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Abstract The paper is devoted to the study of shock formation of the 3-
dimensional quasilinear wave equation

− (1 + 3G ′′(0)(∂tφ)2)∂2t φ + �φ = 0, (�)

where G ′′(0) is a non-zero constant. We will exhibit a family of smooth initial
data and show that the foliation of the incoming characteristic hypersurfaces
collapses. Similar to 1-dimensional conservational laws, we refer this specific
type breakdown of smooth solutions as shock formation. Since (�) satisfies
the classical null condition, it admits global smooth solutions for small data.
Therefore, we will work with large data (in energy norm). Moreover, no sym-
metry condition is imposed on the initial datum. We emphasize the geometric
perspectives of shock formation in the proof. More specifically, the key idea
is to study the interplay between the following two objects: (1) the energy
estimates of the linearized equations of (�); (2) the differential geometry of
the Lorentzian metric g = − 1

(1+3G ′′(0)(∂tφ)2)dt
2 + dx21 + dx22 + dx23 . Indeed,

the study of the characteristic hypersurfaces (implies shock formation) is the
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study of the null hypersurfaces of g. The techniques in the proof are inspired
by the work (Christodoulou in The Formation of Shocks in 3-Dimensional
Fluids. Monographs in Mathematics, European Mathematical Society, 2007)
in which the formation of shocks for 3-dimensional relativistic compressible
Euler equations with small initial data is established. We also use the short
pulse method which is introduced in the study of formation of black holes in
general relativity in Christodoulou (The Formation of Black Holes in Gen-
eral Relativity. Monographs in Mathematics, EuropeanMathematical Society,
2009) and generalized in Klainerman and Rodnianski (ActaMath 208(2):211–
333, 2012).

1 Introduction

This paper is devoted to the study of the following quasilinear wave equation

− (1 + 3G ′′(0)(∂tφ)2
)
∂2t φ + �φ = 0, (1.1)

where G ′′(0) is a nonzero constant and φ ∈ C∞(Rt × R
3
x ;R) is a smooth

solution.We propose a geometric mechanism for shock formation, i.e. how the
smoothness ofφ breaks down.We remark that ifG ′′(0) = 0, the equation is lin-
ear so that no shock is expected.Wewill see that (�) can be regarded as the sim-
plest quasilinear wave equations that can be derived from the least action prin-
ciple. The equation can also be regarded as a model equation for the nonlinear
version ofMaxwell equations in nonlinear electromagnetic theory, inwhich the
shocks can be observed experimentally. The shock formation in nonlinear elec-
tromagnetic theory will be the subject of a forthcoming paper by the authors.

The breakdown mechanism is a central object in the theory of quasilinear
hyperbolic equations. We give a brief account on the results related to the
current work. In [2], Alinhac proved a conjecture of Hörmander concerning
upper bounds of the lifespan for the solutions of −∂2t φ + �φ = ∂tφ ∂

2
t φ on

R
2+1. This equationwas first introduced by John (see the survey paper [11] and

the references therein). He [10] studied the rotationally symmetric cases and
obtained upper bounds for the lifespan of the solutions. In [2,3], without any
symmetry assumptions, Alinhac not only shows the solution blows up but also
gives a very precise description of the solution near the blow-up point. Despite
the slight different forms of the equations, Alinhac’s results are fundamentally
different from the currentwork in the following aspects: (1)He dealswith small
data problem. We will (and have to) deal with large data problem. (2) He uses
Nash–Mosermethod to recover the loss of derivatives. Based on the variational
nature of (�), we can close the energy estimates with finite many derivatives.
(3) Just as Alihnac’s work, we can give a detailed account on the behaviors
of the solutions near blow-up points. Moreover, we show that the singularities
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formed are indeed shocks. (4) We can give a pure geometric interpretation of
the shock formation (in terms of certain curvature tensors) and show that the
blow-up behavior indeed can be read off from the initial data directly.

A major breakthrough in understanding the shock formation for the Euler
equations has beenmade by Christodoulou in his monograph [5]. He considers
the relativistic Euler equations for a perfect irrotational fluid with an arbitrary
equation of state. Provided certain smallness assumptions on the initial data, he
obtained a complete picture of shock formation in three dimensions. A similar
result for classical Euler’s equations has also been obtained by Christodoulou
and Miao in [8]. The approaches are based on differential geometric methods
originally introduced by Christodoulou and Klainerman in their monumental
proof [7] of the nonlinear stability of theMinkowski spacetime in general rela-
tivity. Most recently, based on similar ideas, Holzegel, Klainerman, Speck and
Wong have obtained remarkable results in understanding the stablemechanism
for shock formation for certain types of quasilinear wave equations with small
data in three dimensions, see their overview paper [9] and Speck’s detailed
proof [14]. We remark that one of the key ideas in [5,8] is to explore the vari-
ational structure of Euler’s equations. This idea also plays a key rôle in the
current work. We emphasize that [5,8] obtained sharp lower and upper bounds
for the lifespan of smooth solutions associated to the given data without any
symmetry conditions. Prior to [5,8], most of works on shock waves in fluid
are limited to the simplified case of with spherical symmetry assumptions, i.e.
essentially the one space dimension case. As an example, we mention [1] of
Alihnac which studies the singularity formation for the compressible Euler
equations on R

2 with rotational symmetry.
All the aforementioned works have the common feature that the initial data

are assumed to be small. However, since the nonlinearity in (�) is cubic. By the
classical result of Klainerman [12], for small smooth initial data, the solutions
of (�) are globally regular. In particular, we do not expect shock formation.We
will use a special family of large data, so called short pulse data, in the current
work. It was firstly introduced by Christodoulou in a milestone work [6] in
understanding the formation of black holes in general relativity. By identifying
an open set of initial data without any symmetry assumptions (the short pulse
ansatz!), he shows that a trapped surface can form, even in vacuum space-
time, from completely dispersed initial configurations and by means of the
focusing effect of gravitational waves. Although the data are no longer close
toMinkowski data, in otherwords, the data are no longer small, he is still able to
prove a long time existence result for these data. This establishes the first result
on the long time dynamics in general relativity and paves the way for many
new developments on dynamical problems related to black holes. Shortly after
Christodoulou’s work, Klainerman and Rodnianski extends and significantly
simplifies Christodoulou’s work, see [13]. From a pure PDE perspective, the
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data appeared in the above works are carefully chosen large profiles which
can be preserved by the Einstein equations along the evolution. The data in
the current work are inspired by these ideas, in particular the idea in [6]. The
initial profiles are designed in such a way that the shape of the data will be
preserved along the evolution of (�).

As a summary, the data used in the paper are motivated by Christodoulou’s
work [6] and Klainerman-Rodnianski [13] on the formation of black holes in
general relativity. The ideas of the proof aremotivated byChristodoulou’swork
[5] and Christodoulou–Miao [8]. We have to overcome all the technical diffi-
culties in the works mentioned above, in particular those in Christodoulou’s
works. At the same time, we would like to present a clearer geometric picture
of the underlying shock formation mechanism.

1.1 The heuristics for shock formation

We rewrite (�) in the so called geometric form:

− 1

c2
∂2t φ + �φ = 0 · · · · · · (�g),

where c = (1+3G ′′(0)(∂tφ)2
)− 1

2 . Recall that, if c was a constant, (�g)would
describe the propagation of light in Minkowski space and c was the speed of
light. In the current situation, we still regard c (which is not a constant) as the
speed of light. But the speed of light depends on the position (t, x) in spacetime
and the solution φ. This is of course the quasilinear nature of the equation. We
now briefly review on the basics of shock formation for the inviscid Burgers’
equation. The idea is to get a heuristic argument for the main equation (�) and
to motivate the main theorem.

The inviscid Burgers’ equation can be written as

∂t u + u∂xu = 0 · · · · · · (∗).

We assume that u ∈ C∞(Rt × Rx ;R) is a smooth solution. Given smooth
initial datum u(0, x)(non-zero everywhere for simplicity), (∗) can be solved
by the method of characteristics. A characteristic is a curve in R2

t,x defined by
the solution u. In the case of Burgers’ equation, a characteristic is a straight
line and it is determined by the initial datum u(0, x) as follows: it is the unique
line passing through (0, x) with slope 1

u(0,x) . The method of characteristics
says that u is constant along each of the characteristics.

To make connections to the geometric form (�g) of the main equation (�),
we also propose a geometric form of the Burgers’ equation (we assume that
u �= 0 to make the following computation legitimate):
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1

c
∂t u + ∂xu = 0 · · · · · · (∗g),

where c = u. Then c is the speed of the characteristics and it depends on the
solution u.

We now consider two specific characteristics passing through x1 and x2
(x1 < x2). Ifwe choose datum in such away that u(0, x1) > u(0, x2) > 0, both
the characteristics travel towards the right. Moreover, the characteristic on the
left (noted asC1) travels with speed c1 = u(0, x1) and the characteristic on the
right (noted asC2) travelswith speed c2 = u(0, x2). SinceC1 travels faster than
C2, C1 will eventually catch up with C2. The collision of two characteristics
causes the breakdown on the smoothness of the solution. In summary, we have
a geometric perspective on shock formation: a “faster” characteristic catches
up a “slower” one so that it causes a collapse of characteristics.

The above discussion can also be read off easily from the following picture:

In reality, in stead of showing that characteristics collapse (which is on
the heuristic level), we show that |∂xu| blows up. In stead of being naïvely a
derivative, |∂xu| have an important geometric interpretation. Recall that the
level sets of u are exactly the characteristics and the (t, x)-plane is foliated by
the characteristics (see the above picture). Therefore, |∂xu| is the density of the
foliation by the characteristics. As a consequence, we can regard the shock
formation as the following geometric picture: the foliation of characteristics
becomes infinitely dense.

We also recall a standard way to prove the blow-up of |∂xu|. The remarkable
feature of this standard proof is that in three dimensions similar phenomenon
happens for themain equation (�). Let L = ∂t+u∂x be the generator vectorfield
of the characteristics (for (�), the corresponding vectorfield are generators of
null geodesics on the characteristic hypersurfaces). Therefore, by taking ∂x
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derivatives, we obtain

L∂xu + (∂xu)
2 = 0.

This is a Riccati equation for ∂xu and the blow-up theory for ∂xu is standard.
However, we would like to understand the blow-up in another way (which is
intimately tied to the shock formation for (�)). We define the inverse density
function μ = −(∂xu)−1, therefore, along each characteristic curve, μ satisfies
the following equation:

Lμ(t, x) = −1,

i.e. Lμ is constant along each characteristic so that it is determined by its
initial value. Therefore, μ will eventually become 0 which implies that the
foliation becomes infinitely dense (For (�), we will also define an inverse den-
sity function μ for the foliation of characteristic hypersurfaces and show that
Lμ(t, x) is almost a constant along each generating geodesic of the character-
istic hypersurfaces).

We return to the main equation in the geometric form − 1
c2
∂2t φ +

�φ = 0 with c = (1 + 3G ′′(0)(∂tφ)2)−
1
2 . We prescribe initial data

(φ(−2, ·), ∂tφ(−2, ·)) on the time slice �−2 defined by t = −2. We use
Sr to denote the sphere of radius r centered at the origin on�−2 and use B2 to
denote the ball of radius 2 with boundary S2. Therefore, the region enclosed
by S2 and S2+δ (where δ is a small positive number) is foliated by the Sr ’s for
2 ≤ r ≤ 2 + δ. The following picture may help to illustrate the process.

For each leaf Sr in the foliation, there is a unique incoming characteris-
tic hypersurface, which will be defined more precisely in the next section,
emanated from Sr . In the picture, we use a blue surface to denote it. The
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incoming characteristic hypersurfaces emanated from S2 and S2+δ are drawn
in black and red respectively.

(1) Data inside B2. We take trivial initial data φ(−2, x) ≡ 0 and
∂tφ(−2, x) ≡ 0 inside B2.

In view of the Huygens’ principle, in the backward solid light cone with
bottom B2 (colored in black in the picture), the solution φ is identically
zero. In particular, for the incoming characteristic hypersurface, which is
the cone in black in the picture emanated from the leaf S2, since c =
(1 + 3G ′′(0)(∂tφ)2)−

1
2 , the incoming speed of this hypersurface, which is

noted as c1, can be computed as

c1 = 1.

(2) Data on the annulus region between S2 and S2+δ. This is the region
between the black circle and the red circle in the picture. We require that the

size of ∂tφ is approximately δ
1
2 on the outermost circle (which is red in the

picture) S2+δ, i.e. |∂tφ| ∼ δ
1
2 at S2+δ .

By Taylor expansion, we can compute the speed c2 of the outermost incom-
ing characteristics hypersurface emanated from S2+δ (which is red in the
picture) as follows

c2 = 1 − 3

2
G ′′(0)δ + O(δ2).

We are now in a situation that resembles the Burgers’ picture. The initial
distance between the inner most characteristic hypersurface (which is black in
the picture) and the outer most characteristic hypersurface (which is red in the
picture) is δ. Both hypersurfaces travel towards the center. The difference of
the speeds of two characteristic hypersurfaces is c1 − c2 ∼ δ. We also expect
the “faster”(outer) characteristic hypersurface catching up the “slower”(inner)
one. This catching up process needs approximately distance

speed = δ
c1−c2

∼ 1
amount of time. We also regard the collision of characteristic hypersurfaces
as shock formation, we hope that shocks form around t = −1.

We would like to point out a serious gap in the above heuristic argument.
There is one assumption which seems to be very unreasonable: by the choice
of the data, we can make sure that the speed c2 of the outer most incoming
characteristic hypersurfaces is of size 1 − 3

2G
′′(0)δ + O(δ2), but there is no

clear reason that we should believe the speed c2 remaining the same later on.
Therefore, the difference of the two speeds c1 − c2 may vary a lot so that the
outer most characteristic hypersurface never catch up with the inner one.

The whole point of the paper is to identify a set of initial data so that the
profile of the data propagates, i.e. the profile remains almost unchanged. In
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particular, we can prove that the speeds of the characteristic hypersurfaces
remain almost unchanged for later time. Another way to understand this is
through energy estimates: we can find a specific set of data so that we can
obtain a priori energy estimates. Once we showed that the energy (and its
higher order analogue) is almost conserved, we can use Sobolev inequality
to show that ∂tφ is almost conserved pointwisely along the generators of the
incoming characteristic hypersurfaces. According to the formula of c, this also
implies the speeds are almost conserved.

Finally, we point out that, as in the Burgers’ equation case, instead of show-
ing that characteristic hypersurfaces meet, we show that the inverse density μ
of the foliation by the characteristic hypersurfaces becomes 0, i.e. the foliation
turns to being infinitely dense. Similarly, this can be done by showing that
Lμ(t, x) is almost a constant along each generating geodesic of the character-
istic hypersurfaces.

1.2 The main result

With motivations from the previous subsection, we are ready to state the main
result of the paper. Let t be the time function in Minkowski spacetime. We use
�t to denote the level sets of t and it is a copy of R3 for each t . We fix r0 = 2
in this paper.1 We also use �δ−r0 to denote the following δ-thin annulus:

�δ−r0 := {x ∈ �−r0

∣∣r0 ≤ r(x) ≤ r0 + δ
}
, (1.2)

where δ is any given small positive constant.

We recall that the wave speed c is defined as c = (1 + 3G ′′(0)(∂tφ)2)−
1
2 .

Let L = ∂t − c∂r and L = ∂t + c∂r . We first introduce a pair of functions
(φ1(s, θ), φ2(s, θ)) ∈ C∞((0, 1] × S

2) and we will call it the seed data.
The seed data (φ1(s, θ), φ2(s, θ)) can be freely prescribed and once it is

given once forever. In particular, the choice of the seed data is independent of
the small parameter δ.

Lemma 1.1 Given seed data (φ1, φ2), there exists a δ′ > 0 depending only
on the seed data, for all δ < δ′, we can construct another function φ0 ∈
C∞((0, 1] × S

2) satisfying the following two properties:
1. For all k ∈ Z≥0, the Ck-norm of φ0 are bounded by a function in the

Ck-norms of φ1 and φ2;
2. If we pose initial data for (�) on �−2 in the following way:
1 In a future work, we will consider a more general case for which the data is prescribed at
past infinity. Therefore, we have to let r0 go to ∞ and the dependence of the estimates (of the
current work) on r0 will be crucial.
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For all x ∈ �−2 with r(x) ≤ 2, we require (φ(−2, x), ∂tφ(−2, x)) =
(0, 0); For 2 ≤ r(x) ≤ 2 + δ, we require that

φ(−2, x) = δ3/2φ0

(
r − 2

δ
, θ

)
, (∂tφ)(−2, x) = δ1/2φ1

(
r − 2

δ
, θ

)
.

Then we have

‖Lφ‖
L∞
(
�δ−r0

) � δ3/2, ‖L2φ‖
L∞
(
�δ−r0

) � δ3/2. (1.3)

We remark that the condition (1.3) has a clear physical meaning: since L
are incoming directions, the waves are initially set to be incoming and the
outgoing radiation is very little (controlled by δ).

Definition 1.2 The Cauchy initial data of (�) constructed in the lemma (sat-
isfying the two properties) are called no-outgoing-radiation short pulse data.

Before we state the main theorem, we prove the lemma hence show the
existence of no-outgoing-radiation short pulse data.

Proof We recall that c = (1 + 3G ′′(0)(∂tφ)2)−
1
2 , L = ∂t − c∂r and L =

∂t + c∂r .
We first take an arbitrary choice of φ1 and fix this function. Therefore, ∂tφ

is given by the formula (∂tφ)(−2, x) = δ1/2φ1(
r−2
δ
, θ). In particular, all the

spatial derivatives of ∂tφ and c (determined completely by ∂tφ) are prescribed
on �δ−2.

Therefore, by definition, we have

L2φ = ∂2t φ − ∂t c ∂rφ + c∂r c ∂rφ + c2∂2r φ − 2c∂r (∂tφ).

According to the definition of c, we have ∂t c = −3G ′′(0)c3∂tφ ∂2t φ. Thus, we
have

L2φ = (1 − 3G ′′(0)c3∂tφ ∂rφ
)
∂2t φ + c∂r c ∂rφ + c2∂2r φ − 2c∂r (∂tφ).

By virtue of the main equation, we have ∂2t φ = c2
(
∂2r φ + 2

r ∂rφ + 1
r2
�/S2φ

)
,

where �/S2 is the Laplace operator on S
2. Therefore, we obtain

L2φ = (2 − 3G ′′(0)c3∂tφ ∂rφ)(c2∂2r φ) + (1 − 3G ′′(0)c3∂tφ ∂rφ)

×
(
2c2

r
∂rφ + c2

r2
�/S2φ

)
+ c∂r c ∂rφ − 2c∂r (∂tφ).
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We now use the fact that φ(−2, x) = δ
3
2φ0(

r−2
δ
, θ), where φ0 will be deter-

mined later on. Thus, L2φ can be computed as

L2φ = (2 − 3G ′′(0)c3φ1 ∂sφ0 δ
)(
δ− 1

2 c2∂2s φ0
)

+ (1 − 3G ′′(0)c3φ1 ∂sφ0 δ
) (2c2

r
∂sφ0 δ

1
2 + c2

r2
�/S2φ0 δ

3
2

)

+ c∂r c ∂sφ0 · δ 1
2 − 2c∂sφ1δ

− 1
2 . (1.4)

We claim that we can choose φ0, which may depend on the choice of φ1 but

is independent of δ, in such a way that |L2φ| � δ
3
2 .

To see this, we first observe that since φ1 is given and δ is small, we have
|c|+ |∂r c| � 1. Indeed, ∂r c = −3c3G ′′(0)φ1∂sφ1 so the bound on ∂r c is clear.
We make the following ansatz for φ0:

|∂sφ0| + |∂2θ φ0| ≤ C, (1.5)

where the constant C may only depend on φ1 but not on δ.

By the ansatz (1.5) and by looking at the expansions in δ
1
2 , one can ignore

all the terms equal to or higher than δ
3
2 . Therefore, to show |L2φ| � δ

3
2 , it

suffices to consider

(
2 − 3G ′′(0)c3φ1 ∂sφ0 δ

)(
δ− 1

2 c2∂2s φ0
)+ 2c2

r
∂sφ0 δ

1
2

+ c∂r c ∂sφ0 · δ 1
2 − 2c∂sφ1δ

− 1
2 = O(δ

3
2 ),

or equivalently

(
2 − 3G ′′(0)c3φ1 ∂sφ0 δ

)(
c2∂2s φ0

)+ 2c2

r
∂sφ0 δ

+ c∂r c ∂sφ0 δ − 2c∂sφ1 = O(δ2).

Since (2 − 3G ′′(0)c3φ1 ∂sφ0 δ)−1 = 1
2 + 3

4G
′′(0)c3φ1 ∂sφ0 δ + O(δ2), by

multiplying both sides of the above identity by (2− 3G ′′(0)c3φ1 ∂sφ0 δ)−1, it
suffices to consider

c2∂2s φ0 + c2

r
∂sφ0 δ + 1

2
c∂r c ∂sφ0 δ

−
(
1 + 3

2
G ′′(0)c3φ1 ∂sφ0 δ

)
c∂sφ1 = O(δ2).
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Since c ∼ 1, we finally have

∂2s φ0 +
(
δ

r
+ δ

2c
∂r c − 3δ

2
G ′′(0)c2φ1∂sφ1

)
∂sφ0 − c−1∂sφ1 = O(δ2).

To solve for φ0, for s ∈ [0, 1), we consider the following family of (para-
metrized by a compact set of parameters θ ∈ S

2 and the parameter δ) linear
ordinary differential equation:

∂2s φ0 +
(
δ

r
+ δ

2c
∂r c − 3δ

2
G ′′(0)c2φ1∂sφ1

)
∂sφ0 − c−1∂sφ1 = δ2φ2,

φ0(0, θ) = 0, ∂sφ0(0, θ) = 0.

Since the Ck-norms of the solution depends smoothly on the coefficients and
the parameter θ, δ, all Ck-norms of φ0 are of order O(1) and indeed are deter-
mined by the solution of

∂2s φ0 − c−1∂sφ1 = 0,

φ0(0, θ) = 0, ∂sφ0(0, θ) = 0.

In particular, this shows that the ansatz (1.5) holds ifwe chooseC appropriately
large in (1.5) and δ sufficiently small. Therefore the above construction shows
that

|L2φ| � δ
3
2 .

We claim that, by the above choice of initial data, on �δ−2, we automatically
have

|Lφ| � δ
3
2 .

Indeed, by replacing ∂t = L + c∂r in the main equation, we obtain

∂r Lφ = 1

2c

(
−L2φ − Lc ∂rφ + 2c2

r
∂rφ + c2

r2
�/S2φ

)
.

By the construction of the data, it is obvious that all the terms on the right

hand side are of size O(δ
1
2 ). By integrating from 2 to r with r ∈ [2, 2 + δ)

and Lφ(2, θ) = 0, we have

|Lφ(r, θ)| ≤ δ · O(δ
1
2 ) � δ

3
2 .

�
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The main theorem of the paper is as follows:

Main Theorem For a given constant G ′′(0) �= 0, we consider

−(1 + 3G ′′(0)(∂tφ)2
)
∂2t φ + �φ = 0.

Let (φ1, φ2) be a pair of seed data and the initial data for the equation is taken
to be the no-outgoing-radiation initial data.

If the following condition on φ1 holds for at least one (r, θ) ∈ (0, 1] × S
2:

G ′′(0) · ∂rφ1(r, θ) · φ1(r, θ) ≤ −1

6
, (1.6)

then there exists a constant δ0 which depends only on the seed data (φ1, φ2),
so that for all δ < δ0, shocks form for the corresponding solution φ before
t = −1, i.e. φ will no longer be smooth.

Remark 1.3 The choice ofφ1 in the proof of Lemma 1.1 is arbitrary. In particu-
lar, this is consistentwith the condition (1.6) since φ1 can be freely prescribed.

Remark 1.4 1. We do not assume spherical symmetry on the initial data.
Therefore, the theorem is in nature a higher dimensional result.

2. The proof can be applied to a large family of equations derived through
action principles. We will discuss this point when we consider the
Lagrangian formulation of (�).

3. The condition (1.6) is only needed to create shocks. It is not necessary at
all for the a priori energy estimates.

Remark 1.5 The smoothness of φ breaks down in the following sense:

1. The solution and its first derivative, i.e. φ and ∂φ, are always bounded.

Moreover, |∂tφ| � δ
1
2 , therefore (�) is always of wave type.

2. The second derivative of the solution blows up. In fact, when one
approaches the shocks, ∇∂tφ blows up. See Remark 4.7 for the proof.

1.3 Lagrangian formulation of the main equation and its relation to
nonlinear electromagnetic waves

We briefly discuss the derivation of the main equation (�). The linear wave
equation inMinkowski spacetime (R3+1,mμν) can be derived by a variational
principle: we take the Lagrangian density L(φ) to be 1

2 (−(∂tφ)
2 + |∇xφ|2)

and take the action functional L(φ) to be ∫
R3+1 L(φ)dμm where dμm denotes

the volume form of the standard Minkowski metric mμν . The corresponding
Euler–Lagrange equation is exactly the linear wave equation−∂2t φ+�φ = 0.
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We observe that the quadratic nature of the Lagrangian density result in the
linearity of the equation. This simple observation allows one to derive plenty of
nonlinear wave equations by changing the quadratic nature of the Lagrangian
density. In particular, we will change the quadratic term in ∂tφ to a quartic
term, this will lead to a quasi-linear wave equation.

In fact,we consider a perturbation of theLagrangian density of linearwaves:

L(φ) = −1

2
G
(
(∂tφ)

2)+ 1

2
|∇φ|2, (1.7)

where G = G(ρ) is a smooth function defined on R and ρ = |∂tφ|2. The
corresponding Euler–Lagrange equation is

−∂t
(
G ′(ρ)∂tφ

)+ �φ = 0.

The function G(ρ) as a perturbation of G0(ρ) = ρ and therefore we can
think of the above equation as a perturbation of the linear wave equation. For
instance, we can work with a real analytic function G(ρ) with G(0) = 0 and
G ′(0) = 1. In particular, we can perturb G(ρ) = ρ in the simplest possible
way by adding a quadratic function so that G(ρ) = ρ + 1

2G
′′(0)ρ2. In this

situation, we obtain precisely the main equation (�). It is in this sense that
(�) can be regarded as the simplest quasi-linear wave equation derived from
action principles.

The main equation (�) is also closely tight to electromagnetic waves in
a nonlinear dielectric. The Maxwell equations in a homogeneous insulator
derived from a Lagrangian L which is a function of the electric field E and
the magnetic field B. The corresponding displacements D and H are defined
through L by D = − ∂L

∂E and H = ∂L
∂B respectively. In the case of an isotropic

dielectric, L is of the form

L = −1

2
G(|E |2) + 1

2
|B|2, (1.8)

hence H = B. The fields E and B are derived from the scalar potential φ
and the vector potential A according to E = −∇φ − ∂t A and B = ∇ × A
respectively. This is equivalent to the first pair of Maxwell equations:

∇ × E + ∂t B = 0, ∇ · B = 0.

The potentials are determined only up to a gauge transformation φ �→ φ−∂t f
and A �→ A + d f , where f is an arbitrary smooth function. The second pair
of Maxwell equations

∇ · D = 0, ∇ × H − ∂t D = 0
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are the Euler–Lagrange equations, the first resulting from the variation of φ
and the second resulting from the variation of A. Fixing the gauge by setting
φ = 0, we obtain a simplified model if we neglect the vector character of A
replacing it by a scalar function φ. Then the above equations for the fields in
terms of the potentials simplify to E = −∂tφ and B = ∇φ. The Lagrangian
(1.8) becomes

L = −1

2
G((∂tφ)

2) + 1

2
|∇φ|2

which is exactly (1.7). Therefore, the main equation (�) provides a good
approximation for shock formation in a natural physical model: the shock
formation for nonlinear electromagnetic waves.

1.4 Main features of the proof

We now briefly sketch four main ingredients of the proof.
1. The short pulse method. By rewriting (�) in the semilinear form �mφ =

−3G ′′(0)(∂tφ)2∂2t φ, we notice that the nonlinearity is cubic. Therefore the
result in [12] implies that small smooth initial data lead to global smooth
solutions since the classical null condition is satisfied. We are then forced
to consider large initial data. According to the choice of data in the Main

Theorem, they are supported in the annulus of width δ and with amplitude δ
1
2

which looks like a pulse (the short pulse data). The energy associated to the
data is of size 1. On the technical level, although the short pulse data is no
longer small, we still have a small parameter δ coming into play. Therefore,
most of the techniques for small data problems can also be applied here.

2. A Lorentzian geometry defined by the solutions. Since the Lagrangian,
therefore (�) itself, is invariant under the time translation and the isometries
of R3, we can linearize the equation via the infinitesimal generators of those
actions. The most important feature about the linearized equations is, they
are not just linear, they are linear wave equations with respect to a spe-
cial Lorentzian metric defined by the solution. This reflects the Lagrangian
nature of the equation (�): the metric comes from the second derivative of the
Lagrangian. In particular, the incoming null hypersurfaces with respect to this
metric correspond to the characteristic hypersurfaces of the solution. Recall
that the shock formation is the study of the collapsing of the characteristic
hypersurfaces, hence the differential geometry of the metric dictates shock
formation.

Moreover, we study the energy estimates for the linearized linear wave
equations. The energy estimates on one hand depend heavily on the under-
lying geometry, e.g. the curvature, the fundamental forms of null foliations,
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the isoperimetric inequalities, etc.; on the other hand, the energy estimates
also control the underlying geometry. Therefore, the study of the linearized
equations are more or less equivalent to the study of the underlying geometry.
This leads to a natural bootstrap argument.

3. Coercivity of angular energy near shocks. We use the vector field method
to study the energy estimates for the linearized equations. Since we expect
shock waves, the function μ, i.e., the inverse density of the characteristic
hypersurfaces,may turn to 0. Thiswill pose a fundamental difficulty for energy
estimates (even for linear wave equations!). Roughly speaking, for a free wave
ψ , for all possible multiplier vectorfields, in the associated energy or flux
integrals, the components for the rotational directions all look like

∫
μ|∇/ψ |2.

But in the error integrals, some ∇/ψ components show up without a μ factor.
In view of the fact that μ → 0 in the shock region, the above disparity in μ
shows that one can not control the error integrals by the energy or flux terms.

This difficulty is of course tied to the formation of shocks. The remarkable
thing is, it is also resolved by the formation of shocks. The idea is as follows:
initially, the μ ∼ 1. If in the future, no shock forms, then the disparity of μ
simply result in an universal constant in the estimates since μwill be bounded
below and above. If shock forms eventually, then along the incoming direction
μ decreases, i.e. Lμ < 0 where L is the generator of the incoming null
geodesics. Although the error integrals contain many terms without factor μ
for ∇/ψ , there is one term has a very special form: it looks like

∫∫
Lμ|∇/ψ |2.

The sign of Lμ in the shock region shows amiraculous coercivity of the energy
estimates. This term is just enough to control all the∇/ψ terms appearing in the
error terms. This is the major difference between the usual energy estimates
and the case where shocks form. The use of the sign Lμ is the key to the entire
argument in the current work.

4. The descent scheme. The energy estimates on the top order terms may
suffer a loss of a factor in μ and this can be dangerous in the shock region.
Indeed, some error integral looks like

∫ t
−r0

μ−1 ∂μ
∂t E(τ )dτ where E(τ ) for the

energy (it appears also on the lefthand side of the energy identity). If s∗ is
the time where shock forms, we can show that μ behaves like |t − s∗| near
shocks. Therefore, the presence of μ−1 cause a log loss in time. The descent
scheme is designed to retrieve the loss. The idea is, rather than proving the
top order terms are bounded in energy, we prove that the energy may blow
up with a specific rate in μ to some negative power. To illustrate the idea, we
do the following formal computations by assuming Ẽ(t) = supτ≤t μ

a E(τ ) is
bounded for a large positive number a. The energy identity, which looks like
E(t) + · · · �

∫ t
−r0

μ−1 ∂μ
∂t E(τ )dτ + · · · , can be rewritten as

E(t) + · · · �
(∫ t

−r0
μ−(a+1) ∂μ

∂t
dτ

)
Ẽ(t) + · · · .
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Since μ ∼ |t − s∗|, the term in the parenthesis gives a factor 1
a which is small

(a is large!). Therefore, the righthand side can be absorbed by the lefthand
side.

2 The optical geometry

2.1 Optical metrics and linearized equations

Weobserve thatmain equation (�) is invariant under the following symmetries:
space translations, rotations and the time translation. Indeed, the Lagrangian
L(φ) is invariant under these symmetries, hence the Euler–Lagrange equa-
tion must be invariant too. We use A to denote any possible choice from
{∂t , ∂i , i j = xi∂ j − x j∂i } where i, j = 1, 2, 3 and i < j . These vectorfields
correspond to the infinitesimal generators of the symmetries of (�).

We linearize (�) according to A by the following procedure: We apply the
symmetry generated by A to a solution φ of (�) to obtain a family of solutions
{φτ : τ ∈ R

∣
∣φ0 = φ}. Therefore,− 1

c(φτ )2
∂2t φτ +�φτ = 0 for τ ∈ R. We then

differentiate in τ and evaluate at τ = 0. We define the so called variations
ψ as

ψ := Aφ = dφτ
dτ

|τ=0 (2.1)

By regarding φ as a fixed function, this procedure produce a linear equation
for ψ . We call it the linearized equation of (�) for the solution φ with respect
to the symmetry A.

In the tangent space at each point in R
3+1 where the solution φ is defined,

we introduce a Lorentzian metric gμν as follows

g = −c2dt ⊗ dt + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3, (2.2)

with (t, x1, x2, x3) being the standard rectangular coordinates in Minkowski
spacetime. Since c depends on the solution φ, gμν also depends on the solution
φ. We also introduce a conformal metric g̃μν with the conformal factor = 1

c

g̃μν =  · gμν = 1

c
gμν. (2.3)

We refer gμν and g̃μν as the optical metric and the conformal optical metric
respectively.
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Lemma 2.1 The linearized equation of (�) for a solution φ with respect to A
can be written as

�g̃ψ = 0, (2.4)

where �g̃ is the wave operator with respect to g̃ and ψ = Aφ.

There are two ways to derive the linearized equations.
To derive (2.4), we can directly differentiate (�). We denote the Christoffel

symbols of g̃ in the Cartesian coordinates by �̃
γ
αβ . Let �̃

γ = g̃αβ�̃γ
αβ , then

�̃0 = −2c−2∂t c and the other �̃γ ’s vanish. Hence,

�g̃ψ = g̃μν∂μ∂νψ − �̃γ ∂γ ψ

= c

⎡

⎢⎢
⎢
⎣

(
− 1

c2
∂2t ψ + �ψ

)

︸ ︷︷ ︸
T1

− ∂ρ

(
1

c2

)
∂tρ · ∂tψ

︸ ︷︷ ︸
T2

⎤

⎥⎥
⎥
⎦
,

where ρ = (∂tφ)
2. We use A to differentiate (�g). If A hits the factor − 1

c2
, it

yields T2; since A (the symmetries!) commutes with ∂t and�, the other terms
are precisely T1.

There is a more natural proof which is standard in Lagrangian field theory,
e.g. see [4]. In fact, the linearized equation of (�) is the Euler–Lagrange equa-
tion of the linearized Lagrangian density L̇(ψ) := 1

2
d2

dτ 2

∣
∣
τ=0L(φ+τψ). Since

G(ρ) = ρ + 1
2G

′′(0)ρ2, we have

L̇(ψ)= − 1

2
G ′(0)(∂tψ)2−3

2
G ′′(0)(∂tφ)2(∂tψ)2 + 1

2
|∇ψ |2= 1

2
gμν∂μψ∂νψ.

Therefore, if D ⊂ R
3+1 is a domain in which the solution φ is defined, the

action corresponding to L̇ is L̇(ψ) = 1
2

∫
D gμν∂μψ∂νψ dμm . We emphasize

that the volume form dμm is defined by the Minkowski metric mαβ . In view
of the definitions of gμν and g̃μν , the action L̇(ψ) can be written as

L̇(ψ) = 1

2

∫

D
g̃μν∂μψ∂νψ dμg̃.

At this stage, it is clear that the linearized equation is the free wave equation
with respect to �g̃.
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2.2 Lorentzian geometry of the maximal development

2.2.1 The maximal development

We define a function u on �−2 as follows:

u := r − 2. (2.5)

The level sets of u in �−2 are denoted by S−2,u and they are round spheres of
radii u + 2. The annular region �δ−2 defined in (1.2) is foliated by S−2,u as

�δ−2 :=
⋃

u∈[0,δ]
S−2,u . (2.6)

Given an initial data set (φ, ∂tφ)
∣
∣
t=−2 defined on B2+δ

−2 =⋃u∈[−2,δ] S−2,u
to the main equation (�) (as we stated in the Main Theorem), we recall the
notion of the maximal development or maximal solution with respect to the
given data.

By virtue of the local existence theorem (to (�) with smooth data), one can
claim the existence of a development of the given initial data set, namely, the
existence of

• a domain D in Minkowski spacetime, whose past boundary is B2+δ
−2 ;

• a smooth solution φ to (�) defined on D with the given data on B2+δ
−2

with following property: For any point p ∈ D, if an inextendible curve
γ : [0, τ ) → D satisfies the property that
1. γ (0) = p,
2. For any τ ′ ∈ [0, τ ), the tangent vector γ ′(τ ′) is past-pointed and causal

(i.e., g(γ ′(τ ′), γ ′(τ ′)) ≤ 0) with respect to the optical metric gαβ at the
point γ (τ ′),

then the curve γ must terminate at a point of B2+δ
−2 .
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By the standard terminology of Lorentzian geometry, the above simply says
that B2+δ

−2 is a Cauchy hypersurface of D.
The local uniqueness theorem asserts that if (D1, φ1) and (D2, φ2) are two

developments of the same initial data sets, thenφ1 = φ2 inD1
⋂D2. Therefore

the union of all developments of a given initial data set is itself a development.
This is the so called maximal development and its corresponding domain is
denoted by W ∗. The corresponding solution is called the maximal solution.
Sometimes we also identify the development as its corresponding domain
when there is no confusion.

2.2.2 Geometric set-up

Given an initial data set, we consider a specific family of incoming null hyper-
surfaces (with respect to the optical metric g) on the maximal development
W ∗. Recall that u is defined on �−2 as r − 2. For any u ∈ [0, δ], we use Cu
to denote the incoming null hypersurface emanated from the sphere S−2,u . By
definition, we have Cu ⊂ W ∗ and Cu

⋂
�−2 = S−2,u .

We denote the subset of the maximal development of the given initial data
foliated by Cu with u ∈ [0, δ] by Wδ , i.e.,

Wδ =
⋃

u∈[0,δ]
Cu . (2.7)

Roughly speaking, our main estimates will be carried out only on Wδ . The
reason is as follows: since we assume that the data set is completely trivial
for u ≤ 0 on �−2, the uniqueness of smooth solutions for quasilinear wave
equations implies that the spacetime in the interior of C0 is indeed determined
by the trivial solution. Modulo the spherical configurations, the situation can
be depicted as

123



S. Miao, P. Yu

The grey region is Wδ . In the light gray region, the solution φ ≡ 0 thanks
to the construction of the initial data. The solution to (1.1) then vanishes up to
infinite order on C0, which is part of the boundary of Wδ . In particular, C0 is
a flat cone in Minkowski spacetime (with respect to the Minkowski metric).

The dashed line denotes a incoming null hypersurface in the above picture.
We extend the function u to Wδ by requiring that the hypersurfaces Cu are
precisely the level sets of the function u. Since Cu is null with respect to gαβ ,
the function u is then a solution to the equation

(g−1)αβ∂αu∂βu = 0, (2.8)

where (g−1)αβ is the inverse of the metric gαβ . We call such a function u an
optical function.

With respect to the affine parameter, the future-directed tangent vectorfield
of a null geodesic on Cu is given by

L̂ := −(g−1)αβ∂αu ∂β. (2.9)

However, for an apparent reason, which will be seen later, instead of using
L̂ , we will work with a renormalized (by the time function t) vectorfield L
defined through

L = μL̂, Lt = 1, (2.10)

i.e., L is the tangent vectorfield of null geodesics parametrized by t .
The function μ can be computed as

1

μ
= −(g−1)αβ∂αu∂β t.

We will see later on that the μ also has a very important geometric meaning:
μ−1 is the density of the foliation

⋃
u∈[0,δ] Cu .
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Given u ≤ δ, to consider the density of null-hypersurface-foliation on
�t
⋂

Wδ , we define

μ
u
m(t) = min

(

inf
(u′,θ)∈[0,u]×S2

μ(t, u′, θ), 1
)

. (2.11)

For u = δ, we define

s∗ = sup
{
t
∣
∣t ≥ −2 and μδ

m(t) > 0
}
.

From the PDE perspective, for the given initial data to (�) (as constructed in
Lemma 1.1), we also define

t∗ = sup
{
τ
∣
∣τ ≥ −2 such that the smooth solution exists for all

(t, u) ∈ [−2, τ ) × [0, δ] and θ ∈ S
2
}
.

Finally, we define

s∗ = min{s∗,−1}, t∗ = min{t∗, s∗}. (2.12)

We remark that we will exhibit data in such a way that the solution breaks
down before t = −1. This is the reason we take −1 in the definition of s∗.

In the sequel, we will work in a further confined spacetime domain W ∗
δ ⊂

Wδ ⊂ W ∗ to prove a priori energy estimates. By definition, it consists of all
the points in Wδ with time coordinate t ≤ t∗, i.e.,

W ∗
δ = Wδ

⋂
⎛

⎝
⋃

−2≤t≤t∗
�t

⎞

⎠ .

In the previous picture, the region W ∗
δ is the part of the grey region below the

horizontal dash-dot line.
For the purpose of future use, we introduce more notations to describe

various geometric objects.
For each (t, u) ∈ [−2, t∗) × [0, δ], we use St,u to denote the closed two

dimensional surface

St,u := �t

⋂
Cu . (2.13)

In particular, we have

W ∗
δ =

⋃

(t,u)∈[−2,t∗)×[0,δ]
St,u . (2.14)

123



S. Miao, P. Yu

For each (t, u) ∈ [−2, t∗) × [0, δ], we define

�
u
t :={(t, u′, θ) ∈ �t | 0 ≤ u′ ≤ u

}
,

Ct
u :={(τ, u, θ) ∈ Cu | −2 ≤ τ ≤ t

}
,

Wt
u :=

⋃

(t ′,u′)∈[−2,t)×[0,u]
St ′,u′ .

(2.15)

One can consult the previous picture to visualize those objects. In particular,
Wt

u is the grey region bounded by �
u
t and Ct

u .
In what follows when working in Wt

u , we usually omit the superscript u to

write μu
m(t) as μm(t), whenever there is no confusion.

We define the vectorfield T in W ∗
δ by the following three conditions:

1. T is tangential to �t ;
2. T is orthogonal (with respect to g) to St,u for each u ∈ [0, δ];
3. Tu = 1.

The letter T stands for “transversal” since the vectorfield is transversal to the
foliation of null hypersurfaces Cu .

In particular, the point (1) implies

T t = 0. (2.16)

According to (2.8)–(2.10), we have

Lu = 0, Lt = 1. (2.17)

In view of (2.10), (2.17), (2.16) and the fact Tu = 1, we see that the commu-
tator

� := [L, T ] (2.18)

is tangential to St,u .
In view of (2.8)–(2.10) and the fact Tu = 1 we have

g(L, T ) = −μ, g(L, L) = 0. (2.19)

Since T is spacelike with respect to g (indeed, �t is spacelike and T is
tangential to �t ), we denote

g(T, T ) = κ2, κ > 0. (2.20)
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Lemma 2.2 We have the following relations for L, T, μ and κ:
μ = cκ, L = ∂0 − cκ−1T, (2.21)

where ∂0 is the standard time vectorfield in Minkowski spacetime.

Proof The vectorfield ∂0 is perpendicular to�t and therefore is perpendicular
to St,u . Since L and T are two linearly independent vectorfields perpendicular
to St,u and Lt = ∂0t = 1, we have

∂0 = L + f T

for some scalar function f . On the other hand, ∂0 is perpendicular to�t hence
to T , we have

0 = g(∂0, T ) = g(L, T ) + f g(T, T ) = −μ + f κ2.

Therefore, f = μ

κ2
= c

κ
and the second formula in (2.21) follows.

For the first formula, in view of the defining equation of the optical metric
g, we have

−c2 = g(∂0, ∂0) = g(L + f T, L + f T ) = −2 f μ + f 2κ2.

Since f = c
κ
, we can solve for μ to complete the proof. �

Remark 2.3 On the initial Cauchy surface �−2, since u = r − 2, we have
T = ∂r and κ = 1. Therefore, by using the standard rectangular coordinates,
we obtain that

L = ∂t − c∂r .

This is coherent with the notations and computations in Lemma 1.1.

2.2.3 The optical coordinates

We construct a new coordinate system onW ∗
δ . If shocks form, the new coordi-

nate system is completely different from the rectangular coordinates. Indeed,
we will show that they define two differentiable structures onW ∗

δ when shocks
form.

Given u ∈ [0, δ], the generators of Cu define a diffeomorphism between
S−2,u and St,u for each t ∈ [−2, t∗). Since S−2,u is diffeomorphic to the
standard sphere S

2 ⊂ R
3 in a natural way. We obtain a natural diffeo-

morphism between St,u and S
2. If local coordinates (θ1, θ2) are chosen on

S
2, the diffeomorphism then induces local coordinates on St,u for every
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(t, u) ∈ [−2, t∗) × [0, δ]. The local coordinates (θ1, θ2), together with the
functions (t, u) define a complete system of local coordinates (t, u, θ1, θ2)
for W ∗

δ . This new coordinates are defined as the optical coordinates.
We now express for L , T and the optical metric g in the optical coordinates.
First of all, the integral curves of L are the lines with constant u and θ . Since

Lt = 1, therefore in optical coordinates we have

L = ∂

∂t
. (2.22)

Similarly, since Tu = 1 and T is tangential to �t , we have

T = ∂

∂u
− � (2.23)

with � a vectorfield tangential to St,u . Locally, we can express � as

� =
∑

A=1,2

�A ∂

∂θ A
, (2.24)

The metric g then can be written in the optical coordinates (t, u, θ1, θ2) as

g = −2μdtdu + κ2du2 + /gAB(dθ
A + �Adu)(dθ B + �Bdu) (2.25)

with

/gAB = g

(
∂

∂θ A
,

∂

∂θ B

)
, 1 ≤ A, B ≤ 2. (2.26)

To study the differentiable structure defined by the optical coordinates,
we study the Jacobian � of the transformation from the optical coordinates
(t, u, θ1, θ2) to the rectangular coordinates (x0, x1, x2, x3).

First of all, since x0 = t , we have

∂x0

∂t
= 1,

∂x0

∂u
= ∂x0

∂θ A
= 0.

Secondly, by (2.23), we can express T = T i∂i in the rectangular coordinates
(x1, x2, x3) as

T i = ∂xi

∂u
−
∑

A=1,2

�A ∂x
i

∂θ A
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In view of the fact that T is orthogonal to ∂
∂θ A

with respect to the Euclidean
metric (which is the induced metric of g on �t !), we have

� = det

⎛

⎜
⎝

T 1 T 2 T 3

∂x1

∂θ1
∂x2

∂θ1
∂x3

∂θ1

∂x1

∂θ2
∂x2

∂θ2
∂x3

∂θ2

⎞

⎟
⎠ = ‖T ‖

∥
∥∥
∥

∂

∂θ1
∧ ∂

∂θ2

∥
∥∥
∥ = c−1μ

√
det /g,

where‖·‖measures themagnitude of a vectorfieldwith respect to theEuclidean
metric in R

3 (defined by the rectangular coordinates (x1, x2, x3)).
We end the discussion by an important remark. We can also read the con-

clusions from the following picture:

Remark 2.4 (Geometric meaning of μ) In the sequel, we will show that the
wave speed function c will be always approximately equal to 1 in W ∗

δ . Since
μ = cκ , we may think of μ being κ in a efficient way.

On the other hand, by the definition of T , in particular Tu = 1, we know
that κ−1 is indeed the density of the foliation by the Cu’s. This is because

g(T, T ) = κ2. Since the optical metric coincides with the Euclidean metric
on each constant time slice�t , byμ ∼ κ , we arrive at the following conclusion:

• μ−1 measures the foliation of the incoming null hypersurfaces Cu’s.

Therefore, by regarding shock formation as the collapsing (i.e. the density
blows up) of the characteristics (� the incoming null hypersurfaces), we may
say that

• Shock formation is equivalent to μ → 0.

By virtue of the formula � = c−1μ
√
det /g, it is clear (the volume ele-

ment
√
det /g will be controlled in the sequel) that if shock forms then the

coordinate transformation between the optical coordinates and the rectangu-
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lar coordinates will fail to be a diffeomorphism. Therefore, we can also say
that

• Shock formation is equivalent to the fact that the optical coordinates on
the maximal development defines a different differentiable structure (com-
pared to the usual differentiable structure induced from the Minkowski
spacetime).

2.3 Connection, curvature and structure equations

We use∇ to denote the Levi-Civita connection of g and use XA to denote ∂
∂θ A

.

The 2nd fundamental form of the embedding St,u ↪→ Cu is

χ
AB

= g(∇XA L, XB). (2.27)

The trace/traceless part is defined by trχ = trg/ χ = g/ ABχ
AB

and χ̂
AB

=
χ

AB
− 1

2 trχ g/ AB . Let T̂ = cμ−1T . Then, g(T̂ , T̂ ) = 1. The 2nd fundamental
form of St,u ↪→ �t is

θAB = g(∇XA T̂ , XB) (2.28)

By virtue of (2.2), we have χ
AB

= −c θAB . Thanks to Gauss’ Theorema
Egregium, the Gauss curvature K of St,u is

K = 1

2
(tr/gθ)

2 − 1

2
|θ |2

/g = 1

2
c−2((tr/gχ)

2 − |χ |2
/g

)
. (2.29)

We introduce an outgoing null vectorfield

L = c−2μL + 2T (2.30)

so that g(L , L) = −2μ. The corresponding 2nd fundamental form is χAB =
g(∇XA L , XB). Similarly, we define trχ = trg/ χ = g/ ABχAB and χ̂AB =
χAB − 1

2 trχ g/ AB .
The torsion one forms η

A
and ζ

A
are defined by ζ

A
= g(∇XA L, T ) and

η
A

= −g(∇XAT, L). They are related to the inverse density μ by η
A

=
ζ
A

+ XA(μ) and ζ A
= −c−1μ XA(c).
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The covariant derivative∇ is now expressed in the frame (T, L, X1, X2) by
(∇/ is the restriction of ∇ on St,u)

∇L L = μ−1(Lμ)L, ∇T L = ηAXA − c−1L(c−1μ)L,

∇XA L = −μ−1ζ
A
L + χ

A
B XB, ∇LT = −ζ AXA − c−1L(c−1μ)L,

∇T T = c−3μ(T c + L(c−1μ))L + (c−1(T c + L(c−1μ))

+ T (log(c−1μ)))T − c−1μ/gAB XB(c
−1μ)XA,

∇XAT = μ−1η
A
T + c−1μθAB/g

BC XC , ∇L XA = ∇XA L, ∇XA XB

= ∇/ XA
XB + μ−1χ

AB
T .

In terms of null frames (L , L, X1, X2), we have

∇L L = −L(c−2μ)L + 2ηAXA, ∇L L = −2ζ AXA,

∇L L = (μ−1Lμ + L(c−2μ))L − 2μX A(c−2μ)XA,

∇XA L = μ−1η
A
L + χA

B XB,

∇XA XB = ∇/ XA
XB + 1

2
μ−1χ

AB
L + 1

2
μ−1χABL.

In the Cartesian coordinates, the only non-vanishing curvature components
are R0i0 j ’s:

R0i0 j = 1

2

d(c2)

dρ
∇i∇ jρ + 1

2

d2(c2)

dρ2
∇iρ∇ jρ − 1

4
c−2

∣
∣∣
∣
d(c2)

dρ

∣
∣∣
∣

2

∇iρ∇ jρ.

In the optical coordinates, the only nonzero curvature components are αAB =
R(XA, L, XB, L):

αAB = 1

2

d(c2)

dρ
/∇2
XA,XB

ρ − 1

2
μ−1 d(c

2)

dρ
T (ρ)χ

AB

+ 1

2

(
d2(c2)

dρ2
− 1

2
c−2

∣∣
∣
∣
d(c2)

dρ

∣∣
∣
∣

2
)

XA(ρ)XB(ρ).

We define

α′
AB = 1

2

d(c2)

dρ
/∇2
XA,XB

ρ + 1

2

[
d2(c2)

dρ2
− 1

2
c−2

∣
∣∣
∣
d(c2)

dρ

∣
∣∣
∣

2
]

XA(ρ)XB(ρ).
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Therefore, we write

αAB = −1

2
μ−1 d(c

2)

dρ
T (ρ)χ

AB
+ α′

AB . (2.31)

Remark 2.5 As a convention, we say that the first term on the right hand side
of (2.31) is singular in μ (since μ may go to zero). The second term α′

AB is
regular in μ.

Indeed, in the course of the proof, wewill see thatα′
AB are bounded andαAB

behaves exactly as μ−1 in amplitude. Therefore, in addition to two equivalent
descriptions of the shock formation in Remark 2.4, we have another geometric
interpretation:

• Shock formation is equivalent to the fact that curvature tensor of the optical
metric g becomes unbounded.

Compared to the one dimensional picture of shock formation in conservation
laws, e.g., for inviscid Burgers equation, this new description of shock forma-
tion is purely geometric in the following sense: it does not even depend on the
choice of characteristic foliation (because the curvature tensor is tensorial!).

In the frame (T, L, ∂
∂θ A

), the connection coefficients and the curvature com-
ponents satisfies the following structure equations:

L(χ
AB

) = μ−1(Lμ)χ
AB

+ χ
A
Cχ

BC
− αAB, (2.32)

/divχ − /dtrχ = −μ−1(ζ · χ − ζ trχ), (2.33)

/LTχ AB
=(∇/ ⊗̂η)AB + μ−1(ζ ⊗̂η)AB−c−1L(c−1μ)χ

AB
+ c−1μ(θ⊗̂χ)AB,

(2.34)

where (ζ · χ)B = /gACζ
A
χ
BC

, (∇/⊗̂η)AB = 1
2 (∇/ AηB

+ ∇/ BηA
), (ζ ⊗̂η)AB =

1
2 (ζ A

η
B

+ ζ
B
η
A
) and (θ⊗̂χ)AB = 1

2 (θACχ
C
B

+ θBCχ
C
A
). By taking the trace

of (2.32), we have

Ltrχ = μ−1(Lμ)trχ − |χ |2
/g − trα. (2.35)

The inverse density function μ satisfies the following transport equation:

Lμ = m + μe, (2.36)
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with m = −1
2
d(c2)
dρ Tρ and e = 1

2c2
d(c2)
dρ Lρ. With these notations, we have

αAB = μ−1mχ
AB

+ α′
AB .

Regarding the regularity in μ, we use (2.36) to replace Lμ in (2.32). This
yields

L(χ
AB

) = eχ
AB

+ χ
A
Cχ

BC
− α′

AB . (2.37)

Compared to the original (2.32), the new equation is regular μ in the sense
that it has no μ−1 terms.

2.4 Rotation vectorfields

Although g
∣
∣
�t

is flat, the foliation St,u is different from the standard spherical

foliations. In the Cartesian coordinates on �t , let 1 = x2∂3 − x3∂2, 2 =
x3∂1 − x1∂3 and 3 = x1∂2 − x2∂1 be the standard rotations. Let � be
the orthogonal projection to St,u (embedded in �t ). The rotation vectorfields
Ri ∈ �(T St,u) (i = 1, 2, 3) are defined by

Ri = �i . (2.38)

Let indices i, j, k ∈ {1, 2, 3}. We use the T k , Lk and Xk
A to denote the com-

ponents for T , L and XA in the Cartesian frame {∂i } on �t (notice that L has
also a 0 component L0 = 1). We use T̂ = cμ−1T is the outward unit normal
of St,u in�t . We introduce some functions to measure the difference between
the foliations St,u and the standard spherical foliations.

The functions λi ’s measure the derivation from Ri to i :

λi T̂ = i − Ri . (2.39)

The functions y′k’s measure the derivation from T̂ to the standard radial vec-
torfield xi

r ∂i :

y′k = T̂ k − xk

r
. (2.40)

We also define (we will show that |yk − y′k | is bounded by a negligible small
number)

yk = T̂ k − xk

u − t
. (2.41)
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The functions zk’s measure the derivation of L from ∂t − ∂r in Minkowski
spacetime:

zk = Lk + xk

u − t
= −(c − 1)xk

u − t
− cyk .

Finally, the rotation vectorfields can be expressed as

Ri = i − λi

3∑

j=1

T̂ j∂ j , λi =
3∑

j,k,l=1

εilk x
l yk, (2.42)

where εi jk is the totally skew-symmetric symbol.

3 Initial data, bootstrap assumptions and the main estimates

3.1 Preliminary estimates on initial data

In the Main Theorem, we take the so called short pulse datum for (�) on�δ−r0 .
Recall that φ(−r0, x) = δ3/2φ0(

r−r0
δ

, θ) and ∂tφ(−r0, x) = δ1/2φ1(
r−r0
δ

, θ),
where φ0, φ1 ∈ C∞

0

(
(0, 1] × S

2
)
. The condition (3) in the statement of the

Main Theorem reads as

‖Lφ‖L∞(�δ−2

) � δ3/2, ‖L2φ‖L∞(�δ−2

) � δ3/2.

We now derive estimates for φ and its derivatives on �δ−2. These estimates
also suggest the estimates, e.g. the bootstrap assumptions in next subsection,
that one can expect later on.

For φ and ψ = Aφ where A ∈ {∂α}, by the form of the data, we clearly
have

‖φ‖L∞(�δ−2)
� δ3/2, ‖ψ‖L∞(�δ−2)

� δ1/2. (3.1)

We will use Z or Z j to denote any vector from {T, Ri , Q} where Q = t L .
On �δ−2, Z is simply ∂r , i or −r0(∂t − ∂r ), therefore, we have ‖Z1 ◦ Z2 ◦
· · · ◦ Zm(ψ)‖L∞(�δ−2)

� δ1/2−l where l is the number of T ’s appearing in
{Z j }1≤ j≤m . We shall use the following schematic expression

‖Zmψ‖L∞(�δ−2)
� δ1/2−l, (3.2)

with l is the number of T ’s and Z ∈ {T, i , Q}. We remark that in this paper
l ≤ 2 and Q appears at most twice in the string of Z ’s.
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We also consider the incoming energy for Zmψ on�δ−2. According to (3.2),
we have

‖L(Zmψ)‖L2(�δ−2)
+ ‖/d(Zmψ)‖L2(�δ−2)

� δ1−l, ‖T (Zmψ)‖L2(�δ−2)
� δ−l

where /d denotes for the exterior differential on St,u . In terms of L , form ∈ Z≥0,
we obtain

‖L(Zmψ)‖L2(�δ−2)
+ ‖/d(Zmψ)‖L2(�δ−2)

� δ1−l, ‖L(Zmψ)‖L2(�δ−2)
� δ−l

(3.3)

where l is the number of T ’s in Z ’s.
We also consider the estimates on some connection coefficients on �−r0 .

For μ, since we have g(T, T ) = c−2μ2 and T = ∂r on �−r0 , we then have

μ = c on �r0 . Since c = (1 + 2G ′′(0)(∂tφ)2)−
1
2 , according to (3.1), for

sufficiently small δ, we obtain

‖μ − 1‖L∞(�δ−2)
� δ. (3.4)

For χ
AB

, since χ
AB

= −cθAB = − c
r0 /
gAB , we have χ AB

+ 1
r0 /
gAB = (1 −

c) 1
r0 /
gAB . Hence,

∥
∥
∥∥χ AB

+ 1

r0
/gAB

∥
∥
∥∥
L∞(�δ−2)

� δ. (3.5)

It measures the difference between the 2nd fundamental form with respect to
gαβ and mαβ .

3.2 Bootstrap assumptions and the main estimates

We expect the estimates (3.1)–(3.3) hold not only for t = −2 but also for later
time slice in W ∗

δ . For this purpose, we will run a bootstrap argument to derive
the a priori estimates for the Zmψ’s.

3.2.1 Conventions

We first introduce three large positive integers Ntop, Nμ and N∞. They will be
determined later on. We require that Nμ = �34Ntop� and N∞ = �12Ntop� + 1.
Ntop will eventually be the total number of derivatives applied to the linearized
equation �g̃ψ = 0.
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To count the number of derivatives, we define the order of an object. The
solution φ is considered as an order −1 object. The variations ψ = Aφ are of
order 0. Themetric g depends only onψ , so it is of order 0. The inverse density
functionμ is of order 0. The connection coefficients are 1st order derivatives on
g, hence, of order 1. In particular, χ

AB
is of order 1. Let α = (i1, . . . , ik−1) be

a multi-index with i j ’s from {1, 2, 3}. We use Zαψ as a schematic expression
of Zi1Zi2 · · · Zik−1ψ . The order of Zαψ is |α|, where |α| = k−1. Similarly, for
any tensor of order |α|, after taking m derivatives, its order becomes |α| +m.
The highest order objects in this paper will be of order Ntop + 1.

Let l ∈ Z≥0 and k ∈ Z. We use Ol
k or O≤l

k to denote any term of order l or
at most l with estimates

‖Ol
k‖L∞(�δ

t )
� δ

1
2 k, ‖O≤l

k ‖L∞(�δ
t )

� δ
1
2 k .

Similarly, we use �l
k or �≤l

k to denote any term of order l or at most l with
estimates

‖�l
k‖L∞(�δ

t )
� δ

1
2 k, ‖�≤l

k ‖L∞(�δ
t )

� δ
1
2 k,

and moreover, it can be explicitly expressed a function of the variationsψ . For
example, ∂tφ ·∂iφ ∈ �0

2 ; A term of the form
∏n

i=1 Z
αiψ so that max |αi | ≤ m

is �≤m
n−2l , where l is the number of T appearing in the derivatives. Note that χ

and μ can not be expressed explicitly in terms of ψ .
TheOl

k terms (or similarly the�l
k terms) obey the following algebraic rules:

O≤l
k + O≤l ′

k′ = O≤max(l,l ′)
min(k,k′) , O≤l

k O≤l ′
k′ = O≤max(l,l ′)

k+k′ .

3.2.2 Bootstrap assumptions on L∞ norms

Motivated by (3.2), we make the following bootstrap assumptions (B.1) on
W ∗

δ : For all t and 2 ≤ |α| ≤ N∞,2

‖ψ‖L∞(�δ
t )

+ ‖Lψ‖L∞(�δ
t )

+ ‖/dψ‖L∞(�δ
t )

+ δ‖Tψ‖L∞(�δ
t )

+δl‖Zαψ‖L∞(�δ
t )

� δ
1
2 M. (B.1)

where l is the number of T ’s appearing in Zα andM is a large positive constant
depending on φ. We will show that if δ is sufficiently small which may depend
on M , then we can choose M in such a way that it depends only on the initial
datum.

2 For a multi-index α, the symbol α−1means another multi-index β with degree |β| = |α|−1.
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3.2.3 Energy norms

Let dμ/g be the volume form of /g, for a function f (t, u, θ), we define

∫

�
u
t

f =
∫ u

0

(∫

St,u′
f (t, u′, θ)dμ/g

)

du′,

∫

Ct
u

f =
∫ t

−r0

(∫

Sτ,u
f (τ, u, θ)dμ/g

)

dτ.

For a function �(t, u, θ), we define the energy flux through the hypersur-
faces �u

t and Ct
u as

E(�)(t, u) =
∫

�
u
t

(L�)2 + μ2|/d�|2, F(�)(t, u) =
∫

Ct
u

μ|/d�|2,

E(�)(t, u) =
∫

�
u
t

μ(L�)2 + μ|/d�|2, F(�)(t, u) =
∫

Ct
u

(L�)2.

(3.6)

For each integer 0 ≤ k ≤ Ntop, we define

Ek+1(t, u) =
∑

ψ

∑

|α|=k−1

δ2l E(Zα+1ψ)(t, u),

Fk+1(t, u) =
∑

ψ

∑

|α|=k−1

δ2l F(Zα+1ψ)(t, u),

Ek+1(t, u) =
∑

ψ

∑

|α|=k−1

δ2l E(Zα+1ψ)(t, u),

Fk+1(t, u) =
∑

ψ

∑

|α|=k−1

δ2l F(Zα+1ψ)(t, u),

(3.7)

where l is the number of T ’s appearing in Zα . The symbol
∑

ψ means to sum
over all the first order variations Aφ of ψ . For the sake of simplicity, we shall
omit this sum symbol in the sequel.

For each integer 0 ≤ k ≤ Ntop, we assign a nonnegative integer bk to k in
such a way that

b0 = b1 = · · · = bNμ = 0, bNμ+1 < bNμ+2 < · · · < bNtop . (3.8)

Wecallbk’s the blow-up indices. The sequence (bk)0≤k≤Ntop will be determined
later on.
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For each integer 0 ≤ k ≤ Ntop, we also define the modified energy Ẽk(t, u)
and Ẽk(t, u) as

Ẽk+1(t, u) = sup
τ∈[−r0,t]

{μu
m(τ )

2bk+1Ek+1(τ, u)},

Ẽk+1(t, u) = sup
τ∈[−r0,t]

{μu
m(τ )

2bk+1Ek+1(τ, u)}

F̃k+1(t, u) = sup
τ∈[−r0,t]

{μu
m(τ )

2bk+1Fk+1(τ, u)},

F̃k+1(t, u) = sup
τ∈[−r0,t]

{μu
m(τ )

2bk+1Fk+1(τ, u)}

(3.9)

We now state the main estimates of the paper.

Theorem 3.1 There exists a constant δ0 depending only on the seed data φ0
and φ1, so that for all δ < δ0, there exist constants M0, Ntop and (bk)0≤k≤Ntop

with the following properties

• M0, Ntop and (bk)0≤k≤Ntop depend only on the initial datum.• The inequalities (B.1) holds for all t < t∗ with M = M0.
• Either t∗ = −1 and we have a smooth solution in the time slab [−2,−1];
or t∗ < −1 and then ψα’s as well as the rectangular coordinates xi ’s
extend smoothly as functions of the coordinates (t, u, θ) to t = t∗ and
there is at least one point on �δ

t∗ where μ vanishes, thus we have shock
formation.

• If, moreover, the initial data satisfies the largeness condition (1.6), then
in fact t∗ < −1.

Before we start the detailed analysis, it is instructional to provide a 3-step
scheme to illustrate the structure of the proof (of Theorem 3.1):
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3.3 Preliminary results based on (B.1)

3.3.1 Estimates on metric and connection

We start with bounds on c.

Lemma 3.2 For sufficiently small3 δ, we have

‖c − 1‖L∞(�δ
t )

� δM2,
1

2
≤ c ≤ 2,

‖Lc‖L∞(�δ
t )

+ ‖/dc‖L∞(�δ
t )

� δM2, ‖T c‖L∞(�δ
t )

� M2.

(3.10)

Proof Let ψ0 = ∂tφ. Since c = (
1 + 3G ′′(0)(∂tφ)2

)− 1
2 , in view of (B.1),

we can take ε = 1
4G ′′(0)M2 . Therefore, the quantity in the parenthesis falls in

[14 , 74 ], this implies the bound on c.

On the other hand, Lc = −(3/2)G ′′(0)
(
1 + 3G ′′(0)ψ2

0

)− 3
2ψ0 · Lψ0. We

then use (B.1) exactly in the same way as above, this gives the bound on Lc.
Similarly, we can obtain other bounds in (3.10). �

We now derive estimates on m, e and μ:

Lemma 3.3 For sufficiently small δ, we have

‖m‖L∞(�δ
t )

+ ‖/dm‖L∞(�δ
t )

� M2, ‖Tm‖L∞(�δ
t )

� δ−1M2, (3.11)

‖e‖L∞(�δ
t )

+ ‖/de‖L∞(�δ
t )

� δM2, ‖T e‖L∞(�δ
t )

� M2, (3.12)

‖μ‖L∞(�δ
t )

+ ‖Lμ‖L∞(�δ
t )

� M2. (3.13)

Proof Let ψ0 = ∂tφ. We first bound m. Since m ∼ (1 ± ψ2
0 )

−2ψ0 · Tψ0,
according to (B.1), we have

‖m‖L∞(�δ
t )

� 1

(1 − 3G ′′(0)‖ψ0‖2L∞(�δ
t )
)2

‖ψ0‖L∞(�δ
t )

· ‖Tψ0‖L∞(�δ
t )

� 1

(1 − 3G ′′(0)δM2)2
· δ 1

2 M · δ− 1
2 M.

3 This sentence always means that, there exists ε = ε(M) so that for all δ ≤ ε, we have …
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This clearly implies the bound on m for sufficiently small δ. For the deriva-
tives of m, say Tm, it is based on (B.1) and the explicit computation Tm =

3G ′′(0)
(1+3G ′′(0)ψ2

0 )
2ψ0 · T 2ψ0 + 3G ′′(0)

(1+3G ′′(0)ψ2
0 )

2 (Tψ0)
2 − 36G ′′(0)2

(1+3G ′′(0)ψ2
0 )

3ψ
2
0 (Tψ0)

2.

Similarly, we can bound /dm.
The estimates on e can be derived exactly in the same way, so we omit the

proof.
To bound μ, we integrate the equation Lμ = m + μe to derive

μ(t, u, θ) = exp

(∫ t

−r0
e(τ )dτ

)
μ(−r0, u, θ)

+
∫ t

−r0
exp

(∫ t

τ

e(τ ′)dτ ′
)
m(τ, u, θ)dτ. (3.14)

Then (3.4), (3.11) and (3.12) imply the estimate on μ immediately. For Lμ,
we simply combine Lμ = m + μe, (3.11), (3.12) and the bound on μ. This
completes the proof. �

We move to the bounds on Tμ and /dμ:

Lemma 3.4 For sufficiently small δ, we have

‖Tμ‖L∞(�δ
t )

� δ−1M2, ‖/dμ‖L∞(�δ
t )

� M2. (3.15)

Proof The idea is to commute T and /d with Lμ = m + eμ. For /dμ, we have
/LL(/dμ) = e/dμ + (/dm + μ/de), We have already seen that ‖/dm‖L∞(�δ

t )
+

‖μ/de‖L∞(�δ
t )

� M2. Therefore, we integrate along L to derive the desired
bound on /dμ.

For Tμ, we have L(Tμ) = eTμ + (Tm + μT e − (ζ A + ηA)/d Aμ
)
. We

first show that

‖ζ‖L∞(�δ
t )

� δM2, ‖η‖L∞(�δ
t )

� M2. (3.16)

In fact, ζ
A

= −c−1μ/d A(c). The bound on ζ the follows immediately from
(3.10) and (3.13). Since η = ζ + /dμ, the bound on η is also clear because we
have just obtained estimates on /dμ.

Back to the formula for L(Tμ), for small δ, we bound the terms in the
parenthesis by

‖(Tm + μT e − (ζ A + ηA)/d Aμ
)‖L∞(�δ

t )
� δ−1M2.

We then integrate to derive the bound for Tμ. This completes the proof. �
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We now estimate χ
AB

. For this purpose, we introduce

χ ′
AB

= χ
AB

+ /gAB

u − t
. (3.17)

which measures the deviation of χ
AB

from the null 2nd fundamental form in
Minkowski space. We have

Lemma 3.5 For sufficiently small δ, we have

‖χ ′
AB

‖L∞(�δ
t )

� δM2. (3.18)

Proof According to (2.37), we have

L(χ ′
AB

) = eχ ′
AB

+ χ ′
A
Cχ ′

BC
− e

u − t
/gAB − α′

AB . (3.19)

Hence, L|χ ′|2
/g = 2e|χ ′|2 − 2χ ′

A
Bχ ′

B
Cχ ′

C
A + 2|χ ′|2

u−t − 2e
u−t trχ

′ − 2χ ′ABαAB .
Therefore, we obtain

L((t − u)2|χ ′|) � (t − u)2
(
(|e| + |χ ′|)|χ ′| + |e|

u − t
+ |α′|

)
(3.20)

where all norms are defined with respect to /g.
Let P(t) be the property that ‖χ ′‖L∞(�δ

t )
≤ C0δM2 for all t ′ ∈ [−r0, t].

By choosing C0 suitably large, according to the assumptions on initial data,
we have ‖χ ′‖L∞(�δ−2)

< C0δ. It follows by continuity that P(t) is true for
t sufficiently close to −r0. Let t0 be the upper bound of t ∈ [−r0, t0] for
which P(t) holds. By continuity, P(t0) is true. Therefore, for t ≤ t0, we have
|χ ′|+|e| ≤ (C0+C1)δM2 for a universal constantC1.According to the explicit
formula of α′ and (B.1), for sufficiently small δ, there is a universal constantC3
so that ‖α′‖L∞(�δ

t )
≤ C3δM2. In view of (6.20), there is a universal constant

C4 so that

L((t − u)2|χ ′|) ≤ C4(t − u)2
(
(C0 + C1)δM

2|χ ′| + (C1 + C3)δM
2
)
.

(3.21)

If we define x(t) = (t − u)2|χ ′| along the integral curve of L , then we can

rewrite (3.21) as dx
dt ≤ f x + g, where f (t) = C4(C0 + C1)δM2 and g(t) =

C4(C1 + C3)δM2. By integrating from −r0 to t , we obtain

x(t) ≤ e
∫ t
−r0

f (t ′)dt ′
(
x(−r0) +

∫ t

−r0
e
− ∫ t ′−r0

f (t ′′)dt ′′
g(t ′)dt ′

)
.
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Taking into account the facts that
∫ t
−r0

f (t ′)dt ′ ≤ C4(C0 + C1)δM2 and
∫ t
−r0

g(t ′)dt ′ ≤ C4(C1 +C3)δM2, since (t − u) ∼ 1 on the support of χ ′, for
some universal constant C5, we have

‖χ ′‖L∞(�δ
t )

≤ C5e
C4(C0+C1)δM2(‖χ ′‖L∞(�δ−2)

+ C4(C1 + C3)δM
2).

(3.22)

We then fix C0 in such a way that C0 > 2C5C4(C1 + C3) and C0 >
‖χ ′‖

L∞(�δ
t )

4C5
. Provided δ satisfying δ < log 2

C4(C0+C1)M2 , the estimate (3.22) implies

‖χ ′‖L∞(�δ
t )
< C0δM2 for all t ∈ [−r0, t0]. By continuity,P(t) holds for some

t > t0. Hence the lemma follows. �

Remark 3.6 (Estimates related to the conformal optical metric g̃) We shall use
˜ to indicate the quantities defined with respect to g̃, e.g., ∇̃ is the Levi-Civita
connection of g̃ and χ̃ is the 2nd fundamental form of Su,t ↪→ Cu with respect

to L and g̃: χ̃
AB

= g̃(∇̃XA L, XB).
We expect the quantities (with )̃ defined with respect to g̃ have the similar

estimates as the counterparts (without )̃ definedwith respect to g. This is clear:
the difference can be explicitly computed in terms of c and hence controlled
by the estimates on c. For example, the difference between χ̃ ′

AB
and χ ′

AB
is

χ̃
AB

− χ
AB

= − 1
2c2

L(c)/gAB , based on (3.10) and (3.18), we have

∥∥
∥∥χ̃ AB

+ /gAB

u − t

∥∥
∥∥
L∞(�δ

t )

� δM2. (3.23)

3.3.2 Estimates on deformation tensors

We use five vectorfields Z1 = T, Z2 = R1, Z3 = R2, Z4 = R3, Z5 = Q as
commutation vectorfields in the paper. We use Z to denote any possible choice
of the above Zi ’s. The notation Zα for a multi-index α = (i1, . . . , im) means
Zi1Zi2 · · · Zim with i j ∈ {1, 2, 3, 4, 5}.
We recall that, for Z , the deformation tensor (Z)π or (Z)π̃ with respect to g

and g̃ is defined by (Z)παβ = ∇αZβ +∇β Zα or (Z)π̃αβ = 1
c
(Z)παβ + Z(1c )gαβ .

We now compute the deformation tensors with respect to g̃. The deformation
tensor of Z1 = T is given by4

4 We emphasize that the trace tr is defined with respect to g.
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(T )π̃LL = 0, (T )π̃LL = 4c−1μT (c−2μ),

(T )π̃LL = −2c−1(Tμ − c−1μT (c)),
(T )π̃L A = −c−3μ(ζ

A
+ η

A
), (T )π̃L A = −c−1(ζ

A
+ η

A
),

(T )̂̃/π AB = −2c−3μχ̂
AB

, tr(T ) /̃π = −2c−3μtr/̃gχ̃ .

(3.24)

By virtue of the estimates already derived, for sufficiently small δ, we have

‖μ−1(T )π̃LL‖L∞(�δ
t )

� δ−1M2, ‖(T )π̃LL‖L∞(�δ
t )

� δ−1M2,

‖μ−1(T )π̃L A‖L∞(�δ
t )

� M2,

‖(T )π̃L A‖L∞(�δ
t )

� M2, ‖μ−1(T )̂̃/π AB‖L∞(�δ
t )

� δM2,

‖μ−1tr(T ) /̃π‖L∞(�δ
t )

� 1.

(3.25)

The deformation tensor of Z5 = Q is given by

(Q)π̃LL = 0, (Q)π̃LL = 4t L(c−2μ)(c−1μ) − 4c−3μ2,

(Q)π̃LL = −2t L(c−1μ) − 2c−1μ

(Q)π̃L A = 0, (Q)π̃L A = 2tc−1(ζ
A

+ η
A
),

(Q)̂̃
/π AB = 2tc−1χ̂

AB
, tr

(Q)
/̃π = 2c−1t tr/̃gχ̃ .

(3.26)

By virtue of the estimates already derived, for sufficiently small δ, we have

‖μ−1(Q)π̃LL‖L∞(�δ
t )

� M2, ‖(Q)π̃LL‖L∞(�δ
t )

� M2,

‖(Q)π̃L A‖L∞(�δ
t )

� M2,

‖(Q)̂̃/π AB‖L∞(�δ
t )

� δM2, ‖tr(Q) /̃π‖L∞(�δ
t )

� 1.

(3.27)

Actually the estimate for tr(Q) /̃π can be improved more precisely. By (3.27):

‖tr(Q) /̃π‖L∞(�
u
t )

� 1 and the Eq. (4.1) togetherwith the bootstrap assumptions,
we see the order of the former is also 1. While the estimate for the latter is a bit
more delicate. Let us rewrite the following component of deformation tensor
of Q:

tr
(Q)

/̃π = 2c−1t tr/̃gχ̃ = 2c−1t tr/̃gχ̃
′ + 4

c−1u

u − t
− 4(c−1 − 1) − 4
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This tells us:

‖tr(Q) /̃π + 4‖L∞(�δ
t )

� δ. (3.28)

We study the deformation tensors of Ri ’s. Based on (2.42), we compute
(Ri )παβ with respect to g:

(Ri )πLL = 0, (Ri )πT T = 2c−1μ · Ri (c
−1μ),

(Ri )πLT = −Ri (μ),
(Ri )πAB = −2λiθAB ,

(Ri )πT A = −c−1μ

(
θAB − /gAB

u − t

)
Ri

B + c−1μεik j y
k X A

j + λi X A(c
−1μ),

(Ri )πL A = −χ
AB

Ri
B + Lkεik j X A

j + cμ−1λiζ A

= −
(
χ

AB
+ /gAB

u − t

)
Ri

B + εik j z
k X A

j + cμ−1λiζ A
.

(3.29)

The Latin indices i, j, k are defined with respect to the Cartesian coordinates
on�t . To bound deformation of Ri , it suffices to control the λi ’s, yi ’s and zi ’s.

First of all, we have

|T̂ i | + |Li | � 1. (3.30)

The proof is straightforward: g
∣
∣
�δ
t
is flat and T̂ is the unit normal of St,u in

�δ
t , so |T̂ i | ≤ 1. In the Cartesian coordinates (t, x1, x2, x3), L = ∂t − cT̂ i∂i ,

so |Li | � 1.

Let r = (
∑3

i=1 x
i )

1
2 . Since Tr = c−1μ

∑3
i=1

xi T̂ i

r , (3.30) implies that
|Tr | � M2. We then integrate from 0 to u, since r = −t when u = 0 and
|u| ≤ δ, we obtain |r + t | � δM2. In application, for sufficiently small δ, we
often use r ∼ |t |. The estimate can also be written as

∣
∣
∣∣
1

r
− 1

u + |t |
∣
∣
∣∣ � δM2. (3.31)

To control λi , we consider its L derivative. By definition λi = g(i , T̂ ),
we can write its derivative along L as Lλi = ∑3

k=1(i )
k LT̂ k =∑3

k=1(i )
k X A(c)XA

k . As |t | ∼ r , we have |i | � |t | � 1, this implies

‖Lλi‖L∞(�δ
t )

� δM2. (3.32)

Since λi = 0 on �δ−r0 , we have

‖λi‖L∞(�δ
t )

� δM2. (3.33)
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To control yi ’s and zi ’s, let y = (y1, y2, y3) and x = (x1, x2, x3), we then
have

∣∣
∣∣y −

(
1

r
− 1

u − t

)
x

∣∣
∣∣

2

= |(g(T̂ , ∂r ) − 1)∂r |2 + 1

r2

3∑

i=1

λ2i (3.34)

On the other hand, we have 1 − |g(T̂ , ∂r )|2 = 1
r2
∑3

i=1 λ
2
i � δM2. While on

St,0, Since g(∂r , T̂ ) = 1 on St,0, for sufficiently small δ, the angle between ∂r
and T̂ is less than π

2 , which implies 1 + g(T̂ , ∂r ) ≥ 1. Therefore,

|1 − g(T̂ , ∂r )| � δM2. (3.35)

Together with (3.33) and (3.34), this implies

|yi | � δM2, |y′i | � δM2. (3.36)

We then control zi from its definition

|zi | � δM2. (3.37)

The derivatives of λi on�t are given by XA(λi ) = (θAB− /gAB
u−t )R

B
i −εik j yk X

j
A

and T (λi ) = −Ri (c−1μ). Hence,

‖/dλi‖L∞(�δ
t )

� δM2, ‖Tλi‖L∞(�δ
t )

� M2

Finally, we obtain the following estimates for the deformation tensor of Ri :5

(Ri )πLL = 0, ‖(Ri )π̃LT ‖L∞(�δ
t )

� M2, ‖μ−1(Ri )πT T ‖L∞(�δ
t )

� M2,

‖(Ri )πL A‖L∞(�δ
t )

� δM2, ‖(Ri )πT A‖L∞(�δ
t )

� δM4,

‖(Ri ) /̂π AB‖L∞(�δ
t )

� δ2M4, ‖tr(Ri ) /π‖L∞(�δ
t )

� δM4.

We use the relation L = c−2μL + 2T to rewrite the above estimates in null
frame as follows:

‖(Ri )πLL‖L∞(�δ
t )

� M2, ‖μ−1(Ri )πLL‖L∞(�δ
t )

� M2,

‖(Ri )πL A‖L∞(�δ
t )

� δM2, ‖(Ri )πL A‖L∞(�δ
t )

� δM4,

‖(Ri ) /̂π AB‖L∞(�δ
t )

� δ2M4, ‖tr(Ri ) /π‖L∞(�δ
t )

� δM4.

(3.38)

5 We emphasize that the traceless part of /̂π AB is defined with respect to /g.

123



S. Miao, P. Yu

The deformation tensors of Ri ’s with respect to g̃ are estimated by

(Ri )π̃LL = 0, ‖(Ri )π̃LL‖L∞(�δ
t )

� M2, ‖μ−1(Ri )π̃LL‖L∞(�δ
t )

� M2,

‖(Ri )π̃L A‖L∞(�δ
t )

� δM2, ‖(Ri )π̃L A‖L∞(�δ
t )

� δM4,

‖(Ri )̂̃/π AB‖L∞(�δ
t )

� δ2M4, ‖tr(Ri ) /̃π‖L∞(�δ
t )

� δM4.

(3.39)

3.3.3 Applications

As in [5,8], we are able to show that the Ri derivatives are equivalent to the /d
and ∇/ derivative. For a 1-form ξ on St,u , we have

∑3
i=1 ξ(Ri )

2 = r2(|ξ |2 −
(ξ(y′))2). This is indeed can be derived from the formula

∑3
i=1(Ri )

a(Ri )
b =

r2(δcd − y′c y′d)�a
c�

b
d , where a, b, c, d ∈ {1, 2, 3}. In view of (3.31), (3.36)

and the definition of y′i , for sufficiently small δ, we have
∑3

i=1 ξ(Ri )
2 ∼

r2|ξ |2. Since r is bounded below and above by a constant, we obtain∑3
i=1 ξ(Ri )

2 ∼ |ξ |2. Similarly, for a k-covariant tensor ξ on St,u , we have
∑3

i1,i2,...,ik=1 ξ(Ri1, Ri2, . . . , Rik )
2 ∼ |ξ |2. In particular, we can take ξ = /dψ ,

therefore,
∑3

i=1(Riψ)
2 ∼ |/dψ |2. Henceforth, we omit the summation and

write schematically as |Riψ | ∼ |/dψ |.
We can also compare the Ri -derivatives with the ∇/ -derivatives for tensors.

For St,u-tangential 1-form ξ and vectorfield X , let /LRi ξ be the orthogonal
projection of the Lie derivativeLRi ξ onto the surface St,u . Since (/LRi ξ)(X) =
(∇/ Ri ξ)(X) + ξ(∇/ X Ri ), we obtain

3∑

i=1

|/LRi ξ |2 =
3∑

i=1

|ξ(Ri )|2 + 2
3∑

i=1

ξ k(∇/ Ri ξ)a(∇/ Ri )
a
k

+
3∑

i=1

ξ kξ l(∇/ Ri )ak(∇/ Ri )
a
l .

We also have
∑3

i=1 |∇/ Ri ξ |2 = r2(δcd − y′c y′d)(∇/ξ)ca(∇/ξ)da . In view of the
estimates on y′i , for sufficiently small δ, we obtain

3∑

i=1

|∇/ Ri ξ |2 � |∇/ξ |2.

Let εi jk be the volume form on �t and vi be a St,u 1-form with rectan-
gular components (vi )a = �b

aεibkξk . By virtue of the formula ( /∇Ri )
k
l =

�m
k �

n
l εinm − λiθkl , we have
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3∑

i=1

ξ kξ l(∇/ Ri )ak(∇/ Ri )
a
l = |ξ |2 + 2c

3∑

i=1

λiξ · χ · vi + c2|χ · ξ |2
3∑

i=1

λ2i .

In view of the estimates on λi , for sufficiently small δ, we have
∑3

i=1 ξ
kξ l

(∇/ Ri )ak(∇/ Ri )
a
l ∼ |ξ |2. Similarly, we have

∣∣∑3
i=1 ξ

k(∇/ Ri ξ)a(∇/ Ri )
b
k
∣∣ �

|ξ ||∇/ξ |. Finally, we conclude that

|ξ |2 + |∇/ξ |2 �
3∑

i=1

|/LRi ξ |2 � |ξ |2 + |∇/ξ |2.

Henceforth, we omit the summation and write schematically as |/LRi ξ | ∼
|ξ | + |∇/ξ |. Similarly, for a tracefree symmetric 2-tensors θAB tangential to
St,u , we have |θ | + |∇/θ | � |/LRi θ | � |θ | + |∇/θ |. This will be applied to
θ = χ̂

AB
later on.

Another application of the pointwise estimates based on the bootstrap
assumption is to give an estimate on

√
det /g. On �δ−2, S−2,u is around sphere

and
√
det /g is bounded above and below by positive absolute constants. On the

other hand, (3.17) and (3.18) implies that trχ is bounded. This together with
the formula

L
(
log
√
det /g

) = trχ (3.40)

gives the fact that
√
det /g is bounded and never vanishes along each null

generator.

3.3.4 Sobolev inequalities and elliptic estimates

To obtain the Sobolev inequalities on St,u , we introduce

I (t, u) = sup
U∈St,u ,
∂U is C1

min
(|U |, |St,u −U |)

|∂U |2

the isoperimetric constant on St,u , where |U |, |St,u − U | and |∂U | are the
measures of the corresponding sets with respect to /g on St,u . Therefore, in
view of the fact that Ri ∼ ∇/ , for sufficiently small δ, we have the following
Sobolev inequalities:
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‖ f ‖W 1,4(St,u) � |I (t, u)| 14 |St,u |− 3
4
(‖ f ‖L2(St,u) + ‖Ri f ‖L2(St,u)

+ ‖Ri R j f ‖L2(St,u)

)
,

‖ f ‖L∞(St,u) � |I (t, u)| 34 |St,u |− 1
2
(‖ f ‖L2(St,u)

+ ‖Ri f ‖L2(St,u) + ‖Ri R j f ‖L2(St,u)

)
.

(3.41)

where ‖ f ‖W 1,4(St,u) is defined as ‖ f ‖W 1,4(St,u) = |St,u |−1/2‖ f ‖L4(St,u) +
‖/d f ‖L4(St,u). It remains to control the isoperimetric constant I (t, u).

We use T to generate a diffeomorphism of St,u to St,0 which maps U ,
St,u − U and ∂U to corresponding sets Uu , St,0 − Uu and ∂Uu on St,0. Let
Uu′, St,u′−Uu′, ∂Uu′ be the inverse images of these on each St,u′ foru′ ∈ [0, u].
Since /LT g/ AB = 2c−1μθ = −2c−2μχ

AB
, for u′ ∈ [0, u], we obtain

d

du′
(|Uu′ |) = −

∫

Uu′
c−2μtrχdμg/ ,

d

du′
(|∂Uu′ |) = −

∫

Uu′
c−2μχ(ν, ν)ds,

where ν is the unit normal of ∂Uu′ in St,0 and ds the element of arc length
of ∂Uu′ . In view of the estimates on χ and μ derived before, for sufficiently
small δ, we have

d

du′
(|Uu′ |) � |Uu′ |, d

du′
(|∂Uu′ |) � |∂Uu′ |.

Therefore, by integrating from 0 to u, we have

|U | ∼ |Uu|, |∂U | ∼ |∂Uu|.

Hence, I (t, u) ∼ I (t, 0) ∼ 1. Finally, since |St,u| ∼ 1 (This is seen by the
fact dμ/g(t,u) ∼ dμ/g(−r0,0), which can be shown by calculations in [5].), we
conclude that

‖ f ‖W 1,4(St,u) + ‖ f ‖L∞(St,u) � ‖ f ‖L2(St,u) + ‖Ri f ‖L2(St,u)

+ ‖Ri R j f ‖L2(St,u).
(3.42)

We remark that, similarly, we have

‖ f ‖L4(St,u) � ‖ f ‖L2(St,u) + ‖Ri f ‖L2(St,u). (3.43)

We also have the following elliptic estimates for traceless two-tensors.
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Lemma 3.7 If δ is sufficiently small, for any traceless 2-covariant symmetric
tensor θAB on St,u, we have

∫

St,u
μ2(|∇/θ |2 + |θ |2)dμ/g �

∫

St,u
μ2| /divθ |2 + |/dμ|2|θ |2/dμ/g (3.44)

Proof Let J A = θ BC∇/ Bθ
AC − θ A

C( /divθ)C , then |J | � |θ |(| /∇θ | + | /divθ |).
The Bôchner formula says

|∇/θ |2 + 2K |θ |2 = 2| /divθ |2 + /divJ,

where K is the Gauss curvature. According to (2.29) and the estimates on
χ

AB
, for sufficiently small δ, we know that |K | ∼ 1. Therefore, we have

|∇/θ |2 + |θ |2 ∼ 2| /divθ |2 + /divJ,

We thenmultiply both sides byμ2 and integrate on St,u . The Cauchy–Schwarz
inequality together with the above estimates on |J | as well as the divergence
theorem yields the inequality. �

4 The behavior of the inverse density function

The behavior of the inverse density function μ plays an dominant rôle in this
paper. The method of obtaining estimates on μ is to relate μ to its initial value
on�t=−r0 . Since the metric g depends only onψ0 = ∂tφ,μ is also determined
by ψ0. This leads naturally to the study of the wave equation �g̃ψ0 = 0. We
can rewrite it in the null frame as

L(Lψ0) + 1

2
trχ̃ · Lψ0

+
(

−μ�/ψ0 + 1

2
trχ̃ · Lψ0 + 2ζ · /dψ0 + μ/d log(c) · /dψ0

)
= 0. (4.1)

4.1 The asymptotic expansion for μ

We start with a lemma which relates Lψ0(t, u, θ) to its initial value on �−r0 .

Lemma 4.1 For sufficiently small δ, we have

∣
∣|t |Lψ0(t, u, θ) − r0Lψ0(−r0, u, θ)

∣
∣ � δ

1
2 M3. (4.2)
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Proof We regard (4.1) as a transport equation for Lψ0. According to (B.1)
and the estimates from previous sections, the L∞ norm of the terms in the big

parenthesis in (4.1) is bounded by δ
1
2 M3. Hence,

∣
∣∣
∣L(Lψ0)(t, u, θ) + 1

2
trχ̃(t, u, θ) · Lψ0(t, u, θ)

∣
∣∣
∣ � δ

1
2 M3.

Byvirtue of (3.23), this implies |L(Lψ0
)
(t, u, θ)− 1

u−t Lψ0(t, u, θ)| � δ
1
2 M3.

Therefore, we obtain

|L((u − t)Lψ0
)
(t, u, θ)| � δ

1
2 M3.

Since |u| ≤ δ, we integrate from −r0 to t and this yields the desired estimates.
�

Remark 4.2 The estimates 4.2 also hold for Ri Lψ0 or Ri R jψ0, e.g., see (4.12).
To derive these estimates, we commute Ri ’s with (4.1) and follow the same
way as in the above proof.

Since L = c−2μL + 2T , as a corollary, we have

Corollary 4.3 For sufficiently small δ, we have

||t |Tψ0(t, u, θ) − r0Tψ0(−r0, u, θ)| � δ
1
2 M3, (4.3)

||t |ψ0(t, u, θ) − r0ψ0(−r0, u, θ)| � δ
3
2 M3. (4.4)

Proof For (4.4), we integrate (4.3) for u′ from 0 to u and use the fact that
ψ0(t, 0, θ) = 0. �

We turn to the behavior of Lμ.

Lemma 4.4 For sufficiently small δ, we have

||t |2Lμ(t, u, θ) − r20 Lμ(−r0, u, θ)| � δM4. (4.5)

Proof According to (2.36), we write |t |2Lμ(t, u, θ) − r20 Lμ(−r0, u, θ) as

(|t |2m(t, u, θ) − r20m(−r0, u, θ)
)

+[|t |2 (μ · e)(t, u, θ) − r20 (μ · e)(−r0, u, θ)
]
.

In view of (3.12), we bound the terms in the bracket by δM4 up to a universal
constant. Therefore,

|t |2Lμ(t, u, θ) − r20 Lμ(−r0, u, θ)

= (|t |2m(t, u, θ) − r20m(−r0, u, θ)
)+ O(δM4).
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Since

|t |2m(t, u, θ) − r20m(−r0, u, θ)

= τ 2
3G ′′(0)(ψ0(τ, u, θ) · Tψ0(τ, u, θ))

(1 + 3G ′′(0)ψ2
0 (τ, u, θ))

2

∣
∣∣
∣

τ=t

τ=−r0

.

It is clear that the estimates follow immediately after (4.3) and (4.4). �
We are now able to prove an accurate estimate on μ.

Proposition 4.5 For sufficiently small δ, we have
∣∣
∣∣μ(t, u, θ) − 1 + r20

(
1

t
+ 1

r0

)
Lμ(−r0, u, θ)

∣∣
∣∣ � δM4. (4.6)

In particular, we have μ ≤ C0 where C0 is a universal constant depending
only on the initial data.

Proof According to the previous lemma, we integrate Lμ:

μ(t, u, θ) − μ(−r0, u, θ) =
∫ t

−r0
Lμ(τ, u, θ)dτ =

∫ t

−r0

τ 2Lμ(τ, u, θ)

τ 2
dτ

(4.5)=
∫ t

−r0

r20 Lμ(−r0, u, θ)

τ 2
+ O(δM4)

τ 2
dτ

= −
(
1

t
+ 1

r0

)
r20 Lμ(−r0, u, θ) + O(δM4).

Therefore, we can use (3.4) to conclude. �
We are ready to derive two key properties of the inverse density function

μ. The first asserts that the shock wave region is trapping for μ, namely, once
p ∈ Wshock , then all the points after p along the incoming null geodesic stay
in Wshock .

Proposition 4.6 For sufficiently small δ and for all (t, u, θ) ∈ Wshock, we
have

Lμ(t, u, θ) ≤ − 1

4|t |2 � −1. (4.7)

Proof For (t, u, θ) ∈ Wshock , we have μ(t, u, θ) < 1
10 . In view of (4.6), we

claim that r20 Lμ(−r0, u, θ) < 0. Otherwise, since 1
t + 1

r0
< 0, we would

have μ(t, u, θ) ≥ 1 + O(δM2) > 1
10 , provided δ is sufficiently small. This

contradicts the fact that μ(t, u, θ) < 1
10 .
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We can also use this argument to show that (1t + 1
r0
)r20 Lμ(−r0, u, θ) ≥ 1

2 .

Otherwise, for sufficiently small δ, we would have μ(t, u, θ) ≥ 1
2 + O(δM2)

> 1
10 .
Therefore, we obtain r20 Lμ(−r0, u, θ) ≤ 1

2
r0t
r0+t . In view of (4.5), we have

t2Lμ(t, u, θ) ≤ 1

2

r0t

r0 + t
+ O(δM2).

Here wewriteM2 instead ofM4 because we already know thatμ ≤ C0, where
C0 depends only on initial data. By taking a sufficiently small δ and noticing
that r0t

r0+t is bounded from above by a negative number, this yields the desired
estimates. �
Remark 4.7 In the case when shock forms, i.e.μ → 0, by the previous propo-
sition and (2.36), m = −1

2
dc2
dρ Tρ � −1. In other words,

Tρ ≥ c0 > 0

for some absolute constant c0.On the other hand, T̂ρ = cμ−1Tρ and ‖T̂ ‖ = 1,
therefore as μ → 0, ∇ρ blows up, so does ∇∂tφ.

Remark 4.8 We compare the estimates (3.13) and (4.5). (3.13) is rough:
|Lμ| � M2; (4.5) is precise: |Lμ| ≤ C0 + δM2, where C0 depends only
on the initial data. The improvement comes from integrating the wave equa-
tion �g̃ψ0 = 0 or equivalently (4.1).

4.2 The asymptotic expansion for derivatives of μ

We start with an estimate on derivatives of trχ̃ .

Lemma 4.9 For sufficiently small δ ≤ ε, we have

‖Ltrg̃χ̃‖L∞ � M2, (4.8)

‖/dtrχ̃‖L∞ � δM2. (4.9)

Proof Wederive a transport equation for Riχ
′
AB

by commuting Ri with (3.19):

L(Riχ
′
AB

) = [L, Ri ]χ ′
AB

+ eRiχ
′
AB

+ 2χ ′
A
C Riχ

′
BC

+(Rie) · χ ′
AB

− e

u − t
Ri /gAB − Ri

(
e

u − t

)

/gAB − Riα
′
AB .
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Since [L, Ri ]A = (Ri )πL
A, the commutator term [L, Ri ]χ ′

AB
can be bounded

by the estimates on the deformation tensors. We then multiply both sides by
Riχ

′
AB

and repeat the procedure that we used to derive (3.18). Since it is
routine, we omit the details and only give the final result

∥∥
∥∥Ri

(
χ

AB
+ /gAB

u − t

)∥∥
∥∥
L∞

� δM2. (4.10)

In particular, this yields ‖Ri trχ‖L∞ � δM2 which is equivalent to (4.9).
We derive a transport equation for Lχ ′

AB
by commuting L with (3.19):

L(Lχ ′
AB

) = eLχ ′
AB

+ 2χ ′
A
C Lχ ′

BC
+ Leχ ′

AB
− e

u − t
L/gAB

+ L

(
e

u − t

)

/gAB − Lα′
AB + L(c−2μ)Lχ ′

AB

+ /gCD(ζ
C

+ η
D
)XC (χ

′
AB

).

We then use Gronwall to derive
∥
∥∥
∥L
(
χ

AB
+ /gAB

u − t

)∥∥∥
∥
L∞

� M2. (4.11)

In particular, this yields ‖Ltrχ‖L∞ � M2. This is equivalent to (4.8). �
We now derive estimates for Riψ0.

Lemma 4.10 For sufficiently small δ, we have

∣∣|t |LRiψ0(t, u, θ) − r0LRiψ0(−r0, u, θ)
∣∣ � δ

1
2 M3. (4.12)

Proof We commute Ri with (4.1) and we obtain that L(Ri Lψ0) + 1
2 trχ̃ ·

Ri Lψ0 = N with

N = Ri

(
μ�/ψ0 − 1

2
trχ̃ · Lψ0 − 2ζ · /dψ0 − μ/d log(c) · /dψ0

)

−1

2
Ri trχ̃ · Lψ0 + [L, Ri ]Lψ0.

According to (B.1) and the previous lemma, N is bounded by δ
1
2 M3. Hence,∣

∣L(Ri Lψ0) + 1
2 trχ̃ · Ri Lψ0

∣
∣ � δ

1
2 M3. We then integrate to derive

∣
∣|t |Ri Lψ0(t, u, θ) − r0Ri Lψ0(−r0, u, θ)

∣
∣ � δ

1
2 M3.
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The commutator [Ri , L]ψ0 is bounded by δM3 thanks to the estimates on
deformation tensors. This completes the proof. �

We can obtain a better estimate for /dμ. The idea is to bound for Riμ and
use the fact that |/dμ| ∼ |Riμ|.
Lemma 4.11 For sufficiently small δ, we have

‖/dμ‖L∞(�t ) � 1 + δM4. (4.13)

Proof We commute Ri with Lμ = m + eμ to derive

L(Riμ) = Rim + (eRiμ + μRie + [L, Ri ]μ
)
.

According to (B.1) and the estimates on LRiψ0 (needed to bound Rim) from
the previous lemma, it is straightforward to bound the terms in the parenthesis
by δM2. Similar to (4.5), we obtain

||t |2L(Riμ)(t, u, θ) − |r0|2L(Riμ)(−r0, u, θ)| � δM4. (4.14)

Since ‖[L, Ri ]‖L∞ � δM2, we bound Riμ as

Riμ(t, u, θ) − Riμ(−r0, u, θ)
(4.14)=

∫ t

−r0

r20 L(Riμ(r0, u, θ))

τ 2
+ O(δM4)dτ

= −
(
1

t
+ 1

r0

)
r20 L(Riμ(−r0, u, θ)) + O(δM4).

This inequality yields (4.13) for sufficiently small δ. �
We can also obtain a better estimate for Lμ.

Lemma 4.12 For sufficiently small δ, we have

‖Lμ‖L∞(�t ) � δ−1 + M4. (4.15)

Proof By commuting L with Lμ = m + eμ, we obtain

L(Lμ) = Lm + [− 2(ζ A + ηA)XA(μ) + L(c−2μ)Lμ + eLμ + μLe
]
.

According to (B.1), we can bound the terms in the bracket by M4. Hence,

|t |2L(Lμ)(t, u, θ) − |r0|2L(Lμ)(−r0, u, θ)

= |t |2Lm(t, u, θ) − |r0|2Lm(−r0, u, θ) + O(M4).
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By the explicit formula of m, we can proceed exactly as in Lemma 4.4 and we
obtain

||t |2L(Lμ)(t, u, θ) − |r0|2L(Lμ)(−r0, u, θ)| � M4. (4.16)

We then integrate along L and we have

Lμ(t, u, θ) − Lμ(−r0, u, θ) =
∫ t

−r0

τ 2L(Lμ(τ, u, θ))

τ 2
dτ

(4.16)=
∫ t

−r0

r20 L
(
Lμ(r0, u, θ)

)

τ 2
+ O(M4)

τ 2
dτ

= −
(
1

t
+ 1

r0

)
r20 L(Lμ(−r0, u, θ)) + O(M4).

For sufficiently small δ, this implies (4.15). �
We now relate L2ψ0(t, u, θ) to its initial value.

Lemma 4.13 For sufficiently small δ, we have

∣
∣|t |L2ψ0(t, u, θ) − r0L

2ψ0(−r0, u, θ)
∣
∣ � δ− 1

2 M3. (4.17)

Proof We commute L with (4.1) and we obtain the following transport equa-
tion for L2ψ0:

L(L2ψ0) + 1

2
trχ̃ · L2ψ0 = −1

2
L
(
trχ̃
) · Lψ0 + [L, L]Lψ0

+ L

(
μ�/ψ0 − 1

2
trχ̃ · Lψ0 − 2ζ · /dψ0 − μ/d log(c) · /dψ0

)
.

(4.18)

The righthand side of the above equation can be expanded as

Ltrχ̃Lψ0 + L(c−2μ)LLψ0 + (η + ζ )/dLψ0 + (Lμ�/ψ0

+μL�/ψ0 + Ltrχ̃Lψ0 + trχ̃LLψ0

+Lζ /dψ0 + ζ L/dψ0 + Lμ · /d log(c) · /dψ0 + μL
(
/d log(c)

) · /dψ0

+μ/d log(c) · L/dψ0).

Since the exact numeric constants and signs for the coefficients are irrelevant
for estimates, we replace all of them by 1 in the above expressions.

Since ζ
A

= −c−1μXA(c), by applying L and using (4.15), we obtain

|Lζ | � M2. Therefore, according (4.8), (B.1) and the estimates derived pre-
viously in this section, we can bound all the terms on the right hand side and
we obtain

123



S. Miao, P. Yu

∣
∣
∣∣L(L

2ψ0) + 1

2
trχ̃ · L2ψ0

∣
∣
∣∣ � δ− 1

2 M3.

We then integrate from −r0 to t to obtain (4.17). �
We can commute L twice with (3.19) or with (4.1) to obtain following

estimates.

Lemma 4.14 For sufficiently small δ, we have

‖L2trg̃χ̃‖ � M2δ−1, (4.19)

||t |L3ψ0(t, u, θ) − r0L
3ψ0(−r0, u, θ)| � δ− 3

2 M3. (4.20)

We omit the proof since it is routine. Similarly, we commute L twice with
Lμ = m + eμ, we can use (4.19) and (4.20) to obtain

Lemma 4.15 There exists ε = ε(M) so that for all δ ≤ ε, we have

‖L2μ‖L∞(�t ) � δ−2 + δ−1M2, (4.21)

‖T 2μ‖L∞(�t ) � δ−2 + δ−1M2. (4.22)

We turn to another key property ofμwhich reflects the behavior ofμ−1Tμ.
(4.5) suggests that if shock forms before t = −1, Lμ to behave as a constant
near s∗. Hence, μ is proportional to |t − s∗|. In view of (3.15), we expect
μ−1Tμ behaves as |t − s∗|−1δ−1 near shocks (It is not integrable in t). The
next proposition suggest a much better bound for μ−1(Tμ)+ by affording one

more derivative in T and we can improve |t − s∗|−1 to |t − s∗|− 1
2 .

Proposition 4.16 For p = (t, u, θ) ∈ Wδ, let (μ−1Tμ)+ be the nonnegative
part of μ−1Tμ. For sufficiently small δ and for all p ∈ Wshock, we have

(μ−1Tμ)+(t, u, θ) � 1

|t − s∗| 12
δ−1. (4.23)

Proof We use a maximal principle type argument. Let γ : [0, δ] → W ∗
δ be the

integral curve of T through the point p. Wemay choose the θ coordinates to be
constant along γ on the given�t and study the function f (u) = T (log(μ))(u).
We assume f (u) attains its maximum at a point u∗ ∈ [0, δ]. We may also
assume that this maximum is positive (Otherwise, (4.23) is automatically
true). Since u∗ is a maximum point, we have d

du ( f )(u
∗) ≥ 0. In other

words, T (T (log(μ)))(u∗) ≥ 0. Therefore, at the point (t, u∗, θ), we have
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μ−1T 2μ − 1
μ2 (Tμ)

2 ≥ 0. Hence,

‖μ−1(Tμ)+‖L∞([0,δ]) ≤
√

‖T 2μ‖L∞([0,δ])
infu∈[0,δ] μ(u)

. (4.24)

It suffices to bound the denominator and the numerator on the righthand side.
For T 2μ, according to (4.22), we have

‖T 2μ‖L∞([0,δ]) � 1

|t |δ
−2 � δ−2. (4.25)

For inf μ, we can assume (t, u, θ) ∈ Wshock . Otherwise we have the lower
bound μ ≥ 1

10 . According to (4.7), the condition (t, u, θ) ∈ Wshock implies
|t |2(Lμ)(t, u, θ) ≤ −1

4 . Therefore, by (4.5), we have

r20 Lμ(−r0, u, θ) = t2Lμ(t, u, θ) + O(δM2) ≤ −1

4
+ O(δM2) ≤ −1

6

provided that δ is sufficiently small. We now integrate from t to s∗ to derive

μ(t, u, θ) = μ(s∗, u, θ) −
∫ s∗

t
Lμ(τ, u, θ) ≥ −

∫ s∗

t
Lμ(τ, u, θ)

= −
∫ s∗

t

(
r20 Lμ(−r0, u, θ)

|τ |2 + O(δM2)

)

≥ −r20 Lμ(−r0, u, θ)
1

|s∗||t | |t − s∗| + O(δM2)|t − s∗|.

Therefore, for sufficiently small δ, we obtain |t − s∗| � μ. Together with
(4.24) and (4.25), this completes the proof. �

5 The mechanism for shock formation

In this section, we assume Theorem 3.1 stated in Sect. 3.2 and we use knowl-
edge on μ from last section to analyze a mechanism of shock formation. In
particular, we have to use condition (1.6) in the Main Theorem. This is the
only place in the paper where we use (1.6).

The transport equation Lμ = m+μe is responsible for the shock formation.
We first give precise bounds on each term on the righthand side. Since m =
−1

2
d
dρ (c

2)Tρ, we havem = 3G ′′(0)(
1+3G ′′(0)ψ2

0

)2ψ0 ·Tψ0. In view of (4.3), up to an

error of size δ
1
2 , we can replace Tψ0(t, u, θ) by

r0|t |Tψ0(−r0, u, θ); in view of
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(4.4), up to an error of size δ
3
2 , we can replace ψ0(t, u, θ) by

r0|t |ψ0(−r0, u, θ).
Therefore, we obtain

m = 3G ′′(0)
r20
|t |2ψ0(−r0, u, θ)Tψ0(−r0, u, θ) + O(δ)

= 3
r20
|t |2

(
G ′′(0)φ1

(
r − r0
δ

, θ

)
∂rφ1

(
r − r0
δ

, θ

))
+ O(δ).

Since e is of size δ and |μ| � 1, we regardμe as an error term.We then obtain

Lμ(t, u, θ) = 3
r20
|t |2

(
G ′′(0)φ1

(
r − r0
δ

, θ

)
∂rφ1

(
r − r0
δ

, θ

))
+ O(δ).

We then integrate this equation and we obtain

μ(t, u, θ) − μ(−r0, u, θ)

= 3
∫ t

−r0

r20
|τ |2 dτ ·

(
G ′′(0)φ1

(
r − r0
δ

, θ

)
∂rφ1

(
r − r0
δ

, θ

))
+ O(δ)

= 3r20

(
1

|t | − 1

r0

)(
G ′′(0)φ1

(
r − r0
δ

, θ

)
∂rφ1

(
r − r0
δ

, θ

))
+ O(δ)

Since |μ(−r0, u, θ)−1| � δ, according to condition (1.6),we have (recall that
r0 = 2)

μ(t, u, θ) ≤ 1 − 3 · 22( 1
|t | − 1

2

)1
6 + O(δ) = 1 − 2

(
1
|t | − 1

2

)
+ O(δ)

Therefore, for sufficiently small δ, t can not be greater than −1, otherwise μ
would be negative. In other words, shock forms before t = −1.

Corollary 5.1 If we introduce the vectorfield T̂ := cμ−1T, then when shock
forms, the second derivative of φ, T̂ i∂i∂tφ, blows up.

Proof When shock forms, μ −→ 0, which means μ < 1
10 . Then by (4.7),

Lμ is negative and bounded from above. In other words, there is an absolute
positive constant C such that |Lμ| ≥ C . While from the propagation equation
Lμ = m + μe and the pointwise estimates |e| � δ, |μ| � 1, the estimate

|m| ≥ C follows if δ is sufficiently small. By the definition m = −1
2
d(c2)
dρ Tρ

and T̂ = cμ−1T , the derivative of ρ, T̂ρ = cμ−1Tρ, blows up when μ −→
0. Since |ψ0| � δ1/2, T̂ψ0 = T̂ i∂i∂tφ blows up when μ −→ 0 from the
definition ρ = ψ2

0 .
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Corollary 5.2 When shock forms, the only nonzero curvature component in
optical coordinates, αAB, blows up.

Proof In the expression:

αAB = 1

2

d(c2)

dρ
/∇2
XA,XB

ρ − 1

2
μ−1 d(c

2)

dρ
T (ρ)χ

AB

+1

2

(
d2(c2)

dρ2
− 1

2
c−2

∣
∣∣
∣
d(c2)

dρ

∣
∣∣
∣

2
)

XA(ρ)XB(ρ),

the terms 1
2
d(c2)
dρ

/∇2
XA,XB

ρ, 12 (
d2(c2)
dρ2

− 1
2c

−2|d(c2)dρ |2)XA(ρ)XB(ρ), being deriv-
atives of ρ in optical coordinates, are bounded pointwisely. While by (4.7) and

(3.18), the pointwise norm of d(c2)
dρ T (ρ)χ

AB
is bounded from below, therefore

the term μ−1 d(c2)
dρ T (ρ)χ

AB
blows up when μ −→ 0. �

The focus of the rest of the paper is to prove Theorem 3.1.

6 Energy estimates for linear wave equations

We study energy estimates for the linear wave equation

�g̃ψ = ρ (6.1)

where ρ is a smooth function defined on Wδ . The energy momentum tensors
for a solution ψ of (6.1) are the same for both g and g̃, i.e.,

T̃μν = Tμν = ∂μψ∂νψ − 1

2
gμν∂

αψ∂αψ.

In the null frame (X1, X2, L , L), T̃μν is decomposed as

TLL = (Lψ)2, TLL = (Lψ)2, TLL = μ|/dψ |2, TLA = Lψ · XA(ψ),

TLA = Lψ · XA(ψ), TAB = XA(ψ)XB(ψ)

− 1

2
/gAB(−μ−1LψLψ + |/dψ |2).

(6.2)

We use two multiplier vectorfields K0 = L and K1 = L . The associated
energy currents are defined by

P̃0
μ = −T̃μ

νK0
ν, P̃1

μ = −T̃μ
νK1

ν. (6.3)
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The corresponding deformation tensors are denoted by π̃0 = (K0)π̃ and π̃1 =
(K1)π̃ respectively. Since the divergence of T̃μν is ∇̃μT̃μν = ρ · ∂νψ , we have

∇̃μ P̃0
μ = Q̃0 := −ρ · K0ψ − 1

2
T̃μνπ̃0,μν,

∇̃μ P̃1
μ = Q̃1 := −ρ · K1ψ − 1

2
T̃μνπ̃1,μν.

(6.4)

LetWu
t be the spacetime region enclosed by�u

−r0 ,C
t
0,�

u
t andC

t
u .We integrate

(6.4) on W
u
t under the condition that ψ and its derivatives vanish on Ct

0 (This
is always the case in later applications), we obtain

E0(t, u) − E0(−r0, u) + F0(t, u) =
∫

W
u
t

c−2 Q̃0,

E1(t, u) − E1(−r0, u) + F1(t, u) =
∫

W
u
t

c−2 Q̃1.

(6.5)

where the associated energy Ei (t, u) and flux Fi (t, u) are defined (naturally
from the Stokes formula) as

E0(t, u) = ∫
�

u
t

1
2c

(
(Lψ)2+c−2μ2|/dψ |2

)
, F0(t, u)= ∫Cu

t c−1μ|/dψ |2,
E1(t, u) = ∫

�
u
t

1
2c

(
c−2μ(Lψ)2+μ|/dψ |2

)
, F1(t, u)= ∫Cu

t c−1(Lψ)2.

(6.6)

We emphasize that the integral on W
u
t defined as below on the spacetime slab

contains a factor μ:

∫

W
u
t

f =
∫ t

−r0

∫ u

0

(∫

Sτ,u′
μ · f (τ, u′, θ)dμ/g

)

du′dτ.

We remark that, by (3.6) and (3.10), we have

E0(t, u) ∼ E(ψ)(t, u), F0(t, u) ∼ F(ψ)(t, u),

E1(t, u) ∼ E(ψ)(t, u), F1(t, u) ∼ F(ψ)(t, u).
(6.7)

For the sake of simplicity, we use E(t, u), F(t, u), E(t, u) and F(t, u) as
shorthand notations for E(ψ)(t, u), F(ψ)(t, u), E(ψ)(t, u) and F(ψ)(t, u)
in the rest of the section.

We need to compute the so called error integrals or error terms, i.e.,
∫
W

u
t
Q̃0

and
∫
W

u
t
Q̃1 in (6.5). This requires an explicit formula for π̃0,μν or π̃1,μν . The
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deformation tensor π̃0,μν is given by

π̃0,LL = 0, π̃0,LL = 0, π̃0,LL

= −2c−1μ(μ−1Lμ + L log(c−1) + L(c−2μ)),

π̃0,L A = −2c−1μXA(c
−2μ), π̃0,L A

= −2c−1(ζ
A

+ η
A
), π̃0,AB = 2χ̃AB .

(6.8)

The deformation tensor π̃1,μν is given by

π̃1,LL = 0, π̃1,LL = 4c−1μL(c−2μ),

π̃1,LL = −2c−1μ(μ−1Lμ + L log(c−1)),

π̃1,L A = 0, π̃1,L A = 2c−1(ζ
A

+ η
A

)
, π̃1,AB = 2χ̃

AB
.

(6.9)

We also need an explicit formula for the energy momentum tensor Tμν :

T LL = (Lψ)2

4μ2 , T LL = (Lψ)2

4μ2 ,

T LL = (/dψ)2

4μ
, T LA = −LψXA(ψ)

2μ
,

T LA = −LψXA(ψ)

2μ
,

T AB = /gAC
/gBDXC (ψ)XD(ψ) − 1

2
/gAB

(
−LψLψ

μ
+ |/dψ |2

)
.

(6.10)

Finally, we can compute the integrands Q̃0 and Q̃1 explicitly. For Q̃0, we have

c−2 Q̃0 = −c−2ρ · K0ψ − 1

2
Tμνπ̃0,μν

= Q0,0 + Q0,1 + Q0,2 + Q0,3 + Q0,4

= −c−2ρ · K0ψ − T LL π̃0,LL − T LAπ̃0,L A

− T LAπ̃0,L A − 1

2
T AB π̃0,AB .

(6.11)
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The Q0,i ’s are given explicitly by

Q0,1 = 1

2c
(μ−1Lμ + L log(c−1) + L(c−2μ))|/dψ |2,

Q0,2 = −c−1XA(c
−2μ)Lψ · XA(ψ),

Q0,3 = −c−1μ−1(ζ
A

+ η
A
)LψXA(ψ),

Q0,4 = −1

2

(
̂̃χ AB X

AψXBψ + c

2
μ−1trg̃χ̃ Lψ · Lψ).

(6.12)

For Q̃1, we have

c−2 Q̃1 = −c−2ρ · K1ψ − 1

2
Tμνπ̃1,μν=Q1,0+Q1,1 + Q1,2 + Q1,3 + Q1,4

= −c−2ρ · K1ψ − 1

2
T LL π̃1,LL − T LL π̃1,LL − T LAπ̃1,L A

−1

2
T AB π̃1,AB . (6.13)

The Q1,i ’s are given explicitly by

Q1,1 = − 1

2cμ
L(c−2μ)|Lψ |2, Q1,2 = 1

2c
(μ−1Lμ + L log(c−1))|/dψ |2,

Q1,3 = 1

cμ

(
ζ
A

+ η
A

)
Lψ · X Aψ,

Q1,4 = −1

2

(
̂̃χ

AB
X AψXBψ + c

2
μ−1trg̃χ̃ Lψ · Lψ).

(6.14)

6.1 Estimates on Q1,2: the coercivity of energy estimates in shock region

We separate the principal terms and lower order terms of Q1,2 as follows

Q1,2 = 1

2c

(
μ−1Lμ + L log(c−1)

)|/dψ |2 =
(

− 1

2c
μ−1Lμ + l.o.t.

)
|/dψ |2,

where the lower order terms l.o.t., thanks to (3.10), are bounded by
‖l.o.t.‖L∞(�t ) � δM2. We rewrite the principal term

∫
W

u
t

1
2cμ

−1Lμ|/dψ |2
as

∫

W
u
t

1

2c
μ−1Lμ|/dψ |2 =

∫

W
u
t ∩Wshock

1

2c
μ−1Lμ|/dψ |2

+
∫

W
u
t ∩Wrare

1

2c
μ−1Lμ|/dψ |2. (6.15)
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In view of the estimates (4.5) and the fact that μ ≥ 1
10 in the rarefaction wave

region Wrare, for sufficiently small δ, the second term is bounded by

∫

W
u
t ∩Wrare

1

2c
μ−1Lμ|/dψ |2 �

∫

W
u
t ∩Wrare

|Lμ||/dψ |2

=
∫

W
u
t ∩Wrare

∣
∣∣
∣
|r0|2
|t |2 Lμ(−r0, u, θ) + δM2

∣
∣∣
∣ |/dψ |2

�
∫

W
u
t ∩Wrare

|/dψ |2.

Since
∫
W

u
t ∩Wrare

|/dψ |2 ≤ ∫Wu
t

|/dψ |2 = ∫ t−r0

( ∫
�τ

μ|/dψ |2)dτ , we obtain
∫

W
u
t ∩Wrare

1

2c
μ−1Lμ|/dψ |2 �

∫ t

−r0
E(τ, u)dτ. (6.16)

In the shock region, we make use of the key estimate (4.7). Therefore, we
have

∫

W
u
t ∩Wshock

1

2c
μ−1Lμ|/dψ |2 ≤ −

∫

W
u
t ∩Wshock

1

8c|t |μ
−1|/dψ |2

� −
∫

W
u
t ∩Wshock

μ−1|/dψ |2.

We define

K (t, u) =
∫

W
u
t ∩Wshock

μ−1|/dψ |2, (6.17)

Therefore,
∫

W
u
t ∩Wshock

1

2c
μ−1Lμ|/dψ |2 � −K (t, u). (6.18)

Finally, by combining (6.15), (6.16) and (6.18), for sufficiently small δ, we
obtain

∫

W
u
t

Q1,2 � −K (t, u) +
∫ t

−r0
E(τ, u)dτ. (6.19)

The negative term −K (t, u) in above estimates plays a key role to control /dψ
in error terms. It will compensate the degeneracy of the μ factor in front of
/dψ in the energy.
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6.2 Estimates on Q0,1

The estimates on Q0,1 relies on the second key property (4.23) of μ. We first
separate the principal terms and lower order terms of Q0,1 as follows:

Q0,1 = 1

4c
(μ−1Lμ + L log(c−1) + L(c−1κ))|/dψ |2

= 1

2c
μ−1Tμ|/dψ |2 + l.o.t.,

where l.o.t. = 1
4c (c

−2Lμ + L log(c−1) + L(c−1κ))|/dψ |2. According to the
estimates derived in previous sections, the terms in the parentheses are bounded
by M2. Hence,

∫

W
u
t

l.o.t. �
∫

W
u
t

M2|/dψ |2 = M2
∫ u

0

(∫

Cu′
μ|/dψ |2

)

du′

≤ M2
∫ u

0
F(t, u′)du′. (6.20)

For the principal termwhose integrand is 1
2cμ

−1Tμ|/dψ |2 ∼ μ−1Tμ|/dψ |2,
due to the positivity of |/dψ |2, one ignores the contribution from the negative
part 1

c (μ
−1Tμ)−|/dψ |2. Therefore, it is bounded by

�
∫

W
u
t

(μ−1Tμ)+|/dψ |2 =
∫

W
u
t ∩Wrare

(μ−1Tμ)+|/dψ |2

+
∫

W
u
t ∩Wshock

(μ−1Tμ)+|/dψ |2.

In Wrare, since μ−1 � 1, we have
∫
W

u
t ∩Wrare

(μ−1Tμ)+|/dψ |2 �
∫
W

u
t ∩Wrare

|Tμ||/dψ |2 ≤ ∫Wu
t

|Tμ||/dψ |2. According to (4.15), we have Tμ �
δ−1, therefore,
∫

W
u
t ∩Wrare

(μ−1Tμ)+|/dψ |2 �
∫

W
u
t

δ−1|/dψ |2 ≤ δ−1
∫ u

0
F(t, u′)du′. (6.21)

In Wshock , the argument relies on Proposition 4.16. Indeed, we have
∫

W
u
t ∩Wshock

(μ−1Tμ)+|/dψ |2 �
∫

W
u
t ∩Wshock

1

|t − s∗| 12
δ−1|/dψ |2

≤ δ−1
∫

W
u
t

1

|t − t∗| 12
|/dψ |2.
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Bydefinition, the last integral is equal to δ−1
∫ t
−r0

1

|τ−t∗| 12
( ∫

�τ
μ|/dψ |2dμ/g

)
dτ .

In view of the definition of E(t, u), we obtain

∫

W
u
t ∩Wshock

(μ−1Tμ)+|/dψ |2 � δ−1
∫ t

−r0

1

|τ − t∗| 12
E(τ, u)dτ (6.22)

We remark that the key feature of above estimates is that the factor 1

|t−t∗| 12
is

integrable in t . It will allow us to use Gronwall’s inequality.
Finally, taking into account of the estimates (6.20), (6.21) and (6.22), for

sufficiently small δ, we obtain

∫

W
u
t

Q0,1 � δ−1
∫ t

−r0

1

|τ − t∗| 12
E(τ, u)dτ + δ−1

∫ u

0
F(t, u′)du′. (6.23)

6.3 Estimates on other error terms

We deal with Q0,2, Q0,3, Q0,4, Q1,1, Q1,3 and Q1,4 one by one.
For Q0,2, we have |Q0,2| = |− 1

c X
A(c−2μ)Lψ ·XA(ψ)| � |/dμ||Lψ ||/dψ |.

According to (4.13), |/dμ| � 1+δM4. Hence, for sufficiently small δ, we have

∣∣
∣∣
∣

∫

W
u
t

Q0,2

∣∣
∣∣
∣
�
∫

W
u
t

(1 + δM4)|Lψ ||/dψ | �
∫

W
u
t

|Lψ |2 + |/dψ |2

Therefore, we obtain

∣
∣∣
∣∣

∫

W
u
t

Q0,2

∣
∣∣
∣∣
�
∫ t

−r0
E(τ, u)dτ. (6.24)

For Q0,3, we first recall that |ζ | � 1 and η = ζ + /dμ, therefore, |ζ |+ |η| �
1 + δM4. We break Q0,3 into two parts as follows:

∣
∣∣
∣∣

∫

W
u
t

Q0,3

∣
∣∣
∣∣
�
∫

W
u
t

μ−1(|ζ | + |η|)|Lψ ||/dψ | �
∫

W
u
t

μ−1|Lψ ||/dψ | = I1 + I2

=
∫

W
u
t ∩Wrare

μ−1|Lψ ||/dψ | +
∫

W
u
t ∩Wshock

μ−1|Lψ ||/dψ |.
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The integral I1 = ∫
W

u
t ∩Wrare

μ−1|Lψ ||/dψ | is taken in Wrare where μ ≥ 1
10 ,

therefore, we obtain

I1 ≤
∫

W
u
t ∩Wrare

μ−1(|Lψ |2 + |/dψ |2) �
∫

W
u
t ∩Wrare

μ−1(|Lψ |2 + μ|/dψ |2)

�
∫

W
u
t

μ−1(|Lψ |2 + μ|/dψ |2)

�
∫ t

−r0
E(τ, u)dτ +

∫ u

0
F(t, u′)du′.

To control the integral I2 = ∫
W

u
t ∩Wshock

μ−1|Lψ ||/dψ |, we use the coercive

term K (t, u) from Q1,2 to control the loss of μ−1:

I2 ≤
(∫

W
u
t ∩Wshock

μ−1|/dψ |2
) 1

2
(∫

W
u
t ∩Wshock

μ−1|Lψ |2
) 1

2

� K (t, u)
1
2

(∫ t

−r0
E(τ, u)dτ

) 1
2

.

Hence, we obtain
∣
∣∣
∣∣

∫

W
u
t

Q0,3

∣
∣∣
∣∣
�
∫ t

−r0
E(τ, u)dτ +

∫ u

0
F(t, u′)du′

+ K (t, u)
1
2

(∫ t

−r0
E(τ, u)dτ

) 1
2

. (6.25)

For Q0,4, we have
∣∣
∣∣
∣

∫

W
u
t

Q0,4

∣∣
∣∣
∣
�
∫

W
u
t

|̂̃χ ||/dψ |2 + μ−1|trg̃χ̃ ||Lψ ||Lψ |

�
∫

W
u
t

δM2|/dψ |2 + μ−1|Lψ ||Lψ | = I1 + I2.

The bound on I1 is immediate: I1 = δM2
∫
W

u
t

|/dψ |2 ≤ δM2
∫ u
0 F(t, u′)du′.

The bound on I2 = ∫Wu
t
μ−1|Lψ ||Lψ | relies on the energy E(t, u) and on the

flux F(t, u):

I2 �
∫

W
u
t

μ−1|Lψ |2 +
∫

W
u
t

μ−1|Lψ |2 =
∫ t

−r0
E(τ, u)dτ +

∫ u

0
F(t, u′)du′.
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Hence, we obtain

∣
∣∣
∣
∣

∫

W
u
t

Q0,4

∣
∣∣
∣
∣
�
∫ t

−r0
E(τ, u)dτ + δM2

∫ u

0
F(t, u′)du′ +

∫ u

0
F(t, u′)du′.

(6.26)

For Q1,1, according to (4.5), we have
∣∣Q1,1

∣∣ = ∣∣ 1
2cμL(c

−2μ)|Lψ |2∣∣ �
∣
∣μ−1Lμ|Lψ |2∣∣ � μ−1|Lψ |2. Hence,

∣∣
∣∣
∣

∫

W
u
t

Q1,1

∣∣
∣∣
∣
�
∫ u

0
F(t, u′)du′. (6.27)

For Q1,3, since |ζ | + |η| � 1, we break the integral into two parts:

∣∣
∣
∣∣

∫

W
u
t

Q1,3

∣∣
∣
∣∣
�
∫

W
u
t

μ−1|Lψ ||/dψ | = I1 + I2

=
∫

W
u
t ∩Wrare

μ−1|Lψ ||/dψ | +
∫

W
u
t ∩Wshock

μ−1|Lψ ||/dψ |.

In the rarefaction wave region, since μ−1 ∼ 1, we obtain

I1 �
∫

W
u
t ∩Wrare

μ−1(|Lψ |2 + |/dψ |2) ≈
∫

W
u
t ∩Wrare

|Lψ |2 + |/dψ |2

�
∫

W
u
t

|Lψ |2 + |/dψ |2 �
∫ t

−r0
E(τ, u)dτ.

In the shock wave region, we still use K (t, u) to control the loss of μ−1:

I2 ≤
(∫

W
u
t ∩Wshock

μ−1|/dψ |2
) 1

2
(∫

W
u
t ∩Wshock

μ−1|Lψ |2
) 1

2

� K (t, u)
1
2

(∫ u

0
F(t, u′)du′

) 1
2

.

Hence,

∣∣
∣∣
∣

∫

W
u
t

Q1,3

∣∣
∣∣
∣
�
∫ t

−r0
E(τ, u)dτ + K (t, u)

1
2

(∫ u

0
F(t, u′)du′

) 1
2

. (6.28)
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For Q1,4, we have

∣
∣
∣∣
∣

∫

W
u
t

Q1,4

∣
∣
∣∣
∣
�
∫

W
u
t

|̂̃χ ||/dψ |2 + μ−1|trg̃χ̃ ||Lψ ||Lψ |

�
∫

W
u
t

δM2|/dψ |2 + μ−1|Lψ ||Lψ |

� δM2
∫ u

0
F(t, u′)du′

+
(

δ

∫

W
u
t

μ−1|Lψ |2 + δ−1
∫

W
u
t

μ−1|Lψ |2
)

.

Therefore, we obtain

∣∣
∣
∣∣

∫

W
u
t

Q1,4

∣∣
∣
∣∣
� δ

∫ t

−r0
E(τ, u)dτ + δM2

∫ u

0
F(t, u′)du′

+ δ−1
∫ u

0
F(t, u′)du′. (6.29)

6.4 Summary

In view of (6.5) and (6.7), since ψ vanishes to infinite order on C0, we have

(E(t, u) + F(t, u)) + δ−1(E(t, u)+F(t, u)) � E(−r0, u)+δ−1E(−r0, u)

+
4∑

i=1

∫

W
u
t

Q0,i + δ−1
4∑

i=1

∫

W
u
t

Q1,i

+
∣∣
∣
∣∣

∫

W
u
t

ρ · Lψ
∣∣
∣
∣∣
+ δ−1

∣∣
∣
∣∣

∫

W
u
t

ρ · Lψ
∣∣
∣
∣∣
.

We bound sums
∑4

i=1

∫
W

u
t
Q0,i and

∑4
i=1

∫
W

u
t
Q1,i by (6.19) and (6.23)–

(6.29). Therefore, we have

(E(t, u) + F(t, u)) + δ−1(E(t, u) + F(t, u))

� E(−r0, u) + δ−1E(−r0, u) +
∣
∣∣
∣
∣

∫

W
u
t

ρ · Lψ
∣
∣∣
∣
∣
+ δ−1

∣
∣∣
∣
∣

∫

W
u
t

ρ · Lψ
∣
∣∣
∣
∣

+ δ−1

⎛

⎜
⎜⎜
⎜
⎜⎜
⎝

−K (t, u) +
∫ t

−r0
E(τ, u)dτ

︸ ︷︷ ︸
Q1,2

⎞

⎟
⎟⎟
⎟
⎟⎟
⎠
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+
⎛

⎝δ−1
∫ t

−r0

1

|τ − t∗| 12
E(τ, u)dτ + δ−1

∫ u

0
F(t, u′)du′

⎞

⎠

︸ ︷︷ ︸
Q0,1

+
⎛

⎜
⎝
∫ t

−r0
[E(τ, u) + E(τ, u)]dτ +

∫ u

0
[F(t, u′) + F(t, u′)]du′ + K (t, u)

1
2

(∫ t

−r0
E(τ, u)dτ

) 1
2

⎞

⎟
⎠

︸ ︷︷ ︸
Q0,2+Q0,3+Q0,4

+ δ−1

⎛

⎜
⎝
∫ t

−r0
[δE(τ, u) + E(τ, u)]dτ +

∫ u

0
[δM2F(t, u′) + δ−1F(t, u′)]du′ + K (t, u)

1
2

(∫ t

−r0
F(t, u′)du′

) 1
2

⎞

⎟
⎠

︸ ︷︷ ︸
Q1,1+Q1,3+Q1,4

.

For sufficiently small δ, we can rewrite the estimates as

(E(t, u) + F(t, u)) + δ−1(E(t, u) + F(t, u))

� E(−r0, u) + δ−1E(−r0, u) +
∣
∣
∣
∣∣

∫

W
u
t

ρ · Lψ
∣
∣
∣
∣∣
+ δ−1

∣
∣
∣
∣∣

∫

W
u
t

ρ · Lψ
∣
∣
∣
∣∣

− δ−1K (t, u) + δ−1
∫ t

−r0

1

|τ − t∗| 12
E(τ, u)dτ

+ δ−1K (t, u)
1
2

(

δ

(∫ t

−r0
E(τ, u)dτ

) 1
2

+
(∫ t

0
F(t, u′)du′

) 1
2
)

︸ ︷︷ ︸
I

+
[∫ t

−r0
[E(τ, u) + δ−1E(τ, u)]dτ + δ−1

∫ u

0
[F(t, u′) + δ−1F(t, u′)]du′

]

For the term involving I , we use Cauchy–Schwarz inequality and put a
small parameter ε0 in front of the K (t, u), i.e, I � δ−1ε0K (t, u) +
δ−1 1

ε0
(δ
∫ t
−r0

E(τ, u)dτ + ∫ t−r0
F(t, u′)du′). Therefore, the resulting K (t, u)

term can be absorbed by the coercive term −K (t, u) and we obtain

(E(t, u) + F(t, u)) + δ−1(E(t, u) + F(t, u))

� E(−r0, u) + δ−1E(−r0, u) +
∣
∣
∣∣
∣

∫

W
u
t

ρ · Lψ
∣
∣
∣∣
∣
+ δ−1

∣
∣
∣∣
∣

∫

W
u
t

ρ · Lψ
∣
∣
∣∣
∣

− δ−1K (t, u) + δ−1
∫ t

−r0

1

|τ − t∗| 12
E(τ, u)dτ

+
[∫ t

−r0
E(τ, u) + δ−1E(τ, u)dτ + δ−1

∫ u

0
F(t, u′) + δ−1F(t, u′)du′

]

ByGronwall’s inequality (the factor 1

|τ−t∗| 12
is integrable in τ !), we can remove

all the integral terms on the last line, this proves the Fundamental Energy
Estimates (F.E.E) for �g̃ψ = ρ:
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(E(t, u) + F(t, u)) + δ−1(E(t, u) + F(t, u) + K (t, u))

� E(−r0, u) + δ−1E(−r0, u) +
∣
∣∣
∣∣

∫

W
u
t

ρ · Lψ
∣
∣∣
∣∣

+δ−1

∣∣
∣
∣∣

∫

W
u
t

ρ · Lψ
∣∣
∣
∣∣
. (F.E.E)

Remark 6.1 We see that the energy estimates only imply

E(t, u) + K (t, u) � δ,

which does not recover the full regularity of Lψ and /d psi with respect to δ, as
indicated by bootstrap assumption. We will see finally that this full regularity
in δ is recovered by using the estimates for E(t, u) together with Lemma 7.3
and the commutation of Q.

7 Comparisons between Euclidean and optical geometries

There are two different geometries coming into play on W ∗
δ , namely, the

Minkowski geometry and the optical geometry. The knowledge on twometrics
gμν (or g̃μν) andmμν is essentially tied to the estimates on the solution of (�).
There are many ways to compare two geometries, e.g., we may consider the
Cartesian coordinates xk as functions of the optical coordinates (t, u, θ). In
what follows, we also study other quantities as yk , zk , λi , etc. As a by prod-
uct, we will also obtain estimates for the lower order objects, i.e., with order
<Ntop + 1.

Given a vectorfield V , we define the null components of its deformation
tensor as

(V )Z A= (V )π(L, XA),
(V )ZA = (V )π(L , XA),

(V ) /π AB = (V )π(XA, XB).

(7.1)

The projection of Lie derivative LV to St,u is denoted as /LV . The short-
hand notation /Lα

Zi to denote /LZi1
/LZi2

· · · /LZik
for a multi-index α =

(i1, . . . , ik). We will show that, for all |α| ≤ N∞, we have /Lα−1
Zi

χ ′, /Lα−1
Zi

(Z j )Z , /Lα−1
Zi

(Z j ) /π, /Lα−1
Zi

(Q) (/π + 4) ∈ O|α|
2−2l , where l is the num-

ber of T ’s in Zi ’s, |α| ≥ 1 and Z j /=T . If Z j = T , then we have
/Lα−1
Zi

(T )Z , /Lα−1
Zi

(T ) /π ∈ O|α|
−2l . The idea of the proof is to compare gμν and

mμν via quantities such as xi , yi , zi , T̂ i and λi . Similarly, we will derive
L2-estimates on objects of order ≤ Nμ. The L2 estimates depend on the L∞
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estimates up to order N∞ + 2. In the course of the proof, it will be clear why
N∞ is chosen to be approximately 1

2Ntop.

7.1 L∞ estimates

We assume (B.1): for all |α| ≤ N∞, Zα+2
i ψ ∈ �

|α|+2
1−2l .

Proposition 7.1 For sufficiently small δ, for all |α| ≤ N∞ and t ∈ [−r0, s∗],
we can bound

{
/Lα
Ziχ

′, /Lα
Zi
(Z j )Z , /Lα

Zi
(Z j ) /π, /Lα

Zi
(Q) (/π + 4) , Z α+1

i y j ,

Z α+1
i λ j } ⊂ O|α|+1

2−2l and {Z α+1
i x j , Z α+1

i T̂ j , /Lα+1
Zi Z j , /Lα

Zi
(T )Z , /Lα

Zi
(T ) /π} ⊂

O|α|+1
−2l in terms of Zα+2

i ψ ∈ �
|α|+2
1−2l . Here l is the number of T ’s in Zi ’s.

The estimates on x j should be viewed as a good comparison betweenEuclid-
ean and optical geometries on each slice �t .

Proof We do induction on the order. When |α| = 0, the estimates are treated
in Sect. 3. Here we only treat the estimates when l = 0, when l ≥ 1, we can
use the structure equation (2.34) to reduce the problem to the estimates for μ,
which will be treated in Proposition 7.2. Here the loss of δ in the estimates
for /Lα

Zi
(T )Z , /Lα

Zi
(T ) /π comes from applying T to 2

t−u , which is the principal
part of trχ . Given |α| ≤ N∞, we assume that estimates hold for terms of order

≤ |α|. In particular, we have /Lβ
Ri
χ ′, R β+1

i y j ∈ O|β|
2 for all |β| ≤ |α|. We

prove the proposition for |α| + 1.
Step 1 Bounds R α+1

i x j . Let δ jα+1,i = α+1
i x j−R α+1

i x j wherei ’s are the

standard rotational vectorfields on Euclidean space. It is obvious thatα+1
i x j

is equal to some xk , therefore, bounded by r hence by a universal constant.
Since Ri = i − λi T̂ j∂ j , Ri x j ∈ O0

0 and by ignoring all the numerical
constants, we have

δ
j
α+1,i = Rα

i

(
λi T̂

j
)

= Rα
i

(
λi

(
x j

u − t
+ y j

))
.

Here the index i is not a single index. It means we apply a string of different
Ri s. This notation applies in the following when a string of Ri s are considered.
Since the above expression has total order≤|α|, by the induction hypothesis

we obtain immediately that δ jα+1,i ∈ O|α|
2 . In view of the definition of δ jα+1,i ,

we then have R α+1
i x j ∈ O|α|+1

0 .
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Step 2 Bounds on /Lα
Riχ

′. We commute /Lα
Ri with (3.19) to derive

/LL /Lα
Riχ

′ = [/LL , /Lα
Ri

]
χ ′ + e · /Lα

Riχ
′ + χ ′ · /Lα

Riχ
′

+
∑

|β1|+|β2|=|α|
|β2|<|α|

Ri
β1e · /Lβ2

Ri
χ ′

+
∑

|β1|+|β2|+|β3|=|α|
|β1|<|α|,|β3|<|α|

/Lβ1
Ri
χ ′ · /Lβ2

Ri /
g−1 · /Lβ3

Ri
χ ′

+/Lα
Ri

(
e/gAB

t − u
− α′

AB

)
. (7.2)

Since e = c−1 dc
dρ Lρ, Ri

αe is of order ≤ |α| + 1. By (B.1), we have Rα
i e ∈

�
|α|+1
2 . Similarly, by the explicit formula of α′

AB , we have /Lβ
Ri
α′
AB ∈ �

|α|+2
2 .

Since (Ri )πAB = 2c−1λiχ AB
and /Lβ2

Ri /
g = /Lβ2−1

Ri
(Ri ) /π AB , by the estimates

derived in previous sections and by the induction hypothesis, we can rewrite
(7.2) as

/LL /Lα
Riχ

′ = [/LL , /Lα
Ri

]
χ ′ + O1

2 · /Lα−1
Ri χ ′ + �

≤|α|+2
2 .

The commutator can be computed as
[
/LL , /Lα

Ri

]
χ ′ = ∑

|β1|+|β2|=|α|−1

/Lβ1
Ri
/L(Ri )Z

/Lβ2
Ri
χ ′. Since (Ri )Z A = −χ ′

AB
Ri

B + εi jk z j X A
k + λi /d A(c) and

z j = − (c−1)x j

u−t − cy j , the commutator term is of type O1
2 · /Lα

Riχ
′. Therefore,

we have

/LL /Lα
Riχ

′ = O1
2 · /Lα

Riχ
′ + �

≤|α|+2
2 .

By integrating this equation from −r0 to t , the Gronwall’s inequality yields
‖/Lα

Riχ
′‖L∞(�t ) �M δ.

Step 3 Bounds on R α+1
i y j and R α+1

i λ j . Since Ri y j = (−c−1χ A
B

−
δAB
u−t )R

A
i
/dBx j , schematically we have

R α+1
i y j = Rα

i Rk y
j = Rα

i

((
c−1χ + δ

u − t

)
· Rk · /dx j

)
.

We distribute Rα
i inside the parenthesis by Leibniz rule. (Here again, the index

i is not a single index, so we use index k to distinct the last rotation vectorfield.)
Therefore, a typical termwould be either /LRi

β1χ · /LRi
β2
/g−1 · /LRi

β3Rk ·/dRβ4
i x j
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or /LRi
β1
/g · /LRi

β2
/g−1 · /LRi

β3Rk · /dRβ4
i x j with |β1|+ |β2|+ |β3|+ |β4| = |α|.

There are only two terms where are not included in the induction hypoth-
esis: /LRi

β2
/gAB and /LRi

β3R j . The first term is in fact easy to handle by
induction hypothesis and estimates derived in Step 1 and Step 2, since
/LRi /gAB = (Ri ) /π AB = 2λi c−1χ

AB
. For the second one, we use the following

expression:

/LRi R j = −
3∑

k=1

εi jk Rk + λi

(
c−1 − 1

u − t
/g − c−1

(
χ + /g

u − t

))
R j

− λ j

(
c−1 − 1

u − t
/g − c−1

(
χ + /g

u − t

))
Ri

− λiε jkl y
k /dxl · /g−1 + λ jεikl y

k /dxl · /g−1.

Therefore, /LRi
β3Rk = /LRi

β3−1 /LRi Rk = O|β3|−1
0 + O|β3|−1

≥2 Rβ3
i x j . Finally,

we obtain that

R α+1
i y j = O≤|α|

2 + O≤|α|
2 · /dRβ4

i x j .

Although /dRβ4
i x j and /LRi

β1χ may have order |α| + 1, they have been con-

trolled from previous steps. This gives the bounds on R α+1
i y j . Then by the

fact that λ j = ε jkl xk yl , the estimate for R α+1
i λ j follows. This completes the

proof of the proposition. �
Proposition 7.2 For sufficiently small δ, for all |α| ≤ N∞, t ∈ [−r0, s∗], we
can bound Zα+1

i μ ∈ O|α|+1
−2l in terms of Zα+2

i ψ ∈ �
|α|+2
1−2l .

Proof We use an induction argument on the order of derivatives. The base case
|α| = 0 has be treated in Sects. 3 and 4. We assume the proposition holds with
order of derivatives on μ at most |α|. For |α| + 1, by commuting Zα+1

i with
Lμ = m + μe, we have

Lδl Zα+1
i μ=(e+(Zi )Z)δl Zα+1

i μ + δl Zα+1
i m +

∑

|β1|+|β2|≤|α|+1
|β1|<|α|

δl1 Zβ1
i μδl2 Zβ2

i e

where la, a = 1, 2 is the number of T ’s in Zβa ’s and l is the number of T ’s in
Zα’s. By the induction hypothesis, the above equation can be written as:

Lδl Zα+1
i μ = O≤1

2 · δl Zα+1
i μ + �

≤|α|+2
0
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Similar to the estimates derived in the Step 3 in previous section, we
can use induction hypothesis and Gronwall’s inequality to conclude that
‖Zα+1

i μ‖L∞(�t ) �M δ−l . �

7.2 L2 estimates

Ntop will be the total number of derivatives commuted with �g̃ψ = 0. The
highest order objects will be of order Ntop + 1. In this subsection, based on
(B.1), we will derive L2 estimates on the objects of order ≤ Ntop in terms of

the L2 norms of Zα+2
i ψ ∈ �

|α|+2
1−2l with |α| ≤ Ntop − 1. We start with the

following lemma:

Lemma 7.3 For a smooth function ψ which vanishes on C0, we have

∫

St,u
ψ2 � δ

∫

�
u
t

(Lψ)2 + μ(Lψ)2,
∫

�
u
t

ψ2 � δ2
∫

�
u
t

(Lψ)2 + μ(Lψ)2.

(7.3)

Proof Since ψ(t, u, θ) = ∫ u0 Tψ(t, u′, θ)du′, we have

∫

St,u
ψ2dμ/g =

∫

St,u

(∫ u

0
Tψ(t, u′, θ)du′

)2

dμ/g(t,u)

� δ

∫

St,u

∫ u

0
(Tψ(t, u′, θ))2du′dμ/g(t,u)

� δ

∫

St,u

∫ u

0
(Tψ(t, u′, θ))2dμ/g(t,u′)du

′

Here we have used the fact:
√
det /g(t, u) �

√
det /g(t, u′) �

√
det /g(t, u) due

to the bound of the second fundamental form θ . On the other hand, (Tψ) �
(Lψ)2 + μ2(Lψ)2 and μ � 1, the first inequality follows immediately. The
second is an immediate consequence of the first one. �

As a corollary, for k ≤ Ntop − 1, we have

∑

|β|≤k

∫

St,u
(Ri

βψ)2 � δE≤k+1(t, u). (7.4)

Proposition 7.4 For sufficiently small δ, for all α with |α| ≤ Ntop − 1 and
t ∈ [−r0, s∗], the L2(�

u
t ) norms of all the quantities listed below

/Lα
Ziχ

′, /Lα
Zi
(Z j )Z , /Lα

Zi
(Z j ) /π, Z α+1

i y j , Z α+1
i λ j ,
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are bounded6 by δ1/2−l
∫ t
−r0

μ
−1/2
m (t ′)

√
E≤|α|+2(t

′, u)dt ′,where l is the num-
ber of T ’s in Zi ’s.

Proof We do induction on the order. When |α| = 0, the result follows from
the estimates in Sects. 3 and 4. Again, here we only treat the case l = 0. By
assuming the proposition holds for terms with order ≤ |α|, we show it holds
for |α| + 1.

Step 1 Bounds on /Lα
Riχ

′. By affording a L-derivative, we have

‖/Lα
Riχ

′‖L2(�
u
t )

� ‖/Lα
Riχ

′‖L2(�
u
−r0

) +
∫ t

−r0
‖|χ ′||/Lα

Riχ
′|

+ |/LL /Lα
Riχ

′|‖L2(�
u
τ )
dτ. (7.5)

We use formula (7.2) to replace /LL /Lα
Riχ

′ by the terms with lower orders. Each
nonlinear term has at most one factor with order >N∞. We bound this factor
in L2(�t ) and the rest in L∞. We now indicate briefly how the estimates on
the factors involving e and α′ work.

For α′, since

α′
AB = c

dc

dρ
/D2
A,Bρ + 1

2

[
d2(c2)

dρ2
− 1

2c2

(
dc2

dρ

)2
]

XA(ρ)XB(ρ),

in view of the definition of E(t, u), for sufficiently small δ, we have

‖/Lα
Riα

′
AB‖L2(�

u
t )

�
∑

|α|≤k

‖/dRα+1
i ψ‖L2(�

u
t )

�M δ
1
2μ

−1/2
m (t)

√
E≤|α|+2(t, u).

For e, since e = c−1 dc
dρ Lρ, we have

‖Rα
i e‖L2(�

u
t )

�M

∑

|β|≤|α|

(
δ1/2‖/dR|β|−1

i ψ‖L2(�
u
t )

+δ1/2‖/dR|β|−1
i Lψ‖L2(�

u
t )

)

�M δ1/2μ
−1/2
m (t)

√
E≤|α|+1(t, u).

By applying Gronwall’s inequality to (7.5), we obtain immediately that

‖/Lα
Riχ

′‖L2(�
u
t )

�M δ1/2
∫ t

−r0
μ

−1/2
m (τ )

√
E≤|α|+2(τ, u)dτ

6 The inequality is up to a constant depending only on the bootstrap constant M .
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Step 2 Bounds on R α+1
i y j . By the computations in the Step 2 of the proof

of Proposition 7.1, R α+1
i y is a linear combination of the terms such as /LRi

β1χ ·
/LRi

β2
/g−1·/LRi

β3R j ·/dRβ4
i x j or as /LRi

β1
/g·/LRi

β2
/g−1·/LRi

β3R j ·/dRβ4
i x j , where

|β1|+|β2|+|β3|+|β4| = |α|. Similarly, we bound all factors with order≤ N∞
by the L∞ estimates in Proposition 7.1. By the induction hypothesis, this yields
the bound on R α+1

i y j immediately. The estimates for other quantities follow

from the estimates of χ ′ and y j . In this process, the terms like Rβ
i x

j and the
leading term in /LRi R j , which can be bounded by a constantC disregarding the
order of the derivatives, are bounded in L∞. The rest terms in /LRi R j , which
depend on χ ′ and y j as well as their derivatives, are bounded in L2 based on

the L2 estimates for /Lβ
Ri
χ ′. �

We also have L2 estimates for derivatives of μ.

Proposition 7.5 For sufficiently small δ, for all α with |α| ≤ Ntop − 1 and
t ∈ [−r0, s∗], we have

δl‖Zα+1
i μ‖L2(�t )

�M δl‖Zα+1
i μ‖L2(�

u
−r0

) + δ1/2
∫ t

−r0

√
E≤|α|+2(τ, u)

+μ
−1/2
m (τ )

√
E≤|α|+2(τ, u)dτ.

Proof According to the proof of Proposition 7.2, we have

δl L|Zα+1
i μ| � δl |Zα+1

i m| + δl(|e| + |(Ri )Z |)|Zα+1
i μ|

+
∑

|β1+β2|≤|α|
δl1 |Zβ1

i μ|δl2 |Rβ2
i e|.

Then the result follows in the same way as Proposition 7.2. �

8 Estimates on top order terms

The highest possible order of an object in the paper will be Ntop + 1. The
current section is devoted to the L2 estimates of /dR α

i trχ and Z α+2
i μ with

|α| = Ntop − 1.

8.1 Estimates on trχ

We first sketch the idea of the proof. Since we deal with top order terms, we
can not use the transport equation (2.35) directly as in the previous section
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(which loses one derivative). Roughly speaking, we derive an elliptic system
coupled with a transport equation for χ̂ and /dtrχ :

L(/dRα
i trχ) = χ̂ · /∇Lα

Ri χ̂ + · · · , /divLα
Ri χ̂ = /dRα

i trχ + · · · .

The new idea is using elliptic estimates and rewriting the right hand side of
the transport equations to avoid the loss of derivatives.

Given �g̃ψ0 = 0, since ρ = ψ2
0 , we can derive a wave equation for ρ:

�gρ = d(log(c))

dρ
gμν∂μρ∂νρ + 2gμν∂μψ0∂νψ0 (8.1)

Therefore, in the null frame, we can rewrite �/ρ as /�ρ = μ−1L
(
Lρ
) + l.o.t.

where l.o.t. represents all the terms with order at most 1. On the other
hand, according to the definition of αAB , we can rewrite (2.35) as Ltrχ =
−1

2
d(c2)
dρ

/�ρ + l.o.t. where the lower order terms l.o.t. standard for terms with
order at most 1. By substituting to the previous expression on /�ρ, we obtain:

L
(
μtrχ − f̌

) = 2Lμtrχ − 1

2
μ(trχ)2 − μ|χ̂ |2 + ǧ, (8.2)

where f̌ = −1
2
d(c2)
dρ Lρ and ǧ is given by

ǧ =
(

2

(
d(c)

dρ

)2

+ c
d2(c)

dρ2

)
(
LρLρ − μ|/dρ|2)

+ 2c
d(c)

dρ

((
Lψ0Lψ0 − μ|/dψ0|2

)+
(
1

4

μ|/dρ|2
c2

− ζ A/d Aρ

))
.

We observe twomain features of (8.2): the order of the righthand side terms
are one less than that of the lefthand side; It is regular in μ, i.e. there is no μ−1

factor. In order to commute Ri ’s with (8.2) and to control the αth derivatives
of /d(trχ), for a given multi-index α, we introduce

Fα = μ/d(Ri
αtrχ) − /d(Ri

α f̌ ).

For α = 0 and F = F0 = μ/dtrχ − /d f̌ , by commuting /d with (8.2), we
obtain

/LL F + (trχ − 2μ−1Lμ)F =
(

−1

2
trχ + 2μ−1Lμ

)
/d f̌ − μ/d(|χ̂ |2) + g0
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with g0 = /dǧ− 1
2 trχ /d( f̌ −2Lμ)−(/dμ)(Ltrχ+|χ̂ |2). Similarly, for |α| �= 0,

we first commute R α
i and then commute /d with (8.2). This leads to

/LL Fα + (trχ − 2μ−1Lμ)Fα =
(

−1

2
trχ + 2μ−1Lμ

)
/d(Ri

α f̌ )

−μ/d(Ri
α(|χ̂ |2)) + gα, (8.3)

with gα in the following schematic expression (by setting all the numerical
constants to be 1):

gα = /LRi
αg0 +

∑

|β1|+|β2|=|α|−1

/Lβ1
Ri
/L(Ri )Z Fβ2

+
∑

|β1|+|β2|=|α|−1

/Lβ1
Ri

((
μRi trχ + Ri Lμ + (Ri )Zμ

)
/d
(
Ri

β2 trχ
))

+
∑

|β1|+|β2|=|α|−1

/Lβ1
Ri

(
Riμ

[
/LL /d

(
Ri

β2 trχ
)+ trχ/d

(
Ri

β2 trχ
)

+ /d
(
Ri

β2(|χ̂ |2))]+ Ri trχ/d
(
Ri

β2 f̌
))
.

We remark that Fα is of order Ntop + 1 so that α = Ntop − 1.
We rewrite (2.33) as /divχ̂ = 1

2
/dtrχ − (μ−1ζ · χ̂ − 1

2μ
−1ζ trχ). By com-

muting /̂LRi
α , we obtain the following schematic expression:

/div
(
/̂LRi

αχ̂
) = 1

2
/d
(
Ri

αtrχ
)+ Hα, (8.4)

with Hα = (/LRi + 1
2 tr

(Ri ) /π)α(μ−1ζ ·χ̂− 1
2μ

−1ζ trχ)+∑|β1|+|β2|=|α|−1(/LRi +
1
2 tr

(Ri ) /π)β1(tr(Ri ) /π ·/d(Ri
β2 trχ)+( /div(Ri ) /̂π)· /̂LRi

β2 χ̂ )+∑|β1|+|β2|=|α|−1(/LRi+
1
2 tr

(Ri ) /π)β1((Ri ) /̂π ·∇/ /̂LRi
β2 χ̂ ). By applying the elliptic estimates (3.44) to (8.4),

in view of the definition of Fα , we obtain (the L2 norms are taken at S(t, u))

‖μ/∇ /̂LRi
αχ̂‖L2(St,u) � ‖Fα‖L2 + ‖/dRi

α f̌ ‖L2 + ‖/dμ‖L∞‖ /̂LRi
αχ̂‖L2

+ ‖μHα‖L2 . (8.5)

For any form ξ , since |ξ |L|ξ | = (ξ, /LLξ) − ξ · χ̂ · ξ − 1
2 trχ |ξ |2, we have

L|ξ | ≤ |/LLξ |+ |χ̂ ||ξ |− 1
2 trχ |ξ |. Applying this inequality to (8.3), we obtain

L|Fα| ≤
(
μ−1Lμ − 3

2
trχ + |χ̂ |

)
|Fα| + (2μ−1|Lμ| − trχ)|/dRi

α f̌ |
+ |μ/dRi

α(|χ̂ |2)| + |gα|. (8.6)
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To obtain the L2(�t ) bound on Fα , we first integrate (8.6) from −r0 to t and
then take the L2 norm on�t . We claim that we can ignore the first term on the
right hand side: The term

(|trχ | + |χ̂ |)|Fα| can be removed immediately by

Gronwall’s inequality. Forμ−1Lμ · |Fα|, for a fixed (u, θ), ifμ ≥ 1
10 for all u,

it can be also removed by Gronwall’s inequality; otherwise,μ < 1
10 , therefore,

according to the argument in Proposition 4.6, the sign of Lμ is negative so
that this term can be ignored. As a result, (8.6) yields

‖Fα‖L2(�t )
� ‖Fα‖L2(�−r0 )

+
∫ t

−r0
‖(μ−1|Lμ| + 1)/dRi

α f̌ ‖L2(�τ )

+‖μ/dRi
α
(|χ̂ |2)‖L2(�τ )

+ ‖gα‖L2(�τ )
dτ

= ‖Fα‖L2(�−r0 )
+ I1 + I2 + I3.

where the Ii ’s are defined in the obvious way.
We first bound I2. According to the Leibniz rule, we have

I2 =
∑

|β1|+|β2|+|β3|+|β4|=|α|
∫ t

−r0
‖μ/d( /̂LRi

β1/g · /̂LRi
β2/g · /̂LRi

β3 χ̂ · /̂LRi
β4 χ̂
)‖L2(�τ )

dτ.

Therefore, at least three indices of the βi ’s are at most N∞. According to
Proposition 7.4, we have

I2 �
∫ t
−r0

‖μ/d /̂LRi
αχ̂‖L2(�τ )

‖χ̂‖L∞(�τ ) + δ3/2
√
E≤|α|+2(τ, u)dτ

(8.5)
� δ

∫ t
−r0

‖Fα‖L2(�τ )
+ ‖/dRi

α f̌ ‖L2(�τ )
+ δ1/2

√
E≤|α|+2(τ, u)dτ.

Since f̌ =−1
2
dc2
dρ Lρ, we have /dRi

α f̌ = dc2
dρ ψ0/dRi

αLψ0+/d
(∑

β1+β2=α,
|β1|≥1

Ri
β1

(dc2
dρ ψ0

)
Ri

β2
(
Lψ0

))
. This leads to

∫ t

−r0
‖/dRi

α f̌ ‖L2(�τ )
�
∫ t
−r0

δ
1
2
√
E≤|α|+2(τ, u)dτ.

Therefore, we have the following bound for I2:

I2 �
∫ t

−r0
δ‖Fα‖L2(�τ )

+ δ3/2
√
E≤|α|+2(τ, u) + δ3/2

√
E≤|α|+2(τ, u)dτ.

(8.7)
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We remark that, as long as the terms under consideration are not top order
terms, i.e. not a term of order Ntop + 1, we can simply use the estimates from
previous section to get the estimates. The reason is as follows: each term is
a product of O≤l

k with l ≤ |α|. Only one of the factor is of order l > N∞.
We can bound the rest in L∞ and the highest order one in L2, thanks to the
estimates derived in the previous section.

To bound I3, as we pointed out above, we only have to take care of
the terms appearing in gα whose orders are possibly Ntop + 1. The rest of
them can be easily bounded in L2 by a universal constant times the sum of
∫ t
−r0

δ
1
2
√
E≤|α|+2(τ, u) + δ1/2μ

−1/2
m (t)

√
E≤|α|+2(τ, u)dτ .

We now investigate the possible highest order terms in gα . There are three
possibilities: the first one are the terms of the form

∑
|β1|+|β2|=|α|−1 /Lβ1

Ri
/L(Ri )Z

Fβ2 . They can be bounded by |(Ri )Z ||Fα| � δ1/2|Fα| provided that δ is suitably
small. The second possibility is from the (Ltrχ + |χ |2) term of g0. However,
Eq. (2.35) says that Ltrχ + |χ |2 = e − trα′, so although it is of the highest
order, the highest order part consists only ∇/ derivatives of ψ (thanks to the
expression of α′), hence can be bounded in the same way as lower order terms.
The last possibility is from the term Lψ0Lψ0 appearing in ǧ. They are of top
orders and they can not be converted into terms involving only ∇/ derivatives.
These terms contribute to gα the terms of the form O≤1

0 · Lψ0 · LRα+1
i ψ0 in

gα . The idea is to use the flux to bound this term:

∫ t

−r0
‖Lψ0LR

α+1
i ψ0‖L2(�

u
τ )
dτ

� δ−1/2

(∫ t

−r0

∫ u

0

∫

Sτ,u′
(LRα′+1

i ψ)2dμ/gdu
′dτ
)1/2

� δ−1/2
(∫ u

0
F≤|α|+2(t, u

′)du′
)1/2

Therefore, we have the following estimates for I3:

I3 �
∫ t

−r0
δ
1
2
√
E≤|α|+2(τ ) + δ1/2μ

−1/2
m (τ )

√
E≤|α|+2(t)dτ

+ δ−1/2
(∫ u

0
F≤|α|+2(t, u

′)du′
)1/2

(8.8)

We now study the estimates on I1. When μ ≥ 1
10 , the estimates are straight-

forward. To study the case when μ ≤ 1
10 , we introduce a few notations (where

a is a positive constant):
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t0 = inf

{
τ ∈ [−2, t∗)

∣
∣μm(t) <

1

10

}
,

M(t) = max
(u,θ),

(t,u,θ)∈Wshock

∣∣(L(logμ)
)
−(t, u, θ)

∣∣,

Ia(t) =
∫ t

t0
μ−a
m (τ )M(τ )dτ.

Lemma 8.1 We assume that a is at least 4.

1. For sufficiently large a and for all t ∈ [t0, t∗), we have

Ia(t) � a−1μ−a
m (t). (8.9)

1′. For sufficiently large a and for all t ∈ [t0, t∗), we have
∫ t

t0
μ−a−1
m (t ′)dt ′ � 1

a
μ−a
m (t)

2. For a ≥ 4 and sufficiently small δ, there is a constant C0 independent of a
and δ, so that for all τ ∈ [−r0, t], we have

μa
m(t) ≤ C0μ

a
m(τ ) (8.10)

Proof (1) By Proposition 4.6, for t ≥ t0, the minimum of r20 (Lμ)(−r0, u, θ)
on [0, δ] × S

2 is negative and we denote it by

− ηm = min
(u,θ)∈[0,δ]×S2

{r20 (Lμ)(−r0, u, θ)}. (8.11)

We notice that 1 ≤ ηm ≤ Cm where Cm is a constant depending on the initial
data. In view of the asymptotic expansion for (Lμ)(t, u, θ) in Lemma 4.4, we
have

μ(t, u, θ) = 1 −
(
1

t
+ 1

r0

)
r20 (Lμ)(−r0, u, θ) + O

(
δM4)

(
1

t2
− 1

r20

)

.

(8.12)

We fix an s ∈ (t0, t∗) in such a way that t0 ≤ t < s < t∗. There exists
(us, θs) ∈ [0, δ] × S

2 and (um, θm) ∈ [0, δ] × S
2 so that

μ(s, us, θs) = μm(s), r20 (Lμ)(−r0, um, θm) = −ηm . (8.13)

123



S. Miao, P. Yu

We claim that

∣
∣ηm + r20 (Lμ)(−r0, us, θs)

∣
∣ ≤ O(δM4). (8.14)

Indeed, one can apply (8.12) to μ(s, um, θm) and μ(s, us, θs) to derive

μ(s, us, θs) = 1 −
(
1

s
+ 1

r0

)
(−ηm + dms) + O(δM4)

(
1

t2
− 1

r20

)

μ(s, um, θm) = 1 −
(
1

s
+ 1

r0

)
(−ηm) + O(δM4)

(
1

t2
− 1

r20

)

,

(8.15)

where the quantity dms > 0 is defined as

dms := ηm + r20 (Lμ)(−r0, us, θs). (8.16)

Since μ(s, us, θs) ≤ μ(s, um, θm), we have

0 < −
(
1

s
+ 1

r0

)
dms ≤ O(δM4)

(
1

t2
− 1

r20

)

.

Hence,

dms ≤ O(δM4). (8.17)

The constants in the above inequalities depend on t0 therefore on ηm and they
are absolute constants. With this preparation, one can derive precise upper and
lower bounds for μm(t).

We pick up a (u′
m, θ

′
m) ∈ [0, δ] × S

2 in such a way that μ(t, u′
m, θ

′
m) =

μm(t). For the lower bound, by virtue of Lemma 4.4, we have

μm(t) = μ(t, u′
m, θ

′
m) = μ(s, u′

m, θ
′
m) +

∫ t

s
(Lμ)(t ′, u′

m, θ
′
m)dt

′

≥ μm(s) +
∫ t

s

ηm

−t ′2
+ O(δM4)

(−t ′)3
dt ′

≥ μm(s) +
(
ηm − 1

2a

)(
1

t
− 1

s

)
. (8.18)

In the last step, we take sufficiently small δ so that O(δM4) ≤ 1
2a .
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For the upper bound, in view of Lemma 4.4 and (8.17), we have

μm(t) ≤ μ(t, us, θs) = μm(s) +
∫ t

s
(Lμ)(t ′, us, θs)dt ′

= μm(s) +
∫ t

s

ηm − dms

−t ′2
+ O(δM4)

(−t ′)3
dt ′

≤ μm(s) +
∫ t

s

ηm

−t ′2
+ O(δM4)

t ′2
dt ′

≤ μm(s) +
(
ηm + 1

2a

)(
1

t
− 1

s

)
. (8.19)

In the last step, we also take sufficiently small δ so that O(δM4) ≤ 1
2a .

For Ia(t), first of all, we have

Ia(t) �
∫ t

t0

(
μm(s) +

(
ηm − 1

2a

)(
1

t
− 1

s

))−a−1

t ′−2dt ′

=
∫ τ0

τ

(
μm(s) +

(
ηm − 1

2a

)
(τ − τs)

)−a−1

dτ ′

≤ 1

ηm − 1
2a

1

a

(
μm(s) +

(
ηm − 1

2a

)
(τ − τs)

)−a

.

Hence,

Ia(t) � 1

a

(
μm(s) +

(
ηm − 1

2a

)(
1

t
− 1

s

))−a

≤ 1

a

(
μm(s) + (ηm − 1

2a

) (1
t − 1

s

))−a

(
μm(s) + (ηm + 1

2a

) (1
t − 1

s

))−aμ
−a
m (t)

≤ 1

a

((
ηm − 1

2a

) (1
t − 1

s

))−a

((
ηm + 1

2a

) (1
t − 1

s

))−aμ
−a
m (t). (8.20)

Since as a → ∞, one has

(
ηm − 1

2a

)−a

(
ηm + 1

2a

)−a → e
1
ηm .

The limit is an absolute constant. Therefore, (8.20) yields the proof for part
(1) of the lemma. The proof for part (1’) is exactly the same.
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(2) We start with an easy observation: if μ(t, u, θ) ≤ 1 − 1
a , then

Lμ(t, u, θ) � −a−1. In fact, we claim that (1t + 1
r0
)r20 Lμ(−r0, u, θ) ≥ 1

2a
−1.

Otherwise, for sufficiently small δ (say δ1/4 ≤ a−1), according to the expan-
sion forμ(t, u, θ), i.e.μ(t, u, θ) = μ(−r0, u, θ)−(1t + 1

r0
)r20 Lμ(−r0, u, θ)+

O(δ), we have

μ(t, u, θ) > 1 − 1

2a
− Cδ ≥ 1 − 1

a
.

which is a contradiction. Therefore Lemma 4.4 implies Lμ(t, u, θ) � −a−1.
In particular, this observation implies that, if there is a t ′ ∈ [−r0, s∗], so that
μm(t ′) ≤ 1 − a−1, then for all t ≥ t ′, we have μm(t) ≤ 1 − a−1. This
allows us to define a time t1, such that it is the minimum of all such t ′ with
μm(t ′) ≤ 1 − a−1.

We now prove the lemma. If τ ≤ t1, since μm(t) ≤ 2, we have

μ−a
m (τ ) ≤

(
1 − 1

a

)−a

≤ C0 ≤ C0μ
−a
m (t).

If τ ≥ t1, then μm(τ ) ≤ 1 − 1
a . Let μm(τ ) = μ(τ, uτ , θτ ). We know that

μ(t, uτ , θτ ) is decreasing in t for t ≥ τ . Therefore, we have

μm(t) ≤ μ(t, uτ , θτ ) ≤ μ(τ, uτ , θτ ) = μm(τ ).

The proof now is complete. �
For I1, according to the above lemma with a = b|α|+2, we then have

I1 � δ1/2
∑

β≤|α|

∫ t

−r0
‖|L(logμ)|Ri

β+1Lψ‖L2(�τ )

� δ1/2 Ib|α|+2(t)
√
Ẽ≤|α|+2(t, u) (8.21)

� δ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u).

Finally, the estimates (8.21), (8.7), (8.8) on I1, I2 and I3 together yield

‖Fα‖L2(�t )
� ‖Fα‖L2(�−r0 )

+
∫ t

−r0
δ1/2μ

−b|α|+2
m (τ )

(√
Ẽ≤|α|+2(τ, u)

+μ
−1/2
m (τ )

√
Ẽ≤|α|+2(τ, u)

)
dτ + δ− 1

2μ
−b|α|+2
m (t)

×
√∫ u

0
F̃≤|α|+2(t, u

′)du′ + δ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u). (8.22)
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This implies

‖μ/d(Rα
i trχ)‖L2(�t )

� δ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

+
∫ t

−r0
δ1/2μ

−b|α|+2−1/2
m (τ )

√
Ẽ≤|α|+2(τ, u)dτ

+ δ−1/2μ
−b|α|+2
m (t)

√∫ u

0
F̃≤|α|+2(t, u

′)du′. (8.23)

8.2 Estimates on μ

The top order estimates on μ depend on the equation Lμ = m + μe. Since

m = −1
2
d(c2)
dρ Tρ and eμ = 1

2c2
d(c2)
dρ Lρ ·μ, it is visible that μ can be bounded

by the total energy on ψ , i.e. the Ek’s. However, to avoid loss of derivatives,
we should not integrate Lμ directly.

In view of the following commutation formulas,

[L, /�]φ + trχ /�φ = −2χ̂ · /̂D
2
φ − 2 /divχ̂ · /dφ,

[T, /�]φ + c−1μtrθ /�φ = −2c−1μθ̂ · /̂D
2
φ − 2 /div(c−1μθ̂) · /dφ,

we have

L /�μ = −1

2

dc2

dρ
/�Tρ + μ/�e + e /�μ

+/dμ · /de − trχ /�μ − 2χ̂ · /̂D
2
μ − 2 /divχ̂ · /dμ. (8.24)

According to (8.1),

�gρ = d log(c)

dρ

(
μ−1LρLρ + /dρ · /dρ)+ 2μ−1Lψ0Lψ0 + 2/dψ0 · /dψ0.

Therefore, by multiplying μ, we have

μ/�ρ = L(Lρ) + 1

2
Lρtrχ + 1

2
Lρtrχ + d log(c)

dρ

(
LρLρ + μ/dρ · /dρ)

+ 2Lψ0Lψ0 + 2μ/dψ0 · /dψ0.
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We commute T and obtain

μ/�Tρ = L(T Lρ) + 1

2
Lρ(T trχ) + 1

2
Lρ(T trχ)

+ {T, L]Lρ + 1

2
trχT Lρ + 1

2
T Lρtrχ

+ T

(
d log(c)

dρ

(
LρLρ+μ/dρ · /dρ)+2Lψ0Lψ0+2μ/dψ0 · /dψ0

)

+ c−1μtrθ /�ρ + 2c−1μθ̂ · /̂D
2
ρ + 2 /div(c−1μθ̂) · /dρ − (Tμ) /�ρ.

(8.25)

Therefore

−1

2

dc2

dρ
/�Tρ = L

(
−1

2

dc2

dρ
T Lρ

)
− 1

2

dc2

dρ

(
1

2
Lρ(T trχ) + 1

2
Lρ(T trχ)

)

−1

2

dc2

dρ

(
{T, L]Lρ + 1

2
trχT Lρ + 1

2
T Lρtrχ

)

−1

2

dc2

dρ
T

(
d log(c)

dρ

(
LρLρ + μ/dρ · /dρ)+ 2Lψ0Lψ0 + 2μ/dψ0 · /dψ0

)

−1

2

dc2

dρ

(
c−1μtrθ /�ρ + 2c−1μθ̂ · /̂D

2
ρ + 2 /div(c−1μθ̂) · /dρ − (Tμ) /�ρ

)

+L

(
1

2

dc2

dρ

)
T Lρ. (8.26)

In view of the commutator formula, we also have

μ2 /�e = L

(
μ2

2c2
dc2

dρ
/�ρ

)
+ μ2

c2
dc2

dρ

(
χ · /D2

ρ + /divχ̂ · /dρ
)

− L

(
μ2

2c2
dc2

dρ

)
/�ρ + μ2 d

dρ

(
1

c2
dc2

dρ

)
/dρ · /dLρ

+μ2
(

d

dρ

(
1

2c2
dc2

dρ

)
/�ρ + d2

dρ2

(
1

2c2
dc2

dρ

)
|/dρ|2

)
Lρ.

(8.27)

Let us define

f̌ ′ := −1

2

dc2

dρ
T Lρ + μ2

2c2
dc2

dρ
/�ρ, F ′ := μ/�μ − f̌ ′. (8.28)
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Then in view of (8.24), (8.26) and (8.27), we obtain the following propagation
equation for F ′:

LF ′ + (trχ − 2μ−1Lμ)F ′ = −
(
1

2
trχ − 2μ−1Lμ

)
f̌ ′ − 2μχ̂ · /̂D

2
μ + ǧ′.

(8.29)

where

ǧ′ =
(

−/dμ + μ

c2
dc2

dρ
/dρ

)
· (μ/dtrχ) + �

≤2
≥−2 + O≤1

0 �
≤2
≥−2 + �

≤2
≥0 .

(8.30)

Herewe have used the structure equation (2.34) to cancel the contribution from
the term 1

2 Lρ(T trχ) + 1
2 Lρ(T trχ) in (8.25) and the term (Lμ) /�μ when we

write L(μ /�μ) = μL( /�μ) + L(μ) /�μ. We also remark that the L2 norm of
all derivatives on /divχ̂ has been estimated from previous subsection. In such

a sense, it can also be considered as a �≤2
2 term and we use (2.33) to replace

/divχ by /dtrχ + · · · . The term�
≤2
≥−2 comes from the contribution of Lψ0Lψ0

andO≤1
0 �

≤2
≥−2 comes from−1

4
dc2
dρ T Lρtrχ in (8.26). Since we already applied

T to Lψ0Lψ0 once in (8.26), instead of using flux F(t, u) as we did in the last
subsection, we only need to use the energy E(t, u) to control the contribution
of this term.

We set F ′
α,l = μRi

α′
T l /�μ − Ri

α′
T l f̌ ′ and |α′| + l = |α|. According to

(8.29), we have

LF ′
α,l + (trχ − 2μ−1Lμ)F ′

α,l = −
(
1

2
trχ − 2μ−1Lμ

)
Ri

α′
T l f̌ ′

− 2μχ̂ · /Lα′
Ri
/Ll
T /̂D2

μ + ǧ′
α′,l . (8.31)

where ǧ′
α′,l is given by

ǧ′
α′,l =

(
−/dμ + μ

c2
dc2

dρ
/dρ

)
· μ/d

(
Ri

α′
T l trχ

)
+ l · �F ′

α,l−1 + (Ri )ZF ′
α−1,l

+O≤|α′|+1
−k O≤|α|−|α′|+1

≥2−2l+k + �
≤|α|+2
≥−2l−2 + O≤|α′|+1

−k �
≤|α|+2−|α′|
≥−2l−2+k + �

≤|α|+2
≥−2l .

We remark that the second term of ǧ′
α′,l vanishes when l = 0 and� = [L, T ].

According to (8.31), we have
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‖F ′
α,l‖L2(�t )

� ‖F ′
α,l‖L2(�−r0 )

+
∫ t

−r0
‖μ−1Lμ‖L∞(�τ )‖Ri

α′
T l f̌ ′‖L2(�τ )

dτ

+
∫ t

−r0
‖μχ̂ · /LRi

α′
/Ll
T /̂D2

μ‖L2(�τ )
dτ +

∫ t

−r0
‖ǧ′

α′,l‖L2(�τ )
dτ

= ‖F ′
α‖L2(�−r0 )

+ I1 + I2 + I3.

We remark that we must multiply both sides δl to get the correct estimates.

We first deal with I1. Since f̌ ′ = 1
2
dc2
dρ (−T Lρ + μ2

c2
/�ρ), therefore, we have

Ri
α′
T l f̌ = −dc2

dρ
ψ0Ri

α′
T l+1Lψ0 + μ2

2c2
dc2

dρ
ψ0R

α′
i T l /�ψ0 + �

≤|α|+2
≥−2(l+2).

Compared to the first two terms, the last term on the right hand side above is
of lower order with respect to the order of derivatives. Hence,

δl+1‖Ri
α′
T l f̌ ′‖L2(�τ )

� δ1/2
√
E≤|α|+2(τ, u) + δ3/2

√
E≤|α|+2(τ, u)

(8.32)

This together with Lemma 8.1 yields

δl+1 I1 � μ
−b|α|+2
m (t)δ1/2

(√
Ẽ≤|α|+2(t, u) + δ

√
Ẽ≤|α|+2(t, u)

)
.

(8.33)

For I2, we can use elliptic estimates, i.e. to bound /̂D2
μ by /�μ. This leads

to

δl+1 I2 � δl+2
∫ t

−r0
‖μRi

α′
T l /�μ‖L2(�τ )

dτ

+
∫ t

−r0
δ3/2

√
E≤|α|+2(τ, u) + δ3/2μ

−1/2
m (τ )

√
E≤|α|+2(τ, u)dτ

� δ

∫ t

−r0
δl+1‖Fα,l‖L2(�τ )

+ δl+1‖Ri
α′
T l f̌ ‖L2(�τ )

+δ1/2
(√

E≤|α|+2(τ, u) + μ
−1/2
m (τ )

√
E≤|α|+2(τ, u)

)
dτ.

(8.34)

We can skip the first two terms: The second term is already controlled by I1.
While the first term will be eventually absorbed by Gronwall’s inequality. The
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last two terms come from the commutator between /� and T, Ri as well as
using Proposition 7.5.

For I3 := I ′
3 + I ′′

3 , we first consider the contributions from the first line in
the expression of ǧ′

α′,l , which are denoted by I ′
3. We consider the cases l = 0

and l > 0 separately. For l = 0, we have

δ I ′
3 � δ

∫ t

−r0

∥
∥∥
∥

(
−/dμ + μ

c2
dc2

dρ
/dρ

)(
μ/d
(
Ri

αtrχ
))

+
(
| (Ri )Z | + |�|

)
/dF ′|α|−1

∥
∥∥
∥
L2(�τ )

dτ

� δ

∫ t

−r0
‖μ/d

(
Ri

αtrχ
)

‖L2(�τ )
+ δ‖/dF ′|α|−1‖L2(�τ )

dτ

+
∫ t

−r0

(
δ3/2

√
E≤|α|+2(τ, u) + δ3/2μ

−1/2
m (τ )

√
E≤|α|+2(τ, u)

)
dτ

The first two terms are bound by the top order estimates on trχ in the previous
subsection, therefore, for l = 0, we have

δ I ′
3 �

∫ t

−r0
δ3/2μ

−b|α|+2
m (τ )

√
Ẽ≤|α|+2(τ, u) + δ3/2μ

−b|α|+2−1/2
m (τ )

×
√
Ẽ≤|α|+2(τ, u)dτ

+ δ1/2
∫ t

−r0
μ

−b|α|+2
m (τ )

√∫ u

0
F̃≤|α|+2(τ, u

′)du′dτ. (8.35)

For the l ≥ 1 case, we use (2.34), i.e. /LTχ = /∇⊗̂η + μ−1ζ ⊗̂η −
c−1L(c−1μ)χ + c−1μθ⊗̂χ to rewrite T trχ . By taking the trace in (2.34),
we obtain

μ/d(Rα′−1
i T l trχ) = μRα′

i T l−1 /�μ + O≤|α|+1
≥−2l+2,

where

δl+1‖O≤|α|+1
≥−2l+2‖L2(�τ )

�δ3/2
√
E≤|α|+2(t ′, u)+δ3/2μ

−1/2
m (τ )

√
E≤|α|+2(τ, u).

We then conclude that (for l ≥ 1)

δl+1 I ′
3 �

∫ t

−r0
δ3/2μ

−b|α|+2
m (τ )

√
Ẽ≤|α|+2(τ, u) + δ3/2μ

−b|α|+2− 1
2

m (τ )

×
√
Ẽ≤|α|+2(τ, u)dτ. (8.36)
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Now we discuss the contributions from the last three terms in the expression
of ǧ′

α′,l , which are denoted by I ′′
3 . In view of Propositions 7.4 and 7.5, the

termsO≤|α′|+1
−k O≤|α|−|α′|+1

2−k can be absorbed byO≤|α′|+1
−k �

≤|α|+2−|α′|
≥−2l−2+k . We can

bound the last three terms of ǧ′
α′,l as follows

δl+1‖�≤|α|+2
≥−2l−2‖L2(�t )

� δ1/2
√
E≤|α|+2(t, u),

δl+1‖O≤|α′|+1
−k �

≤|α|+2−|α′|
≥−2l−2+k ‖L2(�

u
t )

� δ1/2
√
E≤|α|+2(t, u)

+δ1/2
∫ t

−r0
μ

−1/2
m (t ′)

√
E≤|α|+2(t

′, u)dt ′,

δl+1‖�≤|α|+2
≥−2l ‖L2(�t )

� δ3/2
√
E≤|α|+2(t, u)

+δ3/2μ
−1/2
m (t)

√
E≤|α|+2(t, u). (8.37)

Therefore we have the following estimates for I ′′
3 :

δl+1 I ′′
3 � δ1/2

∫ t

−r0
μ

−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t ′, u)dt ′

+ δ1/2
∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′. (8.38)

By combining the estimate (8.32) for f̌ ′ and the estimates for (8.33), (8.34),
(8.35), (8.36) and (8.38) for I1, I2, I3, we obtain

δl+1‖Rα′
i T l /�μ‖L2(�t )

� δl+1‖Fα,l‖L2(�−r0 )

+ δ1/2μ
−b|α|+2
m (t)

(√
Ẽ≤|α|+2(t, u) + μ

−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

)

+
∫ t

−r0
δ1/2μ

−b|α|+2
m (τ )

√
Ẽ≤|α|+2(τ, u)

+ δ1/2μ
−b|α|+2−1/2
m (τ )

√
Ẽ≤|α|+2(τ, u)dτ

+ δ1/2
∫ t

−r0
μ

−b|α|+2
m (τ )

√∫ u

0
F̃≤|α|+2(τ, u

′)du′dτ. (8.39)

9 Commutator estimates

In this section, we shall estimate the error spacetime integrals for the contri-
butions of commutators.
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Let ψ be a solution of the inhomogeneous wave equation �g̃ψ = ρ and Z
be a vector field, one can commute Z with the equation to derive

�g̃ (Zψ) = Zρ + 1

2
trg̃

(Z)π̃ · ρ + c2divg
(Z) J (9.1)

where the vector field (Z) J is defined by

(Z) Jμ =
(
(Z)π̃μν − 1

2
gμν trg

(Z)π̃

)
∂νψ.

We remark that the raising indices for (Z)π̃μν are with respect to the optic
metric g.

In applications,we use the above formulas for homogeneouswave equations
�g̃ψ = 0 and commute some commutation vector fields Zi ’s several times.
Therefore, we need the following recursion formulas:

�g̃ψn = ρn. ψn = Zψn−1, ρ1 = 0,

ρn = Zρn−1 + 1

2
trg̃

(Z)π̃ · ρn−1 + c2divg
(Z) Jn−1,

(Z) Jμn−1 =
(
(Z)π̃μν − 1

2
gμν trg

(Z)π̃

)
∂νψn−1.

(9.2)

Remark 9.1 When we derive energy estimates for �g̃ψn = ρn , due to the
volume form of the conformal optic metric g̃, the integrands ρ̃n appearing in
the error terms is slightly different from ρn . The rescaled source terms ρ̃n are
defined as follows:

ρ̃n = 1

c2
μρn = Z ρ̃n−1 + (Z)δ · ρ̃n−1 + (Z)σn−1,

ρ̃1 = 0, (Z)σn−1 = μ · divg (Z) Jn−1,

(Z)δ = 1

2
trg̃

(Z)π̃ − μ−1Zμ + 2Z (log(c)) .

(9.3)

In view of (3.29) as well as the formula

t̃r(Z)π̃ = ctr(Z)π̃ = c
(
−μ−1(Z)π̃LL + tr(Z) /̃π

)

we have:
∣
∣
∣(T )δ

∣
∣
∣ � 1,

∣
∣
∣(Q)δ

∣
∣
∣ � 1,

∣
∣
∣(R j )δ

∣
∣
∣ � δ. (9.4)
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Then error spacetime integral corresponding to K0 = L and K1 = L
containing ρn are as follows:

−
∫

Wt
u

1

c2
ρnLψndμg = −

∫

Wt
u

ρ̃nLψndtdudμ/g

−
∫

Wt
u

1

c2
ρnLψndμg = −

∫

Wt
u

ρ̃nLψndtdudμ/g

We first consider the contribution of (Z)σn−1 in ρ̃n . We write (Z)σn−1 in null
frame (L, L , ∂

∂θ A
):

(Z)σn−1 = −1

2
L((Z) Jn−1,L) − 1

2
L((Z) Jn−1,L) + /div(μ(Z) /Jn−1)

−1

2
L(c−2μ)(Z) Jn−1,L − 1

2
trχ(Z) Jn−1,L − 1

2
trχ(Z) Jn−1,L ,

Then with the following expressions for the components of (Z) Jn−1 in the null
frame:

(Z) Jn−1,L = −1

2
tr
(Z)

/̃π(Lψn−1) + (Z)
Z̃ · /dψn−1

(Z) Jn−1,L = −1

2
tr
(Z)

/̃π(Lψn−1) + (Z)
Z̃ · /dψn−1 − 1

2μ
(Z)π̃LL(Lψn−1)

μ
(Z) /J A

n−1 = −1

2
(Z)

Z̃ A(Lψn−1) − 1

2
(Z)

Z̃
A
(Lψn−1)

+ 1

2
((Z)π̃LL − μtr

(Z)
/̃π)/d A

ψn−1 + μ
(Y )

/̃π
A
B /d

B
ψn−1

Based on the above expressions, we decompose:

(Z)σn−1 = (Z)σ1,n−1 + (Z)σ2,n−1 + (Z)σ3,n−1

where (Z)σ1,n−1 contains the products of components of (Z)π̃ with the 2nd
derivatives of ψn−1, (Z)σ2,n−1 contains the products of the 1st derivatives of
(Z)π̃ with the 1st derivatives of ψn−1, and (Z)σ3,n−1 contains the other lower
order terms. More specifically, we have:
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(Z)σ1,n−1 = 1

2
tr
(Z)

/̃π

(
LLψn−1 + 1

2
tr/̃gχ̃Lψn−1

)

+1

4
(μ−1(Z)π̃LL)L

2ψn−1

−(Z)
Z̃ · /dLψn−1 − (Z)

Z̃ · /dLψn−1

+1

2
(Z)π̃LL /�ψn−1 + μ

(Z)̂̃
/π · /D2

ψn−1 (9.5)

(Z)σ2,n−1 = 1

4
L(tr

(Z)
/̃π)Lψn−1 + 1

4
L(tr

(Z)
/̃π)Lψn−1

+ 1

4
L(μ−1(Z)π̃LL)Lψn−1

− 1

2
/LL

(Z)
Z̃ · /dψn−1 − 1

2
/LL

(Z)
Z̃ · /dψn−1

− 1

2
/div

(Z)
Z̃ Lψn−1 − 1

2
/div

(Z)
Z̃ Lψn−1

+ 1

2
/d(Z)π̃LL /dψn−1 + /div(μ

(Z)̂̃
/π) · /dψn−1 (9.6)

and

(Z)σ3,n−1 =
(
1

4
trχ tr

(Z)
/̃π + 1

4
trχ(μ−1(Z)π̃LL)

+1

2
(Z)

Z̃ · /d(c−2μ)

)
Lψn−1 − 1

4
(L log(c−1))tr

(Z)
/̃πLψn−1

−
((

1

2
trχ + L(c−2μ)

)
(Z)

Z̃ + 1

2
trχ

(Z)
Z̃

)
/dψn−1 (9.7)

With these expressions for (Z)σn−1, we are able to investigate the structure
of ρ̃n . Basically, we want to use the recursion formulas in (9.3) to obtain a
relatively explicit expression for ρ̃n .

On the other hand, for the energy estimates, we consider the following
possible ψn:

ψn = Rα+1
i ψ, ψn = Rα′

i T l+1ψ, ψn = QRα′
i T lψ

Here ψn is the nth order variation and n = |α| + 1 = |α′| + l + 1. While
ψ is any first order variation. The reason that we can always first apply T ,
then Ri , and finally a possible Q is that the commutators [Ri , T ], [Ri , Q] and
[T, Q] are one order lower than RiT, T Ri ; QRi , Ri Q; QT, T Q respectively.
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Moreover, the commutators [Ri , T ], [Ri , Q] and [T, Q] are tangent to St,u .
Since we let Q be the last possible commutator, there will be no Q’s in ψn−1
in the second term on the right hand side of (9.5). Therefore we only need
to commute Q once. Now suppose that we consider the n = |α| + 2th order
variations of the following form:

ψ|α|+2 := Z|α|+1 · · · Z1ψ

We have the inhomogeneous wave equation:

�g̃ψ|α|+2 = ρ|α|+2

As we pointed out in Remark 9.1, we define:

ρ̃|α|+2 = μ

c2
ρ|α|+2

Then by a induction argument, the corresponding inhomogeneous term ρ̃|α|+2
is given by:

ρ̃|α|+2=
|α|∑

k=0

(
Z|α|+1+(Z|α|+1)δ

) · · · (Z|α|−k+2 + (Z|α|−k+2)δ
)
(Z|α|−k+1)σ|α|−1+k

(9.8)

9.1 Error estimates for the lower order terms

Consider an arbitrary term in this sum. There is a total of k derivatives with
respect to the commutators acting on (Z)σ|α|−1+k . In view of the fact that
(Z)σ|α|−1+k has the structure described in (9.5)–(9.7), in considering the partial
contribution of each term in (Z)σ1,|α|−1+k , if the factor which is a component of
(Z)π̃ receives more than

[ |α|+1
2

]
derivatives with respect to the commutators,

then the factor which is a 2nd order derivative ofψ|α|+1−k receives at most k−[ |α|+1
2

]− 1 order derivatives of commutators, thus corresponds to a derivative

of the ψ of order at most: k − [ |α|+1
2

]+ 1+|α|− k = [ |α|
2

]+ 1, therefore this
factor is bounded in L∞(�

u
t ) by the bootstrap assumption.Also, in considering

the partial contribution of each term in (Z)σ2,|α|+1−k , if the factor which is a 1st
derivative of (Z)π̃ receivesmore than

[ |α|+1
2

]−1 derivatives with respect to the
commutators, then the factor which is a 1st derivative of ψ|α|+1−k receives at
most k−[ |α|+1

2

]
derivatives with respect to the commutators, thus corresponds

to a derivative of theψα of order at most k− [ |α|+1
2

]+1+|α|−k = [ |α|
2

]+1,
therefore this factor is again bounded in L∞(�

u
t ) by the bootstrap assumption.
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Similar considerations apply to (Z)σ3,|α|+1−k . We conclude that for all the
terms in the sum in (9.8) of which one factor is a derivative of the (Z)π̃ of
order more than

[ |α|+1
2

]
, the other factor is then a derivative of the ψα of order

at most
[ |α|

2

]+1 and is thus bounded in L∞(�
u
t ) by the bootstrap assumption.

Of these terms we shall estimate the contribution of those containing the top
order spatial derivatives of the optical entities in the next subsection. Before
we give the estimates for the contribution of the lower order optical terms to
the spacetime integrals:

− δ2k
∫

Wt
u

ρ̃≤|α|+2Lψ≤|α|+2dtdudμ/g,

− δ2k
∫

Wt
u

ρ̃≤|α|+2Lψ≤|α|+2dtdudμ/g,

(9.9)

we investigate the behavior of these integrals with respect to δ. Here k is
the number of T s in string of commutators. For the multiplier K1 = L , the
associated energy inequality is

E≤|α|+2(t, u) + F≤|α|+2(t, u) + K≤|α|+2(t, u)

� E≤|α|+2(−r0, u) +
∫

Wt
u

Q̃1,≤|α|+2. (9.10)

The quantities K≤|α|+2(t, u) are defined similar as K (t, u):

K≤|α|+2(t, u) :=
∑

|α′|≤|α|+1

δl
′
K (t, u)[Zα′

ψ],

Again, l ′ is the number of T ’s in Zα′
.

In Q̃1,≤|α|+2, there are contributions from the deformation tensors of two
multipliers, which has been treated in Sect. 6. There are also contributions
from the deformation tensors of commutators, which are given by (9.8). Now
we investigate the terms which are not top order optical terms, namely, the
terms containing χ and μ of order less than |α| + 2. In view of the discussion
in Sect. 6, the left hand side of (9.10) is of order δ, so we expect these lower
order terms in the second integral of (9.9) is of order δ. In fact, the integration
on Wt

u gives us a δ and the multiplier δk Lψ≤|α|+2 is of order δ1/2. To see the

behavior of δkσ , we look at σ1 as an example. Let k′ be the number of T s
applied to (LLψl + 1

2 t̃rχ̃Lψl). (4.1) implies
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δk
′
(
LLψl + 1

2
t̃rχ̃Lψl

)
∼ δ1/2 + δk

′
ρl .

Since ρ1 = 0, an induction argument implies that

δk
′
(
LLψl + 1

2
t̃rχ̃Lψl

)
∼ δ1/2.

Then in view of (3.24), (3.26) and (3.29), the first term in σ1 behaves like δ1/2.
Following the same procedure, one sees straightforwardly that all the other
terms in σ1, σ2 and σ3 behave like δ1/2 (one keeps in mind that if Z = T ,
then we multiplier a δ with the corresponding deformation tensor.) except the
term L

(
tr(Z) /̃π

)
Lψl . For this term we use the argument deriving (3.28) and

Proposition 7.1 to see actually we have:

‖L(tr(Q) /̃π)‖L∞(�
u
t )

� δ.

This completes the discussions for σ associated to K1.
The same argument applies to the energy inequality associated to K0:

E≤|α|+2(t, u) + F≤|α|+2(t, u) � E≤|α|+2(−r0, u) +
∫

Wt
u

Q̃0,≤|α|+2.

(9.11)

and we conclude that the lower order optical terms in the error spacetime
integrals have one more power in δ than the energies on the left hand side.

Now we summarize the spacetime error estimates for the terms which
come from the L2 norms of the lower order optical quantities. In the proof

of Propositions 7.4 and 7.5, we use μ−1/2
m (t)

√
E≤|α|+2(t, u) to control the L

2

norm
∑

α′≤|α|+1 ‖/dZα′
ψ‖L2(�

u
t )
. Now we just keep this L2 norm as it is. This

together with the bootstrap assumptions on the L∞ norms of the variations
implies that the contributions from the L2 norms of lower order optical terms
are bounded as:

∫ t

−r0

⎛

⎝
∑

|α′|≤|α|+1

δ1/2+l ′‖/dZα′
i ψ‖L2(�

u
t ′ )

+ δ

√
E≤|α|+2(t ′, u)

⎞

⎠ dt ′

· δ1/2
∫ t

−r0
‖Lψ|α|+2‖L2(�

u
t ′ )
dt ′
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�
∫ t

−r0

⎛

⎝
∑

|α′|≤|α|+1

δ2+2l ′‖/dZα′
i ψ‖2

L2(�
u
t ′ )

+ δ2E≤|α|+2(t
′, u)

⎞

⎠ dt ′

+
∫ u

0
F≤|α|+2(t, u

′)du′ for K1

and

∫ t

−r0

⎛

⎝
∑

|α′|≤|α|+1

δ1/2+l ′‖/dZα′
i ψ‖L2(�

u
t ′ )

+ δ

√
E≤|α|+2(t ′, u)

⎞

⎠ dt ′

· δ1/2
∫ t

−r0
‖Lψ|α|+2‖L2(�

u
t ′ )
dt ′

�
∫ t

−r0

⎛

⎝
∑

|α′|≤|α|+1

δ1+2l ′‖/dZα′
i ψ‖2

L2(�
u
t ′ )

+ δE≤|α|+2(t
′, u)

⎞

⎠ dt ′

+ δ

∫ t

−r0
E≤|α|+2(t

′, u)dt ′ for K0

where l ′ is the number of T ’s in the string of Zα′
i . Therefore we obtain the

following error estimates for the lower order optical terms:

∫ t

−r0
δ2E≤|α|+2(t

′, u)dt ′+
∫ u

0
F≤|α|+2(t, u

′)du′+δ2K≤|α|+2(t, u) for K1

(9.12)

and

∫ t

−r0
δE≤|α|+2(t

′, u)dt ′ + δK≤|α|+2(t, u) for K0 (9.13)

Next we consider the case in which the deformation tensors receive less deriv-
atives with respect to the commutators than the variations in the expression for
(Z)σl . More specifically, we consider the terms in the sum (9.8) in which there

are at most [ |α|+1
2 ] derivatives hitting the deformation tensor

(Z)
/̃π , thus the

spatial derivatives on χ is at most [ |α|+1
2 ] and the spatial derivatives on μ is at

most [ |α|+1
2 ]+ 1, which are bounded in L∞(�

u
t ) by virtue of Propositions 7.1

and 7.2. Using the inequality ab ≤ εa2+ 1
ε
b2,we have the following estimates

for these contributions:
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∫ t

−r0
δ2E≤|α|+2(t

′, u)dt ′ + δ−1/2
∫ u

0
F≤|α|+2(t, u

′)du′

+ δ1/2K≤|α|+2(t, u) +
∫ t

−r0
E≤|α|+2(t

′, u)dt ′ for K1 (9.14)

∫ t

−r0
δ1/2E≤|α|+2(t

′, u)dt ′ + δ−1/2
∫ u

0
F≤|α|+2(t, u

′)du′

+ δ1/2K≤|α|+2(t, u) for K0 (9.15)

Here we estimate the terms involving L2ψn−1 and Lψn−1 in terms of flux.

9.2 Top order optical estimates

Now we estimate the contributions from the top order optical terms to the
error spacetime integrals. In estimating the top order optical terms, we need to
choose the power of μm(t) large enough. Therefore from this subsection on,
we will use C to denote an absolute positive constant so that one can see the
largeness of the power of μm(t) more clearly.

The top order optical terms come from the term inwhich all the commutators
hit the deformation tensors in the expression of (Z1)σ1, namely, the term:

(Z|α|+1 + (Z|α|+1)δ) · · · (Z2 + (Z2)δ)(Z1)σ1

more precisely, in:

Z|α|+1 · · · Z2

(
−1

2
L((Z1) J1,L) − 1

2
L((Z1) J1,L) + /div(μ(Z1) /J )

)

when the operators L , L, /div hit the deformation tensors in the expression of
(Z1) J .

Now we consider the top order variations:

Rα+1
i ψ, Rα′

i T l+1ψ, QRα′
i T lψ

where |α| = Ntop − 1 and |α′| + l + 1 = |α| + 1. Then the corresponding
principal optical terms are:

ρ̃|α|+2(R
α+1
i ψ) := 1

c
(Rα+1

i trχ ′) · Tψ,

ρ̃|α|+2(R
α′
i T l+1ψ) := 1

c
(Rα′

i T l /�μ) · Tψ

ρ̃|α|+2(QRα′
i T lψ) := tμ

c

(
/dRα′

i trχ ′) · /dψ + tμ

c
(/dRα′

i /�μ) · Lψ, if l = 0
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ρ̃|α|+2(QRα′
i T lψ) := tμ

c

(
/dRα′

i T l−1 /�μ
) · /dψ + tμ

c
(/dRα′

i T l /�μ) · Lψ,
if l ≥ 1

Here we used the structure equation (2.34)

/LT trχ = /�μ + O≤1
≥0

Now we briefly investigate the behavior of the above terms with respect to δ.
Note that Rα

i Qψ has the same behavior as Rα+1
i ψ with respect to δ, while for

their corresponding toporder optical terms tμ
c

(
/dRα

i trχ
′)·/dψ and 1

c

(
Rα+1
i trχ ′)·

Tψ , the former behaves better than the latter with respect to δ:

∣
∣
∣∣
tμ

c
(/dRα

i trχ
′) · /dψ

∣
∣
∣∣ ∼ |μ(Rα+1

i trχ ′)|δ1/2,
∣∣
∣∣
1

c
(Rα+1

i trχ ′) · Tψ
∣∣
∣∣ ∼ |(Rα+1

i trχ ′)|δ−1/2

We see that not only the former behaves better with respect to δ, but also
has an extra μ, which makes the behavior even better when μ is small. This
means that we only need to estimate the contribution of 1

c

(
Rα+1
i trχ ′) · Tψ .

The same analysis applies to the terms involving Lψ as well as the compar-
ison between Rα′

i Tψ and QRα′
i Tψ , which correspond to 1

c

(
Rα
i
/�μ
) · Tψ

and tμ
c (R

α′+1
i

/�μ) · /dψ . So in the following, we do not need to estimate the
contributions corresponding to the variations containing a Q.

9.2.1 Contribution of K0

In this subsection we first estimate the spacetime integral:

∫

Wt
u

1

c
|Rα+1

i trχ ′||Tψ ||LRα+1
i ψ |dt ′du′dμ/g

�
∫ t

−r0
sup
�

u
t ′
(μ−1|Tψ |)‖μ/dRα

i trχ
′‖L2(�

u
t ′ )

‖LRα+1
i ψ‖L2(�

u
t ′ )
dt ′ (9.16)

By (8.23), we have:

‖μ/dRα
i trχ

′‖L2(�
u
t )

� δ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)
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+
∫ t

−r0
δ1/2μ

−b|α|+2−1/2
m (τ )

√
Ẽ≤|α|+2(τ, u)dτ

+ δ−1/2μ
−b|α|+2
m (t)

√∫ u

0
F̃≤|α|+2(t, u

′)du′.

By the monotonicity of Ẽ≤|α|+2(t, u) in t , we have

‖μ/dRα
i trχ

′‖L2(�
u
t )

� δ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

+ δ1/2
√
Ẽ≤|α|+2(t, u)

∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)dt ′

+ δ−1/2

√∫ u

0
F̃≤|α|+2(t, u

′)du′μ−b|α|+2
m (t) (9.17)

Without loss of generality, here we assume that there is a t0 ∈ [−r0, t∗) such
thatμm(t0) = 1

10 andμm(t ′) ≥ 1
10 for t ≤ t0. If there is no such t0 in [−r0, t∗),

thenμm(t) has an absolute positive lower bound for all [−r0, t∗) and it is clear
to see that the following argument simplifies and also works in this case. In
view of part (1′) and part (2) in Lemma 8.1 and the fact μm(t ′) ≥ 1

10 for
t ′ ∈ [−r0, t0], we have

∫ t0

−r0
μ

−b|α|+2−1/2
m (t ′)dt ′ � μ

−b|α|+2+1/2
m (t0) ≤ μ

−b|α|+2+1/2
m (t),

∫ t

t0
μ

−b|α|+2−1/2
m (t ′)dt ′ � 1

(
b|α|+2 − 1/2

)μ
−b|α|+2+1/2
m (t).

Therefore the second term in (9.17) are bounded by:

δ1/2μ
−b|α|+2+1/2
m (t)

√
Ẽ≤|α|+2(t, u)

Substituting this in (9.16), and using the fact that |Tψ | � δ−1/2, we see
that the spacetime integral (9.16) is bounded by:

∫ t

−r0
μ

−b|α|+2−1
m (t ′)

√
Ẽ≤|α|+2(t ′, u)‖LRα+1

i ψ‖L2(�
u
t ′ )
dt ′

+
∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)‖LRα+1
i ψ‖L2(�

u
t ′ )
dt ′

+
∫ t

−r0
δ−1μ

−b|α|+2−1
m (t ′)

√∫ u

0
F̃≤|α|+2(t

′, u′)du′‖LRα+1
i ψ‖L2(�

u
t ′ )
dt ′
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For the factor ‖LRα+1
i ψ‖L2(�

u
t )
, we bound it as:

‖LRα+1
i ψ‖L2(�

u
t )

≤ √E|α|+2(t, u) ≤ μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

Then the spacetime integral (9.16) is bounded by:

∫ t

−r0
μ

−2b|α|+2−1
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′

+
∫ t

−r0
μ

−2b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)
√
Ẽ≤|α|+2(t ′, u)dt ′

+ δ−1
∫ t

−r0
μ

−2b|α|+2−1
m (t ′)

√∫ u

0
F̃≤|α|+2(t

′, u′)du′
√
Ẽ≤|α|+2(t ′, u)dt ′

Splitting the above integrals as
∫ t0
−r0

+ ∫ tt0 , we see that the “non-shock” part∫ t0
−r0

is bounded by:

∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
Ẽ≤|α|+2(t

′, u) + Ẽ≤|α|+2(t
′, u)

+δ−2
∫ u

0
F̃≤|α|+2(t

′, u′)du′
)
dt ′ (9.18)

using part (2) of Lemma 8.1.
The “shock” part

∫ t
t0
is bounded by:

C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ C
(
2b|α|+2 − 1/2

)μ
−2b|α|+2+1/2
m (t)Ẽ≤|α|+2(t, u)

+ δ−2 C
(
2b|α|+2

)μ
−2b|α|+2
m (t)

∫ u

0
F̃≤|α|+2(t, u

′)du′ (9.19)

using part (1′) of Lemma 8.1.

Remark 9.2 The boxed term is from the estimates for the top order term Fα .
In view of (8.3), the number of top order terms contributed by the variations
is independent of δ and |α|, so is the constant C in the boxed term. Later on
in the top order energy estimates we will choose b|α|+2 in such a way that
C
btop

≤ 1
10 . (The purpose of doing this is to make sure that this term can be
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absorbed by the left hand side the energy inequality.) Therefore we can choose
btop = {10, C

20 }. In particular btop is independent of δ.
Next we consider the spacetime integral:

δ2l+2
∫

Wt
u

1

c
|Rα′

i T l /�μ||Tψ ||LRα′
T l+1ψ |dt ′du′dμ/g

� δ2l+2
∫ t

−r0
sup
�

u
t ′

(
μ−1|Tψ |)‖μRα′

i T l /�μ‖L2(�
u
t ′ )

‖LRα′
T l+1ψ‖L2(�

u
t ′ )
dt ′

(9.20)

By (8.39) and the monotonicity of Ẽ≤|α|+2(t, u), Ẽ≤|α|+2(t, u) and F̃≤|α|+2
(t, u) in t , we have:

δl+1‖μRα′
i T l /�μ‖L2(�

u
t ′ )

≤ Cδl+1‖Fα,l‖L2(�
u
−r0

)

+ δ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u) + δ1/2μ

−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

+
∫ t

−r0

(
δ1/2μ

−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t ′, u)

+ δ1/2μ
−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)
)
dt ′

+ δ1/2
∫ t

−r0
μ

−b|α|+2
m (t ′)

√∫ u

0
F̃≤|α|+2(t

′, u′)du′dt ′ (9.21)

As before, we have:

∫ t

−r0
μ

−b|α|+2
m (t ′)dt ′ ≤ Cμ

−b|α|+2+1
m (t),

∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)dt ′ ≤ Cμ

−b|α|+2+1/2
m (t)

Therefore

δl+1‖μRα′
i T l /�μ‖L2(�

u
t ′ )

≤ Cδl+1‖Fα,l‖L2(�
u
−r0

)

+Cδ1/2μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u) + Cδ1/2μ

−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

+Cδ1/2μ
−b|α|+2+1
m (t)

√∫ u

0
F̃≤|α|+2(t, u

′)du′ (9.22)
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Again, we estimate the other factor ‖LRα′
i T l+1ψ‖L2(�

u
t )
by:

δl+1‖LRα′
i T l+1ψ‖L2(�

u
t )

≤ √E≤|α|+2(t, u) ≤ μ
−b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

Here we also split the spacetime integral (9.20) into “shock part
∫ t
t0
” and

“non-shock part
∫ t0
−r0

”. We first estimate the “shock part”. Due to the estimate

|Tψ | � δ−1/2, the contribution of the first term in (9.21) to the spacetime
integral (9.20) is bounded by:

∫ t

t0
μ

−b|α|+2−1
m (t ′)

√
Ẽ≤|α|+2(t, u)‖LRα′

i T l+1ψ‖L2(�
u
t ′ )
dt ′

≤ C
∫ t

t0
μ

−2b|α|+2−1
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′

≤ C Ẽ≤|α|+2(t, u)
∫ t

t0
μ

−2b|α|+2−1
m (t ′)dt ′

≤ C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

Therefore, the contributions from the first two terms in (9.21) are bounded by:

C

2b|α|+2
μ

−2b|α|+2
m (t)

[
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

]

and the contributions from the rest terms in (9.21) are bounded by:

C
(
2b|α|+2 − 1/2

)μ
−2b|α|+2+1/2
m (t)Ẽ≤|α|+2(t, u)

+ C
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)

[
Ẽ≤|α|+2(t, u) +

∫ u

0
F̃≤|α|+2(t, u

′)du′]

Therefore “shock-part” of the spacetime integral (9.20) is bounded by:

C

2b|α|+2
μ

−2b|α|+2
m (t)

[
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

]

+ C
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)

∫ u

0
F̃≤|α|+2(t, u

′)du′ (9.23)

As before, for the “non-shock part”, which mean t ′ ∈ [−r0, t0], we have a
positive lower bound for μm(t ′), then the spacetime integral (9.20) is bounded
by:
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∫ t0

−r0
μ

−2b|α|+2
m (t ′)

[
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t

′, u)

+
∫ u

0
F̃≤|α|+2(t

′, u′)du′]dt ′ (9.24)

which will be treated by Gronwall.
Finally, using the inequality ab ≤ 1

2b
2 + 1

2b
2, the initial contribution

‖Fα,l‖L2(�−r0 )
is bounded by

δ2l+2‖Fα,l‖2L2(�−r0 )
+
∫ t

−r0
μ

−2b|α|+2−1
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′. (9.25)

The second term above has already been estimated.

9.2.2 Contribution of K1

In this subsection we estimate the contributions of top order optical terms
associated to K1. We start with the following absolute value of a spacetime
integral:

∣
∣∣
∣∣

∫

Wt
u

1

c
(Rα+1

i trχ ′) · (Tψ) · (LRα+1
i ψ)dt ′du′dμ/g

∣
∣∣
∣∣

(9.26)

Since

/̃g = 1

c
/g, dμ/̃g = 1

c
dμ/g

the above spacetime integral can be written as:

∫

Wt
u

(Rα+1
i trχ ′) · (Tψ) · (LRα+1

i ψ)dt ′du′dμ/̃g (9.27)

Let us set:

F(t, u) =
∫

St,u
f dμ/̃g

then

∂F

∂t
=
∫

St,u

(
L f + t̃rχ f

)
dμ/̃g
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So we may convert the spacetime integral into two hypersurface integrals:
∫

Wt
u

(
L f + t̃rχ f

)
dμ/̃gdu

′dt ′ =
∫

�
u
t

f dμ/̃gdu
′ −
∫

�
u
−r0

f dμ/̃gdu
′

So we write the spacetime integral (9.27) as:
∫

Wt
u

(Rα+1
i trχ ′) · (Tψ) · (LRα+1

i ψ + t̃rχRα+1
i ψ)dt ′du′dμ/̃g

−
∫

Wt
u

t̃rχ(Rα+1
i trχ ′) · (Tψ) · (Rα+1

i ψ)dt ′du′dμ/̃g

=
∫

Wt
u

(
L + t̃rχ

)[
(Rα+1

i trχ ′) · (Tψ) · (Rα+1
i ψ)

]
dt ′du′dμ/̃g

−
∫

Wt
u

(L + t̃rχ)
[
(Rα+1

i trχ ′) · (Tψ)
]

· (Rα+1
i ψ)dt ′du′dμ/̃g

We conclude that (9.27) equals:
∫

�
u
t

(Rα+1
i trχ ′) · (Tψ) · (Rα+1

i ψ)du′dμ/̃g

−
∫

�
u
−r0

(Rα+1
i trχ ′) · (Tψ) · (Rα+1

i ψ)du′dμ/̃g

−
∫

Wt
u

(L + t̃rχ)
[
(Rα+1

i trχ ′) · (Tψ)
]

· (Rα+1
i ψ)dt ′du′dμ/̃g

We first consider the hypersurface integral which, integrating by parts, equals:

−H0 − H1 − H2

where:

H0 =
∫

�
u
t

(Rα
i trχ) · (Tψ) · (Rα+2

i ψ)du′dμ/̃g

H1 =
∫

�
u
t

(Rα
i trχ

′) · (RiTψ) · (Rα+1
i ψ)du′dμ/̃g

H2 =
∫

�
u
t

(Tψ) · (Rα+1
i ψ) · (Rαtrχ ′)

(
1

2
tr
(Ri )

/̃π

)
du′dμ/̃g

Since we shall bound both Tψ and RiTψ in L∞ norm, compared to H0, H1
is a lower order term with respect to the order of derivatives. While for H2, we
use the estimate:
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|tr(Ri ) /̃π | ≤ Cδ

to see that it is a lower order term with respect to both the behavior of δ and
the order of derivatives compared to H0. This analysis tells us that we only
need to estimate H0.

|H0| ≤
∫

�
u
t

|Tψ ||Rα
i trχ

′||/dRα+1
i ψ |du′dμ/̃g

≤ Cδ−1/2‖Rα
i trχ

′‖L2(�
u
t )

‖/dRα+1
i ψ‖L2(�

u
t )

≤ C
∫ t

−r0

(
μ

−1/2
m (t ′)

√
E |α|+2(t

′, u)
)
dt ′ · μ−1/2

m (t)
√
E |α|+2(t, u)

by Proposition 7.4. Then in terms of modified energies, we have:

|H0| ≤ C
∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

·μ−b|α|+2−1/2
m (t)

√
Ẽ≤|α|+2(t, u)

Again, we consider the “shock part
∫ t0
−r0

” and “non-shock part
∫ t
t0
”, which

are denoted by HS
0 and HN

0 , separately.
In the “shock part”, by the monotonicity of Ẽ≤|α|+2(t), we have:

|HS
0 | ≤ C

√
Ẽ≤|α|+2(t, u)

∫ t

t0
μ

−b|α|+2−1/2
m (t ′)dt ′ · μ−b|α|+2−1/2

m (t)

√
Ẽ≤|α|+2(t, u)

≤ C Ẽ≤|α|+2(t, u)μ
−b|α|+2−1/2
m (t)

∫ t

t0
μ

−b|α|+2−1/2
m (t ′)dt ′

≤ C
(
b|α|+2 − 1/2

)μ
−b|α|+2−1/2
m (t)Ẽ≤|α|+2(t, u) · μ−b|α|+2+1/2

m (t)

= C
(
b|α|+2 − 1/2

)μ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

The estimates for the “non-shock part” is more delicate.

|HN
0 | ≤ C

∫ t0

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

·μ−b|α|+2−1/2
m (t)

√
Ẽ≤|α|+2(t, u)
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Now for t ′ ∈ [−r0, t0], μ−1
m (t ′) ≤ 10. This means we have the following

estimate for the above integral:

∫ t0

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

=
∫ t0

−r0
μ−1
m (t ′)μ−b|α|+2+1/2

m (t ′)
√
Ẽ≤|α|+2(t

′, u)dt ′

≤ C
∫ t0

−r0
μ

−b|α|+2+1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

≤ C
∫ t0

−r0

√
Ẽ≤|α|+2(t

′, u)dt ′ · μ−b|α|+2+1/2
m (t)

where in the last step, we have used part (2) of Lemma 8.1.
Therefore

|HN
0 | ≤ C

∫ t0

−r0

√
Ẽ≤|α|+2(t

′, u)dt ′ · μ−2b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

≤ εμ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u) + Cεμ

−2b|α|+2
m (t)

∫ t0

−r0
Ẽ≤|α|+2(t

′, u)dt ′

Here ε is a small absolute constant to be determined later.
We obtain the following estimate for |H0|:

|H0| ≤ C
(
b|α|+2 − 1/2

)μ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+Cεμ
−2b|α|+2
m (t)

∫ t0

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + εμ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

(9.28)

Next we consider the spacetime integral:

∫

Wt
u

(L + t̃rχ)
[
(Rα+1

i trχ) · (Tψ)
]

· (Rα+1
i ψ)dt ′du′dμ/̃g

=
∫

Wt
u

(
(L + t̃rχ)(Rα+1

i trχ ′)
) · (Tψ) · (Rα+1

i ψ)dt ′du′dμ/̃g

+
∫

Wt
u

(Rα+1
i trχ ′) · L(Tψ) · (Rα+1

i ψ)dt ′du′dμ/̃g := I + I I
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For the second term in the above sum, by the fact that:

|L(Tψ)| ≤ Cδ−1/2

we have:

|I I | ≤ Cδ−1/2
∫ t

−r0
‖/dRα

i trχ
′‖L2(�

u
t ′ )

‖Rα+1
i ψ‖L2(�

u
t ′ )
dt ′

On the other hand, by Lemma 7.3, we have:

‖Rα+1
i ψ‖L2(�

u
t ′ )

≤ Cδ
(
E|α|+2(t

′, u) + E |α|+2(t
′, u)

)

which gives:

|I I | ≤ Cδ1/2
∫ t

−r0
‖/dRα

i trχ
′‖L2(�

u
t ′ )
(
E|α|+2(t

′, u) + E |α|+2(t
′, u)

)
dt ′

This has a similar form as (9.16), and moreover, it has an extra δ, which is
consistent with the order of E |α|+2(t, u). (We already took into account the
effect of L(Tψ).) So this term is already handled.

To estimate |I |, we first rewrite:

(L + t̃rχ)(Rα+1
i trχ ′) = Ri (L + t̃rχ)(Rα

i trχ
′) + (Ri )Z Rα

i trχ
′

− Ri (trχ
′)Rα

i trχ
′ + l.o.t.

The contribution of the second term is:
∫

Wt
u

|Tψ ||(Ri )Z ||/dRα
i trχ

′||Rα+1
i ψ |dt ′du′dμ/̃g

By the estimates:

|(Ri )Z | ≤ Cδ, |Tψ | ≤ Cδ−1/2

this contribution is bounded by:

δ1/2
∫ t

−r0
‖/dRα

i trχ
′‖L2(�

u
t ′ )

‖Rα+1
i ψ‖L2(�

u
t ′ )
dt ′

which is similar to the estimate for |I I | and has an extra δ, so this is a lower
order term.
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By the estimate

|Ri trχ | ≤ Cδ,

the contribution of the third term is bounded by:

Cδ
∫

Wt
u

|Rα
i trχ

′||Tψ ||Rα+1
i ψ |dt ′du′dμ/̃g

≤ Cδ1/2
∫ t

−r0
‖Rα

i trχ
′‖L2(�

u
t ′ )

‖Rα+1
i ψ‖L2(�

u
t ′ )
dt ′

By Proposition 7.4 and Lemma 7.3, this is bounded in terms of modified
energies by:

δ2
∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u) · μ−b|α|+2
m (t ′)

×
(√

Ẽ≤|α|+2(t ′, u) +
√
Ẽ≤|α|+2(t

′, u)
)
dt ′

≤ Cδ2
(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

) ∫ t

−r0
μ

−2a−1/2
m (t ′)dt ′

≤ Cδ2μ
−2b|α|+2+1/2
m (t)

(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

)
(9.29)

Again, we used Lemma 8.1 in the last step.
Now we are left with the spacetime integral:

∫

Wt
u

(
Ri (L + t̃rχ)(Rα

i trχ
′)
)

· (Tψ) · (Rα+1
i ψ)dt ′du′dμ/̃g

Integrating by parts, this equals:

−
∫

Wt
u

((L + t̃rχ)(Rα
i trχ

′)) · (Tψ) · (Rα+2
i ψ)dt ′du′dμ/̃g

−
∫

Wt
u

((L + t̃rχ)(Rα
i trχ

′)) ·
(
RiTψ + 1

2
tr
(Ri )

/̃π

)
· (Rα+1

i ψ)dt ′du′dμ/̃g

:= −V1 − V2

By the estimate:

∣∣
∣tr

(Ri )
/̃π

∣∣
∣ ≤ Cδ

123



S. Miao, P. Yu

we see that:
∣∣
∣∣RiTψ + 1

2
tr
(Ri )

/̃π

∣∣
∣∣ ≤ Cδ−1/2, |Tψ | ≤ Cδ−1/2

So compared toV1,V2 is a lower order term, andweuseLemma7.3 to estimate:

‖Rα+1
i ψ‖L2(�

u
t )

≤ Cδ
(√

E|α|+2(t, u) +
√
E |α|+2(t, u)

)

So we only need to estimate |V1|, which is bounded by:
∫

Wt
u

∣∣
∣∣

(
L + 2

t − u

)
(Rα

i trχ
′)
∣∣
∣∣ |Tψ ||Rα+2

i ψ |dt ′du′dμ/̃g

+
∫

Wt
u

|̃trχ ′||Rα
i trχ

′||Tψ ||Rα+2
i ψ |dt ′du′dμ/̃g := V11 + V12

By the estimates:

|̃trχ ′| ≤ Cδ, |Tψ | ≤ Cδ−1/2

and Proposition 7.4, V12 is bounded in terms of modified energies by:

δ1/2
∫ t

−r0
‖Rα

i trχ
′‖L2(�

u
t ′ )

‖/dRα+1
i ψ‖L2(�

u
t ′ )
dt ′ ≤ Cδ

∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)μ−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

≤ Cδ Ẽ≤|α|+2(t, u)
∫ t

−r0
μ

−2b|α|+2−1
m (t ′)dt ′≤Cδμ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u).

(9.30)

In the last step we used Lemma 8.1.
To estimate V11, we recall the propagation equation for trχ ′:

Ltrχ ′ + 2

t − u
trχ ′ = etrχ ′ − |χ ′|2 + 2e

t − u
− trα′ := ρ0

Applying Rα
i to this equation gives:

LRα
i trχ

′ + 2

t − u
Rα
i trχ

′ =
∑

|β|≤|α|
Rβ
i
(Ri )Z Rα−β−1

i trχ ′ + Rα
i ρ0
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Again, by the estimates

|(Ri )Z | ≤ Cδ, |Tψ | ≤ Cδ−1/2

as well as Proposition 7.4, the contribution of the first term on the right hand
side is bounded in terms of modified energies by:

δ1/2
∫ t

−r0
‖Rα

i trχ
′‖L2(�

u
t ′ )

‖Rα+2
i ψ‖L2(�

u
t ′ )
dt ′

≤ Cδ
∫ t

−r0
μ

−2b|α|+2−1
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′ ≤Cδμ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u).

(9.31)

The following terms in Rαρ0 also enjoy the above estimates:

Rα
i

(|χ ′|2), (Rβ
i e) · (Rα−β

i trχ ′) where |β| ≤ |α| − |β|

While the other contributions from Rα
i e · trχ ′, 2e

t−u and the lower order terms

in trα′ can be bounded by:

Cμ
−2b|α|+2+1/2
m (t)

(
δ3/2 Ẽ|α|+2(t, u) + δ3/2 Ẽ≤|α|+2(t, u)

)
(9.32)

in view of Lemma 7.3.
Now we estimate the contribution from the principal term in trα′, which is:

dc2

dρ
ψ0 /�Rα

i ψ0

In view of the estimates:

|ψ0| ≤ Cδ1/2, |Tψ | ≤ Cδ−1/2

this contribution is bounded by:

∫ t

−r0
‖/dRα+1

i ψ0‖L2(�
u
t ′ )

‖Rα+2
i ψ‖L2(�

u
t ′ )
dt ′ ≤ C

∫ t

−r0
‖/dRα+1

i ψ‖2
L2(�

u
t ′ )
dt ′

≤ C
∫ t

−r0
μ

−2b|α|+2−1
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′
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Again, considering the“shock part” and “non-shock part” in regard to this
integral, we obtain that it is bounded by:

C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u) +

∫ t0

−r0
μ

−2b|α|+2
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′

(9.33)

This completes the estimates for the spacetime integral (9.26).
Next we consider the top order optical contribution of the variation

Rα′
T l+1ψ , where |α′| + l + 1 = |α| + 1, which is the following spacetime

integral:

δ2l+2

∣
∣∣
∣
∣

∫

Wt
u

(Tψ) · (Rα′
i T l /�μ) · (LRα′

i T l+1ψ)dt ′du′dμ/̃g

∣
∣∣
∣
∣

(9.34)

Again, we rewrite the above spacetime integral as:

δ2l+2
∫

Wt
u

(Tψ) · (Rα′
i T l /�μ) · ((L + t̃rχ)(Rα′

i T l+1ψ)
)
dt ′du′dμ/̃g

− δ2l+2
∫

Wt
u

(Tψ) · (Rα′
i T l /�μ) · (t̃rχ(Rα′

i T l+1ψ)
)
dt ′du′dμ/̃g

which is:

δ2l+2
∫

Wt
u

(L + t̃rχ)
(
(Tψ)(Rα′

i T l /�μ)(Rα′
i T l+1ψ)

)
dt ′du′dμ/̃g

− δ2l+2
∫

Wt
u

(LTψ)(Rα′
i T l /�μ)(Rα′

i T l+1ψ)dt ′du′dμ/̃g

− δ2l+2
∫

Wt
u

(Tψ)
(
(L + t̃rχ)(Rα′

i T l /�μ)
)
(Rα′

i T l+1ψ)dt ′du′dμ/̃g

As before, the spacetime integral in the first line above can be written as:

δ2l+2
∫

�
u
t

(Tψ)(Rα′
i T l /�μ)(Rα′

i T l+1ψ)du′dμ/̃g

− δ2l+2
∫

�
u
−r0

(Tψ)(Rα′
i T l /�μ)(Rα′

i T l+1ψ)du′dμ/̃g
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We shall only estimate the integral on �u
t , which can be written as:

−δ2l+2
∫

�
u
t

(Tψ)(Rα′−1
i T l /�μ)(Rα′+1

i T l+1ψ)du′dμ/̃g

− δ2l+2
∫

�
u
t

(
(RiTψ) + 1

2
tr
(Ri )

/̃π

)
(Rα′−1

i T l /�μ)(Rα′
i T l+1ψ)du′dμ/̃g

:= −H ′
0 − H ′

1

By the estimates:

|RiTψ | ≤ Cδ−1/2, |tr(Ri ) /̃π | ≤ Cδ

we see that compared to H ′
0, H

′
1 is a lower order term, so here we only give

the estimates for H ′
0:

|H ′
0| ≤ Cδ−1/2+2l+2‖Rα′−1T l /�μ‖L2(�

u
t )

‖/dRα′
i T l+1ψ‖L2(�

u
t )

In view of Proposition 7.5, this is bounded in terms of modified energies by:

|H ′
0| ≤ C

∫ t

−r0
δ
(
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)

+μ
−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t ′, u)

)
dt ′

·μ−b|α|+2−1/2
m (t)

√
Ẽ≤|α|+2(t, u)

Again, we need to consider the “shock part H ′S
0 ” and the “non-shock part H ′N

0 ”
separately.

For H ′S
0 , we have:

|H ′S
0 | ≤ Cμ

−b|α|+2−1/2
m (t)

√
Ẽ≤|α|+2(t, u)

· δ
(√

Ẽ≤|α|+2(t, u)
∫ t

t0
μ

−b|α|+2−1/2
m (t ′)dt ′

+
√
Ẽ≤|α|+2(t, u)

∫ t

t0
μ

−b|α|+2
m (t ′)dt ′

)

≤ Cδ
(
b|α|+2 − 1/2

)μ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ Cδ
(
b|α|+2 − 1

)μ
−2b|α|+2+1/2
m (t)

√
Ẽ≤|α|+2(t, u)

√
Ẽ≤|α|+2(t, u)
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For H ′N
0 , we use the same argument as we did in estimating (9.27). Since

μ−1
m (t ′) ≤ C for t ′ ∈ [−r0, t0] with an absolute constant C , we have, by

(8.10):

∫ t0

−r0
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)

≤ C
∫ t0

−r0
μ

−b|α|+2+1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

≤ C
∫ t0

−r0

√
Ẽ≤|α|+2(t

′, u)dt ′ · μ−b|α|+2+1/2
m (t)

The sameargument applies to the integral involving δ
√
Ẽ≤|α|+2(t, u), sofinally

we obtain:

|H ′N
0 | ≤ Cδ

∫ t0

−r0

√
Ẽ≤|α|+2(t

′, u)dt ′ · μ−2b|α|+2
m (t)

√
Ẽ≤|α|+2(t, u)

+C
∫ t0

−r0
δ

√
Ẽ≤|α|+2(t ′, u)dt ′ · μ−2b|α|+2

m (t)
√
Ẽ≤|α|+2(t, u)

≤ Cδμ
−2b|α|+2
m (t)

(
Ẽ≤|α|+2(t, u) +

√
Ẽ≤|α|+2(t, u)

√
E≤|α|+2(t, u)

)

We finally obtain the estimates for |H ′
0|:

|H ′
0| ≤ Cδμ

−2b|α|+2
m (t)

(
Ẽ≤|α|+2(t, u) +

√
Ẽ≤|α|+2(t, u)

√
E≤|α|+2(t, u)

)

(9.35)

Finally, we estimate the spacetime integrals:

−δ2l+2
∫

Wt
u

(LTψ)(Rα′
i T l /�μ)(Rα′

i T l+1ψ)dt ′du′dμ/̃g

− δ2l+2
∫

Wt
u

(Tψ)

((
L + 2

t − u

)
(Rα′

i T l /�μ)

)
(Rα′

i T l+1ψ)dt ′du′dμ/̃g

− δ2l+2
∫

Wt
u

(Tψ) · t̃rχ ′(Rα′
i T l /�μ) · (Rα′

i T l+1ψ)dt ′du′dμ/̃g

:= −V ′
1 − V ′

2 − V ′
3

By the estimates:

|Tψ | ≤ Cδ−1/2, |LTψ | ≤ Cδ−1/2, |̃trχ ′| ≤ Cδ
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we see that, compared to V ′
1, V

′
3 is a lower order term. By Lemma 7.3 and

(9.22), V ′
1 is bounded by:

|V ′
1| ≤ Cδ−1/2

∫ t

−r0
sup
�

u
t ′
(μ−1)δl+1‖μRα′

i T l /�μ‖L2(�
u
t ′ )

· δ
(
μ

−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t, u) + μ

−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)
)
dt ′

≤ C
∫ t

−r0
μ

−2b|α|+2−1
m (t ′)

(√
Ẽ≤|α|+2(t

′, u) +
√
Ẽ≤|α|+2(t)

)

· δ
(√

Ẽ≤|α|+2(t, u) +
√
Ẽ≤|α|+2(t

′, u)
)
dt ′

+C
∫ t

−r0
μ

−2b|α|+2
m (t ′)

√∫ u

0
F̃≤|α|+2(t, u

′)du′

×
(√

Ẽ≤|α|+2(t
′, u) +

√
Ẽ≤|α|+2(t, u)

)
dt ′

Again, we consider the “shock part” and “non-shock part” separately. When
t ′ ∈ [−r0, t0], since μ−1

m (t ′) ≤ C , the above integrals are bounded by:

Cδ
∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t

′, u)
)
dt ′

+C
∫ t0

−r0
δ−1μ

−2b|α|+2
m (t ′)

(∫ u

0
F̃≤|α|+2(t

′, u′)du′
)
dt ′

While when t ′ ∈ [t0, t], we have the following estimates:

Cδ
(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

) ∫ t

t0
μ

−2b|α|+2−1
m (t ′)dt ′

+ δ−1
(∫ u

0
F̃≤|α|+2(t, u

′)du′
)∫ t

t0
μ

−2b|α|+2
m (t ′)dt ′

≤ Cδ

2b|α|+2
μ

−2b|α|+2
m (t)

(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

)

+ Cδ−1
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)

∫ u

0
F̃≤|α|+2(t, u

′)du′
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Therefore V ′
1 is bounded by:

Cδ

2b|α|+2
μ

−2b|α|+2
m (t)

(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

)

+ Cδ−1
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)

∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t

′, u)
)
dt ′

+C
∫ t0

−r0
δ−1μ

−2b|α|+2
m (t ′)

(∫ u

0
F̃≤|α|+2(t

′, u′)du′
)
dt ′ (9.36)

Now we estimate V ′
2. First we write V

′
2 as:

δ2l+2
∫

Wt
u

(Tψ)

(
Ri

(
L + 2

t − u

)
Rα′−1
i T l /�μ

)
(Rα′

i T l+1ψ)dt ′du′dμ/̃g

+ δ2l+2
∫

Wt
u

(Tψ)((Ri )Z Rα′−1
i T l /�μ)(Rα′

i T l+1ψ)dt ′du′dμ/̃g := V ′
21 + V ′

22

By the estimate:

|(Ri )Z | ≤ Cδ

V ′
22 has the identical structurewithV

′
3, therefore is a lower order termcompared

to V ′
1.

While for V ′
21, integrating by parts, we have:

V ′
21 = −δ2l+2

∫

Wt
u

(
(RiTψ) + 1

2
tr
(Ri )

/̃π

)((
L + 2

t − u

)
Rα′−1
i T l /�μ

)

× (Rα′
i T l+1ψ)dt ′du′dμ/̃g

− δ2l+2
∫

Wt
u

(Tψ)

((
L + 2

t − u

)
Rα′−1
i T l /�μ

)

× (Rα′+1
i T l+1ψ)dt ′du′dμ/̃g := −V ′

211 − V ′
212

By the estimates:

|Tψ | ≤ Cδ−1/2,

∣
∣∣
∣RiTψ + 1

2
(Ri )tr /̃π

∣
∣∣
∣ ≤ Cδ−1/2
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as well as Lemma 7.3, V ′
211 is a lower order term compared to V ′

212. To estimate
V ′
212, we first consider:

δ2l+2
∫

Wt
u

2

t − u
(Tψ)(Rα′−1

i T l /�μ)(Rα′+1
i T l+1ψ)dt ′du′dμ/̃g (9.37)

By Proposition 7.5, this is bounded by:

C
∫ t

−r0
δ
(
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u) + μ
−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t ′, u)

)

·
(
μ

−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)
)
dt ′

Again,we consider the “shock part” and the “non-shock part” separately.When
t ′ ∈ [−r0, t0], the above integrals are bounded by:

C
∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
δ2 Ẽ≤|α|+2(t

′, u) + Ẽ≤|α|+2(t
′, u)

)
dt ′

While when t ′ ∈ [t0, t], the above integrals are bounded by:

C Ẽ≤|α|+2(t, u)
∫ t

t0
μ

−2b|α|+2−1
m (t ′)dt ′

+Cδ2 Ẽ≤|α|+2(t, u)
∫ t

t0
μ

−2b|α|+2
m (t ′)dt ′

≤ C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ C
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)δ2 Ẽ≤|α|+2(t, u)

Therefore the spacetime integral (9.37) is bounded by:

C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ C
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)δ2 Ẽ≤|α|+2(t, u)

+C
∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
δ2 Ẽ≤|α|+2(t

′, u) + Ẽ≤|α|+2(t
′, u)

)
dt ′ (9.38)
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We end this section by estimating the spacetime integral:

δ2l+2
∫

Wt
u

(Tψ)(LRα′−1
i T l /�μ)(Rα′+1

i T l+1ψ)dt ′du′dμ/̃g (9.39)

which is bounded by:

Cδ−1/2
∫ t

−r0
δl+1‖LRα′−1

i T l /�μ‖L2(�
u
t ′ )
δl+1‖Rα′+1

i T l+1ψ‖L2(�
u
t ′ )
dt ′

By the propagation equation:

Lμ = m + μe

we have:

LRα′−1
i T l /�μ = −dc2

dρ
ψ0T Rα′−1

i T l /�ψ0 + μψ0LR
α′−1
i T l /�ψ0 + l.o.t.

Here the lower order terms l.o.t. can be bounded in the same fashion as
(9.38). Now we are going to bound δl+1‖T Rα′−1

i T l /�ψ0‖L2(�
u
t ′ )

in terms of
√
E≤|α|+2(t ′) and δl+1‖μLRα′−1

i T l /�ψ0‖L2(�
u
t ′ )

in terms of
√
E≤|α|+2(t

′), so
the latter is a lower order term with respect to the behavior of δ. We only
estimate the contribution from the former one.

In view of the estimate:

|ψ0| ≤ Cδ1/2

This contribution to (9.39) is bounded by:

C
∫ t

−r0
δ

√
E≤|α|+2(t ′, u)μ−1/2

m (t ′)
√
E≤|α|+2(t

′, u)dt ′

≤ C
∫ t

−r0
μ

−2a−1/2
m (t ′)δ

√
Ẽ≤|α|+2(t ′, u)

√
Ẽ≤|α|+2(t

′, u)dt ′

Again, considering the “shock part” and “non-shock part” separately, we have
the finally estimates for (9.39):
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C
∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
δ2 Ẽ≤|α|+2(t

′, u) + Ẽ≤|α|+2(t
′, u)

)
dt ′

+ C
(
2b|α|+2 − 1/2

)μ
−2b|α|+2+1/2
m (t)

(
δ2 Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

)

(9.40)

This completes the error estimates for the top order optical terms. As we
mentioned at the beginning of this subsection, although we only considered
the variations Rα+1

i ψ and Rα′
i T l+1ψ with |α′|+l = |α|, all the estimates in this

subsection are also true for the variations Zα+1
i ψ and Zα′

i T l+1ψ respectively.
Here Zi is either Ri or Q.

10 Top order energy estimates

With the estimates for the contributions from top order optical terms as well
as lower order optical terms, we are ready to complete the top order energy
estimates, namely, the energy estimates for the variations of order up to |α|+2.
As we have pointed out, we allow the top order energies to blow up as shocks
form.So in this section,we shall prove that themodified energies Ẽ≤|α|+2(t, u),
Ẽ≤|α|+2(t, u) and F̃≤|α|+2(t, u), F̃≤|α|+2(t, u) are bounded by initial data.
Therefore we obtain a rate for the possible blow up of the top order energies.

10.1 Estimates associated to K1

We start with the energy inequality for Zα′+1
i ψ as we obtained in Sect. 6. Here

Zi is any one of Ri Q and T .

∑

|α′|≤|α|
δ2l

′(
E[Zα′+1

i ψ](t, u) + F[Zα′+1
i ψ](t, u) + K [Zα′+1

i ψ](t, u)
)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + C
∑

|α′|≤|α|
δ2l

′
∫

Wt
u

c−2 Q̃1,|α′|+2

where l ′ is the number of T s’ appearing in the string of Zα′
i . In the spacetime

integral
∫
Wt

u
c−2 Q̃1,α′+2 we have the contributions from the deformation tensor

of K1, which have been investigated in Sect. 6. Actually, if we choose Ntop to

be large enough, then we can bound ‖/dZβ
i μ‖L∞(�

u
t )
in terms of initial data by

using the same argument as in Sect. 4.2 for |β| ≤ N∞ + 1.
Another contribution of the spacetime integral

∫
Wt

u
c−2 Q̃1,|α′|+2 comes from

∫
Wt

u

1
c ρ̃|α′|+2 · LZα′+1

i ψ , namely, the deformation tensor of commutators,
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which has been studied intensively in the last section. We first consider the
lower order optical contributions, which are bounded by (see (9.14)):

C
∫ t

−r0
δ2E≤|α|+2(t

′, u)dt ′ + Cδ−1/2
∫ u

0
F≤|α|+2(t, u

′)du′

+Cδ1/2K≤|α|+2(t, u) ≤ Cμ
−2b|α|+2
m (t)

(∫ t

−r0
δ2 Ẽ≤|α|+2(t

′, u)dt ′

+ δ−1/2
∫ u

0
F̃≤|α|+2(t, u

′)du′ + δ1/2 K̃≤|α|+2(t, u)

)
. (10.1)

Here we define the following non-decreasing quantity in t :

K̃≤|α|+2(t, u) := sup
t ′∈[−r0,t]

{
μ
2b|α|+2
m (t ′)K≤|α|+2(t

′, u)
}

By (9.28)–(9.33), (9.35), (9.36), (9.38) and (9.40) the contribution of top
order optical terms are bounded as (provided that δ is sufficiently small):

C
(
b|α|+2 − 1/2

)μ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+Cεμ
−2b|α|+2
m (t)

∫ t0

−r0
Ẽ≤|α|+2(t

′, u)dt ′

+ εμ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ Cδ−1
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)

∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t0

−r0
μ

−2b|α|+2
m (t ′)

(
Ẽ≤|α|+2(t

′, u) + δ−2
∫ u

0
F̃≤|α|+2(t

′, u′)du′
)
dt ′

+Cδμ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+Cμ
−2b|α|+2+1/2
m (t)

(
δ3/2 Ẽ≤|α|+2(t, u) + δ3/2 Ẽ≤|α|+2(t, u)

)

+ C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u) + Cδ

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

(10.2)

Substituting these contributions into the energy inequality, and use the fact
that μm(t) ≤ 1, we obtain:
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μ
2b|α|+2
m (t)

∑

|α′|≤|α|
δ2l

′(
E[Zα′+1

i ψ](t, u) + F[Zα′+1
i ψ](t, u)

+ K [Zα′+1
i ψ](t, u)

)
≤ Cμ

2b|α|+2
m (t)

∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+ C
(
b|α|+2 − 1/2

) Ẽ≤|α|+2(t, u) + Cε

∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

+ ε Ẽ≤|α|+2(t, u) + Cδ−1
(
2b|α|+2 − 1

)
∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t

−r0

(
Ẽ≤|α|+2(t

′, u) + δ−2
∫ u

0
F̃≤|α|+2(t

′, u′)du′
)
dt ′

+Cδ Ẽ≤|α|+2(t, u) + C
(
δ3/2 Ẽ≤|α|+2(t, u) + δ3/2 Ẽ≤|α|+2(t, u)

)

+ C

2b|α|+2
Ẽ≤|α|+2(t, u) + Cδ

2b|α|+2
Ẽ≤|α|+2(t, u) + Cδ K̃≤|α|+2(t, u)

Now the right hand side of the above inequality is non-decreasing in t , so the
above inequality is also valid if we replace “t” by any t ′ ∈ [−r0, t] on the left
hand side:

μ
2b|α|+2
m (t ′)

∑

|α′|≤|α|

(
E[Zα′+1

i ψ](t ′, u) + F[Zα′+1
i ψ](t ′, u)

+K [Zα′+1
i ψ](t ′, u)

)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + C
(
b|α|+2 − 1/2

) Ẽ≤|α|+2(t, u)

+C
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + ε Ẽ≤|α|+2(t, u)

+ Cδ−1
(
2b|α|+2 − 1

)
∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t

−r0

(
Ẽ≤|α|+2(t

′, u) + δ−2
∫ u

0
F̃≤|α|+2(t

′, u′)du′
)
dt ′

+Cδ Ẽ≤|α|+2(t, u)

+C
(
δ3/2 Ẽ≤|α|+2(t, u) + δ3/2 Ẽ≤|α|+2(t, u)

)
+ C

2b|α|+2
Ẽ≤|α|+2(t, u)

+ Cδ

2b|α|+2
Ẽ≤|α|+2(t, u) + Cδ K̃≤|α|+2(t, u)
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For each term in the sum on the left hand side of above inequality, we keep it
on the left hand side and drop all the other terms. Then taking supremum of
the term we kept with respect to t ′ ∈ [−r0, t]. Repeat this process for all the
terms on the left hand side, we finally obtain:

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u) + K̃≤|α|+2(t, u)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + C
(
b|α|+2 − 1/2

) Ẽ≤|α|+2(t, u)

+Cε

∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + ε Ẽ≤|α|+2(t, u)

+ Cδ−1
(
2b|α|+2 − 1

)
∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t

−r0

(
Ẽ≤|α|+2(t

′, u) + δ−2
∫ u

0
F̃≤|α|+2(t

′, u′)du′)dt ′

+Cδ Ẽ≤|α|+2(t, u) + C
(
δ3/2 Ẽ≤|α|+2(t, u) + δ3/2 Ẽ≤|α|+2(t, ub)

)

+ C

2b|α|+2
Ẽ≤|α|+2(t, u) + Cδ

2b|α|+2
Ẽ≤|α|+2(t, u) + Cδ K̃≤|α|+2(t, u)

The control on the boxed term relies on Remark 9.2—since C
b|α|+2

is suitably
small, the boxed term can be absorbed by the left hand side. So if we choose
ε and δ small enough, we obtain:

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u) + K̃≤|α|+2(t, u)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα+1

i ψ](−r0, u) + Cε

∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

+Cδ−1
∫ u

0
F̃≤|α|+2(t, u

′)du′ + Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

+Cδ3/2 Ẽ≤|α|+2(t, u) (10.3)

Now we only keep Ẽ≤|α|+2(t, u) on the left hand side of (10.3)

Ẽ≤|α|+2(t, u) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cε

∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′
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+Cδ−1
∫ u

0
F̃≤|α|+2(t, u

′)du′ + Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

+Cδ3/2 Ẽ≤|α|+2(t, u)

Then by using Gronwall we have:

Ẽ≤|α|+2(t, u) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + Cδ−1

∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + Cδ3/2 Ẽ≤|α|+2(t, u)

(10.4)

Keeping only F̃≤|α|+2(t, u) on the left hand side of (10.3) and substituting the
above estimates for Ẽ≤|α|+2(t, u) gives us:

F̃≤|α|+2(t, u) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cδ−1
∫ u

0
F̃≤|α|+2(t, u

′)du′

+Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + Cδ3/2 Ẽ≤|α|+2(t, u)

Then again by using Gronwall we obtain:

F̃≤|α|+2(t, u) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + Cδ3/2 Ẽ≤|α|+2(t, u)

(10.5)

Note that since 0 ≤ u ≤ δ, all the constants C on the above do not depend
on δ. Since the right hand side of (10.5) is increasing in u, substituting this in
(10.4) gives us:
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Ẽ≤|α|+2(t, u)≤C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)+Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

+Cδ3/2 Ẽ≤|α|+2(t, u) (10.6)

Substituting (10.5) and (10.6) in (10.3) gives us:

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u) + K̃≤|α|+2(t, u)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cδ
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + Cδ3/2 Ẽ≤|α|+2(t, u) (10.7)

This completes the top order energy estimates associated to K1.

10.2 Estimates associated to K0

Now we turn to the top order energy estimates for K0.
We first start with the energy identity for Zα′+1

i ψ , where Zi is any one of
Ri , Q and T :

∑

|α′|≤|α|
δ2l

′ (
E[Zα′+1

i ψ](t, u) + F[Zα′+1
i ψ](t, u)

)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + C
∑

|α′|≤|α|

∫

Wt
u

c−2 Q̃0,|α′|+2

Again, l ′ is the number of T s’ in the string of Zα′+1
i .

In the spacetime integral
∫
Wt

u
c−2 Q̃0,α′+2 we have the contributions from the

deformation tensor of K0, which have been investigated in Sect. 6 and also the
contribution of the spacetime integral from

∫
Wt

u

1
c ρ̃|α′|+2 · LZα′+1

i ψ , namely,

the deformation tensor of commutators, which has been studied intensively in
the last section. We first consider the lower order optical contributions, which
are bounded by (see (9.15) and (10.7) and provided that δ is sufficiently small):

C
∫ t

−r0
δ1/2E≤|α|+2(t

′, u)dt ′ + Cδ1/2K≤|α|+2(t, u)

+ δ−1/2
∫ u

0
F≤|α|+2(t, u

′)du′
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≤ CE≤|α|+2(−r0, u) + Cδ1/2μ
−2b|α|+2
m (t)

∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′.

(10.8)

By (9.18), (9.19), (9.23), (9.24) and (10.7), the top order optical contribu-
tions are bounded by (provided that δ is sufficiently small and b|α|+2 is large
enough):

∫ t

−r0
μ

−2b|α|+2
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′ + δμ
−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ C

2b|α|+2
μ

−2b|α|+2
m (t)Ẽ≤|α|+2(t, u)

+ C
(
2b|α|+2 − 1

)μ
−2b|α|+2+1
m (t)

(∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + Ẽ≤|α|+2(t, u)

)

+Cδ−1+2l ′ ∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u) (10.9)

Substituting (10.8) and (10.9) into the energy inequality, and use the fact that
μm(t) ≤ 1, we obtain:

∑

|α′|≤|α|
μ
2b|α|+2
m (t ′)δ2l ′

(
E[Zα′+1

i ψ](t, u) + F[Zα′+1
i ψ](t, u)

)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)+C
∑

|α′|≤|α|
δ−1+2l ′E[Zα′+1

i ψ](−r0, u)

+C
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + δ Ẽ≤|α|+2(t, u) + C

2b|α|+2
Ẽ≤|α|+2(t, u)

Since the right hand side of the above is non-decreasing in t , the inequality is
true if we replace t by any t ′ ∈ [−r0, t] on the left hand side:
∑

|α′|≤|α|
δ2l

′
μ
2b|α|+2
m (t ′)

(
E[Zα′+1

i ψ](t ′, u) + F[Zα′+1
i ψ](t ′, u)

)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + Cδ−1+2l ′ ∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u)

≤ C
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + δ Ẽ≤|α|+2(t, u) + C

2b|α|+2
Ẽ≤|α|+2(t, u)
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As before, taking supremum on the left hand side with respect to t ′ ∈ [−r0, t],
we obtain:

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + Cδ−1+2l ′ ∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u)

+C
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′ + δ Ẽ≤|α|+2(t) + C

2b|α|+2
Ẽ≤|α|+2(t, u)

Similarly, the control on the boxed term relies on Remark 9.2—since C
b|α|+2

is suitably small, the boxed term can be absorbed by the left hand side. By
choosing δ sufficiently small, we have:

Ẽ≤|α|+2(t) + F̃≤|α|+2(t, u) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cδ−1+2l ′ ∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u)

+C
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

Then keeping only Ẽ≤|α|+2(t) on the left hand side gives us:

Ẽ≤|α|+2(t) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cδ−1+2l ′ ∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u)

+C
∫ t

−r0
Ẽ≤|α|+2(t

′, u)dt ′

Then using Gronwall, we have:

Ẽ≤|α|+2(t) ≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+Cδ−1+2l ′ ∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u)
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Therefore

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + Cδ−1+2l ′

∑

|α′|≤|α|
E[Zα′+1

i ψ](−r0, u)

(10.10)

Now we substitute this to (10.7) for Ẽ≤|α|+2(t):

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u) + K̃≤|α|+2(t, u)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u) + C
∑

|α′|≤|α|
δ2l

′+1E[Zα′+1
i ψ](−r0, u)

(10.11)

If we denote:

Du
|α|+2 :=

∑

|α′|+l ′≤|α|
δ2l

′
E[Zα′+1

i ψ](−r0, u)

+ δ−1+2l ′ ∑

|α′|+l ′≤|α|
E[Zα′+1

i ψ](−r0, u)

+ δ2l+2‖Fα,l‖L2(�
u
−r0

)

+
∑

|α′|+l ′≤|α|+1

δ2l
′‖Zα′

i T l ′μ‖L2(�
u
−r0

), Zi = Ri , Q.

we can write the final top order energy estimates as:

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u) + K̃≤|α|+2(t, u) ≤ CδDu
|α|+2

Ẽ≤|α|+2(t, u) + F̃≤|α|+2(t, u) ≤ CDu
|α|+2 (10.12)

This completes the top order energy estimates.

11 Descent scheme

In the previous section, we have shown that the modified energies Ẽ≤|α|+2(t),
Ẽ≤|α|+2(t) for the top order variations are bounded by the initial energies

Du
|α|+2. According to the definition, the modified energies go to zero when
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μm(t) goes to zero. This means the energy estimates obtained in the last
section are not sufficient for us to close the argument when shock forms.
However, based on those estimates, we shall show in this section, that if the
order of derivative decreases, the power of μm(t) needed in the definition of
modified energies also decreases. The key point is that after several steps,
this power could be zero and finally we can bound the energies without any
weights.

11.1 Next-to-top order error estimates

We first investigate the estimates associated to K1. To improve the energy
estimates for the next-to-the-top variations, we consider the spacetime integral
(Keep in mind that the top order quantities are of order |α| + 2):

∫

Wt
u

|Tψ ||Zα
i trχ

′||LZα
i ψ |dt ′du′dμg̃

≤ Cδ−1/2
∫

Wt
u

|Zα
i trχ

′||LZα
i ψ |dt ′du′dμg̃

≤ Cδ−1/2

(∫

Wt
u

|Zα
i trχ

′|2dt ′du′dμ/̃g

)1/2

·
(∫

Wt
u

|LZα
i ψ |2dt ′du′dμ/̃g

)1/2

≤ Cδ−1/2
(∫ t

−r0
‖Zα

i trχ
′‖2

L2(�
u
t ′ )
dt ′
)1/2

·
(∫ u

0
F[Zα

i ψ](t, u′)du′
)1/2

(11.1)

Throughout this subsection, Zi is either Ri or Q.
By Proposition 7.4:

‖Zα
i trχ

′‖L2(�
u
t )

≤ Cδ1/2
∫ t

−r0
μ

−1/2
m (t ′)

√
E |α|+2(t

′, u)dt ′

≤ Cδ1/2
∫ t

−r0
μ

−1/2−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

≤ Cδ1/2
√
Ẽ≤|α|+2(t, u)

∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)dt ′

≤ Cδ1/2μ
−b|α|+2+1/2
m (t)

√
Ẽ≤|α|+2(t, u)

Then by the top order energy estimates obtained in the last section, the integral
in the first factor of (11.1) is bounded by:
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Cδ
∫ t

−r0
μ

−2b|α|+2+1
m (t ′)Ẽ≤|α|+2(t

′, u)dt ′

≤ Cδ Ẽ≤|α|+2(t, u)
∫ t

−r0
μ

−2b|α|+2+1
m (t ′)dt ′

≤ Cδ2μ
−2b|α|+2+2
m (t)Du

|α|+2

On the other hand, the second factor in (11.1) is bounded by:

∫ u

0
F[Zα

i ψ](t, u′)du′

≤ μ
−2b|α|+1
m (t)

∫ u

0
sup

t ′∈[−r0,t]

{
μ
2b|α|+1
m (t ′)F[Zα

i ψ](t ′, u′)
}
du′

where b|α|+1 = b|α|+2 − 1. Therefore (11.1) is bounded by:

Cδ1/2μ
−2b|α|+1
m (t)

√
Du

|α|+2

√∫ u

0
F̃≤|α|+1(t, u

′)du′

≤ Cδ2μ
−2b|α|+1
m (t)Du

|α|+2 + Cδ−1μ
−2b|α|+1
m (t)

∫ u

0
F̃≤|α|+1(t, u

′)du′

(11.2)

Next we consider the spacetime integral:

δ2l
′+2
∫

Wt
u

|Tψ ||Zα′
i T l ′ /�μ||LZα′

i T l ′+1ψ |dt ′du′dμ/̃g

≤ Cδ−1/2
(∫ t

−r0
δl

′+1‖Zα′
i T l ′ /�μ‖2

L2(�
u
t ′ )

)1/2

×
(∫ u

0
δl

′+1F[Zα′
i T l ′+1ψ](t, u′)du′

)1/2

(11.3)

with |α′| + l ′ ≤ |α| − 1.
By Proposition 7.5:

δl
′+1‖Zα′

i T l ′ /�μ‖L2(�
u
t )

≤ Cδ1/2
∫ t

−r0

√
E≤|α|+2(t ′, u) + μ

−1/2
m (t ′)

√
E≤|α|+2(t

′, u)dt ′

≤ Cδ1/2
∫ t

−r0
μ

−b|α|+2
m (t ′)

√
Ẽ≤|α|+2(t ′, u)
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+μ
−b|α|+2−1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)dt ′

≤ Cδ1/2
(√

Ẽ≤|α|+2(t, u)
∫ t

−r0
μ

−b|α|+2
m (t ′)dt ′

+
√
Ẽ≤|α|+2(t, u)

∫ t

−r0
μ

−b|α|+2−1/2
m (t ′)dt ′

)

≤ Cδ1/2μ
−b|α|+2+1/2
m (t)

√
Ẽ≤|α|+2(t, u)

+Cδ1/2μ
−b|α|+2+1
m (t)

√
Ẽ≤|α|+2(t, u)

Then by the top order energy estimates obtained in the last section, the integral
in the first factor of (11.3) is bounded by (μm(t) ≤ 1):

Cδ
∫ t

−r0
μ

−2b|α|+2+1
m (t ′)

(
Ẽ≤|α|+2(t

′, u) + Ẽ≤|α|+2(t
′, u)

)
dt ′

≤ Cδ
(
Ẽ≤|α|+2(t) + Ẽ≤|α|+2(t, u)

) ∫ t

−r0
μ

−2b|α|+2+1
m (t ′)dt ′

≤ Cδμ
−2b|α+2+2
m (t)

(
Ẽ≤|α|+2(t, u) + Ẽ≤|α|+2(t, u)

)

≤ Cδμ
−2b|α+2+2
m (t)Du

|α|+2

Then again, with b|α|+1 = b|α|+2−1, the spacetime integral (11.3) is bounded
by:

Cμ
−2b|α|+1
m (t)

√
Du

|α|+2

√∫ u

0
F̃≤|α|+1(t, u

′)du′

≤ Cδμ
−2b|α|+1
m (t)Du

|α|+2 + Cδ−1μ
−2b|α|+1
m (t)

∫ u

0
F̃≤|α|+1(t, u

′)du′

(11.4)

We proceed to consider the spacetime error integral associated to K0. We
first consider the spacetime integral:

∫

Wt
u

|Tψ ||Zα
i trχ

′||LZα
i ψ |dt ′du′dμ/̃g

≤ Cδ−1/2
∫ t

−r0
‖Zα

i trχ
′‖L2(�

u
t ′ )

‖LZα
i ψ‖L2(�

u
t ′ )
dt ′
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Substituting the estimates:

‖Zα
i trχ

′‖L2(�
u
t ′ )

≤ Cδ1/2μ
−b|α|+2+1/2
m (t ′)

√
Ẽ≤|α|+2(t

′, u)

≤ Cδμ
−b|α|+2+1/2
m (t)

√
Du

|α|+2,

‖LZα
i ψ‖L2(�

u
t ′ )

≤ Cμ
−b|α|+1
m (t ′)

√
Ẽ≤|α|+1(t ′, u)

with b|α|+1 = b|α|+2−1, and using the fact that Ẽ≤|α|+1(t) are non-decreasing
in t , we see that the spacetime integral is bounded by (μm(t) ≤ 1):

Cδ1/2
√
Du

|α|+2

√
Ẽ≤|α|+1(t, u)

∫ t

−r0
μ

−2b|α|+1−1/2
m (t ′)dt ′

≤ Cδ1/2μ
−2b|α|+1+1/2
m (t)

√
Du

|α|+2

√
Ẽ≤|α|+1(t, u)

≤ Cμ
−2b|α|+1
m (t)Du

|α|+2 + Cδμ
−2b|α|+1
m (t)Ẽ≤|α|+1(t, u). (11.5)

Finally, we consider the spacetime integral:

δ2l
′+2
∫

Wt
u

|Zα′
i T l ′ /�μ||Tψ ||LZα′

i T l ′+1ψ |dt ′du′dμ/̃g

≤ Cδ2l
′+2−1/2

∫ t

−r0
‖Zα′

i T l ′ /�μ‖L2(�
u
t ′ )

‖LZα′
i T l ′+1ψ‖L2(�

u
t ′ )
dt ′ (11.6)

for |α′| + l ′ ≤ |α| − 1. Again, substituting the estimates (μm(t) ≤ 1):

δl
′+1‖Zα′

i T l ′ /�μ‖L2(�
u
t ′ )

≤ Cδ1/2μ
−b|α|+2+1/2
m (t ′)

(√
Ẽ≤|α|+2(t ′, u) +

√
Ẽ≤|α|+2(t

′, u)
)

with b|α|+1 = b|α|+2−1, the same argument implies that the spacetime integral
is bounded by:

C
√
Du

|α|+2

√
Ẽ≤|α|+1(t, u)

∫ t

−r0
μ

−2b|α|+1−1/2
m (t ′)dt ′

≤ Cμ
−2b|α|+1+1/2
m (t)

√
Du

|α|+2,l ′
√
Ẽ≤|α|+1(t, u)

≤ Cεμ
−2b|α|+1
m (t)Du

|α|+2 + ε Ẽ≤|α|+1(t, u) (11.7)

Here ε is a small absolute positive constant.
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11.2 Energy estimates for next-to-top order

Throughout this subsection Zi could be Ri , Q and T . Now we consider the
other contributions from the spacetime error integrals associated to K1. For
the variations Zα′

i ψ where |α′| ≤ |α|, the other contributions are bounded by
(see (9.14)):

Cδ2
∫ t

−r0
E≤|α|+1(t

′, u)dt ′ + Cδ−1/2
∫ u

0
F≤|α|+1(t, u

′)du′

+Cδ1/2K≤|α|+1(t, u)

≤ Cδ2
∫ t

−r0
μ

−2b|α|+1
m (t ′, u)Ẽ≤|α|+1(t

′, u)dt ′

+Cδ−1/2
∫ u

0
μ

−2b|α|+1
m (t)F̃≤|α|+1(t, u

′)du′

+Cδ1/2μ
−2b|α|+1
m (t)K̃≤|α|+1(t, u) (11.8)

In view of (11.2), (11.4), (11.8) and multiplying μ
2b|α|+1
m (t) on both sides of

the energy inequality associated to K1 for Zα′
i ψ with |α′| ≤ |α| give us:

∑

|α′|≤|α|
μ
2b|α|+1
m (t)δ2l

′(
E[Zα′

i ψ](t, u) + F[Zα′
i ψ](t, u) + K [Zα′

i ψ](t, u)
)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′

i ψ](−r0, u) + Cδ−1
∫ u

0
F̃≤|α|+1(t, u

′)du′

+Cδ2
∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′ + Cδ1/2 K̃≤|α|+1(t, u) + CδDu
|α|+2

Since the right hand side of the above is non-decreasing in t , the above inequal-
ity is still true if we substitute t by any t ′ ∈ [−r0, t] on the left hand side:

∑

|α′|≤|α|
μ
2b|α|+1
m (t ′)δ2l ′

(
E[Zα′

i ψ](t ′, u) + F[Zα′
i ψ](t ′, u) + K [Zα′

i ψ](t ′, u)
)

≤ C
∑

|α′|≤|α|
δ2l

′
E[Zα′

i ψ](−r0, u) + Cδ−1
∫ u

0
F̃≤|α|+1(t, u

′)du′

+Cδ2
∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′ + CδDu
|α|+2 + Cδ1/2 K̃≤|α|+1(t, u)
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As in the previous section, taking the supremum with respect to t ′ ∈ [−r0, t]
we obtain:

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u) + K̃≤|α|+1(t, u)

≤ CδDu
|α|+2 + Cδ−1

∫ u

0
F̃≤|α|+1(t, u

′)du′

+Cδ2
∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′ + Cδ1/2 K̃≤|α|+1(t, u)

Choosing δ sufficiently small, we have:

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u) + K̃≤|α|+1(t, u) ≤ CδDu
|α|+2

+Cδ−1
∫ u

0
F̃≤|α|+1(t, u

′)du′ + Cδ2
∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′

Keeping only F̃≤|α|+1(t, u) and we have:

F̃≤|α|+1(t, u) ≤ CδDu
|α|+2 + Cδ2

∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′

+Cδ−1
∫ u

0
F̃≤|α|+1(t, u

′)du′

By using Gronwall, we obtain:

F̃≤|α|+1(t, u) ≤ CδDu
|α|+2 + Cδ2

∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′

This together with the fact that Ẽ≤|α|+1(t),Du
|α|+2 are non-decreasing in u

implies:

Ẽ≤|α|+1(t) + F̃≤|α|+1(t, u) + K̃≤|α|+1(t, u)

≤ CδDu
|α|+2 + Cδ2

∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′ (11.9)

Next we consider the energy estimates associated to K0. We start with the
variation Zα′

i ψ with |α′| ≤ |α|. The other contributions to the spacetime error
integral is bounded by (see (9.15) and (11.9)):
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Cδ1/2
∫ t

−r0
E≤|α|+1(t

′, u)dt ′ + Cδ1/2K≤|α|+1(t, u)

+Cδ−1/2
∫ u

0
F≤|α|+1(t, u

′)du′

≤ Cδ1/2
∫ t

−r0
μ

−2b|α|+1
m (t ′)Ẽ≤|α|+1(t

′, u)dt ′ + Cδ1/2μ
−2b|α|+1
m (t)Du

|α|+2

(11.10)

Without loss of generality, we can choose ε ≥ δ. Then in view of this and
(11.5) and (11.7), we have the following energy inequality:

∑

|α′|≤|α|
μ
2b|α|+1
m (t)δ2l

′(
E[Zα′

i ψ](t, u) + F[Zα′
i ψ](t, u)

)

≤ CDu
|α|+2 + Cε Ẽ≤|α|+1(t, u) + Cδ1/2

∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′

Then similar as before, substituting t by t ′ ∈ [−r0, t] on the left hand side and
taking the supremum with respect to t ′ ∈ [−r0, t], we obtain:

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u)

≤ CDu
|α|+2 + Cε Ẽ≤|α|+1(t, u) + Cδ1/2

∫ t

−r0
Ẽ≤|α|+1(t

′, u)dt ′

Choosing ε sufficiently small and using Gronwall, we finally have:

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u) ≤ CDu
|α|+2 (11.11)

Now substituting (11.11) to the right hand side of (11.9), we have:

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u) + K̃≤|α|+1(t, u) ≤ CδDu
|α|+2

Summarizing, we have:

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u) + K̃≤|α|+1(t, u) ≤ CδDu
|α|+2

Ẽ≤|α|+1(t, u) + F̃≤|α|+1(t, u) ≤ CDu
|α|+2 (11.12)

11.3 Descent scheme

We proceed in this way taking at the nth step:

b|α|+2−n = b|α|+2 − n, b|α|+1−n = b|α|+2 − n − 1
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in the role of b|α|+2 and b|α|+1 respectively, the argument beginning in the
paragraph containing (11.1) and concluding with (11.12) being step 0. The
nth step is exactly the same as the 0th step as above, as long as b|α|+1−n > 0,
that is, as long as n ≤ [b|α|+2] − 1. Here we choose b|α|+2 as:

b|α|+2 = [b|α|+2] + 3

4

where [b|α|+2] is the integer part of b|α|+2. For each of such n, we need to
estimate the integrals:

∫ t

−r0
μ

−b|α|+2−n−1/2
m (t ′)dt ′,

∫ t

−r0
μ

−2b|α|+2−n+1
m (t ′)dt ′

As in the last section, we consider two different cases: t ′ ∈ [−r0, t0] and
t ′ ∈ [t0, t], where μm(t0) = 1

10 . If t
′ ∈ [−r0, t0], we have:

∫ t0

−r0
μ

−b|α|+2−n−1/2
m (t ′)dt ′ ≤C

∫ t0

−r0
μ

−b|α|+2−n+1/2
m (t ′)dt ′ ≤Cμ

−b|α|+2−n+1/2
m (t)

∫ t0

−r0
μ

−2b|α|+2−n+1
m (t ′)dt ′ ≤ C

∫ t0

−r0
μ

−2b|α|+2−n+2
m (t ′)dt ′ ≤ Cμ

−2b|α|+2−n+2
m (t)

Here we have used the fact that μm(t ′) ≥ 1
10 for t ′ ∈ [−r0, t0]. In regard to

the estimate for t ′ ∈ [t0, t], since

b|α|+2−n = [b|α|+2−n] + 3

4
≥ 1 + 3

4
= 7

4
,

by Lemma 8.1, we have:

∫ t

t0
μ

−b|α|+2−n−1/2
m (t ′)dt ′ ≤ Cμ

−b|α|+2−n+1/2
m (t)

∫ t

t0
μ

−2b|α|+2−n+1
m (t ′)dt ′ ≤ Cμ

−2b|α|+2−n+2
m (t)

So indeed, we can repeat the process of 0th step for n = 1, . . . , [b|α|+2] − 1.
Therefore we have the following estimates:

Ẽ≤|α|+1−n(t, u) + F̃≤|α|+1−n(t, u) ≤ CDu
|α|+2

Ẽ≤|α|+1−n(t, u) + F̃≤|α|+1−n(t, u) + K̃≤|α|+1−n(t, u) ≤ CδDu
|α|+2

(11.13)
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We now consider the final step n = [b|α|+2]. In this casewe have b|α|+2−n = 3
4 .

Using the same process as in 0th step, the contributions of the optical terms
are bounded by:

‖Zα′
trχ ′‖L2(�

u
t )

≤ Cδμ−1/4
m (t)

√
Du

|α|+2

with |α′| + 2 ≤ |α| + 1 − [b|α|+2]
‖Zα′

i T l ′ /�μ‖L2(�
u
t )

≤ Cδ1/2μ−1/4
m (t)

√
Du

|α|+2

with |α′| + l ′ + 2 ≤ |α| + 1 − [b|α|+2]

with Zi = Ri or Q. As before, in order to bound the corresponding integrals:

∫ t

−r0
‖Zα′

i trχ ′‖2
L2(�

u
t ′ )
dt ′,

∫ t

−r0
‖Zα′

i T l ′ /�μ‖2
L2(�

u
t ′ )
dt ′

we need to consider the integral:

∫ t

−r0
μ

−1/2
m (t ′)dt ′ ≤

∫ t0

−r0
μ

−1/2
m (t ′)dt ′+

∫ t

t0
μ

−1/2
m (t ′)dt ′ with μm(t0) = 1

10

For the “non-shock part
∫ t0
−r0

”, since μm(t0) ≥ 1
10 ,

∫ t0

−r0
μ

−1/2
m (t ′)dt ′ ≤ C

For the “shock part
∫ t
t0
, as in the proof for Lemma 8.1,

∫ t

t0
μ

−1/2
m (t ′)dt ′ ≤ Cμ1/2

m (t) ≤ C

So we have the following bounds:

(∫ t

−r0
‖Zα′

trχ ′‖2
L2(�

u
t ′ )
dt ′
)1/2

≤ Cδ
√
Du

|α|+2

with |α′| + 2 ≤ |α| + 1 − [b|α|+2]
(∫ t

−r0
‖Zα′

i T l ′ /�μ‖L2(�
u
t ′ )
dt ′
)1/2

≤ Cδ1/2
√
Du

|α|+2

with |α′| + l ′ + 2 ≤ |α| + 1 − [b|α|+2]
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Therefore we can set:

b|α|+1−n = b|α|+1−[b|α|+2] = 0

in this step. Then we can proceed exactly the same as in the preceding steps.
We thus arrive at the estimates:

Ẽ≤|α|+1−[b|α|+2](t, u) + F̃≤|α|+1−[b|α|+2](t, u) ≤ CDu
|α|+2

Ẽ≤|α|+1−[b|α|+2](t, u) + F̃≤|α|+1−[b|α|+2](t, u) + K̃≤|α|+1−[b|α|+2](t, u)

≤ CδDu
|α|+2 (11.14)

These are the desired estimates, because from the definitions:

Ẽ≤|α|+1−[b|α|+2](t, u) := sup
t ′∈[−r0,t]

{E≤|α|+1−[b|α|+2](t
′, u)}

Ẽ≤|α|+1−[b|α|+2](t, u) := sup
t ′∈[−r0,t]

{E≤|α|+1−[b|α|+2](t ′, u)}

F̃≤|α|+1−[b|α|+2](t, u) := sup
t ′∈[−r0,t]

{F≤|α|+1−[b|α|+2](t
′, u)}

F̃≤|α|+1−[b|α|+2](t, u) := sup
t ′∈[−r0,t]

{F≤|α|+1−[b|α|+2](t ′, u)}

K̃≤|α|+1−[b|α|+2](t, u) := sup
t ′∈[−r0,t]

{K≤|α|+1−[b|α|+2](t ′, u)}

(11.15)

the weight μm(t ′) has been eliminated.

12 Completion of proof

Let us define:

S2[φ] :=
∫

St,u

(
|φ|2 + |Ri1φ|2 + |Ri1Ri2φ|2

)
dμ/g

And also let us denote by Sn(t, u) the integral on St,u (with respect to dμ/g) of

the sum of the square of all the variation ψ = δl
′
Zα′
i ψγ up to order |α| + 1−

[b|α|+2], where l ′ is the number of T ’s in the string of Zα′
i and γ = 0, 1, 2, 3.

Then by Lemma 7.3 we have:

S|α|−[b|α|+2](t, u) ≤ Cδ
(
E|α|+1−[b|α|+2](t) + E |α|+1−[b|α|+2](t, u)

)

for all (t, u) ∈ [−2, t∗) × [0, δ].
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Hence, in view of (11.14) and (11.15),

S|α|−[b|α|+2](t, u) ≤ CδDu
|α|+2 for all (t, u) ∈ [−2, t∗) × [0, δ]. (12.1)

Then for any variations ψ of order up to |α| − 2 − [b|α|+2] we have:
S2[ψ] ≤ S|α|−[b|α|+2](t, u) (12.2)

Then by the Sobolev inequality introduced in (3.41), (12.1) and (12.2), we
have:

δl
′
sup
St,u

|Zα′
i ψα| = sup

St,u
|ψ | ≤ Cδ1/2

√
Du

|α|+2 ≤ C0δ
1/2 (12.3)

whereC0 depends on the initial energyDu
|α|+2, the constant in the isoperimetric

inequality and the constant in Lemma 7.3 as well as the constants in (11.14),
which are absolute constants.

If we choose |α| large enough such that
[ |α| + 1

2

]
+ 3 ≤ |α| − 2 − [b|α|+2]

then (12.3) recovers the bootstrap assumption (B.1) for (t, u) ∈ [−2, t∗) ×
[0, δ].

To complete the proof of Theorem 3.1, it remains to show that the smooth
solution exists for t ∈ [−2, s∗), i.e. t∗ = s∗. More precisely, we will prove
that either μm(t∗) = 0 if shock forms before t = −1 or otherwise t∗ = −1.

If t∗ < s∗, then μ would be positive on �δ
t∗ . In particular μ has a positive

lower bound on �δ
t∗ . Therefore by Remark 2.4, the Jacobian � of the trans-

formation from optical coordinates to rectangular coordinates has a positive
lower bound on�δ

t∗ . This implies that the inverse transformation from rectan-
gular coordinates to optical coordinates is regular. On the other hand, in the
course of recovering bootstrap assumption we have proved that all the deriv-
atives of the first order variations ψα extend smoothly in optical coordinates
to �δ

t∗ . Since the inverse transformation is regular, ψα also extend smoothly
to �δ

t∗ in rectangular coordinates. Once ψα extend to functions of rectangular
coordinates on �δ

t∗ belonging to some Sobolev space H3, then the standard
local existence theorem (which is stated and proved in rectangular coordinates)
applies and we obtain an extension of the solution to a development containing
an extension of all null hypersurface Cu for u ∈ [0, δ], up to a value t1 of t
for some t1 > t∗, which contradicts with the definition of t∗ and therefore
t∗ = s∗. This completes the proof of Theorem 3.1 and the main theorem of
the paper.
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