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Abstract The paper is devoted to the study of shock formation of the 3-
dimensional quasilinear wave equation

— (1+3G"(0)(3:¢)")3;¢ + Ap =0, (*)

where G”(0) is a non-zero constant. We will exhibit a family of smooth initial
data and show that the foliation of the incoming characteristic hypersurfaces
collapses. Similar to 1-dimensional conservational laws, we refer this specific
type breakdown of smooth solutions as shock formation. Since (x) satisfies
the classical null condition, it admits global smooth solutions for small data.
Therefore, we will work with large data (in energy norm). Moreover, no sym-
metry condition is imposed on the initial datum. We emphasize the geometric
perspectives of shock formation in the proof. More specifically, the key idea
is to study the interplay between the following two objects: (1) the energy
estimates of the linearized equations of (x); (2) the differential geometry of
the Lorentzian metric g = _W())(B,aﬁ)z)dtz + dxf + a’x% + dx%. Indeed,
the study of the characteristic hypersurfaces (implies shock formation) is the
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study of the null hypersurfaces of g. The techniques in the proof are inspired
by the work (Christodoulou in The Formation of Shocks in 3-Dimensional
Fluids. Monographs in Mathematics, European Mathematical Society, 2007)
in which the formation of shocks for 3-dimensional relativistic compressible
Euler equations with small initial data is established. We also use the short
pulse method which is introduced in the study of formation of black holes in
general relativity in Christodoulou (The Formation of Black Holes in Gen-
eral Relativity. Monographs in Mathematics, European Mathematical Society,
2009) and generalized in Klainerman and Rodnianski (Acta Math 208(2):211-
333, 2012).

1 Introduction

This paper is devoted to the study of the following quasilinear wave equation
— (1+3G"(0)(8:0)*) 3¢ + Ap =0, (1.1)

where G”(0) is a nonzero constant and ¢ € C®(R, x R3; R) is a smooth
solution. We propose a geometric mechanism for shock formation, i.e. how the
smoothness of ¢ breaks down. We remark that if G’ (0) = 0, the equation is lin-
ear so that no shock is expected. We will see that (x) can be regarded as the sim-
plest quasilinear wave equations that can be derived from the least action prin-
ciple. The equation can also be regarded as a model equation for the nonlinear
version of Maxwell equations in nonlinear electromagnetic theory, in which the
shocks can be observed experimentally. The shock formation in nonlinear elec-
tromagnetic theory will be the subject of a forthcoming paper by the authors.

The breakdown mechanism is a central object in the theory of quasilinear
hyperbolic equations. We give a brief account on the results related to the
current work. In [2], Alinhac proved a conjecture of Héormander concerning
upper bounds of the lifespan for the solutions of —8;2¢ + A¢p = 0:¢ 8t2¢ on
R>*+1. This equation was first introduced by John (see the survey paper [11] and
the references therein). He [10] studied the rotationally symmetric cases and
obtained upper bounds for the lifespan of the solutions. In [2,3], without any
symmetry assumptions, Alinhac not only shows the solution blows up but also
gives a very precise description of the solution near the blow-up point. Despite
the slight different forms of the equations, Alinhac’s results are fundamentally
different from the current work in the following aspects: (1) He deals with small
data problem. We will (and have to) deal with large data problem. (2) He uses
Nash—Moser method to recover the loss of derivatives. Based on the variational
nature of (x), we can close the energy estimates with finite many derivatives.
(3) Just as Alihnac’s work, we can give a detailed account on the behaviors
of the solutions near blow-up points. Moreover, we show that the singularities
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formed are indeed shocks. (4) We can give a pure geometric interpretation of
the shock formation (in terms of certain curvature tensors) and show that the
blow-up behavior indeed can be read off from the initial data directly.

A major breakthrough in understanding the shock formation for the Euler
equations has been made by Christodoulou in his monograph [5]. He considers
the relativistic Euler equations for a perfect irrotational fluid with an arbitrary
equation of state. Provided certain smallness assumptions on the initial data, he
obtained a complete picture of shock formation in three dimensions. A similar
result for classical Euler’s equations has also been obtained by Christodoulou
and Miao in [8]. The approaches are based on differential geometric methods
originally introduced by Christodoulou and Klainerman in their monumental
proof [7] of the nonlinear stability of the Minkowski spacetime in general rela-
tivity. Most recently, based on similar ideas, Holzegel, Klainerman, Speck and
Wong have obtained remarkable results in understanding the stable mechanism
for shock formation for certain types of quasilinear wave equations with small
data in three dimensions, see their overview paper [9] and Speck’s detailed
proof [14]. We remark that one of the key ideas in [5,8] is to explore the vari-
ational structure of Euler’s equations. This idea also plays a key role in the
current work. We emphasize that [5, 8] obtained sharp lower and upper bounds
for the lifespan of smooth solutions associated to the given data without any
symmetry conditions. Prior to [5,8], most of works on shock waves in fluid
are limited to the simplified case of with spherical symmetry assumptions, i.e.
essentially the one space dimension case. As an example, we mention [1] of
Alihnac which studies the singularity formation for the compressible Euler
equations on R? with rotational symmetry.

All the aforementioned works have the common feature that the initial data
are assumed to be small. However, since the nonlinearity in () is cubic. By the
classical result of Klainerman [12], for small smooth initial data, the solutions
of (x) are globally regular. In particular, we do not expect shock formation. We
will use a special family of large data, so called short pulse data, in the current
work. It was firstly introduced by Christodoulou in a milestone work [6] in
understanding the formation of black holes in general relativity. By identifying
an open set of initial data without any symmetry assumptions (the short pulse
ansatz!), he shows that a trapped surface can form, even in vacuum space-
time, from completely dispersed initial configurations and by means of the
focusing effect of gravitational waves. Although the data are no longer close
to Minkowski data, in other words, the data are no longer small, he is still able to
prove a long time existence result for these data. This establishes the first result
on the long time dynamics in general relativity and paves the way for many
new developments on dynamical problems related to black holes. Shortly after
Christodoulou’s work, Klainerman and Rodnianski extends and significantly
simplifies Christodoulou’s work, see [13]. From a pure PDE perspective, the
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data appeared in the above works are carefully chosen large profiles which
can be preserved by the Einstein equations along the evolution. The data in
the current work are inspired by these ideas, in particular the idea in [6]. The
initial profiles are designed in such a way that the shape of the data will be
preserved along the evolution of ().

As a summary, the data used in the paper are motivated by Christodoulou’s
work [6] and Klainerman-Rodnianski [13] on the formation of black holes in
general relativity. The ideas of the proof are motivated by Christodoulou’s work
[5] and Christodoulou—Miao [8]. We have to overcome all the technical diffi-
culties in the works mentioned above, in particular those in Christodoulou’s
works. At the same time, we would like to present a clearer geometric picture
of the underlying shock formation mechanism.

1.1 The heuristics for shock formation

We rewrite (x) in the so called geometric form:

1
_c_28’2¢ +Ap=0 ------ (%g),

where c = (1+ 3G”(O)(8,¢>)2)_%. Recall that, if ¢ was a constant, (x¢) would
describe the propagation of light in Minkowski space and ¢ was the speed of
light. In the current situation, we still regard ¢ (which is not a constant) as the
speed of light. But the speed of light depends on the position (¢, x) in spacetime
and the solution ¢. This is of course the quasilinear nature of the equation. We
now briefly review on the basics of shock formation for the inviscid Burgers’
equation. The idea is to get a heuristic argument for the main equation (x) and
to motivate the main theorem.
The inviscid Burgers’ equation can be written as

o +udyu=0 ------ ().

We assume that u € C°(R,; x R,; R) is a smooth solution. Given smooth
initial datum u(0, x)(non-zero everywhere for simplicity), () can be solved
by the method of characteristics. A characteristic is a curve in th’ . defined by
the solution u. In the case of Burgers’ equation, a characteristic is a straight
line and it is determined by the initial datum (0, x) as follows: it is the unique
line passing through (0, x) with slope m. The method of characteristics
says that u is constant along each of the characteristics.

To make connections to the geometric form () of the main equation (),
we also propose a geometric form of the Burgers’ equation (we assume that

u # 0 to make the following computation legitimate):
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1
_azu_l’_axuzo ...... (*g),
C

where ¢ = u. Then c is the speed of the characteristics and it depends on the
solution u.

We now consider two specific characteristics passing through x; and x;
(x1 < x2).If we choose datum in such a way that (0, x1) > u(0, x2) > 0, both
the characteristics travel towards the right. Moreover, the characteristic on the
left (noted as C1) travels with speed ¢; = u(0, x1) and the characteristic on the
right (noted as C;) travels with speed ¢ = u(0, x2). Since C| travels faster than
C», C1 will eventually catch up with C;. The collision of two characteristics
causes the breakdown on the smoothness of the solution. In summary, we have
a geometric perspective on shock formation: a “faster” characteristic catches
up a “slower” one so that it causes a collapse of characteristics.

The above discussion can also be read off easily from the following picture:

Oy — 00

shock

The characteristics become dense.
t=2

A 7slower” characteristic with speed ¢y = u(0, z2).

A "faster” characteristic with speed ¢; = u(0,z1).

u is constant along characteristics.

2 + u(0, z2)t

T2

In reality, in stead of showing that characteristics collapse (which is on
the heuristic level), we show that |d,u| blows up. In stead of being naively a
derivative, |0,u| have an important geometric interpretation. Recall that the
level sets of u are exactly the characteristics and the (¢, x)-plane is foliated by
the characteristics (see the above picture). Therefore, |0, u| is the density of the
foliation by the characteristics. As a consequence, we can regard the shock
formation as the following geometric picture: the foliation of characteristics
becomes infinitely dense.

We also recall a standard way to prove the blow-up of |9, #|. The remarkable
feature of this standard proof is that in three dimensions similar phenomenon
happens for the main equation (x). Let L = d,+ud, be the generator vectorfield
of the characteristics (for (), the corresponding vectorfield are generators of
null geodesics on the characteristic hypersurfaces). Therefore, by taking 0,
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derivatives, we obtain
Ldu + (d,u)? = 0.

This is a Riccati equation for d,u and the blow-up theory for d,u is standard.
However, we would like to understand the blow-up in another way (which is
intimately tied to the shock formation for (x)). We define the inverse density
function n = —(d,u)~", therefore, along each characteristic curve, u satisfies
the following equation:

Llu’(tvx) = _1’

i.e. Lu is constant along each characteristic so that it is determined by its
initial value. Therefore, © will eventually become O which implies that the
foliation becomes infinitely dense (For (%), we will also define an inverse den-
sity function p for the foliation of characteristic hypersurfaces and show that
Lu(t, x) is almost a constant along each generating geodesic of the character-
istic hypersurfaces).

We return to the main equation in the geometric form —Ci23,2¢ +

Ap = 0 with ¢ = (1 + 3G”(O)(8t¢)2)_%. We prescribe initial data
(=2, ), 0;¢(—2, -)) on the time slice X_, defined by t = —2. We use
S, to denote the sphere of radius r centered at the origin on X _5 and use B; to
denote the ball of radius 2 with boundary S5. Therefore, the region enclosed
by S> and S>.+s (where § is a small positive number) is foliated by the S,’s for
2 <r <2+ 4. The following picture may help to illustrate the process.

é /ST, 2<r <2496

For each leaf S, in the foliation, there is a unique incoming characteris-
tic hypersurface, which will be defined more precisely in the next section,
emanated from S,. In the picture, we use a blue surface to denote it. The
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incoming characteristic hypersurfaces emanated from S, and S, are drawn
in black and red respectively.

(1) Data inside B;. We take trivial initial data ¢(—2,x) = 0 and
9;¢(—2, x) = 0 inside B,.

In view of the Huygens’ principle, in the backward solid light cone with
bottom B, (colored in black in the picture), the solution ¢ is identically
zero. In particular, for the incoming characteristic hypersurface, which is
the cone in black in the picture emanated from the leaf S,, since ¢ =

(1 +3G6” (0)(8,(]))2)_%, the incoming speed of this hypersurface, which is
noted as c1, can be computed as

cy1 = 1.

(2) Data on the annulus region between S> and S»4s. This is the region
between the black circle and the red circle in the picture. We require that the

size of 9;¢ is approximately 87 on the outermost circle (which is red in the
picture) Sass, i.e. |90 ~ 82 at Srs.

By Taylor expansion, we can compute the speed c¢; of the outermost incom-
ing characteristics hypersurface emanated from S>;s (which is red in the
picture) as follows

3
o=1-— 5G”(O)s + 0(8?).

We are now in a situation that resembles the Burgers’ picture. The initial
distance between the inner most characteristic hypersurface (which is black in
the picture) and the outer most characteristic hypersurface (which is red in the
picture) is §. Both hypersurfaces travel towards the center. The difference of
the speeds of two characteristic hypersurfaces is c; — ¢z ~ §. We also expect
the “faster”(outer) characteristic hypersurface catching up the “slower”(inner)
one. This catching up process needs approximately % = lecz ~ 1
amount of time. We also regard the collision of characteristic hypersurfaces
as shock formation, we hope that shocks form around r = —1.

We would like to point out a serious gap in the above heuristic argument.
There is one assumption which seems to be very unreasonable: by the choice
of the data, we can make sure that the speed ¢, of the outer most incoming
characteristic hypersurfaces is of size 1 — %G” (0)8 + O(82), but there is no
clear reason that we should believe the speed c> remaining the same later on.
Therefore, the difference of the two speeds c; — ¢ may vary a lot so that the
outer most characteristic hypersurface never catch up with the inner one.

The whole point of the paper is to identify a set of initial data so that the
profile of the data propagates, i.e. the profile remains almost unchanged. In
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particular, we can prove that the speeds of the characteristic hypersurfaces
remain almost unchanged for later time. Another way to understand this is
through energy estimates: we can find a specific set of data so that we can
obtain a priori energy estimates. Once we showed that the energy (and its
higher order analogue) is almost conserved, we can use Sobolev inequality
to show that 9,¢ is almost conserved pointwisely along the generators of the
incoming characteristic hypersurfaces. According to the formula of ¢, this also
implies the speeds are almost conserved.

Finally, we point out that, as in the Burgers’ equation case, instead of show-
ing that characteristic hypersurfaces meet, we show that the inverse density u
of the foliation by the characteristic hypersurfaces becomes 0, i.e. the foliation
turns to being infinitely dense. Similarly, this can be done by showing that
Lu(t, x) is almost a constant along each generating geodesic of the character-
istic hypersurfaces.

1.2 The main result

With motivations from the previous subsection, we are ready to state the main
result of the paper. Let 7 be the time function in Minkowski spacetime. We use
¥, to denote the level sets of ¢ and it is a copy of R? for each 7. We fix ro = 2
in this paper.! We also use E‘S_ro to denote the following §-thin annulus:

2, = {x e o <r(x) <ro+6}, (1.2)

where § is any given small positive constant.

We recall that the wave speed ¢ is defined as ¢ = (1 + 3G”(O)(8t¢)2)_%.
Let L = 0; — cd, and L = 9; 4 c9,. We first introduce a pair of functions
(@1(s,0), pa(s, 0)) € C®((0, 1] x S?) and we will call it the seed data.

The seed data (¢ (s, 6), ¢p2(s, 0)) can be freely prescribed and once it is
given once forever. In particular, the choice of the seed data is independent of
the small parameter &.

Lemma 1.1 Given seed data (¢1, ¢2), there exists a ' > 0 depending only
on the seed data, for all 5 < §', we can construct another function ¢y €
C>®((0, 1] x S?) satisfying the following two properties:

1. For all k € Z=>o, the C*-norm of ¢ are bounded by a function in the
C*-norms of ¢1 and ¢y;
2. If we pose initial data for (x) on £_, in the following way:

' In a future work, we will consider a more general case for which the data is prescribed at
past infinity. Therefore, we have to let rg go to co and the dependence of the estimates (of the
current work) on rg will be crucial.
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For all x € X_5 with r(x) < 2, we require (¢p(—2,x), 0;¢p(—2,x)) =
0,0); For2 <r(x) <2+ 8, we require that

$(—2,x) = 632y (r g =) 9) L ) (=2, x) =824, (r ; 2, 0) .

Then we have
L&, <82 L%l < 82 (1.3)
L (28—’0) L (EE’O)

We remark that the condition (1.3) has a clear physical meaning: since L
are incoming directions, the waves are initially set to be incoming and the
outgoing radiation is very little (controlled by 4§).

Definition 1.2 The Cauchy initial data of (x) constructed in the lemma (sat-
isfying the two properties) are called no-outgoing-radiation short pulse data.

Before we state the main theorem, we prove the lemma hence show the
existence of no-outgoing-radiation short pulse data.

Proof We recall that ¢ = (1 + 3G”(O)(8,¢>)2)_%,L = 0; —co, and L =
3, + Car .

We first take an arbitrary choice of ¢; and fix this function. Therefore, 0;¢
is given by the formula (9;¢)(—2, x) = 81/2¢>1(%, 0). In particular, all the
spatial derivatives of d;¢ and ¢ (determined completely by d;¢) are prescribed
on 25_2.

Therefore, by definition, we have

L2 = 02¢ — 8, 0,0 + cd,c 0, + 202 — 2¢0,(3,).

According to the definition of ¢, we have 3,c = —3G" (0)c>d,¢ 32¢. Thus, we
have

L?¢ = (1 —-3G"(0) 8¢ 8,0)37¢ + cdyc 8¢ + 282 — 2¢d,(3,).

By virtue of the main equation, we have 8t2¢ =c? (a,2¢ + %8,(/5 + rizASz(ﬁ),
where As is the Laplace operator on S?. Therefore, we obtain

L*¢ = 2 —3G"(0)c* ¢ 8,6)(c*87¢) + (1 — 3G (0)c> 3, 8,$)

e c?
X (73r¢> + r—2A52¢) + c0rc 0,9 — 2¢0,(0:9).
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We now use the fact that ¢ (—2, x) = 5%¢o(ﬂ, 0), where ¢y will be deter-
mined later on. Thus, L?¢ can be computed as

L% = (2= 3G"(0)$1 duepo 3) (6~ 2202 40)
/" 3 262 L C2 3
+ (1 =3G"(0)c¢1 0560 9) 78s¢o 82 + r—ZAquso 82
FByc gy - 87 — 2edpi 8. (1.4)

We claim that we can choose ¢, which may depend on the choice of ¢ but

is independent of §, in such a way that | L%¢| < 6%.

To see this, we first observe that since ¢ is given and § is small, we have
le|+19,¢| < 1.Indeed, 3,¢c = —3¢c3G” (0)¢1ds¢p1 so the bound on d,¢ is clear.
We make the following ansatz for ¢q:

19s¢p0] + 187 ol < C, (1.5)

where the constant C may only depend on ¢ but not on §.
By the ansatz (1.5) and by looking at the expansions in 8%, one can ignore

all the terms equal to or higher than 83, Therefore, to show |L%¢| < 8%, it
suffices to consider

2 2
(2= 3G"(O)p1 3560 8) (572 2020) + — B, 6
r
+cdpcdsdo 87 — 20,187 = 0(8),
or equivalently
1" 3 202 2C2
(2 =3G"(0)c 1 050 8) (c”0; o) + 73s¢o )
+ cdyc g0 8 — 2¢dsp1 = O(82).
Since (2 — 3G"(0)c3¢1 s¢08) ™! = 1 + 3G"(0)3p1 ds¢0 8 + O(8%), by

multiplying both sides of the above identity by (2 — 3G (0)c3 ¢ d5¢p0 8) ', it
suffices to consider

242 c? 1
c“95¢po + 78s¢o s+ Ecarc dspo 8

_ (1 + %G”(O)C3¢l 9590 8) cosp1 = 0(82)'
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Since ¢ ~ 1, we finally have

2 § $ 36 " 2 —1 2
d5do + ~+ Zarc - ?G 0)c"¢105¢1 ) 050 — ¢~ 35¢1 = O (7).

To solve for ¢, for s € [0, 1), we consider the following family of (para-
metrized by a compact set of parameters 6 € S* and the parameter §) linear
ordinary differential equation:

5 98 36
07 o + (; + 5o dre — ?G”(O)cqulasd)l) Ao — ¢ a1 = 822,
¢0(0,6) =0, 9;¢0(0,6) = 0.

Since the C¥-norms of the solution depends smoothly on the coefficients and
the parameter 6, §, all C*-norms of ¢o are of order O (1) and indeed are deter-
mined by the solution of

320 — ¢ 1ayp1 =0,
@0(0,0) =0, 095¢0(0,0) =0.
In particular, this shows that the ansatz (1.5) holds if we choose C appropriately
large in (1.5) and § sufficiently small. Therefore the above construction shows
that
L2 S 6%,

We claim that, by the above choice of initial data, on %¢ »» We automatically
have

Lol <62,

Indeed, by replacing d9; = L + cd, in the main equation, we obtain

1 2 2¢2 c?

OLp=—\—-L¢—Lcodp+—0¢+5Aeo).

2¢ r r
By the construction of the data, it is obvious that all the terms on the right
hand side are of size 0(8%). By integrating from 2 to r with r € [2,2 + §)
and L¢(2,0) = 0, we have

Lo (r.0)] < 8- 06} S 87

O
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The main theorem of the paper is as follows:

Main Theorem For a given constant G (0) # 0, we consider
—(143G"(0)(3,4)*)32¢ + A¢p = 0.

Let (¢1, ¢2) be a pair of seed data and the initial data for the equation is taken
to be the no-outgoing-radiation initial data.
If the following condition on ¢\ holds for at least one (r, 0) € (0, 1] x S?:

1
G"(0) - 3,¢1(r,0) - ¢1(r, 0) < s (1.6)
then there exists a constant 6o which depends only on the seed data (¢1, ¢2),
so that for all § < &g, shocks form for the corresponding solution ¢ before
t = —1, i.e. ¢ will no longer be smooth.

Remark 1.3 The choice of ¢ in the proof of Lemma 1.1 is arbitrary. In particu-
lar, this is consistent with the condition (1.6) since ¢ can be freely prescribed.

Remark 1.4 1. We do not assume spherical symmetry on the initial data.
Therefore, the theorem is in nature a higher dimensional result.

2. The proof can be applied to a large family of equations derived through
action principles. We will discuss this point when we consider the
Lagrangian formulation of ().

3. The condition (1.6) is only needed to create shocks. It is not necessary at
all for the a priori energy estimates.

Remark 1.5 The smoothness of ¢ breaks down in the following sense:

1. The solution and its first derivative, i.e. ¢ and d¢, are always bounded.

Moreover, |0;¢] < 8%, therefore (x) is always of wave type.
2. The second derivative of the solution blows up. In fact, when one
approaches the shocks, Vd;¢ blows up. See Remark 4.7 for the proof.

1.3 Lagrangian formulation of the main equation and its relation to
nonlinear electromagnetic waves

We briefly discuss the derivation of the main equation (x). The linear wave
equation in Minkowski spacetime (R3+!, m uv) can be derived by a variational
principle: we take the Lagrangian density L(¢) to be %(—(8,(;5)2 + |Vio]?)
and take the action functional £(¢) to be fR3+1 L(¢p)d,, where d i, denotes
the volume form of the standard Minkowski metric m . The corresponding
Euler—Lagrange equation is exactly the linear wave equation —a,2¢ +A¢p = 0.

@ Springer



On the formation of shocks for quasilinear wave equations

We observe that the quadratic nature of the Lagrangian density result in the
linearity of the equation. This simple observation allows one to derive plenty of
nonlinear wave equations by changing the quadratic nature of the Lagrangian
density. In particular, we will change the quadratic term in d;¢ to a quartic
term, this will lead to a quasi-linear wave equation.

In fact, we consider a perturbation of the Lagrangian density of linear waves:

1 1
L(p) = —EG(<at¢>>2) + 5|V¢|2, (1.7)

where G = G(p) is a smooth function defined on R and p = |8,¢|2. The
corresponding Euler—Lagrange equation is

—9(G'(p)0rp) + Ap = 0.

The function G(p) as a perturbation of Go(p) = p and therefore we can
think of the above equation as a perturbation of the linear wave equation. For
instance, we can work with a real analytic function G (p) with G(0) = 0 and
G’(0) = 1. In particular, we can perturb G(p) = p in the simplest possible
way by adding a quadratic function so that G(p) = p + %G” (0)p?. In this
situation, we obtain precisely the main equation (x). It is in this sense that
(x) can be regarded as the simplest quasi-linear wave equation derived from
action principles.

The main equation (%) is also closely tight to electromagnetic waves in
a nonlinear dielectric. The Maxwell equations in a homogeneous insulator
derived from a Lagrangian L which is a function of the electric field E and
the magnetic field B. The corresponding displacements D and H are defined
through L by D = —g—é and H = g—é respectively. In the case of an isotropic
dielectric, L is of the form

L=—2G(EP) +5|BP (1.8)
2 20 '
hence H = B. The fields £ and B are derived from the scalar potential ¢
and the vector potential A according to £ = —V¢ — d;Aand B = V x A
respectively. This is equivalent to the first pair of Maxwell equations:
VXE+3B=0, V-B=0.

The potentials are determined only up to a gauge transformation ¢ +— ¢ — 9, f
and A — A +df, where f is an arbitrary smooth function. The second pair

of Maxwell equations

V.-D=0, VxH-9D=0
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are the Euler-Lagrange equations, the first resulting from the variation of ¢
and the second resulting from the variation of A. Fixing the gauge by setting
¢ = 0, we obtain a simplified model if we neglect the vector character of A
replacing it by a scalar function ¢. Then the above equations for the fields in
terms of the potentials simplify to £ = —0d;¢ and B = V¢. The Lagrangian
(1.8) becomes

L= —160,6)) + 2 1veP?
2 ! 2 ¢

which is exactly (1.7). Therefore, the main equation (x) provides a good
approximation for shock formation in a natural physical model: the shock
formation for nonlinear electromagnetic waves.

1.4 Main features of the proof

We now briefly sketch four main ingredients of the proof.

1. The short pulse method. By rewriting () in the semilinear form [,,¢p =
-3G” (0)(8t¢>)28t2¢, we notice that the nonlinearity is cubic. Therefore the
result in [12] implies that small smooth initial data lead to global smooth
solutions since the classical null condition is satisfied. We are then forced
to consider large initial data. According to the choice of data in the Main

Theorem, they are supported in the annulus of width § and with amplitude & 2
which looks like a pulse (the short pulse data). The energy associated to the
data is of size 1. On the technical level, although the short pulse data is no
longer small, we still have a small parameter § coming into play. Therefore,
most of the techniques for small data problems can also be applied here.

2. A Lorentzian geometry defined by the solutions. Since the Lagrangian,
therefore () itself, is invariant under the time translation and the isometries
of R, we can linearize the equation via the infinitesimal generators of those
actions. The most important feature about the linearized equations is, they
are not just linear, they are linear wave equations with respect to a spe-
cial Lorentzian metric defined by the solution. This reflects the Lagrangian
nature of the equation (x): the metric comes from the second derivative of the
Lagrangian. In particular, the incoming null hypersurfaces with respect to this
metric correspond to the characteristic hypersurfaces of the solution. Recall
that the shock formation is the study of the collapsing of the characteristic
hypersurfaces, hence the differential geometry of the metric dictates shock
formation.

Moreover, we study the energy estimates for the linearized linear wave
equations. The energy estimates on one hand depend heavily on the under-
lying geometry, e.g. the curvature, the fundamental forms of null foliations,
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the isoperimetric inequalities, etc.; on the other hand, the energy estimates
also control the underlying geometry. Therefore, the study of the linearized
equations are more or less equivalent to the study of the underlying geometry.
This leads to a natural bootstrap argument.

3. Coercivity of angular energy near shocks. We use the vector field method
to study the energy estimates for the linearized equations. Since we expect
shock waves, the function u, i.e., the inverse density of the characteristic
hypersurfaces, may turn to 0. This will pose a fundamental difficulty for energy
estimates (even for linear wave equations!). Roughly speaking, for a free wave
Y, for all possible multiplier vectorfields, in the associated energy or flux
integrals, the components for the rotational directions all look like [ u|¥y 12
But in the error integrals, some ¥y components show up without a p factor.
In view of the fact that & — O in the shock region, the above disparity in
shows that one can not control the error integrals by the energy or flux terms.

This difficulty is of course tied to the formation of shocks. The remarkable
thing is, it is also resolved by the formation of shocks. The idea is as follows:
initially, the p ~ 1. If in the future, no shock forms, then the disparity of u
simply result in an universal constant in the estimates since u will be bounded
below and above. If shock forms eventually, then along the incoming direction
w decreases, i.e. Ly < 0 where L is the generator of the incoming null
geodesics. Although the error integrals contain many terms without factor
for ¥4, there is one term has a very special form: it looks like [[ L, W V).
The sign of L in the shock region shows a miraculous coercivity of the energy
estimates. This term is just enough to control all the ¥ terms appearing in the
error terms. This is the major difference between the usual energy estimates
and the case where shocks form. The use of the sign L u is the key to the entire
argument in the current work.

4. The descent scheme. The energy estimates on the top order terms may
suffer a loss of a factor in u and this can be dangerous in the shock region.
Indeed, some error integral looks like fi "o w! %—FILE (t)dt where E(t) for the
energy (it appears also on the lefthand side of the energy identity). If s* is
the time where shock forms, we can show that & behaves like |t — s*| near
shocks. Therefore, the presence of ! cause a log loss in time. The descent
scheme is designed to retrieve the loss. The idea is, rather than proving the
top order terms are bounded in energy, we prove that the energy may blow
up with a specific rate in u to some negative power. To illustrate the idea, we
do the following formal computations by assuming E(t) = sup, ., u? E(7) is
bounded for a large positive number a. The energy identity, which looks like
E(t)+--- < fim w! %—’;E(r)dr + - - -, can be rewritten as

t ]8,bL -
—ro
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Since u ~ |t — 5|, the term in the parenthesis gives a factor % which is small
(a is large!). Therefore, the righthand side can be absorbed by the lefthand
side.

2 The optical geometry
2.1 Optical metrics and linearized equations

We observe that main equation (x) is invariant under the following symmetries:
space translations, rotations and the time translation. Indeed, the Lagrangian
L(¢) is invariant under these symmetries, hence the Euler-Lagrange equa-
tion must be invariant too. We use A to denote any possible choice from
{07, 0i, Qi = xiaj — x7 ;) where i, j = 1,2,3andi < j. These vectorfields
correspond to the infinitesimal generators of the symmetries of (x).

We linearize (x) according to A by the following procedure: We apply the
symmetry generated by A to a solution ¢ of (x) to obtain a family of solutions
{¢pr: 7 € R|¢o = ¢}. Therefore, —Wa&pr + A¢; = 0for t € R. We then

differentiate in T and evaluate at T = 0. We define the so called variations

Y as

d¢.
Vi=Ap = 7 le=0 2.1)
T

By regarding ¢ as a fixed function, this procedure produce a linear equation
for . We call it the linearized equation of (%) for the solution ¢ with respect
to the symmetry A.

In the tangent space at each point in R3*! where the solution ¢ is defined,
we introduce a Lorentzian metric g, as follows

g=—c?dt @dt +dx' @dx' +dx*> @ dx> +dx’ @dx>, (2.2

with (z, x!, x2, x3) being the standard rectangular coordinates in Minkowski
spacetime. Since ¢ depends on the solution ¢, g, also depends on the solution
¢. We also introduce a conformal metric g, with the conformal factor 2 = %

~ 1
8uv =2 guy = Eg;w- (2.3)

We refer g,,, and g, as the optical metric and the conformal optical metric
respectively.

@ Springer



On the formation of shocks for quasilinear wave equations

Lemma 2.1 The linearized equation of (x) for a solution ¢ with respect to A
can be written as

a9 =0, (2.4)

where Uz is the wave operator with respect to g and ¥ = A¢.
There are two ways to derive the linearized equations.

To derive (2.4), we can directly differentiate (x). We denote the Christoffel
symbols of g in the Cartesian coordinates by Fyﬁ Let [V = gof FV , then

I'% = —2¢729,¢ and the other I'”’s vanish. Hence,

Oy = 8" 0, 00% — 70,y

I 5 1
=c (—6—28,11/+A1ﬂ)—8p( )atp oy |,

T )

where p = (8;¢)2 We use A to differentiate (). If A hits the factor — 62, it
yields 7»; since A (the symmetries!) commutes with d; and A, the other terms
are precisely 77.

There is a more natural proof which is standard in Lagrangian field theory,
e.g. see [4]. In fact, the linearized equation of (x) is the Euler-Lagrange equa-
tion of the linearized Lagrangian density L ) = 1 & L(¢p+1Y). Since

2d72 lt=0
G(p) = p + 5G"(0)p?, we have

Ly)=— —G '(0)(B,)*— G/,(O)(at(p) @) + IVWI “”a,ﬂpa v

Therefore, if D C R3*! is a domain in which the solution ¢ is defined, the
action corresponding to L is L) = % fD "0,y 0, duy,. We emphasize
that the volume form du,, is defined by the Minkowski metric mqg. In view
of the definitions of g,,, and g, the action ﬁ(x{r) can be written as

. 1
£ =3 [ @0 dug

At this stage, it is clear that the linearized equation is the free wave equation
with respect to [z.
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2.2 Lorentzian geometry of the maximal development
2.2.1 The maximal development

We define a function u on X_; as follows:
u:=r—2. (2.5)

The level sets of u in X_; are denoted by S_» , and they are round spheres of
radii 4 + 2. The annular region 25_2 defined in (1.2) is foliated by S_» , as

2= S (2.6)
u€el0,8]

Given an initial data set (¢, d;¢) |t:_2 defined on BEJZ”S = Uﬂe[_m] S ou
to the main equation (%) (as we stated in the Main Theorem), we recall the
notion of the maximal development or maximal solution with respect to the
given data.

By virtue of the local existence theorem (to (x) with smooth data), one can
claim the existence of a development of the given initial data set, namely, the
existence of

e a domain D in Minkowski spacetime, whose past boundary is BEJZ“S;

e a smooth solution ¢ to (x) defined on D with the given data on B%JZ”S
with following property: For any point p € D, if an inextendible curve

y : [0, T) — D satisfies the property that

L. y(©) = p,

2. Forany 7’ € [0, 7), the tangent vector y’(t) is past-pointed and causal
(.e., g(y'(t), y'(z))) < 0) with respect to the optical metric g.p at the
point y (t'),

then the curve y must terminate at a point of BEJZ”S.

Minkowski Spacetime
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By the standard terminology of Lorentzian geometry, the above simply says
that BSL‘S is a Cauchy hypersurface of D.

The local uniqueness theorem asserts that if (Dy, ¢1) and (D>, ¢2) are two
developments of the same initial data sets, then ¢1 = ¢» inD; [ D;. Therefore
the union of all developments of a given initial data set is itself a development.
This is the so called maximal development and its corresponding domain is
denoted by W*. The corresponding solution is called the maximal solution.
Sometimes we also identify the development as its corresponding domain
when there is no confusion.

P S XS R o on Dy Ps.op = és ‘\

BZ+J

2.2.2 Geometric set-up

Given an initial data set, we consider a specific family of incoming null hyper-
surfaces (with respect to the optical metric g) on the maximal development
W*. Recall that u is defined on ¥_, as r — 2. For any u € [0, §], we use C,,
to denote the incoming null hypersurface emanated from the sphere S_ ,,. By
definition, we have C, C W*and C,, (1 X2 = S—2.u.

We denote the subset of the maximal development of the given initial data
foliated by C,, with u € [0, 5] by W;, i.e.,

ws= | ¢C. 2.7)
1el0,8]

Roughly speaking, our main estimates will be carried out only on Ws. The
reason is as follows: since we assume that the data set is completely trivial
for u < 0 on X_,, the uniqueness of smooth solutions for quasilinear wave
equations implies that the spacetime in the interior of Cy, is indeed determined
by the trivial solution. Modulo the spherical configurations, the situation can
be depicted as
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©-
Il

T

t=-2
r=0oru=-2

The grey region is Ws. In the light gray region, the solution ¢ = 0 thanks
to the construction of the initial data. The solution to (1.1) then vanishes up to
infinite order on C ), which is part of the boundary of Ws. In particular, C, is
a flat cone in Minkowski spacetime (with respect to the Minkowski metric).

The dashed line denotes a incoming null hypersurface in the above picture.
We extend the function u to Ws by requiring that the hypersurfaces C,, are
precisely the level sets of the function u. Since C,, is null with respect to g4,
the function u is then a solution to the equation

()P duudgu = 0, (2.8)

where (g~ 1P is the inverse of the metric 8ap- We call such a function u an
optical function.

With respect to the affine parameter, the future-directed tangent vectorfield
of a null geodesic on C, is given by

L:=—(g"H* o,udp. 2.9)

However, for an apparent reason, which will be seen later, instead of using
L, we will work with a renormalized (by the time function ¢) vectorfield L
defined through

o~

L=npnL, Lt=1, (2.10)

i.e., L is the tangent vectorfield of null geodesics parametrized by 7.
The function u can be computed as

1
e —(g_l)aﬁaagalgt
w

We will see later on that the w also has a very important geometric meaning:
p~ 1 is the density of the foliation | J,, c10.5] Cu-
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Given u < 4, to consider the density of null-hypersurface-foliation on
¢ () Ws, we define

Mi‘n(z)=mm( inf M(r,@,@),l). 2.11)

(W',0)€[0,u] xS?
For u = §, we define
5. = sup {t|t > —2 and wd (1) > 0}.

From the PDE perspective, for the given initial data to (x) (as constructed in
Lemma 1.1), we also define

tx = sup {7: }r > —2 such that the smooth solution exists for all
(t,u) € [-2,7) x [0, 8] and 6 € S?}.

Finally, we define
s* = min{sy, —1}, " = min{z,, s*}. (2.12)

We remark that we will exhibit data in such a way that the solution breaks
down before t = —1. This is the reason we take —1 in the definition of s*.

In the sequel, we will work in a further confined spacetime domain Wy C
Ws C W* to prove a priori energy estimates. By definition, it consists of all
the points in W5 with time coordinate ¢ < t*, i.e.,

wi=ws(1| U=

—2<t<t*

In the previous picture, the region Wy is the part of the grey region below the
horizontal dash-dot line.

For the purpose of future use, we introduce more notations to describe
various geometric objects.

For each (¢, u) € [-2,1*) x [0, 8], we use S; , to denote the closed two
dimensional surface

St =3[ Co- (2.13)

In particular, we have

Wi U Stu- (2.14)
(1w [—2,%)x[0,3]
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For each (¢, u) € [—2, t*) x [0, §], we define
T ={tu,0) e 10 <u <u},
C, ={tu.0)eC, | -2<t <1},

W; = U Sl‘/,g/ .
(", u")e[=2,0)x[0,u]

(2.15)

One can consult the previous picture to visualize those objects. In particular,
W, is the grey region bounded by ¥, and Cl-
In what follows when working in W/, we usually omit the superscript u to

write M% (1) as u;, (1), whenever there is no confusion.
We define the vectorfield 7" in Wy by the following three conditions:

1. T is tangential to X;;
2. T is orthogonal (with respect to g) to S; , for each u € [0, §];
3. Tu =1.

The letter T stands for “transversal” since the vectorfield is transversal to the
foliation of null hypersurfaces C,,.
In particular, the point (1) implies
Tt =0. (2.16)
According to (2.8)—(2.10), we have
Lu=0, Lt=1. 2.17)

In view of (2.10), (2.17), (2.16) and the fact Tu = 1, we see that the commu-
tator

A:=[L,T] (2.18)

is tangential to S; ;.
In view of (2.8)—(2.10) and the fact Tu = 1 we have

gL, T)=—pn, g(L,L)=0. (2.19)

Since T is spacelike with respect to g (indeed, X, is spacelike and T is
tangential to X;), we denote

¢(T,.T)=«k>, «k>0. (2.20)
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Lemma 2.2 We have the following relations for L, T, u and «:
u=ck, L=20y— CK_IT, (2.21)

where 0 is the standard time vectorfield in Minkowski spacetime.

Proof The vectorfield 9 is perpendicular to X; and therefore is perpendicular
to S; 4. Since L and T are two linearly independent vectorfields perpendicular
to Sy, and Lt = 9ot = 1, we have

do=L~+ fT

for some scalar function f. On the other hand, dy is perpendicular to X, hence
to 7', we have

0=g(,T)=g(L,T)+ fg(T,T) = —p+ fi’.

Therefore, f = K% = % and the second formula in (2.21) follows.
For the first formula, in view of the defining equation of the optical metric

g, we have
—® =g(0,30) = gL+ fT,L+ fT) = -2fn+ f2>.

Since f = ¢, we can solve for u to complete the proof. O

Remark 2.3 On the initial Cauchy surface X_», since u = r — 2, we have
T = 9, and ¢ = 1. Therefore, by using the standard rectangular coordinates,
we obtain that

L = 8; - Car.
This is coherent with the notations and computations in Lemma 1.1.
2.2.3 The optical coordinates

We construct a new coordinate system on Wy". If shocks form, the new coordi-
nate system is completely different from the rectangular coordinates. Indeed,
we will show that they define two differentiable structures on Wy* when shocks
form.

Given u € [0, 8], the generators of C,, define a diffeomorphism between
S_24 and S;, for each r € [-2, ). Since S_2,4 1s diffeomorphic to the
standard sphere S> C R? in a natural way. We obtain a natural diffeo-
morphism between §; , and S2. If local coordinates (8!, 62) are chosen on
S?, the diffeomorphism then induces local coordinates on Siu for every
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(t,u) € [—2,1*) x [0, §]. The local coordinates 01, 6%), together with the
functions (, u) define a complete system of local coordinates (¢, u, ', 62)
for W' This new coordinates are defined as the optical coordinates.
We now express for L, T and the optical metric g in the optical coordinates.
First of all, the integral curves of L are the lines with constant ¥ and 6. Since
Lt = 1, therefore in optical coordinates we have

9
L=—. 2.22
L=+ (2.22)

Similarly, since Tu = 1 and T is tangential to X;, we have

T=——E (2.23)

ad
ou
with E a vectorfield tangential to S; ,. Locally, we can express E as

2 Z :‘Ai (2.24)
o= o’} A’ .
A=1,2 90

The metric g then can be written in the optical coordinates (z, u, 8!, 62) as
g = —2udtdu + kK*du* + ¢ , (0" + E*du)(@0® + 8du) (2.25)
with

0 0
gAB=g(89—A,80—B), 1<A,B<2. (2.26)

To study the differentiable structure defined by the optical coordinates,
we study the Jacobian A of the transformation from the optical coordinates
(t, u, ol 02) to the rectangular coordinates (xo, xl X2, x3).

First of all, since x? = 7, we have

U U T,
at du 904

Secondly, by (2.23), we can express T = T'9; in the rectangular coordinates
(x!, x2, x3) as
T — (’)_x’ _ EAa_

xi
A
ou P 00
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In view of the fact that 7" is orthogonal to 77 with respect to the Euclidean
metric (which is the induced metric of g on E, 1), we have

Tt 12 T3

ax' ax?  ax’ —1
A=det| 251 57 21 | =TIl =c p./detg,

I ael 892 #

302 902 902

where || - || measures the magnitude of a vectorfield with respect to the Euclidean
metric in R (defined by the rectangular coordinates (x!, x2, x3)).

We end the discussion by an important remark. We can also read the con-
clusions from the following picture:

pt — 0 near shocks”
N
coordinate change
! Jacobian = p
. 5 g
(x0, =1, 2%, z°) (£, u.6,.6,)
rectangular coordinates optical coordinates

Remark 2.4 (Geometric meaning of p) In the sequel, we will show that the
wave speed function ¢ will be always approximately equal to 1 in Wy". Since
W = ck, we may think of u being « in a efficient way.

On the other hand, by the definition of 7', in particular Tu = 1, we know
that «~! is indeed the density of the foliation by the C,’s. This is because

g(T, T) = «2. Since the optical metric coincides with the Euclidean metric
on each constant time slice X;, by i ~ «, we arrive at the following conclusion:

e /1~ measures the foliation of the incoming null hypersurfaces C. .S

Therefore, by regarding shock formation as the collapsing (i.e. the density
blows up) of the characteristics (=~ the incoming null hypersurfaces), we may
say that

e Shock formation is equivalent to u — 0.

By virtue of the formula A = ¢! wny/det ¢, it is clear (the volume ele-

ment ,/det ¢ will be controlled in the sequel) that if shock forms then the
coordinate transformation between the optical coordinates and the rectangu-

@ Springer



S. Miao, P. Yu

lar coordinates will fail to be a diffeomorphism. Therefore, we can also say
that

e Shock formation is equivalent to the fact that the optical coordinates on
the maximal development defines a different differentiable structure (com-
pared to the usual differentiable structure induced from the Minkowski
spacetime).

2.3 Connection, curvature and structure equations

We use V to denote the Levi-Civita connection of g and use X 4 to denote 777 A
The 2" fundamental form of the embedding S;, u— C,1s

Xap =8(Vx,L, Xp). (2.27)

The trace/traceless part is defined by try = try x = ¢ AB Xagand X, =

Xap— %tr&gAB. Let 7 = cu™'T. Then, g(T, T) = 1. The 2" fundamental
formof §; , — X, is

04 =8g(Vx, T, Xp) (2.28)

By virtue of (2.2), we have X4p = —C 04p. Thanks to Gauss’ Theorema
Egregium, the Gauss curvature K of 8, is

1 o Lo 1 5 2 2
K = 5(trge) — §|9|g =3¢ ((trgx)* — |£|g). (2.29)
We introduce an outgoing null vectorfield
L=c2ulL+2T (2.30)

so that g(L, L) = —2u. The corresponding 2" fundamental form is x4p =
g(Vx, L, Xp). Similarly, we define try = trg x = 448 xap and Xup =

XAB — 3UX & AB-
The torsion one forms 7 n, and ¢ ¢, are defined by g, = = g(Vx,L,T) and

n, —g(Vx,T, L). They are related to the mverse density u by n n, =
[N +XA(M) and ¢, = —c " X alo).
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The covariant derivative V is now expressed in the frame (7', L, X1, X») by
(¥ is the restriction of V on §; )

ViL=p "(LwL, VrL=n"X4—c'Lc" WL,
VxL=-pn"'t L+x,5Xp, VLT =—¢*"Xa—c 'L WL,
ViT =cu(Te+Le™ ' W)L+ (¢ (Te+ Lc™ ')
+ T (og(c™ DT — ¢ g B Xp(c™ W Xa,
Vx, T = IL_IQAT + C_IMQABgBCXC, Vi Xa=Vx,L, Vx,Xp
=V, X5+ 17 x 57T

In terms of null frames (L, L, X1, X»), we have

ViL = —L(C_ZM)L+2QAXA’ VLL = —2£AXA7
ViL = (u 'Lp+ L m)L = 2uX* (¢ ) X 4,
VxaL=u""n,L+xs"Xp.

_ I
W gL+ s xaBL

1
Vx,Xp=Vx,Xp+ = 3

2

In the Cartesian coordinates, the only non-vanishing curvature components
are Rojo;’s

2
L, ld(c?)
dp

1d (c2) 1d?(c?) 1
iVip+5——5-VioVip — 4
2 dp 2 dp? PYIP TS

ROlO] = V,‘,OVjp.

In the optical coordinates, the only nonzero curvature components are o 4 g =
R(Xa,L,Xp,L):

1d(c?) » L d(c?)
Yap =5 dp Y7}(,;)(3 Sk p T(P)X 45

2?1 _,|d|
(dp EC 7 Xa(p)Xp(p).
We define
, 1d(c2) dz(cz) 1, lded) )
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Therefore, we write

1 _,d(c?
App = —7 M dp

3 T(P)X \p +%Lap (2.31)

Remark 2.5 As a convention, we say that the first term on the right hand side
of (2.31) is singular in p (since ;2 may go to zero). The second term o/, ; is
regular in (.

Indeed, in the course of the proof, we will see that &', , are bounded and « 4 5

behaves exactly as u~! in amplitude. Therefore, in addition to two equivalent

descriptions of the shock formation in Remark 2.4, we have another geometric
interpretation:

e Shock formation is equivalent to the fact that curvature tensor of the optical
metric g becomes unbounded.

Compared to the one dimensional picture of shock formation in conservation
laws, e.g., for inviscid Burgers equation, this new description of shock forma-
tion is purely geometric in the following sense: it does not even depend on the
choice of characteristic foliation (because the curvature tensor is tensorial!).

In the frame (7', L, %), the connection coefficients and the curvature com-
ponents satisfies the following structure equations:

L(x g =1 " LiX g+ X, X pe — 2ap: (232)

divy —dtry = —p~' (¢ - x — ¢trx), (2.33)

Lry  ,=V&nap + M_l(£®ﬂ)AB_C_1£(C_1M)LAB +c uO®x) a5,
(2.34)

where (§ - x)p = gAchgBC, (V&n)ap = %(WAQB + Vg ), C®Nap =
%(EAQB +£BQA) and (0®£)AB = %(GACKE + GBClg)' By taking the trace
of (2.32), we have
Luy = p~ Lty — | x5 — tre. (2.35)
The inverse density function p satisfies the following transport equation:

L =m+ pe, (2.36)
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2 2
with m = —%%Tp and e = L4

2¢2 dp
YAB = M_lmiAB +Q:AB'
Regarding the regularity in u, we use (2.36) to replace L in (2.32). This
yields

Lp. With these notations, we have

Lx,)=ex, .+x,%x..—d4p (2.37)
2L AB 2LLAB LA 2LBC

Compared to the original (2.32), the new equation is regular | in the sense
that it has no ©~! terms.

2.4 Rotation vectorfields

Although g | s, is flat, the foliation S; , is different from the standard spherical

foliations. In the Cartesian coordinates on X;, let Q| = x283 — X308y, Q) =
x39; — x183 and Q3 = x'3, — x29; be the standard rotations. Let IT be
the orthogonal projection to S; , (embedded in X;). The rotation vectorfields
R; e I'(TS; ) (i =1, 2, 3) are defined by

R, =T11%Q;. (2.38)

Let indices i, j, k € {1, 2, 3}. We use the Tk, Lk and X’;‘ to denote the com-
ponents for 7', L and X 4 in the Cartesian frame {9;} on %, (notice that L has
also a 0 component L° = 1). We use T = cu~! T is the outward unit normal
of S; , in X;. We introduce some functions to measure the difference between
the foliations S; , and the standard spherical foliations.

The functions A;’s measure the derivation from R; to £2;:

MT = Qi — R (2.39)

The functions y’*’s measure the derivation from T to the standard radial vec-
torfield xr—’a,-:

k

=7k 1 (2.40)
r

We also define (we will show that |y* — y’*| is bounded by a negligible small
number)

xk

Vo= Tk

(2.41)

u—t
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The functions zX’s measure the derivation of L from d; — 9, in Minkowski
spacetime:
k k
X (c—Dx
F=LF4 =— — cyk.
u—t u—t

Finally, the rotation vectorfields can be expressed as
3 3
R =Q; — X Z T/9;, A= Z einx’ Yk, (2.42)
j=1 JokI=1

where ¢; is the totally skew-symmetric symbol.

3 Initial data, bootstrap assumptions and the main estimates
3.1 Preliminary estimates on initial data

In the Main Theorem, we take the so called short pulse datum for (x) on »é ro-
Recall that ¢ (—ro, x) = 83/2¢(552, 0) and 8,¢ (—ro, x) = 821 (552, 6),
where ¢o, ¢1 € Ci° ((0, 1] x Sz). The condition (3) in the statement of the
Main Theorem reads as

3/2 2 3/2
ILGl oozt ) S8V L2 () S 82

We now derive estimates for ¢ and its derivatives on 25_2. These estimates
also suggest the estimates, e.g. the bootstrap assumptions in next subsection,
that one can expect later on.

For ¢ and v = A¢ where A € {dy}, by the form of the data, we clearly
have

101l oe (s ) S 820 Ml ooy S 812 (3.1)

We will use Z or Z; to denote any vector from {7, R;, O} where Q = L.
On 25_2, Z is simply 0,, 2; or —rg(d; — 9,), therefore, we have ||Z1 o Z5 o

) Zm(z/f)||Loc(E§Z) < 81271 where [ is the number of T’s appearing in
{Z;}1<j<m. We shall use the following schematic expression

1Z" Yl ooy S 8127 (3.2)

with [ is the number of T’s and Z € {T, Q;, Q}. We remark that in this paper
[ <2 and Q appears at most twice in the string of Z’s.
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We also consider the incoming energy for Z™ on 25_2. According to (3.2),
we have

ILZ" W) 2, + I4Z" D) 2y S 87 IT@ ")l jass, S 67

where ¢ denotes for the exterior differential on S; ,,. Interms of L, form € Z=y,
we obtain

ILCZ" )2y + IEZ" ) 25 ) S 87 ILEZ" W) 2y S 67
(3.3)

where [ is the number of T’s in Z’s.
We also consider the estimates on some connection coefficients on X_,.
For p, since we have g(T,T) = ¢ ?u?> and T = 9, on ¥_y,, we then have

u = con X,. Since ¢ = (1 + 2G”(O)(8t¢)2)_%, according to (3.1), for
sufficiently small §, we obtain

I = lgogss) S 8 (3:4)

: _ _ c 1 _
For X p>SINCE X\ p = —cOsp = —58ap We have Xaptrobap = (1—
1
¢)75# ap- Hence,

<s. (3.5)
Lo(2?,)

1
H&AB + %gAB

It measures the difference between the 2" fundamental form with respect to
8ap and mag.

3.2 Bootstrap assumptions and the main estimates

We expect the estimates (3.1)—(3.3) hold not only for t = —2 but also for later
time slice in W;". For this purpose, we will run a bootstrap argument to derive
the a priori estimates for the Z"’s.

3.2.1 Conventions

We first introduce three large positive integers Nyop, N, and Noo. They will be
determined later on. We require that N, = L%Ntopj and Ny = L%Nmpj + 1.
Niop will eventually be the total number of derivatives applied to the linearized

equation L1z = 0.
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To count the number of derivatives, we define the order of an object. The
solution ¢ is considered as an order —1 object. The variations ¥ = A¢ are of
order 0. The metric g depends only on v/, so itis of order 0. The inverse density
function u is of order 0. The connection coefficients are 1st order derivatives on
g, hence, of order 1. In particular, X g isoforder 1. Leta = (i, ..., ix_1) be
amulti-index with i;’s from {1, 2, 3}. We use Z* as a schematic expression
of Zj,Zi, --- Zj,_,¥.Theorder of Z* is ||, where || = k—1. Similarly, for
any tensor of order |«/|, after taking m derivatives, its order becomes |¢| + m.
The highest order objects in this paper will be of order Nyop + 1.

Let! € Z>p and k € Z. We use (’),l( or (’)kfl to denote any term of order / or
at most / with estimates

i Lr <l Lr
||Ok||Loo(zf) ISEERS 10¢ ||Loo(2;3) ISR

Similarly, we use lIJ,l< or \Ifkfl to denote any term of order / or at most / with
estimates
l Tk <i Tk

||‘I’k”L00():f) g 527, ||lIlk— ”LOO(zf) S, 327,
and moreover, it can be explicitly expressed a function of the variations . For
example, ;¢ - 0;¢p € w0 A term of the form [T, Z% so that max |a;| < m
is lIJf_”El, where [ is the number of T appearing in the derivatives. Note that x
and p can not be expressed explicitly in terms of .

The (9,[( terms (or similarly the ‘~Il,l< terms) obey the following algebraic rules:

<l <l' _ ,<max(l,l") <l A<l __ ,<max(l,l’)
Oc +00 =0nmany > 9% O =0 -

3.2.2 Bootstrap assumptions on L°° norms

Motivated by (3.2), we make the following bootstrap assumptions (B.1) on
Wy: Forall f and 2 < o] < Noo,”

”w”LO"(E;‘) + ||L¢||L00(2f) + ||d¢||L00(zf) + 8||Tw||L00(2;3)
l 1
+4 ||ZaW||LOO(E;3) S6IM. (B.1)

where [ is the number of 7’s appearing in Z* and M is a large positive constant
depending on ¢. We will show that if § is sufficiently small which may depend
on M, then we can choose M in such a way that it depends only on the initial
datum.

2 For a multi-index o, the symbol o — 1 means another multi-index 8 with degree |8| = || — 1.
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3.2.3 Energy norms

Let duy be the volume form of ¢, for a function f (7, u, 6), we define

L.r=] ( f<r,z¢0>dug)dz’,
- 0 Sl

t
/ /(/ f(r,g,@)dug)dr.
! —ro Sr,g

=u

For a function W (¢, u, ), we define the energy flux through the hypersur-
faces ¥, and C!, as

EMW)(r,u) = /(L‘P) + AV, FW)(,u) = / uld |,
c

(3.6)
E(W)(t,u) = / (L) + pldW P, F(¥)(t,u) = / (LW)>.
)3
For each integer 0 < k < Nyop, we define
Eeni(bw) = > EE Ty, w,
Vo Jo|=k—1
Fipiwy =Y > M FEZ* 'y, w),
¥ lo|=k—1 3.7)
Epqwy=> > MEZ" ), w,
¥ jo|=k—1
Fiow=>" > Fz "y, w,
Vo a|=k—1

where [ is the number of 7’s appearing in Z%. The symbol ZI/, means to sum
over all the first order variations A¢ of 1. For the sake of simplicity, we shall
omit this sum symbol in the sequel.

For each integer 0 < k < Nyp, We assign a nonnegative integer by to k in
such a way that

bo=by=--=by, =0, by,41 <by2<-—<byg, (38

We call by’s the blow-up indices. The sequence (bx)o<k< Niop will be determined
later on.
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For each integer 0 < k < Nyop, we also define the modified energy Ek (t,u)
and E; (¢, u) as

Ejqp1(t, u) = sup {1 ()P Ep 1 (T, w)),
T€[—70.1]
Ep(t,w = sup {pum(0)?HE (1, u)}
T€[—rp,t] (3 9)
Fipi(tu) = sup  {um(0)*51 Feyp (t, w)),
T€[—rp,t]
Frot,w = sup {pum(@)?HF (t,u)}
T€[—rp,t]

We now state the main estimates of the paper.

Theorem 3.1 There exists a constant 6o depending only on the seed data ¢g
and ¢1, so that for all § < &y, there exist constants My, Nyop and (by)o<k< Niop
with the following properties

o My, Ny and (br)o<k<n,, ) depend only on the initial datum.

e The inequalities (B.1) holds for all t < t* with M = M.

e Either t* = —1 and we have a smooth solution in the time slab [—2, —1];
or t* < —1 and then Yg’s as well as the rectangular coordinates x'’s
extend smoothly as functions of the coordinates (t,u,0) tot = t* and
there is at least one point on Zf* where w vanishes, thus we have shock
formation.

e If, moreover, the initial data satisfies the largeness condition (1.6), then
infact t* < —1.

Before we start the detailed analysis, it is instructional to provide a 3-step
scheme to illustrate the structure of the proof (of Theorem 3.1):

Bootstrap Assumption (B.1):

- Step 1
L™ bounds on variations. \
‘ Sl(‘l) 3
T St(‘]) 2
Energy estimates:

bounds on the E,'s.

Control on geometry:

bounds on x and .
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3.3 Preliminary results based on (B.1)
3.3.1 Estimates on metric and connection
We start with bounds on c.

Lemma 3.2 For sufficiently small® 8, we have

2
lc — IHLOO(Z;S) SOM-, <c

IA

2,

| =

(3.10)
”LC”LOO(zf) + ”dC”Lw@;S) 5 3M2, ”TC”LOO(E;S) S MZ-

1
Proof Let Yo = 9,¢. Since ¢ = (1 +3G"(0)(3,4)>) 2, in view of (B.1),

we can take € Therefore, the quantity in the parenthesis falls in

_ 1
T 4G (0)M?”
[%, %], this implies the bound on c.

_3
On the other hand, Lc = —(3/2)G”(0)(1 + 3G”(O)w3) 2o - Lg. We
then use (B.1) exactly in the same way as above, this gives the bound on Lc.
Similarly, we can obtain other bounds in (3.10). O

We now derive estimates on m, ¢ and fu:

Lemma 3.3 For sufficiently small §, we have

Il ooy + Idmll oo spy S MP, ITmllpsompy S 87'M?, (3.11)
||e||L00(2;3) + ||de||L00(2;3) S ‘SMZa ”Te”LOO(zf) 5 MZ’ (3.12)

el ooy + ILpl oo sy S M. (3.13)

Proof Let Y9 = 0,¢. We first bound m. Since m ~ (1 & wg)_zwo - T,
according to (B.1), we have
1
_ 2 2
(1=3G"O)1W0l2 . 5
< 1
~ (1 —=3G"(0)6M?)2

||m||L00(z;3) S, ”wOHLOO(z;S) : ||TW0||L00(2;S)

SIM-5TIM.

3 This sentence always means that, there exists ¢ = ¢(M) so that for all § < &, we have ...
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This clearly implies the bound on m for sufficiently small §. For the deriva-
tives of m, say T'm, it is based on (B.1) and the explicit computation Tm =

3G"(0) 2 3G”7(0) 2 36G"(0)? 2 2
(1+3G”(0)W§)2 wO T wO + (1+3G”(0)1ﬁ5)2 (TWO) (1+3G//(0)wg)3 w()(TWO) .

Similarly, we can bound dm.

The estimates on e can be derived exactly in the same way, so we omit the
proof.

To bound u, we integrate the equation L = m + pe to derive

t
u(t, u,0) =exp (/ e(f)dr) u(=ro, u, 0)

—ro

t t
+ / exp (/ e(‘c/)dt/) m(t,u,0)dr. (3.14)
—ro T

Then (3.4), (3.11) and (3.12) imply the estimate on n immediately. For L,
we simply combine Ly = m + pe, (3.11), (3.12) and the bound on . This
completes the proof. O

We move to the bounds on 7 v and d j1:

Lemma 3.4 For sufficiently small §, we have
1T ll ooy S 87 M2, Idiall poo sty S M. (3.15)

Proof The idea is to commute T and  with Ly = m + ep. For d 1, we have
Lr(dw) = edp + (dm + pde), We have already seen that ||dm||L°°(>:§) +
ludell Loo(x)) S M 2. Therefore, we integrate along L to derive the desired

bound on 4 ¢.
For Ty, we have L(Tp) = eTp + (Tm + uTe — (£* + n™)dap). We
first show that

1Z 1l ooty S SM%, Il poogssy S M2 (3.16)
( f) ( t)

In fact, ¢ A= —c! ud 4 (c). The bound on ¢ the follows immediately from
(3.10) and (3.13). Since n = ¢ + d 1, the bound on 7 is also clear because we
have just obtained estimates on d u. a

Back to the formula for L(T ), for small §, we bound the terms in the
parenthesis by

I(Tm + uTe = @4+ ndap)ll sy S 57 M2
We then integrate to derive the bound for 7 . This completes the proof. O
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We now estimate x AB" For this purpose, we introduce

/ _ gAB
KAB_KAB"'—M_t' (3.17)

which measures the deviation of Xag from the null 2" fundamental form in
Minkowski space. We have

Lemma 3.5 For sufficiently small §, we have
1, gl oo sy S SM. (3.18)
Proof According to (2.37), we have

C e
L(Xyp) =€Xyp T X4 Xpe = T VY L (3.19)

s
Hence, L|x'l; = 2elx'|* = 2x/, * x, “x (. + o= — a5tx = 2x'*Pa .

Therefore, we obtain

Lt - ) S (¢ — w)? ((|e| FlDl )+ |g’|) (3.20)

where all norms are defined with respect to ¢.

Let P(¢) be the property that ”&/”LOO():;‘) < CodM? for all ' € [—rg, t].
By choosing Cy suitably large, according to the assumptions on initial data,
we have ”l/”LW(E‘EZ) < Cpé. It follows by continuity that P(t) is true for
t sufficiently close to —rp. Let ty be the upper bound of ¢t € [—rg, ty] for
which P(¢) holds. By continuity, P(#p) is true. Therefore, for t < ty, we have
|x'|+]e| < (Co+C1)8M? for auniversal constant Cy. According to the explicit
formula of @” and (B.1), for sufficiently small 8, there is a universal constant C3
so that ”Q/”LOO():;*) < C38M?. In view of (6.20), there is a universal constant
C4 so that

L( = w?lx') = Catt = w? ((Co+ CSM? )| + (€1 + C)5M?)
(3.21)

If we define x(¢) = (t — @2|K| along the integral curve of L, then we can
rewrite (3.21) as ‘Zl—f < fx + g, where f(t) = C4(Cp + C1)8M? and gt =
C4(Cy + C3)8M?2. By integrating from —rg to ¢, we obtain

t o ’ 4 _ v/ sl "
x() < ef—’of(t )dt (x(—ro) +/ e f—rof(t )i g(t')dt/) .

—ro
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Taking into account the facts that firo fhdt < C4(Co + C1)8M?* and
firo g(t")dt' < C4(Cy + C3)8M?, since (t — u) ~ 1 on the support of ', for

some universal constant Cs, we have

2
”l/”LOO(Zf) =< C5€C4(CO+C1)8M (||£/||L00(25_2) + C4(Cy + C3)5M2).
(3.22)

We then fix Cg in such a way that Cop > 2C5C4(C; + C3) and Co >
”i/”LOO(E;S) log 2

4Cs C4(Co+C)M?’°
”Z”LOO():;S) < CodM?forallt € [—ry, fo]. By continuity, P(¢) holds for some
t > to. Hence the lemma follows. |

. Provided § satisfying 6 < the estimate (3.22) implies

Remark 3.6 (Estimates related to the conformal optical metric g) We shall use
" to indicate the quantities defined with respect to g, e.g., V is the Levi-Civita
connection of g and ¥ is the 2" fundamental form of Su,r <> C,, withrespect
toLand g % ,, = §(Vx,L. Xp).

We expect the quantities (with ™) defined with respect to g have the similar
estimates as the counterparts (without ™) defined with respect to g. This is clear:
the difference can be explicitly computed in terms of ¢ and hence controlled
by the estimates on c. For example, the difference between Z;‘ B and x ’A B is

—&%L(c)gAB, based on (3.10) and (3.18), we have

|

3.3.2 Estimates on deformation tensors

Xap ~ Xap =

= 4 £aB

2
Kppt 22 < sM2. (3.23)

L>(%P)

We use five vectorfields Z1 = T,Z> = Ry, Z3 = Ry, Z4 = R3, Z5 = Q as
commutation vectorfields in the paper. We use Z to denote any possible choice
of the above Z;’s. The notation Z* for a multi-index @ = (iy, ..., i;;) means
Z,'IZ,'Z s Z,’m with ij € {1,2,3,4,5}.

We recall that, for Z, the deformation tensor (“)7r or ()77 with respect to g
and g is defined by (Z)ﬂa/g = VoZg+VgZyor (Z)ﬁalg = %(Z)na,g + Z(%)ga,g.
We now compute the deformation tensors with respect to g. The deformation
tensor of Z; = T is given by*

4 We emphasize that the trace tr is defined with respect to g.
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(T)7~TLL 0,

DL =2 Tp—c'ul(e)),

OFpa ==, +1y,

D7 =4 w2,

(T)~ (3.24)

Tpa=—c M(QA +1,)

(T)%tAB = —2c_3pLZAB, ' DF = —2¢73 pirg X
By virtue of the estimates already derived, for sufficiently small §, we have

||,Uu_1(T)ﬁLL||LOO(2<S ,S 8_1M2, ||(T)77LL||L00(2;3) 5 5_1M2,

1 )7TLA||L00(): 5y S Mz,

—I(T) (3.25)
Fapllioss) S sM?,

flie™

”( )nLA“Loo(E 5y < M2

e e D F | oo ) S 1
The deformation tensor of Zs = Q is given by

Q) NLL =0, (Q)ﬁLL — 4t£(c—21u)(c—llu) . 4C_3,1L2,
@ =-2tLc'w) —2c "

@ia=0, Pips= 207 (¢, + 1), (3.26)
= - _
Fap =23, w7 =217

By virtue of the estimates already derived, for sufficiently small §, we have

_I(Q)ﬁLL ||L°°(28) S M2

”(Q)

I Q)

[l JTLL”Loo(z )~ < M2,

”LA”[}O(E ) S M (3.27)

(0=
I Zanllpecssy M2 10 DR s S 1.

Actually the estimate for ' Q%

Itr(Q)

7 can be improved more precisely. By (3.27):

7l oo =Y S < 1 andthe Eq. (4.1) together with the bootstrap assumptions,
we see the order of the former is also 1. While the estimate for the latter is a bit
more delicate. Let us rewrite the following component of deformation tensor

of 0:

Q)

w o =2¢ gy = 2¢ iy -1 -4
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This tells us:
( ~
10'DF + 4l ez 5. (3.28)

We study the deformation tensors of R;’s. Based on (2.42), we compute
(Ri)no,,g with respect to g:
Fomrr =2¢7 - Rite™" ),

Rmsp = —22i0a8,

#aB

| _ B -1 vk J . -1
TTA = —C M(GAB I)Rl o ey Xl +AiXalem ), (3.29)

Rmpa = —x  pRi® + Lreij X4’ + en” g,

T (lAB + fiBt) Ri% + e X a7 +en”lhig .

The Latin indices i, j, k are defined with respect to the Cartesian coordinates

on ;. To bound deformation of R;, it suffices to control the A;’s, y*’s and z'’s.
First of all, we have

T+ L' S 1. (3.30)

The proof is straightforward: g‘zg is flat and 7 is the unit normal of AR
: u

Ef, SO |?i| < 1. In the Cartesian coordinates (7, xb, x2, x3), L =0 — cfiai,
so L S 1. ~

Let r = (3., x))2. Since Tr = ¢~ 'p Y3 21 (3.30) implies that
|Tr| < M?. We then integrate from O to u, since » = —¢ when u = 0 and
lu| < 8, we obtain |r + ¢| < §M?. In application, for sufficiently small &, we
often use » ~ |f|. The estimate can also be written as

1 1

< §M>. (3.31)
rooou+ |t

~

To control X;, we consider its L derivative. By definition A; = g(£2;, ?),
we can write its derivative along L as LA; = Zizl(ﬁi)kLTk
SU_(QDFXA()X 4K, As |t] ~ r, we have || < |¢] < 1, this implies

| LA ”LOO(E;S) ,S 6M2. (3.32)
Since A; =0 on E‘S_m, we have

il oo sy S SM?. (3.33)
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To control y’s and z'’s, let y = (y', y2, y3) and ¥ = (x!, x2, x3), we then

have
_ 1 1 _
- -- X
Y rou-—t

On the other hand, we have 1 — |g(f 9|2 = 12 213 | Az < §M?. While on

St 0, S Since g (9, T) = 1onS; o, for sufﬁc1ently small §, the angle between 0,
and T is less than Z 7, which implies 1 + g(T d;) > 1. Therefore,

2

3
R 1
=|<g(T,ar)—1>ar|2+r—2§ A2 (3.34)
i=1

11— g(T, ) < sM>. (3.35)
Together with (3.33) and (3.34), this implies
YIS emME Y <M. (3.36)
We then control z' from its definition
' < oM. (3.37)

The derivatives of A; on 3; are givenby X 4 (A;) = (Bap— gAB)RB elkjka]
and T(A;) = —R;(c~' ). Hence,

il oo 3y S SMP, T il oo ) S M

Finally, we obtain the following estimates for the deformation tensor of R;:

—1(R})

Ri) gy L =0, ||(Ri)ﬁLT||Lw(2;3) S MZ, [l e ! 7TTT||L00(2;5) = Mz’

1B LAl oo sy S OMP, N RO mrall ooy S SMY,

; 2504 ; 4
IBOF apll ooty S 87M*, o RO ] oo ) S SM*.

We use the relation L = ¢~ 2L + 27T to rewrite the above estimates in null
frame as follows:

- (Ri)”LL ||L°°(25 S M2

1RO Ll ooy S MP, I
”(Ri)nLA”LOO()jS) S (SMZ ||(RI 7TLA||L00(2 ) S < 5M (3.38)

1ROF ap oo mpy S 82MY, 0RO oo ) S SM*.

5 We emphasize that the traceless part of 7/,2‘\ Ap 1s defined with respect to g.
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The deformation tensors of R;’s with respect to g are estimated by

(R) —1(R) =

~ )~ 2 2
7L =0, ||(R )HLL”LC’O(EE) SME, |k 7TLL||L00(2;3) S M7,
BT LAl oy S 8MP BT LAl o (sp) S SMP, (3.39)

RN 22 s4 R 4
1FOF apll oo (sry S 7MY, N0 FVF | oo ) S SMP
3.3.3 Applications

As in [5,8], we are able to show that the R; derivatives are equivalent to the
and ¥ derivative. For a 1-form § on §; ,,, we have Z?:l E(R)? = r2(|)* —
EQ ))2). This is indeed can be derived from the formula Z?:l (RH(R)? =
r2(8ca — ¥y HIET,, where a, b, ¢, d € {1, 2, 3}. In view of (3.31), (3.36)
and the definition of y”, for sufficiently small 8, we have 21'3:1 E(R;)* ~
r2|§‘ |2. Since r is bounded below and above by a constant, we obtain
Zle E(R)? ~ [€]2. Similarly, for a k-covariant tensor & on §; ,, we have
Z?M-z ..... ii=15(Riy, Riy, ..., Ri,)? ~ |£|%. In particular, we can take & = d,
therefore, Z?:l (Riy)? ~ |dy|%. Henceforth, we omit the summation and
write schematically as |R;¥| ~ |dv|.

We can also compare the R;-derivatives with the ¥-derivatives for tensors.
For §; ,-tangential 1-form & and vectorfield X, let L r;& be the orthogonal
projection of the Lie derivative Lg,& onto the surface S; ,. Since (Lg;£)(X) =
(Wg,6)(X) + §(Vx R;i), we obtain

3

3 3
DULrEP =D IERIP+2D &5 (Vg £)a(FR)
i=1 i=1

i=l

3
+ D EE (FR)ak (VR .

i=1

We also have 37 |V &% = r2(5° — y'3'®) (V& )ca (V£)a®. In view of the
estimates on y”, for sufficiently small §, we obtain

3
> VR 2 IVEP
i=1

Let &;jx be the volume form on X; and v; be a $;, 1-form with rectan-

gular components (v;), = HZsibkf;‘k. By virtue of the formula (WR,-);‘ =
I} 11} &ipm — XiOki, we have
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3 3 3
S (TR (VR = 612 +2¢ D 0k - x - v+ Pl 62D 42
i=1 i=1

i=1

In view of the estimates on 2;, for sufficiently small §, we have Zf: | Ekgl

(VR)ak (VR ~ |£]%. Similarly, we have | 37| ¥ (Vg 6)a(VR) k| <
|€|| W& |. Finally, we conclude that

3
6P+ IVEP S D ILREP S IEP + VP

i=1

Henceforth, we omit the summation and write schematically as [Lg,&| ~
|&] 4+ |W&|. Similarly, for a tracefree symmetric 2-tensors 64 tangential to
Siu, we have 0] + |¥0| < |Lg,0] < 10| + |WO|. This will be applied to
0= ZAB later on.

Another application of the pointwise estimates based on the bootstrap
assumption is to give an estimate on ,/det ¢. On 25_2, S_2,u is around sphere
and ,/det ¢ is bounded above and below by positive absolute constants. On the
other hand, (3.17) and (3.18) implies that try is bounded. This together with
the formula N

L (log/det ) = trx (3.40)

gives the fact that ,/det ¢ is bounded and never vanishes along each null
generator.

3.3.4 Sobolev inequalities and elliptic estimates

To obtain the Sobolev inequalities on S; ,, we introduce

min (|U|, |S;., — U
Fow = sup DU IS = )
UESu, U]
U is C!

the isoperimetric constant on S; ,, where |U], |S;, — U| and |dU| are the
measures of the corresponding sets with respect to g on S; ,. Therefore, in
view of the fact that R; ~ ¥, for sufficiently small §, we have the following
Sobolev inequalities:
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1 _3
1 s, S 118003 (1 D2gs, ) + DR FlLz2cs,
+ |R; ijIILZ(st,@)v

R o (3.41)
I zeees, S M@ 1Seul =2 (11 1 22s, )
+ IR flli2s,,) + ||Riij||L2(s,,£))-
where || flly1.4cs,,) is defined as || fllwiacs,,) = 1Seul™21F s, +

Id £l L4(s, )+ It remains to control the isoperimetric constant / (7, u).

We use T to generate a diffeomorphism of §; , to §; ¢ which maps U,
St.u — U and 9U to corresponding sets Uy, S; o0 — U, and U, on §; o. Let
Uy, St —Uy, U, bethe inverse images of these oneach S; foru’ € [0, u].
Since L7¢ 45 = 2c"'ub = —2c‘2,uXAB, for u’ € [0, u], we obtain

i(|U/|)=—/ ¢ utrydp i(|aU,|)=—/ ¢ 2ux (v, v)ds
du' """ U, LR g N U, = ’

where v is the unit normal of U, in S; ¢ and ds the element of arc length
of dU,,. In view of the estimates on x and p derived before, for sufficiently
small 8, we have

d d
W(IUE'I) S 0wl W(IBUZ/I) S 10Uy

Therefore, by integrating from O to u, we have
U~ |Uul, [9U] ~ [8U,].
Hence, I(t,u) ~ I(t,0) ~ 1. Finally, since |S; ,| ~ 1 (This is seen by the

fact d Kg(tu) ~ d Hg(~ro,0)> which can be shown by calculations in [5].), we
conclude that

Ifllwracs, ) + 1 IILecs . N If N2, ) + IR fllras, )

(3.42)
+IRiR; flir2s,,)-

We remark that, similarly, we have

||f||L4(S,£) 5 ||f||L2(S,_£) + ||Rif||L2(S[,£)- (3.43)

We also have the following elliptic estimates for traceless two-tensors.
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Lemma 3.7 If§ is sufficiently small, for any traceless 2-covariant symmetric
tensor Oap on S; y, we have

/ W2 (IV01* +101%)dpy < / W20 + |10 Pdny  (3.44)

Stu tu

Proof Let JA = 0B Wp04€ — 040 (dive)C, then |J] < 10|(V0] + |dive]).
The Bochner formula says

V0% + 2K1601> = 2|divO|* + divJ,

where K is the Gauss curvature. According to (2.29) and the estimates on

Xap for sufficiently small §, we know that | K| ~ 1. Therefore, we have

V01 + 161> ~ 2|dive | + divJ,
We then multiply both sides by 14> and integrate on S;. u. The Cauchy—Schwarz

inequality together with the above estimates on | /| as well as the divergence
theorem yields the inequality. |

4 The behavior of the inverse density function

The behavior of the inverse density function p plays an dominant réle in this
paper. The method of obtaining estimates on u is to relate w to its initial value
on X;—_,. Since the metric g depends only on ¥y = 9;¢, ( is also determined

by . This leads naturally to the study of the wave equation [z = 0. We
can rewrite it in the null frame as

I _
L(Lyo) + SUX Lo

I _
+ (—MAwo +5ux - Lo +2¢ - dpo + pd log(c) - dwo) =0. (4.1
4.1 The asymptotic expansion for u

We start with a lemma which relates Ly (¢, u, 0) to its initial value on ¥_,.

Lemma 4.1 For sufficiently small §, we have

|11 Lo 2, w, 0) — roLso(—ro, u, 0)] < 82 M°. (4.2)
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Proof We regard (4.1) as a transport equation for Ly. According to (B.1)
and the estimates from previous sections, the L°° norm of the terms in the big

parenthesis in (4.1) is bounded by 51 M 3. Hence,

1 _
L(LY0)(t, 1,0) + St (1, u,6) - Lyro(t, 1, 0)| S 820>

By virtue of (3.23), this implies | L (L) (¢, u, 0)— = Lyo(t, u, 0)| < 5 M3,
Therefore, we obtain a

L — O LY0) (1, u, 0)] S 82 M.

Since |u| < §, we integrate from —rq to ¢ and this yields the desired estimates.
O

Remark 4.2 The estimates 4.2 also hold for R; L or R; R j o, e.g., see (4.12).
To derive these estimates, we commute R;’s with (4.1) and follow the same
way as in the above proof.

Since L = c_szL + 2T, as a corollary, we have

Corollary 4.3 For sufficiently small §, we have
11T o (t, w, 6) — roTyo(—ro, u, )| S 82 M°, (4.3)
11190, 1, 8) — rovro(—ro, u, )] < 83 M. (4.4)

Proof For (4.4), we integrate (4.3) for u’ from 0 to u and use the fact that
Yo(t,0,6) =0. O

We turn to the behavior of L.

Lemma 4.4 For sufficiently small §, we have
11 Li(t, u, 0) = rg Lis(—ro, u, 0)] < SM*. 4.5)
Proof According to (2.36), we write |t|>Lu(t, u, 0) — r&LM(—ro, u,0) as

(It1Pm(t, u, 0) — rgm(—ro, u, 0))
11 G- et u, 0) = r§(w - e)(—ro, u, 0)].

In view of (3.12), we bound the terms in the bracket by §M* up to a universal
constant. Therefore,

t12Lu(t, u, 0) — r§ Lu(—ro, u, 6)
= (It1*m(t, u, 0) — rgm(—ro, u, 0)) + O(SM™).
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Since

2 2

|t| m(t7 u, 9) - rom(—ro, u, 9)
_ g2 3G"(0)(Yo(z,u, 0) - To(r, u,0)) |~
(1+3G"O) (T, u, 0)% |y,
It is clear that the estimates follow immediately after (4.3) and (4.4). |
We are now able to prove an accurate estimate on /.
Proposition 4.5 For sufficiently small 5, we have
e 1 4
ro

In particular, we have u < Cqo where Cq is a universal constant depending
only on the initial data.

Proof According to the previous lemma, we integrate L u:

! " r2Lu(r, u, 0)
PERDR T e

I‘L(t’ﬂ’ 9) - ,LL(—I"(),Q, 9) =/

—ro

Lu(z,u,0)dt =/

-
e 0 oM*
(4=5)/ rO_M( ;‘052’ )+ ( > )d‘[
T T

2

—ro

0

Therefore, we can use (3.4) to conclude. |

We are ready to derive two key properties of the inverse density function
w. The first asserts that the shock wave region is trapping for i, namely, once
P € Winock, then all the points after p along the incoming null geodesic stay
in Wypnock-

Proposition 4.6 For sufficiently small § and for all (t,u,0) € Wspock, We
have

Lu(t,u,0) < —L < —1. 4.7)
TUUUT T 4ApE
Proof For (t,u,0) € Wspock, we have u(t, u, 0) < 1—10. In view of (4.6), we
claim that rgéu(—ro, u,0) < 0. Otherwise, since % + % < 0, we would
have u(t,u,0) > 1+ O(6M 2y > %, provided § is sufficiently small. This
contradicts the fact that u(¢, u, 0) < %.
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We can also use this argument to show that (% + %)rgg,u(—ro, u,0) > %
Otherwise, for sufficiently small §, we would have (¢, u, 6) > % +O0O(M 2)
1
> 10"

Therefore, we obtain rgg u(—ro,u,0) < %rg(i - In view of (4.5), we have
1 rot
2 0 2
t“Lu(t,u,f) < — oM
Lu(t,u,0) 3ot (6M7)

Here we write M? instead of M* because we already know that & < C, where
Co depends only on initial data. By taking a sufficiently small § and noticing
that r(r)oi - is bounded from above by a negative number, this yields the desired
estimates. O

Remark 4.7 In the case when shock forms, i.e. © — 0, by the previous propo-

sition and (2.36), m = —%%Tp < —1. In other words,

Tp>co>0
for some absolute constant cg. On the other hand, 7”\,0 = c,u_l Tpand || /T\|| =1,
therefore as u — 0, Vp blows up, so does Vo;¢.

Remark 4.8 We compare the estimates (3.13) and (4.5). (3.13) is rough:
ILu| < M?; (4.5) is precise: |[Lu| < Co + SM?2, where Cy depends only
on the initial data. The improvement comes from integrating the wave equa-
tion Lgzyg = O or equivalently (4.1).

4.2 The asymptotic expansion for derivatives of u

We start with an estimate on derivatives of try.

Lemma 4.9 For sufficiently small § < &, we have

ILtrgX Il S M2, (4.8)

Idtrx || S M2 (4.9)

Proof We derive atransport equation for R by commuting R; with (3.19):

/
iXap

L(Rix', ) =L, Rilx,, + eRix/, , +2x " Rix'y,

/ e e /
+(Ri€) 'lAB — ER,‘gAB —Ri (E) gAB _RiQAB~
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Since [L, R;]* = (R")rrLA, the commutator term [L, R;]x’, . can be bounded
by the estimates on the deformation tensors. We then multiply both sides by
R; llA B and repeat the procedure that we used to derive (3.18). Since it is
routine, we omit the details and only give the final result

[k (a+ F2n)

In particular, this yields || R;trx [[L~ S §M 2 which is equivalent to (4.9).
We derive a transport equation for L x’ ;‘ B by commuting L with (3.19):

< sM?. (4.10)
LOO

e
L(Lxyp) =eL)yp+ 2£/ACL£;BC +Lexy,— T LBas

€ / -2 l
+L(£_t)gAB_LQAB +£(C M)LKAB
+ P+ )X )

We then use Gronwall to derive

gAB
It (b 2

In particular, this yields ||Ltr£ oo S M 2 This is equivalent to (4.8). |

< M2 (4.11)

~

LOO

We now derive estimates for R; .

Lemma 4.10 For sufficiently small §, we have
11| R Yo (t. . 6) — roLRivpo(—ro, u. )] S 82M>. (4.12)

Proof We commute R; with (4.1) and we obtain that L(R; Lyg) + %trz .
R; LYy = N with

I
N =R, (wo ~ L - Ly — 22 - dyo — d log(©) - dwo)
—%RiU‘Z‘ Lo +[L, Ri]1Lo.

According to (B.1) and the previous lemma, N is bounded by § S VES Hence,
‘L(R,LWO) + %trz . R,'Lwo} < 52 M3. We then integrate to derive

|11 Ri Lot w, 0) — roR; Lpo(—ro, ., )| < 82 M°.
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The commutator [R;, L] is bounded by §M? thanks to the estimates on
deformation tensors. This completes the proof. O

We can obtain a better estimate for 4. The idea is to bound for R;  and
use the fact that |d | ~ |R; jt].

Lemma 4.11 For sufficiently small 5, we have
IdpllLoo(s,y S 1+ 8M*. (4.13)
Proof We commute R; with L = m + ey to derive
L(Rij) = Rim + (eRip + wRie + [L, Rili).
According to (B.1) and the estimates on L R; vy (needed to bound R;m) from
the previous lemma, it is straightforward to bound the terms in the parenthesis
by §M?2. Similar to (4.5), we obtain

£PL(Ri ) (t, u, ) — |rol*L(R; i) (—ro, u, )| S MY (4.14)

Since ||[L, Ri]llze < 8M?, we bound R; 11 as

Rint, u,0) = Rip(—ro, u,0) =" / t r‘%L(Rii(zr 010D | oM
1Y 5 N 4
= - (; + %) roL(Ripu(=ro, u,0)) + OBM™).
This inequality yields (4.13) for sufficiently small 5. O
We can also obtain a better estimate for L.
Lemma 4.12 For sufficiently small §, we have
ILplrecs) S 87"+ M (4.15)

Proof By commuting L with Ly = m + eu, we obtain
L(Lp)=Lm+[=2¢" + 0 Xa() + L)L+ eLp + pLe].
According to (B.1), we can bound the terms in the bracket by M*. Hence,

[tPL(Lp)(t, u, 6) — |ro|* L(L)(—ro, u, 6)
= |t|*Lm(t, u, 0) — |ro|*Lm(~ro, u, 8) + O(M*).
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By the explicit formula of m, we can proceed exactly as in Lemma 4.4 and we
obtain

1EPL(Lp)(, u, 0) — [rol*L(Lw)(—ro, u, 0)| S M*. (4.16)
We then integrate along L and we have

T 2L(Lu(t,u,0))
5 dt
T

LM(thv 9)_14/-1“(_”07&70) :/

—ro

@16) [ raL(Lu(ro,u,0))  OM*
= 5 + 5 dt
10 T T

I 1Y\, 4
=17 + % roL(Lu(=ro, u,0)) + O(M™).

For sufficiently small §, this implies (4.15). |
We now relate szo (t, u, 0) to its initial value.

Lemma 4.13 For sufficiently small §, we have
11120t . 0) — roL*Yo(—ro, u, )| S87IMP. (4.17)

Proof We commute L with (4.1) and we obtain the following transport equa-
tion for L2yrg:

L(LPY0) + ot - Loy = _1L(t@ - Lo + [L, L1Lo
2= 2 (4.18)

- .

+ L (MMO —Htx Lo - 2¢ - dpo — pd log(c) - dtﬁo) .

The righthand side of the above equation can be expanded as

LY Lo + L(c > ) LLYo + (n + Od Lo + (LA
+uL AYo + Ltry Lo + trx LLo
+LSd o + ¢ Ldpo + Ly - dlog(c) - dro + L (d log(c)) - d o
+ud log(c) - Ldyr).

Since the exact numeric constants and signs for the coefficients are irrelevant
for estimates, we replace all of them by 1 in the above expressions.

Since &, = —c "X a(c), by applying L and using (4.15), we obtain
LS| S M 2. Therefore, according (4.8), (B.1) and the estimates derived pre-
viously in this section, we can bound all the terms on the right hand side and
we obtain
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1
L(L0) + 5u - L2yo| S 87207,

We then integrate from —rg to ¢ to obtain (4.17). O

We can commute L twice with (3.19) or with (4.1) to obtain following
estimates.

Lemma 4.14 For sufficiently small §, we have

IL2trgx |l S M?57, (4.19)
EIL3 ot u. 6) — roL3vo(—ro. u, 0)] < 872 M°. (4.20)

We omit the proof since it is routine. Similarly, we commute L twice with
L =m+ eu, we can use (4.19) and (4.20) to obtain

Lemma 4.15 There exists ¢ = ¢(M) so that for all § < e, we have

IL?pll ooy S 872+ 687 M2, 4.21)
T2 plloe(sy S 872+ 87" M2 (4.22)

We turn to another key property of 1 which reflects the behavior of 1= T ju.
(4.5) suggests that if shock forms before r = —1, L to behave as a constant
near s*. Hence, u is proportional to |t — s*|. In view of (3.15), we expect
w~ T 1 behaves as |t — S*|_15_1 near shocks (It is not integrable in ¢). The
next proposition suggest a much better bound for ! (T )4 by alffording one

more derivative in 7 and we can improve |t — s"‘|_l to |t —s*| 2.

Proposition 4.16 For p = (t,u,0) € Ws, let (u™' T 1) be the nonnegative
part of w='T . For sufficiently small § and for all p € Wypock, we have

1

1
It —s*|2

(W' T+t u, 0) < s7!. (4.23)

Proof We use a maximal principle type argument. Let y : [0, 6] — Wj be the
integral curve of T through the point p. We may choose the 6 coordinates to be
constant along y on the given X, and study the function f (1) = T (log(w))(u).
We assume f(u) attains its maximum at a point u™* € [0, §]. We may also
assume that this maximum is positive (Otherwise, (4.23) is automatically
true). Since u* is a maximum point, we have %( @®) > 0. In other

words, T(T (log(1)))(u*) = 0. Therefore, at the point (r, u*, 6), we have
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w T — #(Tu)2 > 0. Hence,

172l Lo (j0,57)

- . (4.24)
inf,c0,s51 (1)

™ (T )+ Nl e qro.s)y <

It suffices to bound the denominator and the numerator on the righthand side.
For T2, according to (4.22), we have

1,
1Tl o 0.61) S H‘S <8 (4.25)

For inf w, we can assume (¢, u, 0) € Wypock. Otherwise we have the lower
bound p > 1—10. According to (4.7), the condition (¢, u, ) € Wspock implies
|t1>(Lp)(t, u, ) < —7. Therefore, by (4.5), we have

1 1
rgLu(—ro, u, ) = t*Lu(t, u, 0) + O(8M?) < -7t 0(BM?) < —<

provided that § is sufficiently small. We now integrate from ¢ to s* to derive

* *

) \)
I’L(t’ﬂ, 9) =/’L(S*s£s 9)_/ LM(T’E’ 9) > _/ L/’L(Taﬂa 9)
t t

s* 2L —ro, u, 0
=_/ (ro_u(lrg u )+0(8M2)
t

1
|s*|[]

> —rgLi(—ro, u, 0) It — s*| + OM>)|t — s*|.

Therefore, for sufficiently small §, we obtain |t — s*| < w. Together with
(4.24) and (4.25), this completes the proof. |

5 The mechanism for shock formation

In this section, we assume Theorem 3.1 stated in Sect. 3.2 and we use knowl-
edge on pu from last section to analyze a mechanism of shock formation. In
particular, we have to use condition (1.6) in the Main Theorem. This is the
only place in the paper where we use (1.6).

The transport equation L = m+ e is responsible for the shock formation.
We first give precise bounds on each term on the righthand side. Since m =

—%di(cz)Tp, we have m = %WO - Tro. In view of (4.3), up to an
P (14367 0)v3)
error of size 8%, we can replace Ty (t, u, 6) by %Two(—ro, u, 0);in view of

@ Springer



S. Miao, P. Yu

(4.4), up to an error of size 6 3 , we can replace ¥o(z, u, 0) by |° Yo(—ro, u, 9).

Therefore, we obtain

2

m = 3(;”(0)| lzwo( 70, u, )T Yo(=ro, u, 6) 4+ O(3)

=3 (I)z (G”(O)qs] (r _8’"0, 9) 3 b1 (r _(SFO, 9)) +00).

Since e is of size § and || < 1, we regard jue as an error term. We then obtain

0 9) 31 (r —Sro’ 9)) +0e).
We then integrate this equation and we obtain
[.L(t, u, 9) - /’L(_rOs u, 9)
' r2 p r—ro r—ro
=3 —d G"(0)¢ ,0) 0rd1 L0) )+ 0@
172 5 5
1 1 r—ro r—ro
=33——-—)(G"0© .09, ,0 oXC)
du ro)( o (5 0) e (S50 + 00

Since | (—ro, u, 8) — 1] < §, according to condition (1.6),we have (recall that
ro=2)

2 o
Lt u,0) = 3W (G"(O)¢1 (

pt,u,0) < 1-3-2(L =Dl + 0@ =1-2(% - 1) + 06

Therefore, for sufficiently small §, ¢ can not be greater than —1, otherwise u
would be negative. In other words, shock forms before r = —1.

Corollary 5.1 If we introduce the vectorfield T .= e T, then when shock
forms, the second derivative of ¢, T'9;0;¢, blows up.

Proof When shock forms, u — 0, which means ¢ < %. Then by (4.7),
L is negative and bounded from above. In other words, there is an absolute
positive constant C such that |Lu| > C. While from the propagation equation
L = m + pe and the pointwise estimates |e| < &, |u| < 1, the estimate

|m| > C follows if § is sufficiently small. By the definition m = %d(c )T,o

and T = cpn T, the derivative of p, T,o = cu~'Tp, blows up when © —>
0. Since || < 82, Ty = T'9;0,¢ blows up when u —> 0 from the
definition p = 1//0
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Corollary 5.2 When shock forms, the only nonzero curvature component in
optical coordinates, o 4, blows up.

Proof In the expression:

1d(c?) 1 _d(c?)
YAB= S YiuxaP — M e T(P)X 4p

d*c® 1
+— ) ——c?
2\ dp? 2

2.2
the terms édt(fp) X,.XpP ,2(d ;Cz) —%c‘zld(c )[2)X 4(p) X 5(p), being deriv-

atives of p in optical coordinates, are bounded pointwisely. While by (4.7) and
d(cz)

d(c?) |?
dp

)XA(,O)XB(/O),

(3.18), the pointwise norm of
-1 d(c

T(P)X 45 is bounded from below, therefore

the term )T(,o)XAB blows up when © — 0. O

The focus of the rest of the paper is to prove Theorem 3.1.

6 Energy estimates for linear wave equations
We study energy estimates for the linear wave equation
Ogy = p (6.1)

where p is a smooth function defined on Ws. The energy momentum tensors
for a solution v of (6.1) are the same for both g and g, i.e.,

~ 1
Tuv = TNV = auwa,ﬁ// — nga"‘z/faaw.

In the null frame (X, X5, L, L), iw is decomposed as

Trr = (L)%, Top = (LY)?, Tpr = pldy)?, Toa = Ly - Xa(¥),
Tpa=LyYy-Xa(W), Tap=Xa(y)Xp)) (6.2)

1
- EgAB(—M_leQ/f + |y [?).

We use two multiplier vectorfields Ko = L and K| = L. The associated
energy currents are defined by

ﬁo“ = —f’uvK()v, ﬁlu = —T“VKIU. (6.3)

@ Springer



S. Miao, P. Yu

The corresponding deformation tensors are denoted by 779 = (K07 and 7, =
(K7 respectively. Since the divergence of Ty is VAT, = p- 0y, we have

!

Vu ot

_ P
Qo :=—p- Ko — ET 0, 11w »
(6.4)

1o
=0 := —p-Kﬂlf—ET’“”l,uv-

<N
~

I

u
—rp?

Let Wt! be the spacetime region enclosed by £_, , C{, E% and C! . We integrate

(6.4) on WtE under the condition that v and its derivatives vanish on g) (This
is always the case in later applications), we obtain

B ~ ECrow + P = [ 0,
e 6.5)
E'w - E'Crow + Flew = [ 700

t

where the associated energy E’ (¢, u) and flux Fi(¢, u) are defined (naturally
from the Stokes formula) as

E% ) = [go (@202 1dy ), PO w= o e uldy P,
E'tw) = [y 3 (2 n@y) +uldy ). Flaw=fo, e Ly’
(6.6)

We emphasize that the integral on th defined as below on the spacetime slab
contains a factor u:

"
[r=] | (/ M-f(f,z’ﬁ)du,g)dﬁ/df-
ti —roJ0 SL!’

We remark that, by (3.6) and (3.10), we have

E%t,u) ~ EQW)(t,w), FO(t,u) ~ F(y)(t, ),

1 | (6.7)
E (t,u) ~EW)(t,w, F(t,u~FEW)E,uw.

For the sake of simplicity, we use E(t,u), F(t,u), E(¢t,u) and F(t,u) as
shorthand notations for E () (¢, u), F(¥)(t,u), E(Y)(t,u) and F(Y)(t, u)
in the rest of the section. N

We need to compute the so called error integrals or error terms, i.e., |, we Qo

and f W ’Qvl in (6.5). This requires an explicit formula for 77 ;,, or 771 ;.. The
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On the formation of shocks for quasilinear wave equations

deformation tensor 7y, is given by

mo. =0, morr =0, TorLL
= —2¢7 (™ Lie + Llog(c™") + L(c*p)),
Tora = —2¢"'uXa(c™p), To.rLa

=-2c7'¢, +n,). 7oA =2%as.

(6.8)

The deformation tensor 71, is given by

TieL =0, TirL =4 plc ),
T = —2¢" u(u” L+ Llog(c™"), 6.9)

Tioa=0, Tira=2c""(¢,+n,), Trap=2%,,

We also need an explicit formula for the energy momentum tensor 7#":

pie_ LV (LY

T 42 To4u?

TLL _ (dy)? pia _ _LYXa()

dn 2w (6.10)

rLa _ LY Xa()

e

1 Ly L

TAE = AP XX ) — ¢ (—% n |dw|2) .

Finally, we can compute the integrands @Vo and ’Qvl explicitly. For @6, we have

_ _ 1 ~
c 2Q0 = —C 210 - Koy — ETMvnO,;w

= Q0,0+ Qo,1 + Qo2+ Qo3+ Qo4

" _ _ (6.11)
= —c 2,0 - Koy — TLLJTO,LL — TLAJTO,LA

1
LA AB
—T="7o,LA — —27 T0,AB-
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The Qo ,;’s are given explicitly by

1
Qo1 = Z(ww + Llog(c™") 4+ L2 m)Idv|?,
Qo2 = —c'Xale W)LY - XA (),
Qos=—c'u (&, +n LY Xa),

1~ A, vB C 1, ~
Q0,4=_§(XABX v X W+§M trgXLW'LW)-

(6.12)

For ’Qvl,we have
o~ _ 1 ~
P01 =—c"p K1y — ET“”m,WZQl,o-i-QLl + 012+ 013+ 014
_ 1 ~ ~ -
=—c?p- Ky — ETLLTFI,LL — THEA 1y — TH7 1 LA
1 ~
——TAB7| 2. (6.13)

The Q1,;’s are given explicitly by

1 1
011 = —2—L(c—2u>|gw|2, Q12 == 'L+ Llogc™")Idy I,
cl 2c
1
Q13 = J(QA +n, )Ly - Xy, (6.14)

1~ c 4, ~
Qra=—5(X,, X VX Y + Sp~ g Ly - Ly).

6.1 Estimates on Q1 >: the coercivity of energy estimates in shock region

We separate the principal terms and lower order terms of Q1 > as follows

1 1
Q12 =—(r"'Lp+ Llogc™ ") ldy|* = (——M_ILM + l.o.t.) 1%,
2c 2¢c

where the lower order terms l.o.t., thanks to (3.10), are bounded by

ILotllres,) S SM?2. We rewrite the principal term fWH ZLCM_ILMWWZ
t

as

1 1
/ —u ‘L/udw:/ —u Ly )?
W[Li 2C WfLIﬂWshack 2C

1
+ / ol LY (615)
W Weare ¢
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In view of the estimates (4.5) and the fact that u > % in the rarefaction wave
region W, .., for sufficiently small §, the second term is bounded by

I
T Tl T
meWrare ¢

u
- / u
Wfﬂere

Wt NWrare
2
s[, v
WinWeare

Since [yury,  dYI* < fuldy* = [, ([5, wldy?)d, we obtain

Iro)?
|1]?

Lu(—ro,u,0) + M| |dy|?

t

1
/ L Ly < / E(x, wdr. 6.16)
WENWyare 2€

—ro

In the shock region, we make use of the key estimate (4.7). Therefore, we
have

1 _ |
[ g tmadyP s [
W Wshock c Wi Wihock C|t|

—1 2
S —/ , wo )"
meWshock

We define
K(t,u) =/“ wdy I, (6.17)
methack
Therefore,

1
/ —u T Luldy)* S —K (@t w). (6.18)
W;iﬂvvshock 2C

Finally, by combining (6.15), (6.16) and (6.18), for sufficiently small §, we
obtain

—ro

t
/ 012 < —K(t,u) + / E(x, wdr. 6.19)
W

The negative term — K (¢, u) in above estimates plays a key role to control
in error terms. It will compensate the degeneracy of the u factor in front of
d+ in the energy.
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6.2 Estimates on Q,1

The estimates on Qo ; relies on the second key property (4.23) of p. We first
separate the principal terms and lower order terms of Qg 1 as follows:

1
Qo1 = Ew—lm + Llog(c™") + Lc™ o) ldy|?

1
= —u " 'Tuldy|? + lLot.,
2c

where Lo.t. = 7-(c™2Lu + Llog(c™1) + L(c™'k))|d¥|*. According to the
estimates derived in previous sections, the terms in the parentheses are bounded
by M?. Hence,

/l.o.t.,s/ M2|dw|2=M2/u(/ uwe)dz
Wt w; 0 Cy

u
< M? / F(t,u)du'. (6.20)
0

For the principal term whose integrand is %,u_l Tuldy)> ~ u ' Tuldy|?,
due to the positivity of |#1/|, one ignores the contribution from the negative
part %(,u_1 T 1)_|dv|?. Therefore, it is bounded by

S [0 TP = [ T T
Wf meWrare

b T TP,
meWshock

In Wyare, since u=' S 1, we have [yuqy (W' Twildy? S
fw%nwm,.e ITul|ldy|* < fwti |T ||dyr|>. According to (4.15), we have Ty <
8~1 therefore,

/ o W Ty < / L3y < 57! / F(uhdu'. (6.21)
WfﬂWrare r

W, 0

In Wspock, the argument relies on Proposition 4.16. Indeed, we have

i Lo
/u (1 ‘Tu)+|dw|25/u —— 8yl
mewshgck mewshuck |t - s*|§

< 5—1/ ) — Ly
"

|t —t*|2
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By definition, the last integral is equal to § ! ffro — (s, ldyr)Pdpg)de.
|T—1*|2

In view of the definition of E (¢, u), we obtain

t

1
/ (M_ITM)+|¢1W|2§5_‘/ —— E(r,wdt (6.22)
WtimWshock

—ro |T — t*]2

We remark that the key feature of above estimates is that the factor 1 ris

1—1*]2

integrable in ¢. It will allow us to use Gronwall’s inequality.
Finally, taking into account of the estimates (6.20), (6.21) and (6.22), for
sufficiently small §, we obtain

t 1 u
/ Qo1 55_1/ —lﬁ(r,z)errS_l/ F(t,u)du'. (6.23)
Wi —ro |T — t¥*|2

0

6.3 Estimates on other error terms

We deal with Qo .2, Q0.3, Q0.4 Q1.1, Q1,3 and Q1 4 one by one.
For Qo 2, wehave | Q02| = [— XA (W)LY - Xa(W)| S 1Al ILy ||V |.
According to (4.13), |[du| < 1+8M*. Hence, for sufficiently small &, we have

/ . 00,2

t

< 1+ 8MY|L < L | 2
N/Wtu( + )|_w||dw,v/wf|_w| +1dv |

Therefore, we obtain

t
< / E(r,wdr. (6.24)

—ro

/ . 00,2

t

For Qo 3, we firstrecall that |{| < 1 and n = £+du, therefore, ||+ || <
1 + 8M*. We break Qo3 into two parts as follows:

/ , Qo3
Lo

§/WMM_1(|§|+IQI)|LWII¢MI S [ u eyl =1+ 1

t Wt

=[Nt [ iLyiidy
Wfﬁwrare

u

me Wihock
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The integral I} = 'thlﬂWrare w 'Ly ||dyr| is taken in Wyq,. where o > 1—10,
therefore, we obtain

I s/u WAL P+ 1dy 1) s/u WYL+ pldw )

fﬂ rare

< /Wu/flaw +pldy?)

t

fﬂ rare

t u
5/ E(t,u)dt —I—/ F(t,u)du'.
0

—ro

. _ -1 .
To control the integral I, = thleWshock uw Ly ||dyr|, we use the coercive
term K (¢, u) from Q1 2 to control the loss of wl:

1 1
2 2
125(/ ) u‘lldwlz) (/ ,u_1|L1,0|2)
WiNWihock Wi Wshock
| 4 3
S K@t uw:? (/ E(T,g)dr) .
—ro

Hence, we obtain

/ . Qo3
Wi

' n
< / E(r.u)dt + / F(t,u)du!

—ro 0

t 3
+K(r,g)i(/ E(r,g)dt) . (6.25)

For Qg.4, we have

‘/ , Qo4
Wi

t

< / L X1 + g X Ly || Ly |

t

< / SMPIdY P+ w LYY | = I + I,

t

The bound on Iy is immediate: Iy = 8M? [yu |4y < 8M? [y F(r,u')du’.

The bound on I, = le w! |L+r|| L | relies on the energy E (¢, 1) and on the
1
flux F(z, u):

t u
12§/MM_1|L¢|2+/M u_llét/fIZ:/ E(w)dw/ E(t,u))dy

W, W, —7r0 0
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Hence, we obtain

/ L Qo4
W

For 01,1, according to (4.5), we have ‘Ql’l‘ = ﬁL(C_ZM)ILWH <
| 'Ll Ly ?| < ' Ly|?. Hence,

/u Q1,1
Wi

For Q1 3, since |¢| + |n| < 1, we break the integral into two parts:

/u 01,3
W

t u u
S/ E(t, w)drt +8M2/ F(t,z’)dz”r/ F(t,uh)du'.
0 0

—ro

(6.26)

u
S / Ft,u)du'. (6.27)
0

§/uulléwll¢ll/f|=11+lz

t

z/u wwgwndww/ nULY .
WfﬁWrare

u

Wfﬂ Wihock

1

In the rarefaction wave region, since u~ ~ 1, we obtain

I S/M u—‘<|y/f|2+|dw2)w/u Ly + |dy|?
W N Ware W, N Wiare

t

< / LY+ 1y S / E(t, wydr.
s

—ro

In the shock wave region, we still use K (¢, ) to control the loss of wl:

1 1

2 2
h< (/ M u—lwh/fﬁ) (/ u /f@mz)
Wfﬂwyhgck mevvshock

<K@ ( / “Fa, z/)dz/)z
0

Hence,

1

t u 2
< / E(r,wde(t,w%( / E(t,z/)dz/) . (6.28)

—ro 0

/uQ1,3

t
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For Q1 4, we have

'/ L Q1.4
W

S / XNy P+ g X ILY | Ly |
-

t

S / SMP\dy P + T LY ILy |
e

t

u
< sm> / Fit, u)du!
0

+(8/ /f1|Lz/f|2+8—‘/ u—lmwz).
Wi Wi

Therefore, we obtain

‘/ L Q14
-

t u
55/ E(r,g)dr+8M2/ F(t,u)du'

: —ro 0

u
+457! / F(t,u')du'. (6.29)
0

6.4 Summary

In view of (6.5) and (6.7), since ¥ vanishes to infinite order on C,, we have

(E(t,u) + F(t,u)) + 8 NEW, w)+F(t,u)) < E(—ro, u)+8E(—=ro, u)

4 4
+Z/WuQ0,i+5_IZ/WuQ1,i
i=1 /W i=17 Wi

/up'Lw /up-Lw‘.
W W

t
We bound sums > 7_, Sy Qo.i and >4 Jy= Qi by (6.19) and (6.23)-
(6.29). Therefore, we have

+ +57!

(E(t.w)+ Ft,w) + 8 N (E@, w) + F(t, u)

S Berow+ 8 o+ | [ o-tu 457 [ oLy
Wf Wf
1
4671 7K(t,g)+/ E(t,wdt
1o
01,2
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t 1 U
+ (6_1/ - E(t, )t +5—'/ F(t.u’)du’)
_ 0

0|z — 1|2

Q0,1

1
t u 1 t 2
+(/ [E(r,wg(r,gndr+/”m:,z>+£<t,z>]dg’+z<<z,m(/ E(r,wdr) )
) 0 )

00,2+00,3+0Q0,4

! u 1 t 2
457! (/ [8E(z,u) +£(r,yldr+/ (M F(t.u) + 57 EGu)du’ + K (1,02 (/ E(r,g’w’) )
-y 0 -y

01,1121,3+01,4

For sufficiently small §, we can rewrite the estimates as

/Mp-Lxlf’
W

(E(t.w)+ F(t,w) + 8~ (E(t.w) + F(t. w))

/u/%Lt/f
W
t

1
-1 -1
-8 K@, u+4 / — E(r,wdr

—ro |T — t¥|2

P 1 P 1
+81K(t,u)é(3(/ E(T,ﬂ)df)z-i-(/ F(t,u/)du/)z)
—rQ 0

1

t u
+[ / [E(t,u) + 8 E(t,w))dr + 5! / [F(t,z/)+8’1E(t,z/)]da’]
0

—ro

< E(—ro,u) + 8 E(—ro, u) + +67!

For the term involving I, we use Cauchy—Schwarz inequality and put a
small parameter &g in front of the K(t,u), ie, I < s leoK (¢, u) +
8_1%(8 firo E(t,u)dt + firo F(t,u)du'). Therefore, the resulting K (¢, u)
term can be absorbed by the coercive term —K (¢, u) and we obtain

/up-Ltlf’
W

1

(E(t,w) + F(t,w)) + 8 (E(t, w) + F(1,0))

/mw
W

t

< E(=ro,u) + 8 E(—ro, u) + +671

t
1

-1 -1

-8 K@, uw+34 / — E(twdr

—ro |t —t*|2

t u
+[/ E(t,u) + 8 "E(r,uwydr +57" / F(t,a’)+8’li(t,a’)da’}
0

=70

By Gronwall’s inequality (the factor 1 r isintegrable in t!), we can remove

[T—r*|2
all the integral terms on the last line, this proves the Fundamental Energy
Estimates (F.E.E) for Lz = p:
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(E(t,uw) + F(t,w)) + 8 " (E(t,u) + F(t,u) + K (t, w))

/up-Lllf
W

t

< E(=ro,u) + 8 E(—ro, ) +

+87!

/ P -gp‘ . (FE.E)
we

Remark 6.1 We see that the energy estimates only imply
E(t,u)+K(t,u) <8,

which does not recover the full regularity of Ly and d psi with respect to 8, as
indicated by bootstrap assumption. We will see finally that this full regularity
in § is recovered by using the estimates for E (¢, u) together with Lemma 7.3
and the commutation of Q.

7 Comparisons between Euclidean and optical geometries

There are two different geometries coming into play on W, namely, the
Minkowski geometry and the optical geometry. The knowledge on two metrics
guv (or g,y) and m,, is essentially tied to the estimates on the solution of (x).
There are many ways to compare two geometries, e.g., we may consider the
Cartesian coordinates x* as functions of the optical coordinates (z, u, ). In
what follows, we also study other quantities as y¥, zX, A;, etc. As a by prod-
uct, we will also obtain estimates for the lower order objects, i.e., with order
<Nt0p + 1.

Given a vectorfield V, we define the null components of its deformation
tensor as

Mz,=WnL, Xa), VZa=V7@L, Xa), Vg =Y'7(Xa, X5).
(7.1)

The projection of Lie derivative Ly to S;, is denoted as Ly. The short-
hand notation £7 to denote £z, Lz, ---£z, for a multi-index o =

(i1, ...,ir). We will show that, for all |@|] < N, we have £§i‘1
X' KZ_I(Z-")Z, K%‘f“z-/’):;f, Kgi_l(Q) t+4 € Olza_ly, where [ is the num-
ber of T’s in Z;’s, || > 1 and Z;#T. If Z; = T, then we have
KZ_I(T)Z, £§j1<T>¢ € (’)lflzll.. The ideipf the proof is to compare g,,, and
m, via quantities such as x', y', z', T' and A;. Similarly, we will derive
L’-estimates on objects of order < N - The L? estimates depend on the L™
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estimates up to order Noo + 2. In the course of the proof, it will be clear why
N is chosen to be approximately %Nm,,.

7.1 L estimates

We assume (B.1): for all |o| < N, Z;H'zx// € \ll{oe_lzrlz.

Proposition 7.1 For sufficiently small §, for all |a| < Noo and t € [—rg, s*],
we can bound {f% X' KO’ “Zig, [a Zig, Ka @t +4), Z,-a+1yj,
ZOH_I)\. } C O|20€_|‘2f‘ll and {Z(X-l-lx] ZOH—IT] £Ol+1 gi(T)Z’ [gl(T)#} C
Ol(xl+1 in terms of Z;sz € \If‘la_lzrf. Here l is the number of T’sin Z;’s.

The estimates on x/ should be viewed as a good comparison between Euclid-
ean and optical geometries on each slice ¥;.

Proof We do induction on the order. When || = 0, the estimates are treated
in Sect. 3. Here we only treat the estimates when / = 0, when [ > 1, we can
use the structure equation (2.34) to reduce the problem to the estimates for ,
which will be treated in Proposition 7.2. Here the loss of § in the estimates
for Kg Mz, £0’ (Mg comes from applying T to =, which is the principal
partof try. leen || < Noo, we assume that estlmates hold for terms of order
< |a|. In particular, we have [Ig,l/’ Riﬂﬂyj € Olzﬂl for all |B| < |x|. We
prove the proposition for || + 1.

Step 1 Bounds R“+1x1 Lets!, . = Q‘”l RO‘Jrl

Wbl x/ where Q,’s are the

standard rotational vectorfields on Euclidean space. It is obvious that
is equal to some x, therefore, bounded by r hence by a universal constant.
Since R; = Q; — xiffaj, Rix) € (98 and by ignoring all the numerical
constants, we have

. . ¥/ ,
b1 =R (’\iT]) =R (Ai (u —1 +y]))'

Here the index i is not a single index. It means we apply a string of different
R;s. This notation applies in the following when a string of R;s are considered.
Since the above expression has total order <|«|, by the induction hypothesis

we obtain immediately that d,, J ; € Ol * In view of the definition of &’
we then have Ri‘”le € O(l)a‘H.

Qotlyi
1

a+1,i°
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Step 2 Bounds on L x'. We commute £ with (3.19) to derive

Ll =[Le Lr]x +e L x +x' Lrx

+ > Rty
1B11+1B21=la]
B2 <ler|

D M LT L

1B11+1B2 |+ B3] =]c|
1Brl<lel.|B3]<le]

L5, (f‘g_f“j - QAB) - (7.2)

Since e = ¢ ld‘L,o, R;%e is of order < || + 1. By (B.1), we have Rie €

\IllalH Similarly, by the explicit formula of ’, 5, we have Kﬂ oip € \Dla|+2

Since R p = 2¢~ IA,X . and £R g = Kﬂz (& Dot aps by the estimates
derived in previous sections and by the 1nduct10n hypothes1s we can rewrite
(7.2) as

Z:Lfgil/ = [Z:L’ ['I%i]i/ + Oé . [zi "+ \p<|a\+2

The commutator can be computed as [£r. Lz |x’ = 21811+ =l — 1

Kﬁiﬁ(kp;[%l’- Since RZ , = Ri® + &ijiz/ XaF + Aid a(c) and

(c=Dx/
u—t

Y
XA
7 =— cy’, the commutator term is of type (9% . %i x'. Therefore,

we have

fgfg,ﬁ/ — Oé . 1:1051-&/ + \p2§‘a|+2-

By integrating this equation from —rg to ¢, the Gronwall’s inequality yields
LR, X o5y S 6.
Step 3 Bounds on R;"Hyj and R;"H)Lj. Since Rjy/ = (—c x4 —

A .
u—ft)RiAd px/, schematically we have

. . s .
Rl.“HyJ — R?Rkyj — R;" ((c—li_{_ - __t) - Ry ‘dxf) .

We distribute R} inside the parenthesis by Leibniz rule. (Here again, the index
i is not a single index, so we use index k to distinct the last rotation vectorfield.)

Therefore, a typical term would be either KRiﬂlé-KRi ﬂzg_l Lr, B3 Ry 'de.B“xj
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or £, g LrP g™ L R R xT with |81+ B2l + B3] + |Bal = la.
There are only two terms where are not included in the induction hypoth-
esis: Lr,”¢ ., and Lz,”R;. The first term is in fact easy to handle by
induction hypothesis and estimates derived in Step 1 and Step 2, since
KRigAB = Rg,p= ZkiC_liAB- For the second one, we use the following
expression:

3 -1
c ' —1 _
[RiRj=_25iijk+)\i( Lt ¢ 1(&—1— ¢ ))Rj

k=1

-1 _1 ¢
)

— kiSjklykdxl . g_l + Ajeiklykdxl . g_l.

Therefore, £z, Ry = Lz Lr, R = O " + 05 R xJ. Finally,
we obtain that -

Ria+1y_/ _ Ozflotl + 02§|a| _deﬂ4xj.

Although le‘g “x/ and L Riﬂ ' x may have order || + 1, they have been con-
trolled from previous steps. This gives the bounds on Ri"‘+1yj . Then by the

factthat A ; = € jkzxk yl , the estimate for Ri"‘ﬂ)\ j follows. This completes the
proof of the proposition. O

Proposition 7.2 For sufficiently small 8, for all || < Neo, t € [—r0, $*], we
can bound Zf‘“u € (’)lixz‘;rl in terms onl‘.Hzlﬁ € lIJ{a_l;lz.

Proof We use an induction argument on the order of derivatives. The base case
|a| = 0 has be treated in Sects. 3 and 4. We assume the proposition holds with
order of derivatives on p at most |«|. For |«| 4+ 1, by commuting Zf‘“ with
L =m + pe, we have

Lalzft+lﬂz(e+(Zi)Z)8lZ?+1M + alZ;X+lm + Z 811 Zlﬁl M(slzzlﬁZe
[BiHB2 <] +1

1Brl<lal

where [,, a = 1, 2 is the number of 7T’s in ZPa>s and [ is the number of T’s in
Z%’s. By the induction hypothesis, the above equation can be written as:

1 1 1 <l|er|+2
L'z = 05" sl 20 4w
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Similar to the estimates derived in the Step 3 in previous section, we

can use induction hypothesis and Gronwall’s inequality to conclude that
1 _

1ZE oo sy S 87 O

7.2 L? estimates

Niop will be the total number of derivatives commuted with Uz = 0. The
highest order objects will be of order Ny, + 1. In this subsection, based on
(B.1), we will derive L2 estimates on the objects of order < Niop in terms of

the L2 norms of Z¢+2y e w*T? with |a| < Ny,p — 1. We start with the
following lemma:

Lemma 7.3 For a smooth function y which vanishes on C,, we have

y? <6 / LY+ uly)’, [ PS8 / (L) + (L)
Stu P P

P
(7.3)

Proof Since Y (t,u,0) = [y Ty (t, u', 0)du’, we have
u 2
llfzdug=/ (/ Ty(t,u, G)dz/) dgt.u
Stou Stou 0
S 5/S /0(Tt/f(t,z’,e))Zdz’duga,u)

<6 /S /O (TP, 0)2d g undid

Here we have used the fact: \/det ¢(7, u) < /det g(r, u’) < \/det g(¢, u) due
to the bound of the second fundamental form 6. On the other hand, (Tvy) <
(LY)? 4+ u?(Ly)? and p < 1, the first inequality follows immediately. The
second is an immediate consequence of the first one. O

As a corollary, for k < Nip — 1, we have

> /S (RPY)? S SE<p1 (1, ). (74)

|BI=k St

Proposition 7.4 For sufficiently small §, for all o with || < Ny — 1 and
t € [—rg, s¥], the LZ(E,!) norms of all the quantities listed below

L2y LS EDZ, L8 E0y 70T 705
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are bounded® by §'/%>~! firo Mal/z(ﬂ) JE_ o142, u)dt', where l is the num-
berof T’s in Z;’s.

Proof We do induction on the order. When || = 0, the result follows from
the estimates in Sects. 3 and 4. Again, here we only treat the case / = 0. By
assuming the proposition holds for terms with order < |«|, we show it holds
for || + 1.

Step 1 Bounds on [,0{[ x'. By affording a L-derivative, we have

t
150 s S 1E8 L Nz, + [ 115K

—ro

FILLLR X N 25T (7.5)

We use formula (7.2) to replace £ [gi x' by the terms with lower orders. Each
nonlinear term has at most one factor with order > N.,. We bound this factor
in L2(Z,) and the rest in L>°. We now indicate briefly how the estimates on
the factors involving e and o’ work.

For o/, since

e 2@ 1 (de\* X4 ()X 8(0)
QAB _Cd,O A’Bp 2 dp2 2C2 dp A /0 B 10 )

in view of the definition of E (¢, u), for sufficiently small &, we have
L 12
15, 2agll 2y S D IR Yl sy S 87t 20 Epoy a8, ).
lor] <k

For e, since ¢ = c*I%Lp, we have

-1 -1
IR el 2y S > (82IAR ™ 2 gy +8" 2N R Lyl o5 )
|B1=<let]

—1/2
S8 2 (0 EZ g (110

By applying Gronwall’s inequality to (7.5), we obtain immediately that
t

—1/2
125 2 Ny S 82 [ a0 [Ecra(eids

—ro

6 The inequality is up to a constant depending only on the bootstrap constant M.
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Step 2 Bounds on Rl.o‘Jrl y/. By the computations in the Step 2 of the proof

of Proposition 7.1, R;"H y is a linear combination of the terms such as £, Ai X
KRiﬂzg_l -[R,."% R; -deCB“xj oras [Riﬁlg-KRiﬂzg_l -KRZ,"% R; -de;“xj, where
|B11+182141B31+1B4| = |a|. Similarly, we bound all factors with order < N
by the L°° estimates in Proposition 7.1. By the induction hypothesis, this yields

the bound on R;"H y/ immediately. The estimates for other quantities follow

from the estimates of ' "and y/. In this process, the terms like R? x/ and the
leading term in £, R ;, which can be bounded by a constant C disregarding the
order of the derivatives, are bounded in L. The rest terms in £g; Rj, which
depend on x’ and y/ as well as their derivatives, are bounded in L? based on

the L2 estimates for [ﬁi X ! O

We also have L? estimates for derivatives of .

Proposition 7.5 For sufficiently small §, for all o with || < Ny — 1 and
t € [—rg, s*], we have

t

MNZEH gy Sw SN2 wlpagge, y +0'7 | VEqun(nw

o
—1/2
+ (O E pop 42 (7. 0)d .

Proof According to the proof of Proposition 7.2, we have

5ZL|Z?+1M| N SIIZ?HmI + (Sl(|e| + |(Ri)Z|)|Z;x+1M|

+ > sMzP s R e,
|Bi+B2l<la

Then the result follows in the same way as Proposition 7.2. |

8 Estimates on top order terms

The highest possible order of an object in the paper will be Ny, + 1. The

current section is devoted to the L2 estimates of Rl.“trx and Zi‘”zu with
loe| = Niop — 1.

8.1 Estimates on tr X

We first sketch the idea of the proof. Since we deal with top order terms, we
can not use the transport equation (2.35) directly as in the previous section
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(which loses one derivative). Roughly speaking, we derive an elliptic system
coupled with a transport equation for Z and dtr& :

LURtry) =X - VLR X + -+, dVLR X =dRjtry +---.

The new idea is using elliptic estimates and rewriting the right hand side of
the transport equations to avoid the loss of derivatives.
Given Lgyo = 0, since p = wg, we can derive a wave equation for p:

_ d0og(©) g

O
gP dp

pPdvp +28""0,00v Y0 8.1)

Therefore, in the null frame, we can rewrite Ap as Ap = u~'L(Lp) + Lo.t.
where l.o.t. represents all the terms with order at most 1. On the other
hand, according to the definition of & 45, we can rewrite (2.35) as Ltry =

2
— % défo ) A o + l.o.t. where the lower order terms l.o.t. standard for terms with

order at most 1. By substituting to the previous expression on A p, we obtain:

3 1 S
L(utry — f) =2Lptry — Eu(trg)z — ulx*+&. (8.2)

v 2
where f = —%d;‘p ) Lp and g is given by

., (4 | d*o )
g—(Z(dp) e )(Lpr—uldpl)

d 1 2
+2cd(—/‘;) ((Llﬁoélﬁo — uldyol?) + (—“'d” o gAdAp)) .

4 2

We observe two main features of (8.2): the order of the righthand side terms
are one less than that of the lefthand side; It is regular in y, i.e. there is no ;!
factor. In order to commute R;’s with (8.2) and to control the «th derivatives
of d(try), for a given multi-index «, we introduce

Fou = nd(R*try) — d(R:® f).

Foroa =0and F = Fy = ,udtrﬁ — df, by commuting  with (8.2), we
obtain

_ 1 _ . ~
LLF + (try —2u" 'L F = (—Etri +2u ILM) df — pd (X% + go
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with go = d g — %tr&d(f— 2L ) — (dp)(Ltry + |Z|2). Similarly, for || # 0,
we first commute R* and then commute d with (8.2). This leads to

LLFo+ (try —2u ' L) Fy = (—%trgnL 2M_1LM) d(R* )
—ud (R®(X1*) + ga- (8.3)

with g, in the following schematic expression (by setting all the numerical
constants to be 1):

g =Lrg0+ D LR Ly, Fp
[Brl+IB2l=le| =1
v Ly ((MRitré +RiLp+ (R")Zu)d(Riﬂztri))
|B11+IB2l=la| 1
+ Z K’f}‘i (Ri,u[fgd(Riﬂztri) + trld(}giﬂztrﬁ

|B11+1B2l=la| -1
+d (R (7)) + Ritrxd (R ).
We remark that Fy, is of order Nyop + 1 so that @ = Nygp — 1.

We rewrite (2.33) as divy = ldtr& - (/,L_1£ X = %,u_lgtri). By com-

muting £g%, we obtain the following schematic expression:

diV(ZRl-aZ) = 1(d(R,-"‘tr&) + H,, (8.4)

[\

with Hy = (L, + 50 F07)% (W € X =307 E 00 +3 41 ot 1 Lo+
%tr(Ri)#)ﬂl (tr(Ri)jf.d(RiﬂZtré)_i_(dXV(Ri)#).£Ri ﬁzz)""zlﬂllﬂﬂzl:lal—l(KRF’_
TuRPL((ROZ YL R, P2%). By applying the elliptic estimates (3.44) to (8.4),
in view of the definition of F,, we obtain (the L? norms are taken at S(z, u))

ILY LR X125, S W Fallp2 + AR fll2 + Il LR, * X 12
+ llwHell L2 (8.5)

For any form &, since |§|L|&| = (§, L1.§) — & Z CE— %tr&lﬂz, we have
LIgE| < |LLEI+IXIIEI— %tr£|§|. Applying this inequality to (8.3), we obtain
—1 3 = -1 a f
L|Fy| = \n Lp-— Etrl"‘ X1 ) 1Fal + Qu™ L] — try)|dR;” £

+ d R (XD + 18al. (8.6)
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To obtain the L2(Z,) bound on F,, we first integrate (8.6) from —rg to ¢ and
then take the L2 norm on ¥,. We claim that we can ignore the first term on the
right hand side: The term (|try| + |X|)|F| can be removed immediately by
Gronwall’s inequality. For u~! Lt - | Fy|, for a fixed (u, 6),if u > {5 forall u,
it can be also removed by Gronwall’s inequality; otherwise, u < 1—10, therefore,
according to the argument in Proposition 4.6, the sign of Lu is negative so
that this term can be ignored. As a result, (8.6) yields

t
IFallr2csy S 1Fellas,) +/ I Lpl + DR fll 2,
o

Hlpd R (1X1P) 25,y + 18all2(x, dT
= Fell2z_, ) + 0 + L+ 5.

where the /;’s are defined in the obvious way.
We first bound /. According to the Leibniz rule, we have

L= >

[B1l+1B2l+B31+|Bal=lct]|
t
/ lud (£r,P g - £r2g - LR T ErP R 1205, dr.

—ro

Therefore, at least three indices of the f§;’s are at most N,. According to
Proposition 7.4, we have

L <[ "o lndLr, Fl2sllx (s, + 82 JE o2 (T. wdT

(8.5)

S 8 [ I Fallzs,y + MR fll2gs,y + 82 JE <140 (T, wdT.

. v 2 . 5
Sinee /= —%ddeL,o, we have dR;® f = %deRiaLWO-Fd( Zﬂ1+/32=a, R
[B11=1
(il—f; Yo) Ri# (Lllfo)). This leads to

t
v 1
/ AR fll 2z, S ST ro 82V E<jal+2(T, wdr.
o

Therefore, we have the following bound for /5:

t
125,/ S|l Fo ||L2(2 )+5 32 VE<jo+2(T,u) + 96 32 N <|a|+2(f u)dr.

- (8.7)
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We remark that, as long as the terms under consideration are not top order
terms, i.e. not a term of order Nyp + 1, we can simply use the estimates from
previous section to get the estimates. The reason is as follows: each term is
a product of Okfl with [ < |a|. Only one of the factor is of order / > Nxo.
We can bound the rest in L> and the highest order one in L2, thanks to the
estimates derived in the previous section.

To bound /3, as we pointed out above, we only have to take care of
the terms appearing in g, whose orders are possibly Ny, + 1. The rest of
them can be easily bounded in L? by a universal constant times the sum of

83 Ezaa () + 820 2 (0) JE g2 (2o w)d.

We now investigate the possible highest order terms in g,. There are three
possibilities: the first one are the terms of the form Zl/fﬁ +1Ba =l —1 [’2 L,
Fg,. They can be bounded by |RD Z|| Fyl < 8/2|F,| provided that § is suitably
small. The second possibility is from the (Ltryx + |x|?) term of go. However,
Eq. (2.35) says that Ltry + |x|> = e — tre/, so although it is of the highest
order, the highest order part consists only ¥ derivatives of 1 (thanks to the
expression of «’), hence can be bounded in the same way as lower order terms.
The last possibility is from the term L/ Lo appearing in g. They are of top
orders and they can not be converted into terms involving only ¥ derivatives.
These terms contribute to g, the terms of the form (’)051 - Lo - L Rf‘“ Yo in
g«- The idea is to use the flux to bound this term:

t
/ |LWOLR Yol 2 s dT
.

1/2
t u ,

S8 / / / (LRY "'y 2dpgdu’dr
—rQ 0 STYE/

u 1/2
< 512 (/0 E5|a|+2(t, E)dZ)

Therefore, we have the following estimates for /3:

t
1 _
I 5/ 82y E§|a|+2(f)+51/2Mm1/2(f),/E§|a|+2(f)df

—ro
w 12
+571/2 (/0 F g 40(t, E/)dﬁ/) (8.8)

1
10°
we introduce a few notations (where

We now study the estimates on /1. When u >

forward. To study the case when u < %,
a is a positive constant):

the estimates are straight-
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1
to = inf {r e[-2, t*)\um(t) < E} ,

M(1) = max |(L(log ) (1, u.6)
u,0),
(t,u,0)€Wspock

t
I(t) = / iy (DM (T)d.
0]

’

Lemma 8.1 We assume that a is at least 4.

1. For sufficiently large a and for all t € [ty, t*), we have

L) S a” @) (8.9)
. For sufficiently large a and for all t € [to, t*), we have
d 1
/ @Al S~ (0)
10 a

2. Fora > 4 and sufficiently small §, there is a constant Cq independent of a
and §, so that for all T € [—ry, t], we have

18 (1) < Copl () (8.10)

Proof (1) By Proposition 4.6, for t > #(, the minimum of rg (Lpu)(—ro, u,0)
on [0, 8] x S? is negative and we denote it by

—fm = min  {r3(Lp)(—ro, u, 0)}. (8.11)
(g,@)e[O,rS]xS2

We notice that 1 < n,, < C,, where Cy, is a constant depending on the initial
data. In view of the asymptotic expansion for (L) (z, u, 6) in Lemma 4.4, we
have

11\ nf1 1

t 7,

(8.12)

We fix an s € (f,t*) in such a way that fp < t < s < t*. There exists
(uy, 65) € [0, 8] x S* and (u,,, O) € [0, 8] x S? so that

(s, g, 05) = (), 13 (LI) (=70, Uyys Om) = =N (8.13)

@ Springer



S. Miao, P. Yu

We claim that
|0 + 1§ (L) (—ro, u, 6)] < OEM?). (8.14)
Indeed, one can apply (8.12) to u(s, u,,, 0,») and u(s, ug, 05) to derive

11 wf1 1
M(s,zs,és)=1—(— )( Nm +dms) + OGMH - — —
s 12 ry
(8.15)

1 1 A1 1
I(S Uy O) =1 =\ =+ — ) (=1m) + OBM | = — = ],
S ro t rO

where the quantity d,,,; > 0 is defined as
dms = N + 15 (L) (=70, 1y, Oy). (8.16)

Since (s, ug, 05) < u(s,u,,, O0m), we have

11 11
O<—-"4+—)du, <O0OBM") S>3
s ro t g

Hence,
dps < O(SM™). (8.17)

The constants in the above inequalities depend on £y therefore on n,, and they
are absolute constants. With this preparation, one can derive precise upper and
lower bounds for i, (t)
We pick up a (u,,, 6],
Um(t). For the lower bound, by virtue of Lemma 4.4, we have

') € [0,8] x S? in such a way that u(t,u/,0) =

—m’ - m

/-’Lm(t)_/'l’(t _m’ m)_M(s Mm, m)+/ (L/'l’)(t’_ma m)dt

L OOBM*

1 I 1
> pm(s) + (nm - Z) (; - ;) . (8.18)

In the last step, we take sufficiently small 6§ so that O (§M*) < %

dt’
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For the upper bound, in view of Lemma 4.4 and (8.17), we have

t
M () < /’L(taﬂsa Os) = m(s) +/ (LM)(I/» ug, gs)dt/
s

1 4
Nm — dms OM™) ,
= Um(s) +/S ) + )3 dt

"y OOBM?
Sﬂm(s)—i-/ m ( )dt/

_l/z t/2

1 1 1
fﬂm(s)"i_(’?m"i‘%) (;_E) (8.19)

In the last step, we also take sufficiently small § so that O (§M*) < %
For 1,(t), first of all, we have

! —a—1
La(7) g/ (Mm(s) + (nm - i) (l - l)) '=2dt’
1o 2a t s
K 1 —a—1
:/ (/Lm(s) + (nm - Z) (t — TS)) dtr’
1 1 1 —a
< (Mm(s) + ( —) (t — TS)) .
Nm — Z 2a

(Mm (s) + (nm -

M (s) +

(
(1em () +
(
(

Hence,

IAGES

Q| =

|
Q

[\
R~
N
N
~ | —
p—— |
© | =
\—/
S
d

Q| =
=

E
|~ '§|.—.
—~ |
© = |G =

7;

3 |

Q

~~

~

~

Q = [S)=

Nm —

(
(1m

Since as a — 00, one has

— 1, (). (8.20)

IA
Q| =
[\ I\
a|—::|"
S — S — — |
e e
Nl-—t HI»— 3
'q|._.h|>—-l\)
SN N— L"
SN | S SN | S
|

+

(11 + 24)

The limit is an absolute constant. Therefore, (8.20) yields the proof for part
(1) of the lemma. The proof for part (1’) is exactly the same.
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(2) We start with an easy observation: if ,u(t u,0) < 1— %, then

Lu(t,u,0) < —a~'. In fact, weclalmthat( + = )”OLM( ro, u, 0) > l a L.

Otherwise, for sufficiently small § (say /4 < a_l) according to the expan-
sion for u(t, u, 0). i.e. pu(t, u, 0) = pu(=ro. u, 0)= (3 +5)rg Lin(—ro. u. 0)+
0(5), we have

1 1
ut,u,0)y>1———-C66>1——.
2a a

which is a contradiction. Therefore Lemma 4.4 implies Lu(f, u, 0) < —a~'.

In particular, this observation implies that, if there is a t’ € [—rg, s*], so that
wn(@) <1 — a~!, then for all ¢ > ¢/, we have Um@ < 1 — a~!. This
allows us to define a time #1, such that it is the minimum of all such ¢’ with

pum () <1 —a™!
We now prove the lemma. If t < 1, since u,,(f) < 2, we have

—da 1 - —da
mpl () < (1 — - < Co < Copmp,“ (1).

If t > 11, then pu,(7) < 1 — é Let wm(t) = p(r,u,,0;). We know that
wu(t, u,, 0;) is decreasing in t for r > 7. Therefore, we have

P (1) < p(t, ey, 0r) < (T, Uy, 02) = (7).
The proof now is complete. O

For I, according to the above lemma with a = bjy|+2, we then have

I <8l Z/ l1LAog 0| REH LYl 2
B=la|

S 82 Dy (D3 E<jag42(t, 1) ®20
—b(x -

Finally, the estimates (8.21), (8.7), (8.8) on I1, I> and I35 together yield
t 2 —
I Falli2gzy S a2,y + / 520 ) (| Earateo )
=10
+“'Zl/2(’)mwr 57 gy
x\//i‘:<|a|+2(t,w)dw + 81/2M};b\a\+2 (;)m. (8.22)
M
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This implies

b ~
lud (RE Ol 25, S 8 1m0y E<jaj42(t. u)
t
—bigl42—1/2 ~
+ /r 82 2T 2 () JE L o (7, wd
(]

12 b “—~
+67 1y, +2(r>\/ / F ot u))du. (8.23)
0

8.2 Estimates on i

The top order estimates on © depend on the equation Ly = m + pe. Since

2
m = 1 d(c )Tp and ey = 222 d‘(i—cp)ép - L, it is visible that u can be bounded

by the total energy on ¥, i.e. the Ej’s. However, to avoid loss of derivatives,
we should not integrate Lu directly.
In view of the following commutation formulas,

L, Al + try hp = —2% - B°¢ — 2div5 - d,
[T, Klgp + ¢ ptrd Ap = —2¢~' 1@ - B¢ — 2div(c ™' 1ub) - dop,

we have

1dc?
LAp= _Ed_ATp + uhe +ehu

tdp - de —try hp — 2% - B —2dvE - du. (8.24)

According to (8.1),

dlog(c)
dp

Ogp = (w'LoLp +dp - dp) + 21~ LoL o + 2d o - djo.

Therefore, by multiplying 1, we have

1 1
whp = L(Lp) + FLptry + S Lptry + (LpLp + udp - dp)

2
+2LyoLyo + 2udyo - do.

dlog(c)
dp
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We commute 7 and obtain

1 1
wATp = L(T Lp) + FLo(Tw) + 5 Lp(Ttry)

1 1
+{T,L]Lp + Etrx TLp+ ETL,otrK

LT (dl(;i(C) (LpLp+pdp - dp)+2LyoLyo+2ud o - dlﬁo)

— ~2 ~
+e b hp +2¢7 b - P p +2divie wb) - dp — (Tw) Ap.

(8.25)
Therefore
1ch ldczTL 1dc? 1L (Tt )+1L (Ttry)
—_— = —_— - = r r
Tp = sap TEe) =3, \GLlr w0 + 5 Le(Tuy
ldcz (T, LILp + Sty TLp + LT Lpt
- , —tr = r
> dp LlLp + StrxTLp + ST Lptry
ldc?  (dlog(c)
T (2B (LpLp + pdp - dp) + 2Ly Lo + 2udo - do
2 dp dp
1dC2 1 1 o~ %2 p —1 "
2dp (c utrd Ap +2¢ b - D p 4 2div(c MG)-dp—(TM)Ap)
4L Lde?y ) (8.26)
2w 0. .

In view of the commutator formula, we also have

d 2dc?
nrhe =L (;2 dc //S,O)Jr'u—zdL (i-lszerlvz-d,o)

1 dc
(22d ) (c2 dp)dp ILp
2 1 dc? d? 1 dc? >
ta (%(—2%)”‘ *a(ﬁw) 'd"')é

(8.27)

Let us define
/ dc / ~/
f = ———pTLp + T—pz&p, F'o=puhp— f. (8.28)
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Then in view of (8.24), (8.26) and (8.27), we obtain the following propagation
equation for F’:

1 . -
LF'+ (trx —2u~ L) F' = — (Etrg - 2u—iu) ey YR

where

v/ Mdcz <1 <2
g =\—du+5——dp) - (udiry) + =2, + O5' w2, + W3
c? dp
(8.30)

Here we have used the structure equation (2.34) to cancel the contribution from
the term %Lp (Ttry) + %Lp (Ttré) in (8.25) and the term (Lu) A when we

write L(uAp) = pL(Ap) + L(w)An. We also remark that the L2 norm of
all derivatives on divz has been estimated from previous subsection. In such
a sense, it can also be considered as a \11252 term and we use (2.33) to replace

divx by diry +---. The term \IJ* ~, comes from the contribution of L1 L

and (9 \I/— ~, comes from —1 dLTL,otrX in (8.26). Since we already applied

T to Lg//oé Yo once in (8.26), 1nstead of using flux F (¢, u) as we did in the last
subsection, we only need to use the energy E (¢, u) to control the contribution
of this term.

We set F,; = uR;* T A — RT! " and |o/| + | = |a|. According to
(8.29), we have

LF 4 (g — 20 'Ly F! ) = — (Ltry — 27! ol
LFy + (o =20 Lk, ==y —2pn Lu ) RETf
—2ux A LD+ gy (83D)

where g/, , is given by

. dCZ / .
Sl = (—du + %%dp) - pd (Ri“ Tltr&) +1-AF,,_ + ®IZF,_|,
<le/|+1 Ay <|or|—|e'|+1 <la|+2 <|o|4+1 g, <la|+2—|c]| <|a|+2
0= O g VI L+ 05 Vo g FYI

We remark that the second term of g(; ,; vanishes when/ = Oand A = [L, T].
According to (8.31), we have
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t
_ !/ l v
| F, 1||L2(2,) S IF, 1||L2(2 o) +/ [l ILM”LOO(ET)”Ria T f/||L2(zr)dT
—ro
t

t —~
-~ "l 2 v
+/ ||M£ : [Ria [‘T D I’L”Lz(Zr)dT +/ ||g(;/’l||L2(2r)dT

=70 =70

= ||Fél||L2(2_r0) + L+ 5L+ 1

We remark that we must multiply both sides 8’ to get the correct estimates.
2
We first deal with 7;. Since f/ = ;‘fjfo (=TLp + 55 Ap), therefore, we have

. dc 2 2 d
T = =R T L +55 2y VORI T Ao + 925,

Compared to the first two terms, the last term on the right hand side above is
of lower order with respect to the order of derivatives. Hence,

SR T 'l 12, S 8PV E <2 (T w) + 832 JE _ gy a (T 10)

(8.32)

This together with Lemma 8.1 yields

_ba ~ ~
87 S (1812 (/ Eiag2(t 1) + 8\ Eigy 0, z)) :
(8.33)

For I, we can use elliptic estimates, i.e. to bound »’ w by A This leads
to

t
s L S8 / IR T Al 2 s,y dT

—ro

t
—1/2
+/ 832 VE<io 12T ) + 8721y 2 (0) [ E g0 (1, wT
o

t
<6 / S Fagllp2esy + IR T fll 2,

—ro

+8 ( e + (0 B a(e, )

(8.34)

We can skip the first two terms: The second term is already controlled by ;.
While the first term will be eventually absorbed by Gronwall’s inequality. The
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last two terms come from the commutator between A and 7, R; as well as
using Proposition 7.5.

For I := I} + 13” , we first consider the contributions from the first line in
the expression of g, 1> Which are denoted by I3. t. We consider the cases [ = 0
and/ > 0 separately For [ = 0, we have

815 < 8/_1 (—du + %%dﬁ) (Md (Ri“trﬁ))

+ (1% 21+ A1) dFy

dt
L2(Z;)

t
S 5/ |12 (Riatl’l) lr2s,) + 5||dF|/a|_1 lz2(zH)dT

—rp

t
+/ (53/2\/E§|a\+2(772) + 6% 41 2 (0) JE <10 (T ) dT
,m

The first two terms are bound by the top order estimates on try in the previous
subsection, therefore, for / = 0, we have

[ ~Dlal+2 E —bjg142—1/2
815 5/ 82t (O] E<para (T, w) 4+ 82 (1)
1o
X E§|a|+2(fv u)dt
12 1 b u _
+81 / w2 () /0 F (v, w)du'dr. (8.35)
1o

For the I > 1 case, we use (2.34), i.e. KTK = W@Q + ,u‘@@g —
C_IL(C_I,LL)L + c_l;w@l to rewrite Ttrx. By taking the trace in (2.34),
we obtain

pd(R 1 Thry) = uRE T K+ O,

where

1 —1/2
SO 25 S8 E<apin (0, 0)+8¥ 2 11" P (0)  E pgpin (7. ).

We then conclude that (for [ > 1)

t 1
—by ~ —bigl42—5
S / 8 " () E<iagsa (T ) + 82 2 (1)
o
X/ E g 42(T. w)dT. (8.36)
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Now we discuss the contributions from the last three terms in the expression
of g, ,, which are denoted by /3. In view of Propositions 7.4 and 7.5, the

\Ot [+1 n<lo|=la'|+1 <le/|+1 g <la|+2—o|
terms O Oy can be absorbed by O~ W ok - Wecan
bound the last three terms of gv(’x ,; as follows

+2
SNl as,) S 82V Bt w),
<lo'|4+1 ¢, <la|4+2 /T
SH—IHOZLO{‘ \I,£|_0!2|1_24l(; ‘”LZ(E 4HS < ) 172 ESlaH—Z(LZ)

—1/2
+51/2/ 2 E < in (1 wydt,
—ro
2
SV s, S 6%V Eqiaaa(t. 1)

83210 2 (1) E _ g2 (0, ). (8.37)

Therefore we have the following estimates for /5’:

t
,ha ~
S <812 / P E<jog 2t wdt!

—ro

2 [ —basa-1/2, = ; ,
+52 [ (W E o n wdr’. (838)
—ro

By combining the estimate (8.32) for f " and the estimates for (8.33), (8.34),
(8.35), (8.36) and (8.38) for I, I, I3, we obtain

SR T Al o,y S 8 N Fatllogs)

—biy ~ —biy =
+ 82 (1) (\/Eﬂam(t,z) + “(t),/E§|a|+2(t,z))
"2, b =
+/ 82 (D) E<ja42(T, )
.
—big|+2—1/2 ~
+82 A O E gy (r, wdT

t L
+ 51/2/ Mﬁh'“”(f)\// F g 2(t, u)du'dr. (8.39)
o 0

9 Commutator estimates

In this section, we shall estimate the error spacetime integrals for the contri-
butions of commutators.
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Let v be a solution of the inhomogeneous wave equation Lz = p and Z
be a vector field, one can commute Z with the equation to derive

1 ~ .
Oz (ZY) = Zp + 5tr((;(Z)n - p A+ cAdivg P 9.1)
where the vector field (4)J is defined by

~ 1 ~
@) gu _ ((zww _ Eg“”trg(z)n) 8.

We remark that the raising indices for (9)7#" are with respect to the optic
metric g.

In applications, we use the above formulas for homogeneous wave equations
Uz¢ = 0 and commute some commutation vector fields Z;’s several times.
Therefore, we need the following recursion formulas:

Dg’wn = pPn. Yn=2ZYu—1, p1 =0,

1 - .
Pn = Zpp—1+ Etrg(z)ﬂ “Pn—1+ Czdlvg @) I,

~ 1 ~
@k = ((Z)Jr’“’ - Eg‘“’trg(z)n) I Yn—1.

9.2)

Remark 9.1 When we derive energy estimates for Lz, = p,, due to the
volume form of the conformal optic metric g, the integrands p,, appearing in
the error terms is slightly different from p,. The rescaled source terms p, are
defined as follows:

- 1 ~ ~
Pn = C_Zlupn =Zpp—1+ @5 . Pn—1+ (Z)Un—l’

2

pr=0, Do,y =p-divg?J, 1, 9.3)

1 _
D = Etrg(z)rr — ' Zu + 27 (log(c)) .

In view of (3.29) as well as the formula
D7 = ctr'P7F = ¢ (—M_I(Z)ﬁLL + tr(Z)sz")
we have:

‘”)5‘51, ‘(@3‘51, ‘“?ﬂa’ga. 9.4)
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Then error spacetime integral corresponding to Ko = L and K; = L
containing p, are as follows:

1 ~
- = PnLyndpg = — anWndtdﬁdMg
wi C2 wt

u

1 ~
- _zanwnd/ng = - PnLWndtdﬁdMg
wi € wi

u

We first consider the contribution of ‘“)o,,_1 in ;. We write (“)o,,_; in null
frame (L, L, a%A):

1 1 .
Dy = —EL((ZUH,L) - EL(@JH,],L) +div( P J 1)
1 _ 1 1
— LW P h = Sux P gL = Sux P dh

Then with the following expressions for the components of (2) J._| in the null
frame:

@ g,y = —%tr(z’z%@w_l) +PZ
S A —%tr(Z)z%(Lwn_o + D7 dy - %@)m(gw_l)
Y R A B AT VA

+ %(mm — P By + 1 F ad B

Based on the above expressions, we decompose:

(Z)Gn—l = (Z)Ul,n—l + (Z)UZ,n—l + (2)03,n—1

where (Z)ol,n_l contains the products of components of (Y7 with the 2nd
derivatives of {,,_1, (2)02, n—1 contains the products of the 1st derivatives of
(D7 with the st derivatives of Yu—1, and (2)03, n—1 contains the other lower
order terms. More specifically, we have:
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1 2~ 1
Doy oy = Etf( 7 (LL‘ﬁn—l + EtrgéL‘/fn—l)

1 o
N VD5 LY

—(Z)Z . dé%q - (Z)Z . dLl//nfl
1 ~ (Z2)=
+5<Z>m4wn_1 SRR S (9.5)

1 7) ~ 1 7) ~
Dy oy = ZL(tr( "BVt + ZL(“( "L

|
+ 4L YDz DL,y
1

- 1 ~
— Eﬁé(z)z A1 — EZ:L(Z)Z’de—I

1 - 1 N
- Edzv“)zgwn_l - Ediv(z’;wn_l
1 -~
5 d DR + v "D dye 6

and

1 ~ 1
D3 o1 = (Ztrxtr(z)ﬂ‘ + Zt%(ﬂ_l(z)ﬁu)

12) - ! .
+§(Z)Z _ d(czﬂ)) Ly — Z(Llog(cfl))tr(Z)Jleﬁn—l

1 ~ 1 ~
- ((Etrx - L(c‘zu)) Yz 4+ ux (Z)Z) dyu1  O)

With these expressions for (“)o,,_1, we are able to investigate the structure
of p,. Basically, we want to use the recursion formulas in (9.3) to obtain a
relatively explicit expression for p,.

On the other hand, for the energy estimates, we consider the following
possible v,:

l / !
Yu = RN, Y, = RETTy, = QRY Ty

Here v, is the nth order variation and n = |a| + 1 = |&/| + [ + 1. While
Y is any first order variation. The reason that we can always first apply 7,
then R;, and finally a possible Q is that the commutators [R;, T], [R;, Q] and
[T, Q] are one order lower than R; T, TR;; OQR;, R; Q; OT, T Q respectively.
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Moreover, the commutators [R;, T'], [R;, Q] and [T, Q] are tangent to S; ,.
Since we let Q be the last possible commutator, there will be no Q’s in ¥,
in the second term on the right hand side of (9.5). Therefore we only need
to commute Q once. Now suppose that we consider the n = || + 2th order
variations of the following form:

Vie|42 = Zja|+1 - Z1Y¥

We have the inhomogeneous wave equation:

UeVial+2 = Plal+2

As we pointed out in Remark 9.1, we define:

- 0
Pla|+2 = C_zp\ozl-i-Z

Then by a induction argument, the corresponding inhomogeneous term pjq|42
is given by:

lor|
Pla|+2= Z (Z|a|+l+(zla\+l)6) . (lel_kJr2 + (Z\al—k+2)5)(Zla\—k+1)o-|a‘_1+k
k=0
(9.8)

9.1 Error estimates for the lower order terms

Consider an arbitrary term in this sum. There is a total of £ derivatives with
respect to the commutators acting on (Z)o\a\,1+k. In view of the fact that
(Z)a|a|_1+k has the structure described in (9.5)—(9.7), in considering the partial
contribution of each term in (%) g .|la|—14k, if the factor which is a component of
D7 receives more than ['“'2“] derivatives with respect to the commutators,
then the factor which is a 2nd order derivative of ¥ |+1—x receives at most k —

[#] — 1 order derivatives of commutators, thus corresponds to a derivative
of the v of order at most: k — [#] + 1+ || —k= [%] + 1, therefore this

factor is bounded in L™ (X;") by the bootstrap assumption. Also, in considering
the partial contribution of each term in 2) 02, |a|+1—k, if the factor which is a 1st

derivative of ‘“)7 receives more than [#] — 1 derivatives with respect to the
commutators, then the factor which is a Ist derivative of 4| +1—x Teceives at

most k — [#] derivatives with respect to the commutators, thus corresponds
to a derivative of the v, of order at most k — [#] +14+|a|—k = [lg—‘] +1,
therefore this factor is again bounded in L*° (E%) by the bootstrap assumption.
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Similar considerations apply to (2)03,|a|+1,k. We conclude that for all the

terms in the sum in (9.8) of which one factor is a derivative of the Dz of
order more than [%] the other factor is then a derivative of the v, of order

atmost [ 2]+ 1 and is thus bounded in L*° (") by the bootstrap assumption.
Of these terms we shall estimate the contribution of those containing the top
order spatial derivatives of the optical entities in the next subsection. Before
we give the estimates for the contribution of the lower order optical terms to
the spacetime integrals:

— % /wr p<lal+2LV<jaj+2dtdudpg,
* 9.9
— 8% /W p<lal+2L V<o +2dtdud iy,

we investigate the behavior of these integrals with respect to §. Here & is
the number of T's in string of commutators. For the multiplier K| = L, the
associated energy inequality is

E_jg142, ) + F g2, 1) + K<jo42(7, 1)

< Eopya(—r0, ) + / D1z 9.10)
WM

The quantities K<|q|+2(#, u) are defined similar as K (¢, u):

Kot w) = > 8"K@,w[z*y],

o’ [<[er|+1

Again, I is the number of 7’s in Al

In Q1 <|a|+2, there are contributions from the deformation tensors of two
multipliers, which has been treated in Sect. 6. There are also contributions
from the deformation tensors of commutators, which are given by (9.8). Now
we investigate the terms which are not top order optical terms, namely, the
terms containing x and w of order less than || 4 2. In view of the discussion
in Sect. 6, the left hand side of (9.10) is of order 8, so we expect these lower
order terms in the second integral of (9.9) is of order §. In fact, the integration
on W! gives us a § and the multiplier 8¥ Ly 4|42 is of order §!/2. To see the

behavior of 8¥o, we look at o7 as an example. Let k' be the number of T's
applied to (LLY; + %trZLwl). (4.1) implies
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/ 1~_ /
sk (LLW + Etrﬁl‘%) ~ §1/2 4 sk ol
Since p; = 0, an induction argument implies that
K 1 1/2
8" { LLyy + Etrll‘vfl ~ 5,

Then in view of (3.24), (3.26) and (3.29), the first term in o behaves like §1/2.
Following the same procedure, one sees straightforwardly that all the other
terms in o, oo and o3 behave like §1/2 (one keeps in mind that if Z = T,
then we multiplier a § with the corresponding deformation tensor.) except the
term L (tr(z)y?) L. For this term we use the argument deriving (3.28) and
Proposition 7.1 to see actually we have:

(@) 5

||£(tl’ #)”LOO(E,&) S 8.

This completes the discussions for o associated to K.
The same argument applies to the energy inequality associated to Kj:

E<jgj+2(t, u) + F<jq42(t, u) S E<jg42(—r0, 1) +/ éO,flaH—Z'

u

9.11)

and we conclude that the lower order optical terms in the error spacetime

integrals have one more power in ¢ than the energies on the left hand side.
Now we summarize the spacetime error estimates for the terms which

come from the L2 norms of the lower order optical quantities. In the proof

of Propositions 7.4 and 7.5, we use ,u;l/z (1) /Ef\a|+2(t’ u) to control the L?

norm Za’§|a|+1 ||dZ"/w ||L2(2;,:). Now we just keep this L norm as it is. This
together with the bootstrap assumptions on the L® norms of the variations
implies that the contributions from the L2 norms of lower order optical terms
are bounded as:

t
/ 2. SIZE Yl 2 + 8y Eciara(t'.w) | dif

T\ o | <lal+1

t
5172 / I L2l 25t
e
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t
< / D SPZI I, gy + 8 Esiaia( 0 | dif
t

TN\ J | <+ 1

u
+/ E<‘a|+2(t’ Z/)dﬂl for Kl
0 =

and

t
/ Z 172+ IIdZ?II’HLz(zt%)JF‘S E<ig|+2',u) | dt’

O\ o/ | <larl+1

t
1/2
32 [ ol 4

t
S| X M I, g + 8Bt | ar

TN\ J | <l +1

t
-1—5/ Eg‘a|+2(t/,g)dt/ for Ko

=10

where [’ is the number of T’s in the string of Z;"/. Therefore we obtain the
following error estimates for the lower order optical terms:

t u
/ 52E5|a|+z(t’,g)dt’+/ F o2 (t. u)du'+8% K <o) 42(t, 1) for K
) =

—r0

(9.12)

and

t
/ SE<iqj+2(t', wdt" 4+ 8K <jq42(t, u) for Ky 9.13)

=10

Next we consider the case in which the deformation tensors receive less deriv-
atives with respect to the commutators than the variations in the expression for

(“)g;. More specifically, we consider the terms in the sum (9.8) in which there

o o . Z) ~
are at most [#] derivatives hitting the deformation tensor ( )Jf, thus the

spatial derivatives on x is at most [%] and the spatial derivatives on u is at
most [#] + 1, which are bounded in L*°(X,") by virtue of Propositions 7.1

and 7.2. Using the inequality ab < ea”+ %bz,we have the following estimates
for these contributions:
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t u
/ 82 E <jo42(t', w)dt’ + 5_1/2/ F gt uh)au
—ro 0

t

+81/2K<|a|+2(t,g)+/ E_jia(t' wydt’ forK;  (9.14)

1o
' u
/ 51/2E5|u|+2(t/,£)d1/+31/2/0 F o jg0(t, uh)du’
.
+68'2 K <jqp42(t, u) for Ko (9.15)

Here we estimate the terms involving L*Y,_1 and L, in terms of flux.

9.2 Top order optical estimates

Now we estimate the contributions from the top order optical terms to the
error spacetime integrals. In estimating the top order optical terms, we need to
choose the power of w,,(¢) large enough. Therefore from this subsection on,
we will use C to denote an absolute positive constant so that one can see the
largeness of the power of 1, (#) more clearly.

The top order optical terms come from the term in which all the commutators
hit the deformation tensors in the expression of “z 1)01, namely, the term:

(Z|(¥|+1 + (Z\ot|+1)8) o (Zo+ (22)5)(21)0_1

more precisely, in:
1 1 .
Ziaj11 22 (—§L<<ZI>J1,L> — L") + diV(u(Z”J))

when the operators L, L, div hit the deformation tensors in the expression of
Zn g

Now we consider the top order variations:
a+l o pl+1 ol
Rl' l//’ Ri T W, QRL T w

where |o| = Nyp — 1 and |&’| + 1 + 1 = |a| + 1. Then the corresponding
principal optical terms are:

- 1

Plait2 (R ) = (R g ) - Ty,
- / 1 /
Plal+2(RY Ty == E(R;?‘ T Aw) - Ty

Fat+2(QRY T i= L (AR wy') - dy + L dRY Apo) - Ly, if1=0
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Fal2(QRE T) 1= " ARET! ™ Kpe) -y + L @R T ) - Ly,
ifl >1

Here we used the structure equation (2.34)
<1
Lrtey = Au+ 02,

Now we briefly investigate the behavior of the above terms with respect to §.
Note that R Qv has the same behavior as Rf‘“ Y with respect to §, while for

their corresponding top order optical terms "2 (4 R¥trx')-dr and 1 (R*'tr x'):

T, the former behaves better than the latter with respect to §:

I, a1 misl/2

7(411?[ trx") - dyr| ~ |n(RY T rx )18~

1
‘—(Rf‘“trx/) : Tw‘ ~ Ry )81
c A LS

We see that not only the former behaves better with respect to §, but also
has an extra i, which makes the behavior even better when W is small. This
means that we only need to estimate the contribution of - (R"‘Htrx ) Ty.

The same analy31s applies to the terms involving L as well as the compar-
ison between Rf‘ T and QR;" T+, which correspond to E(R;."AM) Ty

and %"(Rl‘?‘url Aw) - dir. So in the following, we do not need to estimate the
contributions corresponding to the variations containing a Q.

9.2.1 Contribution of K

In this subsection we first estimate the spacetime integral:

1 a+1 / a+1 /7.7
/WtE|Ri trlHTwHLR,- wldtdgdug

u

t
S / sup(u | TYDIRd Rty | 2 gy LR W o i’ (9.16)
g

By (8.23), we have:

”MdR:xtr£/ ” L2(Eth‘)

_ba ~
<82 (1)) E <pag 42 (t, u)
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t
—Dbigl42—1/2 ~
+ / 812y 20y JE _ g 40 (v w)dT
e

1 b L
+87 12, |+2(f)\//0 F_ 42, u)du'.

By the monotonicity of E <l 1o(t, u) in ¢, we have

_ba ~
ld R gl 2y S 82”2 (0 E<iag2(t, 1)
t
~ —bigl42—1/2
+612VEcjapsalt, w) / R (Y14

—ro

u
_ -~ —b|y
s 1/2\/ /O Fogat )du iy (1) (9.17)

Without loss of generality, here we assume that there is a g € [—rg, t*) such
that w,, (tp) = 11—0 and (1) > % fort < tg. If there is no such ¢y in [—rg, 1),
then w,, (¢) has an absolute positive lower bound for all [—rg, t*) and it is clear
to see that the following argument simplifies and also works in this case. In
view of part (1’) and part (2) in Lemma 8.1 and the fact w,,(t") > % for
t' € [—ro, tp], we have

0]
bigla—1/2 —bia2+1/2 —bjaj2+1/2
/ TR S T 10) < T ),

—ro

t
—bigs2—1/2 1 —bja|s2+1/2
/ T O ey TR O}
10 (b|0l|+2 - 1/2)

Therefore the second term in (9.17) are bounded by:

—bjaj12+1/2 =
§L/2y D2 / () /Es|a|+2(tvﬂ)

Substituting this in (9.16), and using the fact that [Tvy| < §71/2, we see
that the spacetime integral (9.16) is bounded by:

t
—big|42—1 -
/ TP () Es|a|+z(t/,z)IILRf’H‘ﬂ”LZ(E,“*/)dt,

ro

t
—bigli2—1/2 T
+ / i) E gy O ILRE Y o gy
—T10

; u
—1 —bg+2-1 n ~F R
/ 8 1Mm e (t/)\//o —§|a|+2(t/v_”/)dﬂ/”l‘ z('x+1w“L2(E;‘7)dt/

=70
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For the factor ||LRf‘+11p 25y We bound it as:

_ba ~
LRI Yl 25y < VEja+2(t0) < 2 (0] E<iag42(t, )

Then the spacetime integral (9.16) is bounded by:

L b=l .~
/ P TV E<iq2(t, wat
_,O

t
—bgria—1/2 = po
+ / 172 JE a0 B, wat
.

t u
_ bjga—1 u =
+38 1/ T (t’)\// F g2t w)du' | E<pa2(t/, wydt’
0

—ro

Splitting the above integrals as fioro + ftg we see that the “non-shock” part
[™ is bounded by:

—T0

1o
_Zba ~ ~
/ [T () (E5|a|+2(t/,£) + E 42t 1)

—ro

+572 / Foy +2(/,¢)d¢) dt’ (9.18)
—

using part (2) of Lemma 8.1.
The “shock” part fz; is bounded by:

c

—2b|y ~
P E<j12(t, 0)
2bja|+2

¢ —2bjg42+1/2 | 3
+t = (HE (¢, u)
(2b|ocH-2 _ 1/2) m <|la[+2

c —2bjg|42

I S S
(2bar42) "

(1 /0 CFogntu)dd (9.19)

using part (1”) of Lemma 8.1.

Remark 9.2 The boxed term is from the estimates for the top order term F,.
In view of (8.3), the number of top order terms contributed by the variations
is independent of § and |«|, so is the constant C in the boxed term. Later on
in the top order energy estimates we will choose by 42 in such a way that

bt(:;p < %. (The purpose of doing this is to make sure that this term can be
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absorbed by the left hand side the energy inequality.) Therefore we can choose
biop = {10, 20} In particular b;,), is independent of §.

Next we consider the spacetime integral:
1 / !’
52+2 / —|RY T' A TYIILRY T yldi du'd e
wi €

t
< 521+2/ sup (T W) IILRY T AMHLz(E JILR® TI+IW||L2(zu dt’
—r £
t

(9.20)

By (8.39) and the monotonicity of Es|a|+2(t, u), E§|a|+2(t, u) and E§|a|+2
(t, u) in t, we have:

S IR T &l 2 gy < €8 N Favtll s,

e ~ e =
+ 8" 2 1 (O E<jag ot w) + 8" (O E <42 (8, 0)

t
—biy -
+/ (51/2Mm 2 (") E<j)+2(t', 1)
o

—bjg|+2—1/2 =
#8120, 2 E iyt w) e’

t u
+8172 / u;b'a“(r’)\/ / F g w)du'dt’ (9:21)
—ro 0

As before, we have:

t
/ A < ),

—ro

t
[l B < e R
Y

Therefore

S RS T Kl 2 sy < €8 o

+ €82 1) Ecparsat ) + €821 (0) g 000

sty et ) \/ / F_ gt w)du’ (9.22)
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Again, we estimate the other factor || LR;’/ Ty L2z by:

/ _ba ~
STUNLRY T Yl gy < VE<jars2(tw) < (0 E<jaf2(t, 1)

Here we also split the spacetime integral (9.20) into “shock part flo” and
“non-shock part fioro”. We first estimate the “shock part”. Due to the estimate

|Ty| < 8~1/2, the contribution of the first term in (9.21) to the spacetime
integral (9.20) is bounded by:

t
—big|+2—1 - '
/Mm” ()0 Ectata(t )| LRE T || o g dif
fo

t
SC/ /«Lr;%‘am_l(t/)E§|a\+2(t/,Z)dt/
1o

~ L biia—1
§CE§a+z(t,z)/ @t
fo

c M_2b|a\+2

< NE- t
= Db () E<jo)+2(F, u)

Therefore, the contributions from the first two terms in (9.21) are bounded by:

C —2byy = E
e tm O E<taii2(t. ) + Ejg 42t w)]
2blozl-i—Z -

and the contributions from the rest terms in (9.21) are bounded by:

C —2bjgs2+1/2
——————n
(2b|a‘+2 — 1/2)
c —2bjg42+1
P RE—— 1
(2bjags2 = 1)

(f)E5|a|+2(l» u)

u

+ O[E<talsalt.w) + /O Foa(t )]

Therefore “shock-part” of the spacetime integral (9.20) is bounded by:

C —2bjy = E
PO [E<jas2(t, w) + Eojg 40t w)]

2bja|+2
C —2bjg+2+1

u_
+—C 0 / Pyt i)dd (9.23)
(2bjars2 = 1) o T

As before, for the “non-shock part”, which mean ' € [—rg, fp], we have a
positive lower bound for 1, (¢'), then the spacetime integral (9.20) is bounded
by:
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fo
—2b|y ~ ~
/ s ([ Eciaga(t 1) + E o2t 1)

—ro
u

+ /0 F ot u)du')ar’ (9.24)

which will be treated by Gronwall.
Finally, using the inequality ab < %bz + %bz, the initial contribution
| Fo.t ||L2(27r0) is bounded by

821+2||Fa,1||iz(27r0) +/tr M;%‘“HTI(t')Es|a|+2(t’,ﬂ)dt/. (9.25)
—ro

The second term above has already been estimated.

9.2.2 Contribution of K

In this subsection we estimate the contributions of top order optical terms

associated to Kj. We start with the following absolute value of a spacetime
integral:

1 a+1 / a1 /g
| SRy @RS aradn,) 020
Wf

u

Since
~_1 dun — ld
g= cg’ Mg = - Mg

the above spacetime integral can be written as:

/Wt (R?Htr&/) (Ty) - (LR;-XHw)dt'dg’d,u(;g (9.27)
Let us set:
Ft, u) = /S fdug
then
83—1: = /S (Lf +tex f)dug
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On the formation of shocks for quasilinear wave equations

So we may convert the spacetime integral into two hypersurface integrals:
| wrtxn)anganar = | g - [ sapgan
Wi - b =%,
So we write the spacetime integral (9.27) as:

/ (R gy - (T) - (LRI + oy RY T yydr' du'dpug
Wt - AN

u

~ [ Ry - g R
wt o -

u
/W

t
u

= | @HEp[ R ax) - @) R )ar audpg
Wy - -

(L+ )[Ry - (T - (RE ) |ar'duddp

We conclude that (9.27) equals:
/ (R gy - (T - (REH g du'd g
o -

-0

— [ @m0 Ry - (9| (R ydiduldpg
wi - -
We first consider the hypersurface integral which, integrating by parts, equals:

—Hy— H — H
where:

Ho= [ (R - ) (REP il

Hi = / (Retry) - (RiTY) - (R ) du'd g
b -

(Ri) ~

H, = / (Ty) - (R*THy) - (R%try) (ltr #)dz/dug
b - 2

Since we shall bound both T and R; T in L norm, compared to Hy, H;
is a lower order term with respect to the order of derivatives. While for H,, we
use the estimate:
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™7 < cs

to see that it is a lower order term with respect to both the behavior of § and
the order of derivatives compared to Hy. This analysis tells us that we only
need to estimate Hy.

|Hol < /Eu|T:/x||Rf‘trg||dk?“w|dz/dug
t

— 1
< C8 VPR gl g I RS W1l 2

t
<c / (120 B )t 1), JE 200

—ro
by Proposition 7.4. Then in terms of modified energies, we have:

t
—bjg|4+2—1/2 =~
|Ho| < C / R (ON TN Y I

.
—bigls2—1/2 =
T2 JE 0w

Again, we consider the “shock part fioro” and “non-shock part ftf)”, which
are denoted by H(f and Hév , separately.
In the “shock part”, by the monotonicity of E _,;,(¢), we have:

t
= —bjg|42—1/2 —bjg|42—1/2
|Hy| < C\/EslaH-z(t,Z)/ s T2 a2 )
0]
VE <12t 1)
—bja|+2—1/2

~ —bigipa—1/2 !
< CE_yin(t. w21 / o ()t
[00]

C —bla+2—1/2 , | T —bja|+2+1/2
<—u nE (t,u) - pn
(blarr2 —1/2)"" sl "

¢ —2bjal+2 o\ T
= —U HE_ (t, u)
(b2 — 1/2)"" sl

Q)

The estimates for the “non-shock part” is more delicate.

N O ba—12, . [ ; )
HY < [ (W E g o', wdt

_,0
—bigl42—1/2 ~
R (O WY ()
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Now for t' € [—rg, to], ,u,;l(t’) < 10. This means we have the following
estimate for the above integral:

0]
bagra—1/2, [
/ pn 12 (1)) Ecig 2t wdt’

—ro

0]
b2 t/2, . [
:/ o g ()] E<ia) 2", wdt’

—rp

1o
—blg|2+1/2 =
= C/ o0 (1)) Ecia)2 (' wydt’
—r0
‘o [T , / —bjg|+2+1/2
—ro

where in the last step, we have used part (2) of Lemma 8.1.
Therefore

—2by
Y <C / VE o wd - "“(z)w/Eanz(r 0

o —2bjy
< ettm " PPOE g paa(t 1) + Cepry “ (1) £§|a|+2(t/,z>dr/
_,0

Here € is a small absolute constant to be determined later.
We obtain the following estimate for | Hy|:

—2biy
|Ho| < O E <12t 1)

(Blaj2 — 1/2)

2ba 0 —2biy ~
+Cepim” W) | Eqjya (0wt + epy O E g4t 1)

—T0

(9.28)
Next we consider the spacetime integral:
(L+ T (R - (79| - (R yde'duldpg
wi - -
= / (L + TR ug) - (TY) - R )di'du'dp
wi - -

+/ (R tryy - L(TY) - (Rl‘."“w)dt’dg’dug =1+11
W, -
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For the second term in the above sum, by the fact that:
\L(Ty)| < Cs~1/2

we have:

|11 < C(S_l/z/

—ro

t
1
IR Il sy IR Wl oy’

On the other hand, by Lemma 7.3, we have:
IIR?Hlﬁ ||L2(2:l7) <Cé (E|a|+2(t/a u) + E|a|+2(t/’ Z))

which gives:
t

11| < cal/z/

=10

AR eyl 2y (Bla2(t' ) + Ejgn (', w))dt!

This has a similar form as (9.16), and moreover, it has an extra §, which is
consistent with the order of E |42 (t, u). (We already took into account the
effect of L(T¢).) So this term is already handled.

To estimate |/ |, we first rewrite:

(L + ) (R ry) = Ri(L + ) (R ) + RV ZRf ey
— Ri(trx)Rj'try’ + Lo.t.

The contribution of the second term is:

/ 1Ty || ZI AR x| REH p|di du'd g
, x

u

By the estimates:
fz)<cs, Tyl <Cs™'

this contribution is bounded by:

t
1/2 1
8!/ / RS x| 2z IRE Wl s i
—r
which is similar to the estimate for |//| and has an extra §, so this is a lower

order term.
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By the estimate
|Ritrx | < Cé,
the contribution of the third term is bounded by:

Cs [ RS T wIIRE ldr du'dp
wi -

u

t
§C51/2/ ||Rf‘tr£||Lz(z;'7)||R?+“/’”L2<2f’7)dl/

—7r0

By Proposition 7.4 and Lemma 7.3, this is bounded in terms of modified
energies by:

t
—bigl42—1/2 ~ —b|y
52/ pon ) Ecjaan @' ) - pim (1)
—ro
X (\/E§|a|+2(t/» u) + \/E§|a\+2(t/’ Z)) dr’

t
< C8(E-jg4a(t. 1) + E<jag2(t, 0)) / w2 hay

—ro

2bm|+2+1/2

< C8%pum (O (E-jgp2(t. ) + E<joa(t.w))  (9.29)

Again, we used Lemma 8.1 in the last step.
Now we are left with the spacetime integral:

| (R + m0@®ew) - ) R parandng
wi - -
Integrating by parts, this equals:

(L + ) (Rt ) - (TY) - (Ra+21ﬂ)dtdu/dug
Wl

1 ()~
(L + ) (Rftg)) (R,-Tw + 5”( ’¢) (R{Hyydi'du'dpg
W)
=-Vi-W
By the estimate:

(')¢‘<C8
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we see that:
1 )~
RTY + Etr(R’)zf‘ <8712 Ty < s
So comparedto V1, V> is alower order term, and we use Lemma 7.3 to estimate:

IR Wl 2y = CO(VEiw2(o ) +\E gy )

So we only need to estimate | V|, which is bounded by:

J,

t
u

Ty IRy ldr du'dpg

2 /
(L-i— —) (Ri'trx")

t—u

+ / [ [| Ry I T || Ry |dr du'dpg == Viy + Vi

u

By the estimates:
liry/| < C8, |Ty| < Cs!/?

and Proposition 7.4, Vi; is bounded in terms of modified energies by:

t

t
—biala—1/2
312 [ MR Ny IR W g < €8 [ P

—ro =70

= —bjgj12—1/2 =
VE capia@s wm 2 JE g0 (0wt
t

~ —2bjg42—1 —2bjy 7
S COE_jga(tow) [y (A <COpp™ () E £ 120, 0).
_,0

(9.30)

In the last step we used Lemma 8.1.
To estimate Vj;, we recall the propagation equation for try:

2e
Lty + try’ = etry’ —|x'|* + - tra’ 1= po
- - - - —u

t—u

Applying RY to this equation gives:

2 o
LRy + ——Rfuy' = > RIZRI uy' + R po
= 1Bl=lal
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Again, by the estimates
®zl<cs, 1Tyl <cs™'?

as well as Proposition 7.4, the contribution of the first term on the right hand
side is bounded in terms of modified energies by:

t
2
312 [ NRE L ity IR

—rg
! —2bjgpa—1, s\ %= ’ / —2bjg|+2 , \ T
<Cs Mm (t )E§|a|+2(t ,w)dt' <Cdpuy, (t)E§|a|+2(t7 u.

—ro
(9.31)
The following terms in R” pg also enjoy the above estimates:
RY(1x'P). (RPe)- (Rf iy’ where |B] < || — IB]

While the other contributions from R e - tr X/, tz_—eu and the lower order terms
in tra’ can be bounded by:

—2b|g+2+1/2 = T
CMm laj+2+1/ (t) (53/2E|a|+2(t,Z) +83/2E§|(x|+2(t’g)) (932)

in view of Lemma 7.3.
Now we estimate the contribution from the principal term in tra’, which is:

dc?
7 Vo AR Yo
In view of the estimates:

lyol < C8Y2, |Ty| < Cs™1/?

this contribution is bounded by:

t t
1 2 1 2
1Ry ol 2y IR0l 2 geydt’ < C [ RIS, Lo di
i i L (Et’)

=70 =70

! —2bjgj42—1, 1\ T / /
<C Mm (t )E§|a|+2(t ,udt

—ro
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Again, considering the“shock part” and “non-shock part” in regard to this
integral, we obtain that it is bounded by:

!
C —2bjg|+2 0

Hm (f)EgaHz(f,E) +/

—ro

) ~
P AVE <40 wdt!
2bja|+2 -

(9.33)

This completes the estimates for the spacetime integral (9.26).

Next we consider the top order optical contribution of the variation
R“/Tl“lﬂ, where |&’| + 1+ 1 = |a| + 1, which is the following spacetime
integral:

s [Ty - (RET! Ap) - (LRE T yydr'du'dpg|  (9.34)

t
Wi

Again, we rewrite the above spacetime integral as:
S () - (RYT A - (L4 Tx) (R Ty )de' du'd g
Wi o

=02 [y RET &g (@ R T )
Wi
which is:

8272 (L4 0 (TR T Ay (RE T ) )dr'dudy
Wi o

=822 | LTy (R T A (R T ) d dudpug
Wi

=502 [ UL+ TR T 80) (R T
Wi -
As before, the spacetime integral in the first line above can be written as:

2 [ TR T KR T ) di
X

=8 [ R T 80 R T

1o
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On the formation of shocks for quasilinear wave equations

We shall only estimate the integral on E%, which can be written as:
=

1 Ri ~ ’_ /
522 / u((RiTw>+5tr< ’zf) (R T Ay (RY Ty )du'd g
xr

= —Hy— H|
By the estimates:
RTyl < Cs7'2 ™7 < cs

we see that compared to H|, H| is a lower order term, so here we only give
the estimates for H:

|Hgl < C8= 2P RO Rl o o A RE T o

In view of Proposition 7.5, this is bounded in terms of modified energies by:

t
—biatia—1/2 =
Bl < C / 5" E oy at'.w)

—ro

_ba —~

+ | Hz(l/)\/ES\al—l-Z(t/»Z))dl/
—bigpa—1/2 =

T O NN ()

Again, we need to consider the “shock part H(/)S ”” and the “non-shock part H(’)N ”
separately.
For H(/)S , we have:

\HE| < Cpan 27 20\ E < gpan 1 0)
t
= —biglra—1/2
-8(\/£§|a|+2(t,z) /, s 272 !
0

t
ﬂ/M / u;b““(z/)dﬂ)

fo

Cs —2b|g)+2

< PO E <1y 12t 1)

" (b2 — 1/2)
Cs —2bjg|42+1/2
+ -
(blajr2 — 1) "

Oy Exapsa(t. 0y E g ea(t )
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For HéN , we use the same argument as we did in estimating (9.27). Since
w, (¢ < C fort' € [—ro, to] with an absolute constant C, we have, by

(8.10):
fo
—bialsa—1/2 /=
/ /-/Lm Jer|+2 / (t/) E§|a|+2(t/a£)

—rQ

n —
< C/ Mmbla\+2+1/2(t/) /E§|a|+2(t/’ﬁ)dt,

ro

0]
o+ 1
—ro |+ r,u +1/2

The same argument applies to the integral involving 8,/ E <la|+2(, u),sofinally
we obtain:

0]
~ _zha ~
|HyV| < Cs / VE i@ wdt’ - ™ (0 E 12 (8, 1)
o

fo
— —2biy P
e / 5 Ectag a0, e - ity (0 JE < o420, 1)
—r
< oy e (0 (E (t,u)+ JE (t.u)JE )
= /fLm _§|a‘+2 » A _S|a|+2 U EIO[H—Z ) Z

We finally obtain the estimates for | H{)|:

—2big ~ =
Hgl = €1 (1) (E ciapats )+ E cignt. 0y Eiar2(t, )

(9.35)

Finally, we estimate the spacetime integrals:

—6242 | (LTy)(RE T Ky (RE T y)dr' du'd g
Wi

- [ ((L + %) (R?‘/T’Au)) (RE TH Ve dud di

u

=82 [ T R g (R T
wi -

=—V/=-V,—-V;
By the estimates:

1Ty < C8 V2, |LTy| < Cs7'2 |uy'| <Cs
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we see that, compared to V|, V; is a lower order term. By Lemma 7.3 and
(9.22), V| is bounded by:

t
Vil < cs71? / sup(u” )8 R T A o s
7’4-0 E%
t

bia ~ —ba =
S(Mm 21 E<jal 20t w) 4 phn ‘“(z’)\/ﬁﬁm(rcz))dt

C/ M%Zbla‘ﬂ_l(ﬂ) (\/E5|a|+2(f/» u) + \/Eg\a|+2(f))

3(V E<ter2 6.0+ Eygpant )

! —2bjal42 £ ’ /
+C Mm () 0 E§|a|+2(t,ﬂ)dﬂ
—ro

X (\/Es|a|+z(f/, u) + \/Eswawz(h g))dr’

Again, we consider the “shock part” and “non-shock part” separately. When
t' € [—rg, ty], since uml(t’ ) < C, the above integrals are bounded by:

fo
_Zba ~ ~
CS/ Mm l ‘+2(f/)(E§|a\+2(f,E)+E5|a|+2(1/,£))dl‘

—ro

o —1 —2bjgj42,,s * NS /
+C 87 Um (") E_ g2t uw)du ) dt
—rQ 0

While when ¢’ € [19, t], we have the following estimates:

~ ~ L, TS
CH(E iyt 1) + et 2t 0) / w22 !

fo

—1 £ / / ! —2bjg|+2 /
+4 / F ) 0(t,u)du / M (r)dt
0 i)

(oF) —2by,
PO (E< 2t ) + E<ja42(t, 1))
= Djarer

cs!

—2bjg|42+1
Oy ['E i
(261142 — 1) o
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Therefore V| is bounded by:

Cs  _op, = E
S—tm O (Ecpyi2(t ) + Exla2(t, )

cs! M72b|a\+z+1
(2bpg 2 = 1)

10
_Zba ~ ~
+C5/ K| l+2(f/)(E§|a|+2(t,£)+Eg|a\+2(f/,ﬂ))df/

—ro

u __
+ o / Foogat )i
0

o 2bgn u_
+C / 8 () ( / £<|a|+2(tﬁz/)dz/)dﬂ (9.36)
| Es

—ro

Now we estimate V. First we write V; as:

2 / ,
32”2/ (TY) (R,- (L+ t—) RY _lTl//i/L) (R T yydi'du'dpg
Wi —u

+521+2/W (Tw)((Ri)ZR?'—lT’AM)(R;"/Tl“w)dt’dg’dué = Vi + Vo,

By the estimate:
*0z] < cs
V,, has the identical structure with V3, therefore is alower order term compared

to V/.
While for V,, integrating by parts, we have:

1 (R~ 2 :
Vy = —82”2/ ((RiTw) + —tr(R’)J,z‘) ((L+ _) RY ‘1T’Au)
wt 2 t— u

u

X (Rl-o‘/TlHl/f)dt/dg/dug
2 ,
w! t—u
x (R T yar'du'dpg = —V3), — Vi

By the estimates:

1(ry) -~
ITy| < Cs™12, ‘RiTx/f + E(Rl)trz,z‘ < s
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as well as Lemma 7.3, V2’11 is alower order term compared to Vz/ 12~ To estimate
V3,5, we first consider:

2 / /
52142 / (T RE T AR Tyl dudpg - (9.37)
W, - h

t
u

By Proposition 7.5, this is bounded by:

! —biaisa—1/2 = bialin =
C / 5(n” T O E a0 + 1”0 Eara (@ w)

1o
—bjgjs2—1/2 =
'(Mm a2l (f/)\/Es\alJrz(f/,E))df/

Again, we consider the “shock part” and the “non-shock part” separately. When
t' € [—ro, 1], the above integrals are bounded by:

fo
—2bjq =~ =
C / ) (P E<iapsa(t' 1) + E 4o (¢, w)dt’

=70

While when ¢’ € [19, t], the above integrals are bounded by:

~ L obgea—1
CEsalJrz(f,ﬂ)/ N (O
fo

t
~ —2b|y
+C8%E<jgp12(1, ) / 2 (@t
fo

C —2bja|+2 T
<_— NHE t,
= 2b\a|+2'um ( )_§|a\+2( u)
C —2b|q|42+1 2=
+ (1)8°E<jo|+2(, u)
(a2 — 1) =

Therefore the spacetime integral (9.37) is bounded by:

C —2by, ~
A Mm H+2(¢)E<|a\+2(f,£)
2bja|+2 -
—2bjg|+2+1

b2 —1)" "

fo ~ ~
e / 1) (2 a2t 1) + B g i (0, w)de (938)

—ro

+ (1)8? E<jg+2(t, 1)
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We end this section by estimating the spacetime integral:

822 | Ty (LR TT Ay (R T yydr duldpy  (939)
W[

u

which is bounded by:
t
CS—]/Z/ 8l+1 ”LR:X _lTlAlLllLZ(E;'i/)al_l—l ”Rla +1Tl+lw||L2(Et‘i/)dt/
—ro

By the propagation equation:
Ly =m+ pe

we have:
o =1l dc? o =1l o =1l
LR, T'Ap = —%lﬁoTR,- T' Ao + uyoLR; T'Ayo + lo.t.

Here the lower order terms l.o.t. can be boupded in the same fashion as
(9.38). Now we are going to bound il ||TR? _ITZAWOIILz(E%) in terms of

VE<jai12() and 8" | W LRY ' T Ayl o gy interms of JE_ 1o (t'), 50
t

the latter is a lower order term with respect to the behavior of §. We only
estimate the contribution from the former one.
In view of the estimate:

Yol < C8'/?

This contribution to (9.39) is bounded by:

t
—1/2
C / 8/ E<iajs2(t’ ) tm > (1) E o2 (', w1’
_,0

t
<c / 1208 Eciagin ', ) E gy w0t

—ro

Again, considering the “shock part” and “non-shock part” separately, we have
the finally estimates for (9.39):
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Iy
—2b|y ~ ~
c / P2 () (2B w20 10) + By o0 )t
»
C —2bjg|42+1/2

+m " (0 (8% Ela2(t, ) + Ecjg 20t )

(9.40)

This completes the error estimates for the top order optical terms. As we
mentioned at the beginning of this subsection, although we only considered
the variations Rf‘“ Y and Rf’, T!+14y with |o’ |+ = |a|, all the estimates in this
subsection are also true for the variations Z;Hl Y and Z;."’Tl+1 Y respectively.
Here Z; is either R; or Q.

10 Top order energy estimates

With the estimates for the contributions from top order optical terms as well
as lower order optical terms, we are ready to complete the top order energy
estimates, namely, the energy estimates for the variations of order up to |o|+2.
As we have pointed out, we allow the top order energies to blow up as shocks
form. So in this section, we shall prove that the modified energies E<|q|+2(Z, 1),
E§|a|+2(t, u) and £§|a|+2(t’ u), F<jq)+2(t, u) are bounded by initial data.
Therefore we obtain a rate for the possible blow up of the top order energies.

10.1 Estimates associated to Ky

We start with the energy inequality for Zf’q'l

Z;isanyoneof R; Qand T.

Y as we obtained in Sect. 6. Here

> (BT 10w + FIZE W w + K128 9 w)

lo'| <l

<C > SEZITYI-row+C Y 821/ 0112

o/ |<|e| o’ [<ler]

where [’ is the number of T's’ appearing in the string of Zf‘/. In the spacetime
integral || wi 20, .o’+2 we have the contributions from the deformation tensor
of K1, Whi?)h have been investigated in Sect. 6. Actually, if we choose Ny, to
be large enough, then we can bound ||/ Z; p wll g oo (z%) in terms of initial data by

using the same argument as in Sect. 4.2 for |B] < Noo + 1.
Another contribution of the spacetime integral | wi € Q1 |o’|+2 comes from
u

fo %,5|a/|+2 . LZ;’ +1w, namely, the deformation tensor of commutators,
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which has been studied intensively in the last section. We first consider the
lower order optical contributions, which are bounded by (see (9.14)):

t u
C/ 52E5|a|+2(t/,£)dt/+C8_1/2/0 F_ 2t u)du’

—ro

t
—2b|y o
+C8' 2K ot w) < Cpay™ " (1) (/ O E a2t wr

—ro

u
+o7!/2 /0 F (6, u)du + 8" K cja142(t, u)) (10.1)
Here we define the following non-decreasing quantity in ¢:

~ 2b\y
K<jo|42(t,u) ;== sup {um‘ YK <2t z)}
t'e[—ro,t]

By (9.28)—(9.33), (9.35), (9.36), (9.38) and (9.40) the contribution of top
order optical terms are bounded as (provided that § is sufficiently small):

<
(Plaj+2 — 1/2)

—2bigl42 o _
+Cetm” W) | Ejyua(t wdt!
—ro
—2by ~
+epm T E g0t 1)

cs! —2bjaj42+1
t ol (t)/ F )2, u))du'
(2biai+2 — 1) =

o u
—2b|y ~ _ - =~
+C5/ T () (E<oc|+2(t/7£)+5 2/0 E5a|+z(t/,z’)dz’) dr’

—ro

—2bjy
i OE 110 0)

,zba ~
+ Copm O E < 12 (1, 1)

Zba +1/2
+ Cpyy 2 / (t)<83/2E<|0,|+2(t u) + 83/ <|a|+2(t u))
C  bupe % CS Db
HE t, 1 E ,
2b|a|+2Mm (DE g 42, 1) + 2b|a|+2M (D E<jal+2(1, u)

(10.2)

Substituting these contributions into the energy inequality, and use the fact
that u,, () < 1, we obtain:
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w0 Y 8 (E1ZE 6w + FIZE T 6w

lo'|<|er|

+KIZEI0 ) < Cup @) Y 8 EZE T Y=o, )

o/ | <|ex|
t
+ —=F (t,u)+C / E (', wdt'
(b\oc|+2 _ 1/2) <|O(|+2 € o <la[+2
T C(S_l ‘e / /
Bt + o [ Fo
<la|+2 (2b|a\+2 _ l) 0 <la[+2

t u
+ C(S/ (E§|Ol|+2(t/’ Z) + 8_2/ E<|a|+2(t/’ Z,)dgl) dt,
0 =

—r
+C8E<|a‘+2(t u) + C<8 /2 E<|0{|+2(t u) + (S <|aH_2(t u))

c -
+ 5 ——E o2, 0) +

E<jo12(t, ) + CSK <o 42(t, )
2bja|+2

)
2bja|+2

Now the right hand side of the above inequality is non-decreasing in ¢, so the
above inequality is also valid if we replace “z”” by any ¢’ € [—rg, 7] on the left
hand side:

@ D (EZE @ w + FLZE e w

o’ <le|

+K1Z ) )

<C > EZ T YI-row +

lo’| <|et]

t
+ C/ E_ 2t wydt' +€E_p, 1 o(t, w)

—ro

cs! o
+ —/ F (t, u')du'
(2b|a|+2 _ 1) 0 <la|[+2

t u
+ C5/ (E§|a|+2(f/, u)+ 5_2/ E<|a|+2(f/, ﬂ/)dﬂ/) dr’
) S

—ro

+ COE 1y 121, 1)

cC -
+C(8 PE a2t ) + 8E 1 u)) S Ecuntw
lal+2

_l’_

E§|a|+2(ta u) + C3E§|a|+2(t’ u)
2bja|42
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For each term in the sum on the left hand side of above inequality, we keep it
on the left hand side and drop all the other terms. Then taking supremum of
the term we kept with respect to ' € [—rg, t]. Repeat this process for all the
terms on the left hand side, we finally obtain:

E<|a|+2(t, u) + E<|a\+2(f7 u) + Es\aH—z(f’ u)

<C Z 821 Za+IW]( ro, _)+

o/ | <[]

C

t
+ Ce / E g2t w)dt" + €E_ 4 10(1, 1)

—ro

cs! u
+ —/ F (t, u)du'
(2b|a|+2 _ 1) 0 <la|+2

t u
+C5/ (Eg\oc|+2(f/,ﬂ) +52/ £<\a|+2(f/,2/)dﬂl)dt/
o =

—ro

+ COE cig ot ) + € (62 Eciorialt, ) + 8 E Ly o1, ub))

cC =~ Cé
—F t, E t, CSK t,
+ 2b|a|+2_5|“|+2( u) +2b|a|+ <laj+2(t, u) + <la|+2(t, 1)

The control on the boxed term relies on Remark 9.2—since C+2 is suitably
o

small, the boxed term can be absorbed by the left hand side. So if we choose
€ and § small enough, we obtain:

E§|a|+2(tv u) + E§|a|+2(t? u) + E§|a|+2(t» u)
'

<C Y SEZE YN0 w) + C / oot wdr’
o’ [<ex]| =70
t

u __ ~
+c3—1/ E5|a|+2(t,z/)dz/+C8/ E<jq42(t', wydt’
0

—ro

+C8 P E<iaga(t, w) (10.3)

Now we only keep Ef|a|+2(t’ u) on the left hand side of (10.3)

Efat.w) <C D §E[ZX ) (—ro. )

o’ |<ler]

t
+Ce/ E5|a|+2(t/’ﬂ)df,

—ro
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t

w _
+C5_1/ E§|a|+2(t,ﬂ/)d£/+c(s/ E<jo)+2(t', wydt'
0

—r

+C53/255|a|+2(t,£)

Then by using Gronwall we have:

Eopn(t.w) <C D 8 EZ T Y (—ro, w) + €5

e/ [<let|
u __
/ /
/0 iyt )du

t
+ C5/ E<jo)2(t', wydt' 4+ C8E<jy12(t, u)
o

(10.4)

Keeping only E <|a|+2(t, w) on the left hand side of (10.3) and substituting the
above estimates for E <ja|+2(t, u) gives us:

Fognt.wy <C > 8 E[Z ) (—ro, )

o’ [<ler]

u _
+C5_1/0 F gt u))du'

t
—|—C5/ E§|a|+2(l,,£)dl/+C53/2E5|a|+2(l,g)

—ro

Then again by using Gronwall we obtain:

Foat.w) = C > 8 E[ZE y1(=ro, )

o/ | <[]

t
+C8 / E<jq2(t', wydt’ + C8*E<jq12(t, 1)
o

(10.5)

Note that since 0 < u < §, all the constants C on the above do not depend
on §. Since the right hand side of (10.5) is increasing in u, substituting this in
(10.4) gives us:
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t

Eoat.0=<C > 87 E[Z¢ Ty (—ro, w)+C8 / E<jaj42(t, wydt’

lo'| < || —ro

+C8 P E<iq4a(t, ) (10.6)
Substituting (10.5) and (10.6) in (10.3) gives us:

E_qat. ) + F iy n(to 1) + Kjoia(t. 1)
<C > EZ T YI(—ro.u)

/| <[]

t
+C8 / Ecjua(t’, wdt' + C82Eciia(t.)  (10.7)

—rQ

This completes the top order energy estimates associated to K.

10.2 Estimates associated to K

Now we turn to the top order energy estimates for Ko.

We first start with the energy identity for Zl‘?‘url Y, where Z; is any one of
Ri,Qand T:

> (ELZE 0w + FIZE e w)

o/ | <|e|

<c > & E[Z¥ Y )(=ro,u) + C > / 200,142

lo'|<l|e| lo'|<le|

Again, [’ is the number of T's’ in the string of Z;"/H.

In the spacetime integral || w c? éo, «'+2 wWe have the contributions from the
deformation tensor of K, which have been investigated in Sect. 6 and also the
contribution of the spacetime integral from th %ﬁloﬂlﬂ . LZ;”/Jrl Y, namely,
the deformation tensor of commutators, which %as been studied intensively in
the last section. We first consider the lower order optical contributions, which
are bounded by (see (9.15) and (10.7) and provided that § is sufficiently small):

t
C/ 82 Ejopint, wdt' + C8' 2 K i1, )

)

u
+5_1/2/0 F g2t u))du'
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t
—2b|y ~
< CE_ (=10 w) + C8'2 1, ™ (1) | E<jopa(t’, wydt'.
.

(10.8)

By (9.18), (9.19), (9.23), (9.24) and (10.7), the top order optical contribu-
tions are bounded by (provided that § is sufficiently small and by |42 is large
enough):

t
—2bjy ~ —2bjy ~
/ A VE<jqp2 (s wydt + Sy () E<p42(t, w)
e

—2bjy ~
BT O E<jajra(t, w)
o
C iy 2+ e , -
+mﬂm () E<jq42(t", w)dt' + E<jq+2(t, u)
o|+2 — —rQ
+ 087 Bz Y (—ro.w) (10.9)

lo’| <Jer]

Substituting (10.8) and (10.9) into the energy inequality, and use the fact that
Um(t) < 1, we obtain:

> w8 (ELZE 6w + FIZE 6 w)

lo/| <]
<C > EZ T Y=o w+C D s EZ T Y (=0 )

/| <le| o/ | <[

t
- - cC -
+C/ E<jo42(t', wdt' + 8E<jo)+2(t, ) + 57— E<ja)2(1, 0)
—ro 2bjaj+2

Since the right hand side of the above is non-decreasing in ¢, the inequality is
true if we replace 7 by any ¢’ € [—r, t] on the left hand side:

S8 () (E[Zf‘/“ Y1, w) + FIZE Ty, z))

o’ [<ler]

<C > SEZI T YN —ro.w + 8T DT E[ZE T Y (—ro. w)

o' <l|e| lo/|<l|e|

t
~ ~ cC -
< C/ E<jgj+2(t", wydt' + SE<jq42(t, u) + b E<jq+2(t, u)

—ro la|4+2
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As before, taking supremum on the left hand side with respect to ' € [—rg, 1],
we obtain:

Eslw\ﬂ(ﬁ u) + f§|a\+2(t, u)
<C > EZ Y roow) + €8S E[ZE ) (—ro w)

o/ <le| o/ |<|e|

t

- - C -

+C/ E<jq42(t', wdt' + 8E<jo+2(1) +| 5——E<ja|+2(t, )
—rg 2b|a|+2

Similarly, the control on the boxed term relies on Remark 9.2—since B2
is suitably small, the boxed term can be absorbed by the left hand side. By
choosing § sufficiently small, we have:

Eio2(0) + Fepoa(t.w) < € > 82 E[ZE T Y 1(=ro. w)

o/ | <[]

+Co7 " Bz T Y (=0, w)

o' [<lex|

t
+ C/ E<iq42(t', wydt’

)

Then keeping only E <|a|+2(1) on the left hand side gives us:

Eqin) =C > 67 EZE y1(=ro.w)

lo/| <lex|

+ 87 2 Y (—ro w)

/| <[]

t
+ C/ E<jq42(t', wydt’

—ro

Then using Gronwall, we have:

Ecfpn) =C > 87 E[Z¢ y1(=ro.w)

o/ |<|ex]

+CsTH S B2 Tyl (—ro. w)

/| <[]

@ Springer
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Therefore

E§|a|+2(t»£) + F§|a|+2(t» u)
=C > SEZIT Y=o, w) + €57

lo/| <Jer]

> EZE Y )(—ro.w)

o<l
(10.10)

Now we substitute this to (10.7) for Efla\-‘:-Z(t):

E g2t ) + F g (1. 0) + Kja2(t, 1)
<C > EZ T Y=o w+C Y ST EZE T Y (—ro. w)

lor'| <ler] lo'| <|e]
(10.11)
If we denote:
Do = 2, SEIZIY1(=ro,w)
lo/ |+ <|e|
+7 > B2 Y (—ro, w)
o/ |+ <|e|
+ 821+2” Fa,l “LZ(E%rO)
+ 2 NZ T e Zi=Ri Q.
o/ |+ <|a|+1
we can write the final top order energy estimates as:
E5|a\+2(1‘, u) +E§|a|+2(t’ u) + K<jga(t,u) < C(SD‘MTXHZ
Ecjos2(t, u) + Fejoi12(t, ) < CD 5 (10.12)

This completes the top order energy estimates.

11 Descent scheme

In the previous section, we have shown that the modified energies E <lal+2(1),

E_|4)4+2(1) for the top order variations are bounded by the initial energies

D According to the definition, the modified energies go to zero when

U
|| 42°
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Um(t) goes to zero. This means the energy estimates obtained in the last
section are not sufficient for us to close the argument when shock forms.
However, based on those estimates, we shall show in this section, that if the
order of derivative decreases, the power of w,,(¢) needed in the definition of
modified energies also decreases. The key point is that after several steps,
this power could be zero and finally we can bound the energies without any
weights.

11.1 Next-to-top order error estimates

We first investigate the estimates associated to K. To improve the energy
estimates for the next-to-the-top variations, we consider the spacetime integral
(Keep in mind that the top order quantities are of order |«| + 2):

/W ATWIZE g LZE|di du'dpg

oo V2 |zt Lz g
wi -

- 172
<cs12 (/ IZ?‘trA’Izdt’dz’dug) : (/ ILZ?‘wlzdt’dz’dué)
Wi Wi

t 172 u 1/2
<cs™'? ( / ||Z,~“trg||§2(2u)dr/) : ( / FIZIy@, Z)dz/)
—ro v 0

(11.1)

12

Throughout this subsection, Z; is either R; or Q.
By Proposition 7.4:

t

—1/2
1Z5tx sy = €O [ a0 [Egatt

—r0

t
—1/2—b ~
< Cs'? / W E g (0wt

=10

t
< C51/2 /£§|a|+2(t,ﬂ)/ M;b\aH—Z*]/Q(Z‘/)dt/

—ro
—bjaj42+1/2 =
< €82y 2 (0) JE gy 4a o w)

Then by the top order energy estimates obtained in the last section, the integral
in the first factor of (11.1) is bounded by:
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! —2bjaj+2+1 /7 / /
Cs M (1) E g2, wydt
—ry

t
—2b|g|2+1
Wm

< COE g 42(1,10) (thdt’

—ro

2b|a\+z+2(t)D

2
=Cép || +2

On the other hand, the second factor in (11.1) is bounded by:

/ CFIZYY(t, u)du
0

5 2b\d|+1

0 [ s T OFIZEE ) | du

0 r'€[—ro,f]

where bjy|+1 = bjo|+2 — 1. Therefore (11.1) is bounded by:

—2bjy =
Cs' '“0)\/7%\//0 F o1 (8 w)du!

2 2b 1 u —2bjg|+1 LU
< OO Dl 1+ €8 ) [
(11.2)
Next we consider the spacetime integral:
20 [Tz T Sz T g
t
- ¢ 1/2
<cs 12 (/_ro 8" +1||Z°‘ T" AMHLz(z ))
u / / / 1/2
x ( / s FIZE T Y, z’)dz’) (11.3)
0

with |&/| +1' < |a| — 1.
By Proposition 7.5:

SNZE T Al sty

t

< s / VE=lale2( w) + i (1) E 20 (0, w)dt’
e

= C81/2/ blaHz(t) E<|a|+2(t u)
o v
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—bialsa—1/2 =
+ PTG JE a0, wdt
1
~ _blI
<cs'? (\/E§a|+2(t,£) 2 ()dt!

—ro

= L =172
+\/E§|ot|+2(ta£)/ s 2 7Y (t’)dt/)

—ro

—blgj42+1/2 =

< C8'12p,, / (D E<jg42(t, 1)
—bigj4a+1 =

4+ C8V2 1, T (1) E<po12(t, )

Then by the top order energy estimates obtained in the last section, the integral
in the first factor of (11.3) is bounded by (u,, () < 1):

t
—2bjy14a+1 ~ ~
€ [ ) (Ecrato )+ Ecp a0 )

—r
t

~ ~ —2bjg4a+1
SCS(E5|a|+2(Z)+E§|a|+2(t,£))/ T (Y I
oy
—2bjai242 ~ ~
= Cop O (Eapsa 0 + E oot 0)
—2b|g42+2
< Com (D40

Then again, with b |41 = bjo|+2 — 1, the spacetime integral (11.3) is bounded
by:

by / u _

by 1 —2by “.
< Cop (O Dlgg + €8 (@) / F oo (1 u)du
0

(11.4)

We proceed to consider the spacetime error integral associated to Ky. We
first consider the spacetime integral:

/ Tyl Z8uwy |ILZE|dr du'dpsg
Wt

u

t
< C(S_'/z/ 1Z5 ) W 2 ) WL ZE WMl 2 st

—ro
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Substituting the estimates:

—big|s2+1/2 ~
1Ztex 2 gy < €82 (1) Eig 0 0)

—b|g|+2+1/2
= Co ) Dl

—by ~
ILZ{W 2ty < Crm () E<ion (', )

with bjg|+1 = bjo|+2 — 1, and using the fact that Es|a|+1 (t) are non-decreasing
in z, we see that the spacetime integral is bounded by (u,, () < 1):

t
~ —2bjqi41—1/2
C8'2 Dl o E<to 1 (1, ) / p 2 @

—ro

—2bjg|+1+1/2 ~
< 82, 2 0 Dt Eciaow)

< Ctt” Oy + Cpt M O e (o). (11.5)

Finally, we consider the spacetime integral:
2 [z KTz T e g
Wi

< Ccsd+2-1)2 /t

1ZE T Al 2 ILZE T eyt (11.6)
—ro
for |&’| + 1" < |a| — 1. Again, substituting the estimates (1, (t) < 1):

NZET Al ozt

—big42+1/2 = —
< €' 2" ) (JEuria ) 4B pga )

with b\ |+1 = b|g|+2—1, the same argument implies that the spacetime integral
is bounded by:

t
o —2bjg)+1—1/2
¢ let?z|+2 Esla|+1(l,£)/ [ /(t’)dt/

—ro

—2bjg+1+1/2 ~
< Cp 0 DY, o Bt (0 w)

—2b|y ~
< Ceptm” (D4 + €E<ia1(t, ) (11.7)

Here € is a small absolute positive constant.
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11.2 Energy estimates for next-to-top order

Throughout this subsection Z; could be R;, Q and T. Now we consider the
other contributions from the spacetime error integrals associated to K. For
the variations Zf‘/w where |&’| < |a|, the other contributions are bounded by
(see (9.14)):

‘ u

C‘Sz/ E§|a|+1(f/,2)dt/+C8_l/2/0 Eg|a|+1(t,z/)d!/
1o
+C8PK g41(t, 1)

1
< C52/ Mr;ZblaH—l(t/,Z)E§|(x|+1(t/’ﬂ)dt/
o

_ L opy, ~
45 /0 s OF sy (1 )i

—2b\y =
+C8Y 2 (O K <41 (2, 10) (11.8)

In view of (11.2), (11.4), (11.8) and multiplying z.”"*" () on both sides of
the energy inequality associated to K for Zl‘?‘,w with |o'| < |«| give us:

> w8 (EIZE w10, w + FIZE w16, w + KIZE 16 w)

lo'| <lex|

u_
<C > S EIZ ¥(—ro,u) + C8™ / F g1 (¢ u))du!
0

o |<ler]

t
+c<32/ E<jo1(t', wydt' + C8' 2 K<jqp1(1, ) + C8Di,

—ro

Since the right hand side of the above is non-decreasing in ¢, the above inequal-
ity is still true if we substitute # by any ¢’ € [—rg, ¢] on the left hand side:

> bt 2 (B ( [(Z4 Y1 w) + FIZ¥ 1, u) + K[ZE (e, M))

lo/|<]e|

u_
<C X PEZ VI w+ O [ F o eadd
0

o' <l|e|

+ca2/ E<jo)11(t', wdt' +C8D, |+2+C81/21?5\a|+1(t,g)
.
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As in the previous section, taking the supremum with respect to t' € [—rg, ]
we obtain:

E§|(x|+](ta E) + E§|O(H-1(ta ﬁ) + E§|a|+1(ta ﬁ)
U _

< C8Dyn + C5_1/0 F 1 (0, u))du’

t
+cs? / Feapr (s wdt’ + C8Y2R ey 1, )

—ro

Choosing § sufficiently small, we have:

E5|a|+1(l‘,£) +Eg|a|+1(’»ﬂ) + Ko 411, 0) < C‘SDﬁtz
!

u __ ~
Lo / oot (1, )i + CB? / E a1 (¢, wt
0

—ro
Keeping only Efltx\ﬂ (t, u) and we have:

t

Eg|a|+1(l‘,£) < capf‘;m +C62/ E<jgs1(t', w)dt’

—ro

L
+cs7! / E§|a\+1 (t,udu'
0

By using Gronwall, we obtain:

1

—ro

U“

This together with the fact that E<|q41(2), D1+

implies:

, are non-decreasing in u

ES‘O{H—I(I) +E§|o{|+1(ta E) + ESlC[H—](I’ Z)
t
< 8D, + 052/ E a1 (¢, wydt’ (11.9)

—ro

Next we consider the energy estimates associated to Kg. We start with the

variation Z;"/zﬁ with |&’| < |a|. The other contributions to the spacetime error
integral is bounded by (see (9.15) and (11.9)):
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t
cél/z/ E<1 (', w)dt’ + C8'*K g1 (1, 1)
o

u
+cs7!? / F g1t u)du!
0

2b||+1 (t)D

t
—2bjy
<082 [ O B+ €8 e
L

(11.10)

Without loss of generality, we can choose € > §. Then in view of this and
(11.5) and (11.7), we have the following energy inequality:

3 2b\a|+1(t)521( Z?'w](t,g)JrF[Zf’/lﬂ](t,z))

o’ <le|
t
< CDjyp 1y + CéEciapi(t, 1) + C51/2/ E<jgl+1(t', wydt'

—ro

Then similar as before, substituting ¢ by ¢’ € [—rp, t] on the left hand side and
taking the supremum with respect to ¢’ € [—rg, 7], we obtain:

E§|a|+l(ta u) + f5|a|+1(l, u)

t
< CDigyip + CeE<ia1(t, ) + C81/2/ E<jo)11(t', wydt'

—ro
Choosing € sufficiently small and using Gronwall, we finally have:
E<jap41(t. 1) + Fjo1(t.u) < CDjy 1 (11.11)

Now substituting (11.11) to the right hand side of (11.9), we have:

E g1t + F g1 (1 10) + Koy (1, 0) < C8D

Summarizing, we have:

<|oz|+1(t u) + F<|a|+1(t u) + K<|(x|+1(t u) < C6D| |42

E<jap41(t,u) + F<jg+1(t, u) < CD}, (11.12)

loe|+2
11.3 Descent scheme
We proceed in this way taking at the nth step:
biaj42-n = bjaj+2 =1, bjaj41-n = bjoj42 —n —1
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in the role of b|y42 and b|y|41 respectively, the argument beginning in the
paragraph containing (11.1) and concluding with (11.12) being step 0. The
nth step is exactly the same as the Oth step as above, as long as bj|+1—n > 0,
that is, as long as n < [bjq|4+2] — 1. Here we choose by |42 as:

3
big1+2 = [bjaj+2] + 1

where [b|q|+2] is the integer part of bj4|42. For each of such n, we need to
estimate the integrals:

t t
—Dig|42—n—1/2 —2big|42-n+1
[l B aar, [ et ar
—7ro —ro

As in the last section, we consider two different cases: t' € [—rg, fp] and
t' € (1o, t], where w,;, (fo) = 1—10. Ift’ € [—rg, ty], we have:

fo fo
—D\g|+2—n—1/2 —Dbig|+2—n+1/2 —D\g|+2—n+1/2
/ P < /(t’)dt’SC/ s 2 gy < opg et 2

=70 —ro

Ty fo
—2big|+2-n+1 —2big|+2—n+2 —2b|g|+2—n+2
/ Lo la|+2—nt (t/)dt/ < C/ Lo la|+2—nt (t/)dt/ <Cu, la|+2—nt (t)

—ro (]
Here we have used the fact that w,, (t") > % for t' € [—ro, fp]. In regard to
the estimate for ¢’ € [1y, t], since

Biasaon = bajsznl + 2 = 145 = .
le|4+2—n = LO|a|4+2—n 4= 4 = 4

by Lemma 8.1, we have:

_b\a|+27n_1/2

t
/ m (t"dt" < Cum
0]

big|+2-nt+1/2

)

t
—2b _n+1 —2b _nt2
/ Um la[+2—n (t/)dt/ < CMm |a|+2—n (t)
fo

So indeed, we can repeat the process of Oth step forn =1, ..., [bjg42] — 1.
Therefore we have the following estimates:

Eg|a\+1—n(t,£) + Fg|a|+1—n(t,z) < CDIMEHZ

U

E_ o410t u) + E§|a|+l—n(t’ u) + E§|a|+1—ﬂ(t’ u) < C8D|a|+2
(11.13)
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We now consider the final stepn = [b||42]. In this case we have bjg| 12—y = %.
Using the same process as in Oth step, the contributions of the optical terms
are bounded by:

with |o/| + 2 <laf+1-— [b|a|+2]
with |o| + 1" + 2 <lal+1- [b\a|+2]

with Z; = R; or Q. As before, in order to bound the corresponding integrals:

t t
/ ”ZO{ trX ||L2(2 )dl/’ / ”Z(X Tl A/"(’”LZ(E"’)dt

=70 =70

we need to consider the integral:

; 0 t 1
/ w2t </ w2 (@dt! +/ n " with 1) = 10
—r —ro fo

For the “non-shock part fioro”, since [, (fo) > 11—0,

0]
/ 12a4hdt < ¢

—ro

For the “shock part ft;, as in the proof for Lemma 8.1,

t
/ 2 har < cullfay < ¢
fo

So we have the following bounds:

t 1/2
(/ 1z try IILZ(Eu)dt) < Ca,/D| 42

—ro

with || + 2 < |a| + 1 — [Djaj+2]

t 1/2
(/ 12T Aulle(Eu dr) < csY 2,/23@‘+2

—ro

with [0/ +1' +2 < |a| + 1 — [bja+2]
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Therefore we can set:

bia|+1-n = bla|+1-[bjg 121 = 0

in this step. Then we can proceed exactly the same as in the preceding steps.
We thus arrive at the estimates:

g e u
E<jalt1-[bjg421 (T 1) + F<ja|41-[by 121 w) < CD 1y
E o1 1ba2) G W)+ F g1 by 101 )+ K<la 41 [bg)421 (25 1)

u
< C8Dy 5 (11.14)

These are the desired estimates, because from the definitions:

E oji1-thpp1 0 = SUp {E g1 1 W)
t'e[—ro,t]
E<ig/41-(bapa] (. 1) := SUp  {E<ig 1 (b1t 0)}
t'€[—ro,t]
F ittt = sup {F o1 1@ 0} (1115
el V' el—ro.1] !
Fela/t1—[baal (1) == SUD  {F<jo|11-[b0] (', 1)}
t'e[—ro,t]
K<ja+1-[by 01t 1) = SUp  {K<ja|t1-[b 401 (s )}
t'e[—ro,t]

the weight i, (') has been eliminated.

12 Completion of proof

Let us define:
Sal0)i= [ (0 + 1R 6F + 1Ry R )y

And also let us denote by S, (¢, u) the integral on S; ,, (with respect to d Kg) of
the sum of the square of all the variation ¥ = st Zl‘."/xp}, up to order |o| 4+ 1 —

[bj«|+2], where I’ is the number of T’s in the string of Zf" andy =0,1,2,3.
Then by Lemma 7.3 we have:

Sla| (b1t w) < C§ (E|a|+l—[b\a|+2](t) + E )11y 21 ¢ 2))
for all (¢, u) € [—2, ") x [0, §].
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Hence, in view of (11.14) and (11.15),

Slal-lbaa)(t. 1) < C8Dje, ., forall (r,u) € [~2,1%) x [0,8]. (12.1)

Then for any variations  of order up to |a| — 2 — [b|q|42] we have:

2] < Sja|— (b1 (5 1) (12.2)

Then by the Sobolev inequality introduced in (3.41), (12.1) and (12.2), we
have:

8" sup | Z¢ Yo | = sup Y| < C8'2 /Dl < Cos'/? (12.3)

tu tu
where C( depends on the initial energy Dlu*a‘ 12> the constant in the isoperimetric
inequality and the constant in Lemma 7.3 as well as the constants in (11.14),
which are absolute constants.
If we choose |«| large enough such that

[Ial+1

5 ]+3 < la| =2 — [bjg|+2]

then (12.3) recovers the bootstrap assumption (B.1) for (z, u) € [—2, ") X
[0, 5].

To complete the proof of Theorem 3.1, it remains to show that the smooth
solution exists for r € [—2, s¥), i.e. t* = s*. More precisely, we will prove
that either w,, (t*) = 0 if shock forms before r = —1 or otherwise t* = —1.

If t* < 5%, then u would be positive on Ef*. In particular p has a positive
lower bound on Zf*. Therefore by Remark 2.4, the Jacobian A of the trans-
formation from optical coordinates to rectangular coordinates has a positive
lower bound on Ef*. This implies that the inverse transformation from rectan-
gular coordinates to optical coordinates is regular. On the other hand, in the
course of recovering bootstrap assumption we have proved that all the deriv-
atives of the first order variations ¥, extend smoothly in optical coordinates
to Ef*. Since the inverse transformation is regular, 1/, also extend smoothly
to Ef* in rectangular coordinates. Once v, extend to functions of rectangular
coordinates on Ef* belonging to some Sobolev space H3, then the standard
local existence theorem (which is stated and proved in rectangular coordinates)
applies and we obtain an extension of the solution to a development containing
an extension of all null hypersurface C, for u € [0, §], up to a value #; of ¢
for some 7; > *, which contradicts with the definition of #* and therefore
t* = s*. This completes the proof of Theorem 3.1 and the main theorem of
the paper.
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