetime

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (2)

with

f(r) = 1 − 2Gm

r
− r2

L2
, (3)

where G is the Newton constant and L =
√

3/(8πGρV )
is the size of the pure de Sitter space with a positive
cosmological constant ρV . For a U(1) gauge theory, the
mass scale of the minimally charged monopole is Λ/g2

and its size is of order 1/Λ, where Λ is the cutoff of the
field theory. The size of the black hole horizon r− and
cosmic horizon r+ satisfies

r3
± − L2r± + 2G

Λ

g2
L2 = 0. (4)

Requiring that this monopole is not black and smaller
than the cosmic horizon, namely r− ≤ 1

Λ
≤ r+, yields

1

Λ3
− L2

Λ
+ 2G

Λ

g2
L2 ≤ 0 (5)

or,

Λ4 − g2

2G
Λ2 +

g2

2GL2
≤ 0. (6)

Demanding that there is a solution for the inequality (6)
yields

g ≥
√

8G

L
, (7)

or equivalently,

ρV ≤ g2/G2 ∼ g2M4
p . (8)

If there is a very weak U(1) gauge theory with gauge
coupling g ∼ 10−60, the cosmological constant is roughly
the same as that we observed. Solving the inequality
(6), we find a bound on the cutoff for U(1) gauge theory
which takes the form

g

2
√

G

√

√

√

√1 −
√

1 − 8G

g2L2
≤ Λ ≤ g

2
√

G

√

√

√

√1 +

√

1 − 8G

g2L2
.

(9)

For a fixed gauge coupling, in the limit with ρV → 0 or
L → ∞, eq. (9) is just the same as eq. (1). When gauge
coupling goes to its lower bound, the UV cutoff for this
U(1) gauge field theory is Λ ∼ g/

√
G ∼ 1/L.

Surprisingly, eq.(7) shows that a positive cosmological
constant induces a lower bound on the U(1) gauge cou-
pling. Or equivalently, the positive cosmological constant
can not be arbitrarily large in order that a consistent U(1)
gauge theory can survive. The most important input at
this point is the requirement that the size of the min-
imally charged monopole is not larger than the cosmic
horizon in the asymptotical de Sitter space. This is also
the condition for us to trust the above estimates about
the mass scale and the size of the monopole.

There is a simple physical explanation of eq.(7). 1/Λ is
roughly the shortest physical length for the U(1) gauge
field theory. It is natural to demand 1/Λ be no larger
than the size of cosmic horizon, namely Λ > 1/L. To-
gether with Λ ≤ gMp, this directly leads to eq.(7) and
(8).

Another heuristic consideration leading to eq.(7) is the
following. In order that there is no naked singularity
in the space-time, the mass of the minimally charged
monopole is not greater than the mass parameter of the
Nariai Black hole L/G, namely

Λ

g2
≤ L

G
, or Λ ≤ g2L

G
. (10)

On the other hand, the size of the monopole 1/Λ should
not be larger than the size scale of the cosmic horizon L;
or equivalently, Λ ≥ 1/L. Substituting this relationship
into eq. (10), we obtain eq. (7) and (8) again.

In the more formal derivation using the metric (2), we
did not introduce in f(r) the contribution of the magnetic
charge which is roughly Gg−2r−2, this term is smaller
than GMr−1 if the horizon size is larger than 1/Λ. Or
it is larger than GMr−1 if the horizon size is smaller
than 1/Λ, in this case we obtain the condition Λ ≤ gMp.
Thus, if we include the term Gg−2r−2 in the above formal
discussion, we will end up with inequalities similar to (9).

In [4], the authors argued that the absence of global
symmetries in quantum gravity requires that the field
theory description should break down in the limit g → 0,
since the symmetry can be identified as a global sym-
metry. The way to avoid this problem in [4] is the UV
cutoff also goes to zero when g → 0. In a asymptotical
de Sitter space, an intrinsic lower bound on the gauge
coupling is induced by the size of the cosmic horizon (7),
which shows that the effective gauge field theory already
breaks down before taking the limit g → 0. The gauge
coupling characterizes the strength of the local interac-
tion. Eq. (7) implies that the size of the system can
affect the local interaction in quantum theory.

We pause to discuss the most important premise in
our discussion, namely a minimally charged monopole
should not be a black hole. The following reasoning
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not only applies to an asymptotic Minkowski space, it
also applies to an asymptotic de Sitter space. Imagin-
ing that a minimal charged monopole is indeed a black
hole, thus it will Hawking radiate (the horizon size is
greater than the field theory UV cut-off which in turn
is greater than the Planck scale). During the radiation
process, neutral particles as well as charged particles can
be radiated. If only neutral particles are radiated, the
black hole’s mass becomes smaller while its magnetic
charges remains the same, this implies that there exists
monopoles with smaller mass. If charges are radiated,
these charges must be smaller than that of the original
monopole, this contradicts our assumption. Of course
the above argument does not apply to a general black
hole with magnetic charge, since it may be formed of
many minimally charged monopoles and other matter,
thus is neither minimally charged nor with smaller mass.
[4] derives the weak gravity inequality using the absence
remnants, which is valid also in an asymptotic de Sitter
space.

We now switch to string theory. Consider the brane
world scenario in Type IIB string theory. The tension
of the D3-brane T3 ∼ M4

s /gs is taken as the effective
cosmological constant on the brane and the U(1) gauge

coupling is related to the string coupling gs by g ∼ g
1/2
s .

According to eq. (8), we obtain a constraint on the string
scale and the string coupling, namely

M2
s ≤ gsM

2
p . (11)

Note that the string theory in four dimensions is reduced
from ten dimensions. For toroidal compactification, if
the average size of the extra dimension is R, the Planck
scale in four dimensions is

M2
p ∼ R6M8

s /g2
s = (RMs)

6M2
s /g2

s . (12)

Requirement (11) implies

gs ≤ (RMs)
6. (13)

In general we assume RMs > 1; otherwise, we switch to
a T-dual description. For weakly coupled string theory
gs ≤ 1, this condition is always satisfied. The constraint
on the string coupling is quite loose.

In string theory, we can find a simple explanation
about the lower bound on the gauge coupling or string
coupling in the asymptotical de Sitter space. Only when
the length of string

√
α′ is shorter than the size of the

cosmic horizon, the stringy effects can be ignored and the
description of the effective field theory is reliable. This is
just the condition that the Hawking temperature is lower
than the string Hagedorn temperature. Thus we require

√
α′ ≤ L, or ρV ≤ 1

Gα′
. (14)

In four dimensions Newton’s constant is related to the
string coupling and string length square α′ ∼ 1/M2

s by

G ∼ g2
sα′ (15)

up to a coefficient which depends on the compactification.
Substituting eq. (15) into eq. (14), we obtain

ρV ≤ g2
sM4

p . (16)

In an asymptotical de Sitter space string coupling can not
be arbitrarily weak. For a given string coupling, an up-
per bound on the cosmological constant appears; Above
the bound, the effective gauge field theory on the brane
breaks down.

Even though a well-defined string theory in asymp-
totical de Sitter is still unknown, the above discussions
provide a useful constraint on possible realizations of de
Sitter space. We now re-investigate the brane world sce-
nario in Type II B string theory more carefully. Assume
the string theory in four dimensions be reduced from
ten dimensions by toroidal compactification. Eq. (15)
is modified to

G ∼ g2
sα′(RMs)

−6 (17)

Thus eq. (16) takes the form

ρV ≤ g2
sM4

p (RMs)
−6. (18)

Identifying ρV with T3 ∼ M4
s /gs and using eq. (17) we

find gs ≤ (RMs)
6 which is exactly the same as eq. (13).

This result obtained in string theory exactly matches the
result obtained in the effective field theory.

We can go one step further in string theory. The field
theoretical argument can not be generalized to the Non-
Abelian gauge field theory, while the string theory argu-
ment can. Consider a stack of N D3-branes. The fields of
the open string theory are in the adjoint representation
of SU(N). For a stack of D3-brane, the effective cosmo-
logical constant becomes NT3 ∼ NM4

s /gs. In this case
we simply obtain the constraint on the string coupling as

gsN ≤ (RMs)
6. (19)

The combination of the string coupling and N is nothing
but t’ Hooft coupling. This is to be expected. For fixed
string coupling and size of the extra dimensions, an up-
per bound on the rank of the gauge group is obtained.
Eq.(19) can be obtained from eq.(8) provided g2 in eq.(8)
is replaced by g2N .

The above discussions in strng theory can be general-
ized to diverse dimensions. For simplicity, we investigate
a stack of N D9-brane. The Hubble parameter H on the
brane takes the form

H ∼
√

G10T9N ∼ 1

ls

√

gsN, (20)

where the ten-dimensional Newton constant is given by
G10 ∼ g2

s l
8
s and T9 ∼ 1/(gsl

10
s ). Requiring

√
α′ ≤ H−1

yields

gsN ≤ 1. (21)
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The ’t Hooft coupling must be not greater than 1 in order
that the gauge field theory on the brane is effective. The
entropy of de Sitter space on the brane is

S ∼ 1

H8G10

∼ 1

(gsN)6
N2. (22)

For gsN ≤ 1, S ≥ N2. This is a reasonable result since
the number of adjoint fields is no less than N2. Recall
the argument about de Sitter entropy in [6]. The authors
considered a system of N unstable D9-brane in Type II A
string theory. The basic requirement for eternal inflation
is that the Hubble time H−1 should be larger than the
time scale for the open string tachyon to fall off the top
of its potential ls, which yields gsN ≥ 1 by using eq.
(20). The gauge field theory on the brane breaks down
for eternal inflation unless gsN ∼ 1. For fixed t’ Hooft
coupling gsN ∼ 1, we can take N → ∞ and gs → 0
without any need for closed string quantum corrections.
Now the de Sitter entropy is just the square of the number
of branes N2. This provides a tentative calculation for
the de Sitter entropy in string theory. We hope we can
work out the details on this argument in the future. This
is different with the case AdS/CFT where we require t’
Hooft coupling is much greater than one in order that we
can trust the geometry [7].

In an asymptotical Anti-de Sitter space-time, the sim-
ilar results can be obtained. The metric of Schwarzschild
Anti-de Sitter solution in four dimensional spacetime
takes the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (23)

with

f(r) = 1 − 2Gm

r
+

r2

L2
, (24)

where L =
√

−3/(8πGρV ) is the size of the anti-de Sitter
space with a negative cosmological constant ρV . The
radius of the black hole rbh satisfies

r3
bh + L2rbh − 2GmL2 = 0. (25)

Requiring that the minimally charged monopole should
not be black yields

1

Λ3
+

L2

Λ
− 2G

Λ

g2
L2 ≥ 0, (26)

or equivalently,

Λ4 − g2

2G
Λ2 − g2

2GL2
≤ 0. (27)

Solving this inequality, we obtain the bound on the in-
trinsic UV cutoff for the U(1) gauge field theory, namely

Λ ≤ g

2
√

G

(

1 +

√

1 +
8G

g2L2

)1/2

. (28)

On the other hand, we also require that the minimal
physical length 1/Λ should be shorter than the radius
of anti-de Sitter background; otherwise, the gauge field
theory breaks down. Thus g ≥

√
G/L or |ρV | ≤ g2M4

p .
With the viewpoint of string theory, the similar results
are also obtained.

In [8], the authors generalized the arguments in four
dimensions in [4] to lower dimensions. Our previous dis-
cussions can also be used to investigate the cases in lower
dimensions and the similar results are obtained.

To summarize, we have investigated the constraints on
the effective gauge field theory in an asymptotical de Sit-
ter and an anti-de Sitter background. But string theory
still survives when the constraints are violated. A lower
bound on the gauge coupling results from the require-
ment that the shortest length for the effective gauge field
theory should be shorter than the radius of the back-
ground curvature. This result has a simple explanation
in string theory. The discusisons in string theory can be
generalized to diverse dimensions and the non-Abelian
gauge field theory.

We also want to stress that we don’t provide any con-
crete example to show how certain theories in certain de
Sitter space cannot arise in string theory. We only say
that there is no local field theory description for length
scales shorter than the de Sitter radius if the latter itself
is shorter than the string scale.
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