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A VOLUME INEQUALITY FOR POLAR BODIES

Erwin Lutwak, Deane Yang & Gaoyong Zhang

Abstract

A sharp affine isoperimetric inequality is established which gives
a sharp lower bound for the volume of the polar body. It is shown
that equality occurs in the inequality if and only if the body is a
simplex.

Throughout this paper a convex body K in Euclidean n-space R
n is

a compact convex set that contains the origin in its interior. Its polar
body K∗ is defined by

K∗ = {x ∈ R
n : x · y ≤ 1 for all y ∈ K} ,

where x · y denotes the standard inner product of x and y in R
n. A

central quest in convex geometric analysis is finding sharp lower bounds
for |K∗|, the volume of K∗, in terms of natural geometric invariants of
K. In this paper a new sharp lower bound is established, where equality
is achieved only for simplices.

Along these lines, the most famous open problem is the Mahler con-
jecture (see, e.g., [14, 46]). Restated independently by Aleksandrov [1],
this is the statement that 1/|K|, the reciprocal of the volume of K,
provides a sharp lower bound for |K∗|. Specifically, if K is a convex
body, then

(1) |K∗| ≥ (n+ 1)(n+1)

(n!)2
1

|K| ,

with equality conjectured to hold only for simplices. For n = 2, Mahler
himself proved this inequality in 1939 (see, e.g., [12] for references) and
Meyer [39] obtained the equality conditions in 1991. Recently, Meyer
and Reisner [40] have proved inequality (1) for polytopes with at most
n+ 3 vertices.

For K positioned so that its centroid is at the origin, the sharp upper
bound for |K∗| in terms of |K| is attained only for ellipsoids and this
fact is known as the Blaschke-Santaló inequality; see, e.g., [14, 46,50].
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TheMahler conjecture for the class of origin-symmetric bodies is that:

(2) |K∗| ≥ 4n

n!

1

|K| ,

with equality holding for parallelopipeds and their polars (and other
bodies). For n = 2 the inequality is also due to Mahler, and in 1986
Reisner [43] showed that equality holds only for parallelograms. For
n = 2, a new proof of inequality (2) was obtained by Campi and Gronchi
[12]. Reisner [42] established inequality (2) for a class of bodies that have
a high degree of symmetry, known as zonoids. See [19] for an excellent
survey of these bodies. (For n = 2 the class of zonoids coincides with the
class of origin-symmetric bodies.) A new proof of Reisner’s inequality
was given by Gordon, Meyer, and Reisner [20] and later by Campi and
Gronchi [12]. Inequality (2) was established by Saint Raymond [45] for
bodies which are symmetric with respect to the coordinate hyperplanes
(and of course the GL(n)-images of these bodies).

The Bourgain-Milman inequality [7] states that there exists a c > 0
independent of the dimension n such that for all origin-symmetric bodies
K,

|K∗| ≥ cnω2
n

1

|K| .

Here, ωn = |B| denotes the volume of the unit ball, B, in R
n. Thus

the Bourgain-Milman inequality tells us that the Mahler conjecture for
origin-symmetric bodies is at least asymptotically (as n → ∞) correct.
Very recently, Kuperberg [23] found a beautiful new approach to the
Bourgain-Milman inequality. What’s especially remarkable about Ku-
perberg’s inequality is that it provides an explicit value for c.

Let Ei(K) (resp. Eo(K)) denote the John (resp. Löwner) ellipsoid
of K; i.e., the ellipsoid of largest (resp. smallest) volume contained
in (resp. containing) K. Barthe’s outer volume ratio inequality [3]
(conjectured by Ball [2]) states that

|Eo(K)| ≤ ωnn
n
2 n!

(n+ 1)(n+1)/2
|K|,

with equality if and only if K is a simplex. From this, together with the
definitions of Ei and Eo, the fact that polarity reverses set inclusion,
together with the simple observation that |E||E∗| ≥ ω2

n, for any ellipsoid
E, it follows immediately that

(3) |K∗| ≥ ωn(n+ 1)(n+1)/2

n
n
2 n!

1

|Ei(K)| ,

with equality if and only if K is a simplex.
Let Γ2K denote the Legendre ellipsoid associated with the convex

body K; i.e., the origin-centered ellipsoid such that the second moment
matrix of the uniform distribution supported in the ellipsoid is equal to
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the second moment matrix of the uniform distribution supported on K.
In [31], the authors showed that associated with K is another ellipsoid
Γ−2K that is in some sense dual to Γ2K. See §2 for the definition.
While the Legendre ellipsoid is related to the second moment matrix, it
was shown in [32] that the new Γ−2 ellipsoid is closely associated to the
Fisher information matrix. Ludwig [25] showed that these two ellipsoids
Γ2 and Γ−2, viewed as suitably normalized matrix-valued operators on
the space of convex bodies, are the only linearly invariant operators that
satisfy the inclusion-exclusion principle.

In this paper it is shown that the reciprocal of the volume of the new
ellipsoid provides a sharp lower bound for the volume of the polar body.
Specifically,

Theorem. If K ⊂ R
n is a convex body that contains the origin in its

interior, then

|K∗| ≥ ωn(n+ 1)(n+1)/2

n!nn/2

1

|Γ−2K|
with equality if and only if K is a simplex whose centroid is at the origin.

Observe that there are cases (for example, the cube in R
n) where

both sides of the inequality above blow up as the origin approaches the
boundary of the body K. This is in contrast to inequality (3), where
the lower bound remains unchanged under translations.

A GL(n)-image of a body is often called a “position” of the body.
There has been considerable interest (see, e.g., [2–6, 16–18, 31, 35]) in
establishing isoperimetric inequalities for geometric invariants of bod-
ies in special position. The Theorem above may be seen as another
contribution to this line of investigation.

The key tool used in establishing the Theorem will be a variant of
the Ball-Barthe inequality for isotropic measures (defined in Section
3). To establish the Theorem, the concept of an isotropic embedding is
introduced and a variant of the Ball-Barthe inequality for these isotropic
embeddings is used.

In Section 1 we review some simple facts about support and radial
functions of convex bodies and their polars. Good general references for
this are Gardner [14], Schneider [46], and Thompson [50]. In Section
2 we recall those elements of the quadratic Brunn-Minkowski theory
that are needed here. The basics of isotropic measures are presented in
Section 3, and the Theorem is proved in Section 4.

1. Basics and notation regarding convex bodies

Recall that we shall always assume that a convex body in R
n contains

the origin in its interior. We shall write e1, . . . , en for the standard
Euclidean basis in R

n.
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In addition to its denoting absolute value, we shall use | · | to denote
the standard Euclidean norm on R

n, on occasion the absolute value of
the determinant of an n× n matrix, and often to denote n-dimensional
volume.

For φ ∈ GL(n), write φK = {φx : x ∈ K} for the image of K under
φ. If λ > 0, then write λK = {λx : x ∈ K} for the dilate of K by a
factor of λ. Observe that it follows trivially from the definition of the
polar K∗ of a convex body K that for φ ∈ GL(n),

(4) (φK)∗ = φ−tK∗,

where φ−t is the contragradient (inverse of the transpose) of φ.
Associated with each convex body K in R

n is its support function

hK : Rn → [0,∞), defined for x ∈ R
n, by

hK(x) = max{y · x : y ∈ K},
and its radial function ρK : Rn \ {0} → (0,∞), defined for x 6= 0, by

ρK(x) = max{λ ≥ 0 : λx ∈ K}.
Clearly, the support function is homogeneous of degree 1 while the radial
function is homogeneous of degree −1. Note that the support function
and the reciprocal of the radial function of a convex body are both
convex functions.

From the definitions of the support and radial functions and the def-
inition of the polar body, it follows that

ρK∗ = 1/hK and hK∗ = 1/ρK ,(5)

K∗ = {x ∈ R
n : hK(x) ≤ 1},(6)

K∗∗ = K.(7)

We shall make use of:

Lemma. If ν is a finite, positive Borel measure on Sn−1, and Q is

a convex body that contains the origin in its interior, then
∫

Sn−1

(vρQ(v), 1) dν(v) ∈ r0Q× {r0} ⊂ R
n+1,

where r0 = ν(Sn−1).

Proof. The only thing that requires proof is that

x0 :=

∫

Sn−1

vρQ(v) dν(v) ∈ r0Q.

To see this, observe that by the definition of x0 and the convexity of
hQ∗ , the homogeneity of hQ∗ and (5) we have,

hQ∗(
x0
r0

) ≤
∫

Sn−1

hQ∗(ρQ(v)v)
dν(v)

r0
=

∫

Sn−1

ρQ(v)hQ∗(v)
dν(v)

r0
= 1.
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Hence, by (6) and (7),
x0
r0

∈ Q∗∗ = Q.

q.e.d.

2. Elements from the Quadratic Brunn-Minkowski Theory

The quadratic Brunn-Minkowski theory is the special case p = 2 of
the evolving Lp-Brunn-Minkowski theory (see e.g., [8–13, 15, 21–38, 41,
44,45,47–49,51]). In this section we list for quick later recall some basic
elements of the theory.

If K,L are convex bodies and ǫ > 0, then the quadratic Firey-
Minkowski linear combination K +2

√
εL is defined as the body whose

support function is given by:

(8) h2K+2

√
εL = h2K + εh2L.

The quadratic mixed volume V2(K,L) of K and L was defined in [27]
by

(9)
n

2
V2(K,L) = lim

ε→0+

|K +2
√
εL| − |K|
ε

.

Note that from (8) and (9) it follows immediately that

(10) |K| = V2(K,K).

It was shown in [27] that corresponding to each convex bodyK, there
exists a regular Borel measure, S2(K, ·), on Sn−1, called the quadratic

surface area measure of K such that

(11) V2(K,Q) =
1

n

∫

Sn−1

h2Q(u) dS2(K,u),

for each convex body Q. It was shown in [27] that the support of the
quadratic surface area measure is not contained in any closed hemisphere
of Sn−1 and that

(12)

∫

Sn−1

uhK(u) dS2(K,u) = 0.

Observe that the support of S2(K, ·) must contain an affinely indepen-
dent set of vectors (since it is not contained in any closed hemisphere
of Sn−1).

It was shown in [27] that

suppS2(K, · ) = {u1, . . . , ur},
if and only if K is a polytope whose faces have outer unit normals
{u1, . . . , ur}. And if ai is the area of the face (of the polytope) with
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outer normal ui and hi > 0 is the distance of the face from the origin,
then

S2(K, {ui}) = ai/hi.

for all i.
The ellipsoid Γ−2K associated with a convex body K was defined

in [31] as the body whose radial function at u ∈ Sn−1 is given by

(13) ρΓ−2K(u)−2 =
1

|K|

∫

Sn−1

|u · v|2dS2(K, v).

Note that for the Euclidean unit ball B, we have Γ−2B = B. It was
shown in [31] that for φ ∈ GL(n),

(14) Γ−2φK = φΓ−2K.

3. Isotropic embedding

A positive Borel measure ν on Sn−1 is said to be isotropic provided
∫

Sn−1

u⊗ u dν(u) = In,

where In denotes the identity operator on R
n, and u ⊗ u : Rn → R

n is
the rank 1 linear operator on R

n that takes x to (x · u)u. Thus, ν is
isotropic if

(15)

∫

Sn−1

|v · u|2 dν(u) = 1, for all v ∈ Sn−1.

Summing this equation with v = e1, . . . , en shows that necessarily

(16) ν(Sn−1) = n.

Observe that from (15) it follows that there does not exist an x 6= 0
that is orthogonal to all the vectors in the support of ν.

The Ball-Barthe inequality for isotropic measures is:

Ball-Barthe inequality. If ν is an isotropic measure on Sn−1, then

for each continuous f : Sn−1 → (0,∞)

(17)

∣

∣

∣

∣

∫

Sn−1

f(v) v ⊗ v dν(v)

∣

∣

∣

∣

≥ exp

{
∫

Sn−1

log f(v) dν(v)

}

,

with equality if and only if f(v1) · · · f(vn) is constant for linearly inde-

pendent unit vectors v1, . . . , vn ∈ supp(ν).

A proof of the Ball-Barthe inequality (along with its equality condi-
tions) can be found in [34].

The concept of an isotropic embedding is critical in establishing the
Theorem.
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Definition. If (Sn−1, ν) is a Borel measure space, then a continuous
map v : Sn−1 → Sn is said to be an isotropic embedding of the Borel
measure space (Sn−1, ν) into Sn if

(18)

∫

Sn−1

|w · v(x)|2 dν(x) = 1, for all w ∈ Sn.

Summing the equation (18) with w = e1, . . . , en+1 shows that if
(Sn−1, ν) is isotropically embeddable into Sn then

(19) ν(Sn−1) = n+ 1.

If v : Sn−1 → Sn is an isotropic embedding of the Borel measure
space (Sn−1, ν) into Sn, then the support of ν must contain at least
n + 1 unit vectors. Otherwise v(supp ν) would be contained in a great
subsphere of Sn and a w ∈ Sn orthogonal to the vectors in that great
subsphere would contradict (18).

We will make use of the following simple observation: If supp ν =
{u1, . . . , un+1}, then v(u1), . . . , v(un+1) are orthogonal and ν({ui}) =
1, for all i. To see this substitute w = v(uj) ∈ Sn into (18) to see
that necessarily ν({uj}) ≤ 1. But in light of (19), we then must have
ν({uj}) = 1. In light of this, substituting w = v(uj) into (18) now
shows that v(uj) ⊥ v(ui), whenever i 6= j.

The Ball-Barthe inequality for isotropic embeddings is:

Proposition. If v : Sn−1 → Sn is an isotropic embedding of the Borel

measure space (Sn−1, ν) into Sn, then for each continuous function f :
Sn−1 → (0,∞)

∣

∣

∣

∣

∫

Sn−1

v(u)⊗ v(u) f(u) dν(u)

∣

∣

∣

∣

≥ exp

{
∫

Sn−1

log f(u) dν(u)

}

,

with equality if and only if f(u1) · · · f(un+1) is constant for u1, . . . , un+1

∈ supp(ν) such that v(u1), . . . , v(un+1) are linearly independent.

We shall require and thus establish only a very special case of the
Ball-Barthe inequality for isotropically embeddable measures. The spe-
cial case we will need is one where the function f factors through the
embedding v; i.e., there exists a continuous fv : Sn → (0,∞) such that
f = fv ◦ v. For this special case the Ball-Barthe inequality for embed-
able measures is a direct consequence of the Ball-Barthe inequality for
isotropic measures applied to the pushforward of ν by v onto Sn; i.e.,
the Ball-Barthe inequality for isotropic measures applied to the isotropic
measure ν̄ on Sn defined by

∫

Sn

g dν̄ =

∫

Sn−1

g ◦ v dν,

for each continuous function g : Sn → R.
As in [34] and [37], the ideas of Ball [2] and Barthe [5] (see also [6])

play a critical role throughout this work. A great deal of effort has
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been expended in making this work both elementary and reasonably
self contained.

4. The Theorem

We now establish:

Theorem. If K ⊂ R
n is a convex body that contains the origin in its

interior, then

|K∗| ≥ ωn(n+ 1)(n+1)/2

n!nn/2

1

|Γ−2K| ,

with equality if and only if K is a simplex whose centroid is at the origin.

Proof. For the sake of brevity, let

(20) h :=
1√
n
hK = h 1√

n
K and µ :=

1

|K|S2(K, ·).

In order to establish our Theorem we may assume, in light of (14) and
(4), that the body K has been GL(n)-transformed so that Γ−2K = B.
Now, (13) and (15) show that

the measure µ is isotropic.

From (12) and (20) we see that

(21)

∫

Sn−1

uh(u) dµ(u) = 0,

and from (10), (11), and (20)

(22)

∫

Sn−1

h(u)2 dµ(u) = 1.

Define q : Sn−1 → R
n+1 by

(23) q(u) = (u, h(u))

for u ∈ Sn−1, and define q̄ : Sn−1 → Sn by

(24) q̄ = q/|q|.

We first observe that q̄ : Sn−1 → Sn is an isotropic embedding of the
measure space (Sn−1, |q|2 dµ) into Sn. To see this, suppose

y = (x, r) ∈ R
n+1 = R

n × R.
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By (23) and (24), followed by (15), (21), and (22), we have
∫

Sn−1

|y · q̄(u)|2 |q(u)|2 dµ(u)

=

∫

Sn−1

|(x, r) · (u, h(u))|2 dµ(u)

=

∫

Sn−1

|x · u+ rh(u)|2 dµ(u)

=

∫

Sn−1

|x · u|2 dµ(u) + 2rx ·
∫

Sn−1

uh(u) dµ(u)

+ r2
∫

Sn−1

h(u)2 dµ(u)

= |x|2 + r2

= |y|2.

Note that since q̄ is an isotropic embedding of the measure |q|2dµ, there
does not exist a non-zero y ∈ R

n+1 that is orthogonal to every vector
in q(suppµ).

Define the smooth, monotone, strictly increasing φ : R → (0,∞) by

∫ φ(t)

0
e−τ dτ =

1√
π

∫ t

−∞
e−τ2 dτ,

which satisfies

(25) −t2 = log
√
π − φ(t) + log φ′(t).

Suppose y ∈ R
n+1. For u ∈ Sn−1, (25) gives

(26) −|y·q̄(u)|2 = log
√
π−φ(y·q̄(u))+log

φ′(y · q̄(u))
en+1 · q̄(u)

+log(en+1 ·q̄(u)).

We now integrate (26) over all u ∈ Sn−1 with respect to the measure
|q|2 dµ. Since, q̄ : Sn−1 → Sn is an isotropic embedding of the measure
space (Sn−1, |q|2 dµ) into Sn, we see that the integral on the left is

−
∫

Sn−1

|y · q̄(u)|2|q(u)|2 dµ(u) = −|y|2.

Also, from (19), it follows that integral of the first term on the right of
(26)

∫

Sn−1

log
√
π |q(u)|2 dµ(u) = (n+ 1) log

√
π.

We now estimate the integral of the last term on the right of (26):

I4 :=

∫

Sn−1

log(en+1 · q̄(u)) |q(u)|2 dµ(u).
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By (19), the measure 1
n+1 |q|2 dµ is a probability measure and since, on a

probability space, the L0-mean of a function never exceeds its L2-mean,

exp

(

1

n+ 1
I4

)

≤
(

1

n+ 1

∫

Sn−1

|en+1 · q̄(u)|2 |q(u)|2 dµ(u)
)

1

2

,

with equality if and only if en+1 · q̄(u) = 1/
√

1 + h(u)−2 is constant
for u ∈ suppµ. Since q̄ : Sn−1 → Sn is an isotropic embedding of the
measure space (Sn−1, |q|2 dµ) into Sn, we see that

∫

Sn−1

|en+1 · q̄(u)|2|q(u)|2 dµ(u) = 1

and hence

I4 ≤ − log (n+ 1)(n+1)/2,

with equality if and only if h is constant on suppµ.
We combine these observations to get

−|y|2 ≤ log

(

π

n+ 1

)
n+1

2

− en+1·
∫

Sn−1

q̄(u)
φ(y · q̄(u))
en+1 · q̄(u)

|q(u)|2dµ(u)

+

∫

Sn−1

log
φ′(y · q̄(u))
en+1 · q̄(u)

|q(u)|2 dµ(u),(27)

with equality if and only if h is constant on suppµ.
Define T : Rn+1 → R

n+1 by

(28) Ty =

∫

Sn−1

q̄(u)
φ(y · q̄(u))
en+1 · q̄(u)

|q(u)|2 dµ(u),

for y ∈ R
n+1. Hence

(29) dT (y) =

∫

Sn−1

q̄(u)⊗ q̄(u)
φ′(y · q̄(u))
en+1 · q̄(u)

|q(u)|2 dµ(u).

Note that for z ∈ R
n+1

z · dT (y)z =

∫

Sn−1

|z · q(u)|2 φ′(y · q̄(u))
√

1 + h(u)−2 dµ(u).

Recall that there exists no nonzero z ∈ R
n+1 such that z·q(u) = 0 for ev-

ery u ∈ suppµ. This together with the fact that φ′(y · q̄(u))
√

1 + h(u)−2

> 0 shows that z ·dT (y)z > 0 for all z 6= 0. Therefore, a simple applica-
tion of the mean value theorem shows that T : Rn+1 → R

n+1 is globally
injective.

The Ball-Barthe inequality for isotropic embeddings together with
(29) now shows that

(30) |dT (y)| ≥ exp

∫

Sn−1

log
φ′(y · q̄(u))
en+1 · q̄(u)

|q(u)|2 dµ(u),
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with equality if and only if

n+1
∏

i=1

φ′(y · q̄(ui))
en+1 · q̄(ui)

is constant for u1, . . . , un+1 ∈ suppµ such that q̄(u1), . . . , q̄(un+1) are
linearly independent. Substituting (28) and (30) into (27) gives

(31) e−|y|2 ≤
(

π

n+ 1

)
n+1

2

e−en+1·Ty|dT (y)|,

with equality implying that en+1 · q̄(u) is constant on suppµ and

n+1
∏

i=1

φ′(y · q̄(ui))

is constant for u1, . . . , un+1 ∈ suppµ such that q̄(u1), . . . , q̄(un+1) are
linearly independent.

Integrating (31) over all y ∈ R
n+1 gives

(32) (n+ 1)(n+1)/2 ≤
∫

Rn+1

e−en+1·Ty|dT (y)| dy =

∫

T (Rn+1)
e−en+1·z dz,

with equality implying that h is constant on suppµ, and that for each
y ∈ R

n+1, there exists a cy > 0 such that

n+1
∏

i=1

φ′(y · q̄(ui)) = cy,

for u1, . . . , un+1 ∈ suppµ such that q̄(u1), . . . , q̄(un+1) are linearly inde-
pendent.

By the definition (23) of q, (20), and (5), we have

q(u) = (u, h 1√
n
K(u)) = (ρ( 1√

n
K)∗(u)u, 1)h 1√

n
K(u)

and hence the Lemma, equation (4) and definition (28) show that

Ty ∈
⋃

r>0

r
√
nK∗ × {r} =: C ⊂ R

n × R.
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Hence, from (32) letting z = (x, r) ∈ R
n × R,

(n + 1)(n+1)/2 ≤
∫

T (Rn+1)
e−en+1·z dz,

≤
∫

C
e−en+1·z dz,

=

∫ ∞

0

∫

r
√
nK∗

e−r dxdr

=

∫ ∞

0
|r
√
nK∗|e−r dr

= nn/2|K∗|
∫ ∞

0
rne−r dr

= nn/2n! |K∗|,
with equality implying that h is constant on suppµ, and that for each
y ∈ R

n+1, there exists a cy > 0 such that

(33)

n+1
∏

i=1

φ′(y · q̄(ui)) = cy,

for u1, . . . , un+1 ∈ suppµ such that q̄(u1), . . . , q̄(un+1) are linearly inde-
pendent.

This establishes the inequality when Γ−2K = B. The inequality for
arbitrary K now follows by using (4) and (14).

We now turn to the necessity of the equality conditions. Suppose
there is equality in the inequality of the theorem. First, recall (from
Section 2) that there exist affinely independent u1, . . . , un+1 ∈ suppµ.

Equality in our inequality implies that there exists a c > 0 such that
h(u) = c, for all u ∈ suppµ. Hence, q(ui) = (ui, c) and since the ui
are affinely independent, q(u1), . . . , q(un+1) are linearly independent in
R
n+1.
Assume there exists a u0 ∈ suppµ\{u1, . . . , un+1}. Write

q(u0) = β1q(u1) + · · · + βn+1q(un+1),

and since at least one βi 6= 0, without loss of generality assume β1 6= 0.
Hence q(u0), q(u2), . . . , q(un+1) are a linearly independent set of vectors
in R

n+1 with ui ∈ suppµ. But then, since φ′ > 0, the equality conditions
for (33) give

φ′(y · q̄(u0)) = φ′(y · q̄(u1))
for all y ∈ R

n+1. But since φ′ is non-constant there exist t0, t1 ∈ R such
that φ′(t0) 6= φ′(t1). Since q̄(u0) and q̄(u1) are not parallel, there exists
a y ∈ R

n+1 such that q̄(ui) · y = ti, producing the contradiction that
shows that

suppµ = {u1, . . . , un+1}.
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As shown in Section 3, this implies that q(u1), . . . , q(un+1) are orthog-
onal. Since q(ui) = (ui, c), the orthogonality gives

ui · uj = −c2

whenever i 6= j, and hence that K is a regular simplex in R
n. Since h

is constant on the support of µ, it is a regular simplex circumscribed
about a ball that is centered at the origin. q.e.d.

An inequality similar to that of the Theorem, but restricted to bod-
ies which are origin-symmetric, can be obtained by combining work of
Barthe [5] and that of the authors [31].
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