
ON Lp AFFINE SURFACE AREA AND CURVATURE MEASURES

YIMING ZHAO

Abstract. The relationship between Lp affine surface area and curvature measures is investigated.
As a result, a new representation of the existing notion of Lp affine surface area depending only on
curvature measures is derived. Direct proofs of the equivalence between this new representation
and those previously known are provided. The proofs show that the new representation is, in a
sense, “polar” to that of Lutwak’s and “dual” to that of Schütt & Werner’s.

1. Introduction

Since its introduction by Lutwak in [29], Lp affine surface area (defined below) has become a
fundamental concept in the Lp Brunn–Minkowski theory and has appeared in a growing number
of works (e.g., Ludwig [20, 21], Paouris & Werner [34], Werner & Ye [47, 48], and Ye [49]).
Different approaches to Lp affine surface area have been discussed, e.g., Meyer & Werner [33],
Schütt & Werner [41], and Werner [45]. Characterization theorems for Lp affine surface area
have been given, e.g., Haberl & Parapatits [12, 13], and Ludwig & Reitzner [23]. Its relation to
PDE was explored, e.g., Lutwak & Oliker [30]. Connections between Lp affine surface area and
information theory were discovered in Werner [46]. For the p = 1 case, Lp affine surface area
is an older notion usually referred to simply as affine surface area. Results here are even more
numerous. Different approaches to this notion include Leichtweiß [17], Lutwak [25, 26], Meyer
& Werner [32], Schütt & Werner [40], and Werner [43, 44]. A characterization of affine surface
area was given in Ludwig & Reitzner [22]. Connections between affine surface area and the affine
Plateau problem were discussed, e.g., Trudinger & Wang [42]. It is also not surprising to see the
appearance of affine surface area in polytopal approximation, e.g., Bárány [3], Böröczky [4], and
Gruber [9, 10, 11]. Perhaps, most importantly, it is the crucial ingredient in fundamental affine
isoperimetric inequalities and gives rise to some affine analytic inequalities, e.g., Artstein-Avidan,
Klartag, Schütt & Werner [2], Caglar & Werner [6], and Lutwak [24, 27].

Let K ⊂ Rn be a convex body (compact convex set with non-empty interior). The curvature
measures of K are a list of n Borel measures defined on the boundary of K that can be defined via
local parallel sets (see e.g., Chapter 4 in [38]). In the current paper, the relationship between Lp
affine surface area and curvature measures will be explored. As a result, a new representation of the
existing notion of Lp affine surface area using only curvature measures will be derived. New proofs
of the important properties of Lp affine surface area, such as the upper semi-continuity and the Lp
affine isoperimetric inequality, will be given using the new representation. The proofs given will
be ones requiring no prior knowledge of the properties already established using other definitions
of Lp affine surface area. It is also the aim of this paper to investigate the relationship between
the new representation of Lp affine surface area and the three existing ones. This will be done by
providing direct proofs of equivalence between the new representation and those previously given.
It will become apparent that the new form of Lp affine surface area is, in a sense, “polar” to that
of Lutwak’s and “dual” to Schütt & Werner’s. In order to establish the equivalence, the Lipschitz
property of a sequence of restrictions of the inverse Gauss map will be investigated, which may be
of independent interest. This will be discussed in Section 5.
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It is important to note that it is the attempt of the current paper to give a new representation
of the usual Lp affine surface area (not to define a new (different) Lp affine surface area).

The notion of affine surface area traces back to affine differential geometry. In affine differential
geometry, the affine surface area of a convex body K with sufficiently smooth boundary (at least
C2) and everywhere positive Gauss curvature is given by

Ω(K) =

∫
∂K

H
1

n+1

K (x)dHn−1(x), (1.1)

where HK(x) is the Gauss curvature of K at x ∈ ∂K (the boundary of K) and Hn−1 is (n − 1)
dimensional Hausdorff measure.

When K has C2 boundary with positive Gauss curvature, the Gauss map νK : ∂K → Sn−1 is
nice enough to allow the change of variable u = νK(x) and we get:

Ω(K) =

∫
Sn−1

F
n

n+1

K (u)dHn−1(u). (1.2)

Here FK : Sn−1 → R is the curvature function of K.
A very important result in affine differential geometry is the affine isoperimetric inequality

which characterizes ellipsoids. For a convex body K ⊂ Rn with C2 boundary and positive Gauss
curvature,

Ω(K)n+1 ≤ nn+1ω2
nV (K)n−1, (1.3)

with equality if and only if K is an ellipsoid. Here V (K) is the volume of K and ωn is the volume
of the n-dimensional unit ball.

Extending the definition of affine surface area to one that works for general convex bodies
(without smoothness assumptions) and still respects the basic properties of the classical definition
was of huge interest during the late 80s and 90s (in the previous century). In particular, is there
a way to do the extension so that the affine isoperimetric inequality, with the same equality
conditions, still holds? The first attempt was made by Petty [35]. He observed that (1.2) makes
sense for convex bodies that possess curvature functions. The affine isoperimetric inequality was
also shown to hold under this extension.

Although the Gauss curvature and the curvature function do not necessarily exist for general
convex bodies, the generalized Gauss curvature and the generalized curvature function (see [38] or
Section 2) exist almost everywhere on ∂K and Sn−1 with respect to (n−1) dimensional Hausdorff
measure. Thus (1.1) and (1.2) already suggest two possible extensions. But, the two extensions
are not trivial at all, since the two integrals might not make sense.

With the notion of floating body, Leichtweiß was able to give a geometric meaning to (1.2) when
FK is the generalized curvature function.

Definition 1.1 (Affine surface area by Leichtweiß [17]). Let K ⊂ Rn be a convex body. The affine
surface area of K is given by

Ω(K) =

∫
Sn−1

F
n

n+1

K (u)dHn−1(u), (1.4)

where FK is the generalized curvature function.

One is tempted to use a strategy similar to how we arrived at (1.2) to get (1.1) to work for
general convex bodies. This turns out to be invalid since neither the Gauss map nor the inverse
Gauss map, in this case, is smooth enough (in fact, not even Lipschitz) to permit such a change of
variable. In spite of this unfortunate fact, there is a natural extension to (1.1). Schütt & Werner
[40], via the notion of convex floating body, were able to give a geometric meaning to the integral
representation (1.1) with HK being the generalized Gauss curvature.
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Definition 1.2 (Affine surface area by Schütt & Werner [40]). Let K ⊂ Rn be a convex body. The
affine surface area of K is given by

Ω(K) =

∫
∂K

H
1

n+1

K (x)dHn−1(x), (1.5)

where HK is the generalized Gauss curvature.

One of the major characteristics that distinguishes affine surface area (look at either (1.4) or
(1.5)) and other geometric invariants is that affine surface area is not continuous with respect
to the Hausdorff metric. For example, any convex body can be approximated by polytopes, but
polytopes are always of zero affine surface area. Given this fact, only upper semi-continuity can
be expected. But, even establishing the upper semi-continuity of classical affine surface area (in
the smooth case) was unsolved in the 80s. One of the difficulties of establishing this lies in the
lack of knowledge of the limit behaviors of the Gauss curvature and the curvature function. Since
(1.4) and (1.5) take similar formulations, difficulty persists. Note that the lack of continuity also
adds to the difficulty of establishing the affine isoperimetric inequality, since we cannot establish
the inequality for a dense class of convex bodies and then take a limit.

The long conjectured upper semi-continuity of classical affine surface area was settled by Lutwak.
In [26], he found the following characterization of affine surface area for general convex bodies.

Definition 1.3 (Affine surface area by Lutwak [26]). Let K ⊂ Rn be a convex body. The affine
surface area of K is given by

Ω(K) = inf
h

{(∫
Sn−1

hn(u)dHn−1(u)

) 1
n+1
(∫

Sn−1

h−1(u)dSK(u)

) n
n+1

}
, (1.6)

where the infimum is taken over all positive continuous functions h : Sn−1 → R, and SK is the
surface area measure of K.

Note that Lutwak’s definition applies to all convex bodies (even the ones without smoothness
assumptions). More importantly, the upper semi-continuity of (1.6) follows directly from the
weak continuity of the measures in the integrals and the fact that the infimum of a class of
continuous functionals is upper semi-continuous. Since (1.6) agrees with classical affine surface
area for smooth convex bodies with everywhere positive curvature function (also shown in [26]),
this, in turn, proves the upper semi-continuity of classical affine surface area. As shown in [26], the
affine isoperimetric inequality can also be established in this case by using the Blaschke–Santaló
inequality.

A natural question to ask is: are Definitions (1.4), (1.5), and (1.6) equivalent? As was explained
earlier, the equivalence of (1.4) and (1.5) is by no means a trivial problem for general convex
bodies. It was not until 1993 that Schütt, in [39], proved the equivalence—using a somewhat
indirect method. A direct proof was given in [15] by Hug. That (1.4) and (1.6) are equivalent
was shown by Leitchweiß in [18]. Note that in Lutwak’s original definition, the infimum is only
taken over all positive functions h such that

∫
Sn−1 uh(u)n+1dHn−1(u) = o. The removal of this

restriction was proposed by Leichtweiß in [18] and the equivalence between this formulation and
Lutwak’s original definition was shown by Dolzmann & Hug in [7] using a topological argument.

Note that it is trivial to see that affine surface area is translation invariant. Schütt, in [39], proved
that affine surface area is a valuation. Hence, affine surface area is an upper semi-continuous valua-
tion that is invariant under volume preserving affine transformations. In a landmark work, Ludwig
& Reitzner [22] established the “converse”: if a real-valued upper semi-continuous valuation on
the set of convex bodies is invariant under volume preserving affine transformations, then it must
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be of the form c0V0 + c1V + c2Ω with c0, c1, c2 ∈ R and c2 > 0. Here V0 is the Euler characteristic,
V is volume, and Ω is affine surface area.

Observe that (1.4) and (1.5) are “polar” to each other in the sense that one is defined as an
integral over the boundary of the convex body (domain of the Gauss map), while the other is
defined as an integral over the unit sphere (image of the Gauss map). In fact, as the proof
provided by Hug in [15] indicates, Definitions (1.4) and (1.5) are linked by the Gauss map. Also
note that (1.6) is “dual” to (1.4) as one can see in the proof in [18].

Recall that for a convex body K ⊂ Rn, curvature measures are a list of n Borel measures
defined on ∂K that can be defined via local parallel sets. For details, the reader should consult
Chapter 4 in [38]. Among these curvature measures, the 0-th and (n− 1)-th curvature measures
have stronger geometric meanings. More specifically, for a Borel set β ⊂ ∂K, the 0-th curvature
measure C0(K, β) and the (n− 1)-th curvature measure Cn−1(K, β) of β are given by

C0(K, β) = Hn−1(ν(K, β)) and Cn−1(K, β) = Hn−1(β),

where ν(K, β) ⊂ Sn−1 is the set of outer unit normals of K at points in β.
Note that previous formulations of affine surface area involve (n − 1) dimensional Hausdorff

measure on ∂K (Definition (1.5)), (n − 1) dimensional Hausdorff measure on Sn−1 (Definitions
(1.4) and (1.6)), and the surface area measure of K (Definition (1.6)). Since curvature measures
are also a crucial type of measures associated to a convex body K, it is natural to study the
relationship between affine surface area and the curvature measures. It is the purpose of this
paper to investigate this missing element. To be precise, the following theorem will be proved:

Theorem 1.4. For a convex body K ⊂ Rn,∫
∂K

H
1

n+1

K (x)dHn−1(x) = inf
g

{(∫
∂K

g−n(x)dC0(K, x)

) 1
n+1
(∫

∂K

g(x)dCn−1(K, x)

) n
n+1

}
, (1.7)

where the infimum is taken over all positive continuous functions g : ∂K → R.

In light of Theorem 1.4, we may view the right side of (1.7) as a new representation of the
existing notion of affine surface area.

Definition 1.5. Let K ⊂ Rn be a convex body. The affine surface area of K can be defined by

Ω(K) = inf
g

{(∫
∂K

g−n(x)dC0(K, x)

) 1
n+1
(∫

∂K

g(x)dCn−1(K, x)

) n
n+1

}
, (1.8)

where the infimum is taken over all positive continuous functions g : ∂K → R.

Note again that this form of affine surface area uses only curvature measures.
A list of properties of (1.8) will be given in Section 4. In particular, among other things, the

upper semi-continuity (Theorem 4.3) and the affine isoperimetric inequality with equality condition
(Theorem 6.4) will be demonstrated using the new representation (1.8). The author would like
to point out that although previously established, none of the results proved in Section 4 require
acknowledgement of properties proved under the existing forms.

With the recent development of the Lp Brunn-Minkowski theory, efforts were also made to
generalize affine surface area to its Lp analogue. One of the key findings in the Lp Brunn-Minkowski
theory is the Lp curvature function discovered by Lutwak [28, 29]. Given a convex body K that

possesses a curvature function FK , the Lp curvature function may be defined by h1−pK FK with hK
being the support function of K. Since the generalized curvature function exists almost everywhere
for an arbitrary convex body, the generalized Lp curvature function also exists almost everywhere.
Given this notion, Lp affine surface area can be defined.
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The notion of Lp affine surface area was introduced by Lutwak in [29]. He defined the Lp affine
surface area of a convex body K ⊂ Rn that contains the origin in its interior to be,

Ωp(K) = inf
h

{(∫
Sn−1

hn(u)dHn−1(u)

) p
n+p
(∫

Sn−1

h−p(u)h1−pK (u)dSK(u)

) n
n+p

}
, (1.9)

where the infimum is taken over all positive continuous functions h : Sn−1 → R. Although Lutwak
originally presented this definition for the case p ≥ 1, it works perfectly fine for any 0 < p < 1 as
observed by Hug in [15].

As with the classical p = 1 case, different forms of Lp affine surface area exist. For each p > 0,
the following form of Lp affine surface area was given by Lutwak [29] for convex bodies that possess
a continuous curvature function and by Hug [15] for general convex bodies,

Ωp(K) =

∫
Sn−1

(
FK(u)

hp−1K (u)

) n
n+p

dHn−1(u). (1.10)

Analogously, for each p > 0, another form of Lp affine surface area, was given by Hug in [15],

Ωp(K) =

∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)n/p

) p
n+p

dHn−1(x). (1.11)

Note that (1.10) is the Lp extension of (1.4) while (1.11) is the Lp extension of (1.5).
The equivalence of (1.10) and (1.11) was proved by Hug in [15]. That (1.9) and (1.10) are

equivalent for convex bodies that possess a positive continuous curvature function was due to
Lutwak [29], and can in general be proved in a similar way as Leitchweiß did in [18] for p = 1 as
pointed out in [15].

It is also possible to prove the analogue of Theorem 1.4 in the Lp setting. Namely,

Theorem 1.6. Let p > 0 be a real number. For each convex body K ⊂ Rn that contains the origin
in its interior,∫

∂K

(
HK(x)

(hK(νK(x)))(p−1)n/p

) p
n+p

dHn−1(x)

= inf
g

{(∫
∂K

g−n(x)dC0(K, x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

}
,

where the infimum is taken over all positive continuous functions g : ∂K → R.

2. Preliminaries

We will be working mainly in Rn with the canonical inner product 〈·, ·〉. The usual Euclidean
2-norm will be denoted by ||·|| and the open (resp. closed) ball of radius r, which is centered at x,
will be denoted by B(x, r) (resp. B[x, r]). We write ωn for the volume of the n-dimensional unit
ball. For a subset A ⊂ Rn, we will write Ā and Ac for the closure of A and the complement of A,
respectively. The characteristic function of E, for any set E, is written as 1E.

A subset K of Rn is called a convex body if it is a compact convex set with non-empty interior.
The set of all convex bodies that contain the origin in the interior is denoted by Kn0 . The boundary
of K will be written as ∂K. For an integer m ≤ n, we will write Hm for m dimensional Hausdorff
measure. If η is a measure on a topological space X and A ⊂ X is η measurable, the restriction
of η to A will be denoted by η A.

Associated to each convex body K is the support function hK : Rn → R given by

hK(x) = max{〈x, y〉 : y ∈ K},
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for each x ∈ Rn.
The supporting hyperplane P (K, u) of K for each u ∈ Sn−1 is given by

P (K, u) = {x ∈ Rn : 〈x, u〉 = hK(u)}.
At each boundary point x ∈ ∂K, a unit vector u is said to be an outer unit normal of K at x if

P (K, u) passes through x. For a subset β ⊂ ∂K, the spherical image, ν(K, β), of K at β, is the
set of all outer unit normal vectors of K at points in β. A boundary point x is regular if ν(K, {x})
contains exactly one point in Sn−1. Denote by regK the set of all regular boundary points of K.
The Gauss map, νK : regK → Sn−1 is the map that takes each regular boundary point to the
unique outer unit normal of that point. Similarly, for each subset ω ⊂ Sn−1, the inverse spherical
image, τ(K,ω), of K at ω, is the set of all boundary points of K that have outer normal vectors
in ω. A unit vector u is regular if τ(K, {u}) contains exactly one point in ∂K. Denote by regnK
the set of all regular normal vectors. The inverse Gauss map, τK : regnK → ∂K is the map that
takes each regular normal vector to the unique point in τ(K, {u}). Both the Gauss map and the
inverse Gauss map are continuous (see Lemma 2.2.12 in [38]).

Let f : Rn → R be a convex function. The set

∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + 〈v, y − x〉, ∀y ∈ Rn}
is called the subdifferential of f at x. If ϑ : Rn → Rn satisfies ϑ(x) ∈ ∂f(x) for each x ∈ Rn,
then it is called a subgradient choice of f . Moreover, f is differentiable at x if and only if ∂f(x)
contains only ∇f(x), the gradient of f at x.

The following notion of second order differentiability is useful. We say f is second order differ-
entiable at x0 in the generalized sense if f is differentiable at x0 in the classical sense and there
exists a symmetric linear map Af(x0) : Rn → Rn such that

f(y) = f(x0) + 〈∇f(x0), y − x0〉+
1

2
〈Af(x0)(y − x0), y − x0〉+ o(||y − x0||2),

for every y ∈ Rn. It follows from [1] that a convex function f is second order differentiable at x0
in the generalized sense if and only if there exists a neighborhood V of x0 and a symmetric linear
map Af(x0) : Rn → Rn such that

||ϑ(y)− ϑ(x0)− Af(x0)(y − x0)|| = o(||y − x0||)
for all y ∈ V and all subgradient choices ϑ. Note that the generalized second order differentiability
is a local property. Hence, the above notion extends naturally to the case where f is only defined
on an open subset of Rn.

For a regular boundary point x0 ∈ ∂K, suppose u0 = νK(x0). The tangent space, Tx0K, of K
at x0 is the linear subspace P (K, u0)− x0. Write ỹ for the orthogonal projection of y to Tx0K for
each y ∈ Rn. We can choose a number ε > 0 and a neighborhood U(x0) of x0 such that for each
x ∈ U(x0) ∩ ∂K,

x = x0 + x̃− x̃0 − f(x̃− x̃0)u0, (2.1)

where ||x̃− x̃0|| < ε and f : Tx0K∩B(o, ε)→ R is a convex function satisfying f ≥ 0 and f(o) = 0.
We say a regular boundary point x0 is normal if f in (2.1) is second order differentiable at o in the
generalized sense. Denote by norK the set of all normal boundary points of K. With a proper
choice of orthonormal basis B = {e1, e2, . . . , en} satisfying e1, . . . , en−1 ∈ Tx0K and en = −u0, it
is possible to write f as:

f(x̃− x̃0) =
1

2
κ1(x0)(x

1 − x10)2 + . . .+
1

2
κn−1(x0)(x

n−1 − xn−10 )2 + o(||x̃− x̃0||2), (2.2)

where (x1, . . . , xn) are the coordinates of x under B. Here, κi(x0) is called a generalized principal
curvature while ei(x0) is the associated generalized principal direction, for 1 ≤ i ≤ n− 1. In this
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case, the generalized Gauss curvature HK(x0) of K at x0 is given by

HK(x0) = κ1(x0)κ2(x0) · · ·κn−1(x0).
It follows from the Alexandrov Theorem [1, 5] that

Hn−1(∂K \ norK) = 0. (2.3)

Hence, HK(x) is defined for Hn−1 almost all x ∈ ∂K. The set H+ is given by

H+ = {x ∈ ∂K : x is a normal boundary point and HK(x) > 0}. (2.4)

The support function hK is differentiable at u0 ∈ Sn−1 if and only if u0 is a regular normal
vector. In this case, ∇hK(u0) = τK(u0). (See Corollary 1.7.3 in [38].) It was the result of the
Alexandrov Theorem [1, 5] that every convex function f : Rn → R is Hn almost everywhere second
order differentiable in the generalized sense. In particular, the support function hK is Hn almost
everywhere second order differentiable in the generalized sense. Denote by D2(hK) the set of all
points at which hK is second order differentiable in the generalized sense. The following properties
can be easily seen from the homogeneity of hK :

(1) If u0 ∈ D2(hK), then tu0 ∈ D2(hK), for all t ∈ R \ {0}. Hence

Hn−1(Sn−1 \D2(hK)) = 0. (2.5)

(2) Given u0 ∈ D2(hK), we have that u0 is an eigenvector of AhK(u0) with 0 being the
associated eigenvalue. The fact that AhK(u0) is symmetric tells us that u⊥0 is an invariant
subspace of AhK(u0).

The generalized curvature function of K at u ∈ D2(hK) ∩ Sn−1, denoted by FK(u), is defined
to be the determinant of AhK(u)|u⊥ . Note that FK(u) is defined for Hn−1 almost all u ∈ Sn−1.
The set F+ is given by

F+ = {u ∈ D2(hK) ∩ Sn−1 : FK(u) > 0}. (2.6)

The surface area measure SK of a convex body K is a Borel measure on Sn−1 and is given by

SK(ω) = Hn−1(τ(K,ω)),

for each Borel set ω ⊂ Sn−1.
Recall that the 0-th curvature measure C0(K, ·) and the (n−1)-th curvature measure Cn−1(K, ·)

are Borel measures on the boundary of K and are given by

C0(K, β) = Hn−1(ν(K, β)) and Cn−1(K, β) = Hn−1(β), (2.7)

for each Borel set β ⊂ ∂K. It is obvious that C0(K, ·) and Cn−1(K, ·) are finite measures. The
0-th curvature measure C0(K, ·) has the following decomposition (see e.g., Hilfssatz 3.6 in [37] or
(2.7) in [16]): for each Borel set β ⊂ ∂K,

C0(K, β) =

∫
β

HK(x)dHn−1(x) +

∫
β∩∂̂K

dC0(K, x), (2.8)

where ∂̂K ⊂ ∂K is a Borel set and Hn−1(∂̂K) = 0. In particular, one has∫
∂K

HK(x)dHn−1(x) <∞. (2.9)

Curvature measures are weakly continuous with respect to the Hausdorff metric (see [38]).
The following definitions are needed for Federer’s coarea formula. See [8] for details.
A subset ω of Rn is said to be (Hn−1, n − 1) rectifiable if Hn−1(ω) < ∞ and there ex-

ists {(fi, Ei)}i∈N+ such that Ei ⊂ Rn−1 is bounded, fi : Ei → Rn is Lipschitz and Hn−1(ω \
∪i∈N+fi(Ei)) = 0.
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Let S be a non-empty subset of Rn. The tangent cone of S at a given point a ∈ Rn, denoted
by Tan(S, a), can be defined as the set of v ∈ Rn such that for every ε > 0 there exists x ∈ S and
r > 0 with ||x− a|| < ε and ||r(x− a)− v|| < ε.

Suppose η is a measure on Rn. The (n− 1) dimensional density Θn−1(η, a) at a ∈ Rn is given
by

Θn−1(η, a) = lim
r→0+

ω−1n−1r
−(n−1)η(B(a, r)),

if the limit exists. The (η, n− 1) approximate tangent cone Tann−1(η, a) at a is given by

Tann−1(η, a) =
⋂
{Tan(S, a) : S ⊂ Rn,Θn−1(η (Rn \ S), a) = 0}.

Suppose f maps a subset of Rn into Rn. We say that f is (η, n − 1) approximately differentiable
at a if and only if there exists ξ ∈ Rn and a continuous linear map ζ : Rn → Rn such that

Θn−1 (η (Rn \ {x : ||f(x)− ξ − ζ(x− a)|| ≤ ε ||x− a||}), a) = 0,

for every ε > 0. In this case, the (η, n − 1) approximate differential of f at a, denoted by
(η, n− 1) ap Df(a), is given by

(η, n− 1) ap Df(a) = ζ|Tann−1(η,a).

Suppose V,W are two (n − 1)-dimensional Hilbert spaces. Let
∧n−1 V and

∧n−1W be the
(n − 1)th exterior power of V and W equipped with the induced inner products from V and W
respectively. Every linear map f : V → W induces a map

∧n−1 f :
∧n−1 V → ∧n−1W . By∣∣∣∣∧n−1 f

∣∣∣∣, we mean the operator norm of
∧n−1 f . Note that

∣∣∣∣∧n−1 f
∣∣∣∣ is just the absolute value

of the determinant of f when V = W . See Chapter 1 in [8] for details.
When η is the restriction ofHn−1 to someHn−1 measurable and (Hn−1, n−1) rectifiable subset of

Rn, by Theorem 3.2.19 in [8], the approximate tangent cone Tann−1(η, a) is an (n−1) dimensional
subspace of Rn for Hn−1 almost all a in that subset. In this case (when Tann−1(η, a) is an
(n−1) dimensional subspace of Rn), we call

∣∣∣∣∧n−1(η, n− 1) ap Df(a)
∣∣∣∣ the (η, n−1) approximate

Jacobian of f at a and denote it by (η, n− 1) ap Jf(a).
The following is a special case of Federer’s coarea formula [8, Theorem 3.2.22]. Note that the

original theorem works for any non-negative measurable function by the obvious application of
the monotone convergence theorem.

Theorem 2.1 (Federer’s coarea formula). Suppose W,Z ⊂ Rn areHn−1 measurable and (Hn−1, n−
1) rectifiable. If f : W → Z is Lipschitz, then for each Hn−1 W measurable non-negative function
g on W ,∫

W

g(x) · (Hn−1 W,n− 1) ap Jf(x)dHn−1(x) =

∫
Z

∫
f−1(z)

g(y)dH0(y)dHn−1(z).

It is implied in Theorem 2.1 that
∫
f−1(z)

g(y)dH0(y) is Hn−1 measurable as a function in z.

3. Curvature Measures and Lp Affine Surface Area

In this section, we will prove the promised Theorem 1.6, which will reveal the relationship
between Lp affine surface area and curvature measures. Notice that Theorem 1.4 follows by setting
p = 1 in Theorem 1.6 and the obvious fact that both sides of (1.7) are translation invariant.

The following notations will be needed.
Let

T1 =

{
g : ∂K → R Hn−1 measurable : 0 < g <∞ and

∫
∂K

gp(x)(hK(νK(x)))1−pdHn−1(x) <∞
}
,

T2 = {g : ∂K → R continuous : g > 0} .
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Note that when K ∈ Kn0 , the sets T1 and T2 have the following relationship:

T1 ⊃ T2. (3.1)

Recall that H+ is the set of normal boundary points with positive Gauss curvature (see (2.4)).

Proof of Theorem 1.6. For the sake of simplicity, let us introduce the following notations:

L1(g) =

(∫
∂K

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

, (3.2)

L2(g) =

(∫
∂K

g−n(x)dC0(K, x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

. (3.3)

Note that L1(g) is defined for g ∈ T1, while L2(g) is defined for any positive Borel measurable
function g : ∂K → Rn satisfying

∫
∂K
gp(x)(hK(νK(x)))1−pdCn−1(K, x) <∞.

For each g ∈ T1, by Hölder’s inequality,∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x) =

∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

g−
np
n+p (x)g

np
n+p (x)dHn−1(x)

≤ L1(g). (3.4)

For each g ∈ T2, by (2.8),∫
∂K

g−n(x)dC0(K, x) =

∫
∂̂K

g−n(x)dC0(K, x) +

∫
∂K

g−n(x)HK(x)dHn−1(x)

≥
∫
∂K

g−n(x)HK(x)dHn−1(x).

This, the fact that Hn−1(β) = Cn−1(K, β) for each Borel set β ⊂ ∂K, (3.2), and (3.3) imply that,

L1(g) ≤ L2(g), (3.5)

for each g ∈ T2.
Equations (3.4), (3.5), and the fact that T1 ⊃ T2 show∫

∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x) ≤ inf
g∈T1

L1(g) ≤ inf
g∈T2

L1(g) ≤ inf
g∈T2

L2(g). (3.6)

To complete the proof, let us now show

inf
g∈T2

L2(g) ≤
∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x). (3.7)

It suffices, for every ε > 0, to find a g ∈ T2 such that

L2(g) ≤
∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x) + ε. (3.8)

Let f̃i : ∂K → (0,∞) be defined by

f̃i(x) =


i, if x ∈ ∂̂K,
hK(νK(x))

p−1
n+pH

1
n+p

K (x), if x ∈ H+ \ ∂̂K,
1
i
, if x /∈ H+ ∪ ∂̂K.

(3.9)
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Note that for each Hn−1 measurable subset A ⊂ ∂K, there exists a Borel measurable set Ā ⊂ ∂K
such that Ā ⊃ A and Hn−1(Ā\A) = 0. This and the fact that ∂̂K is a Borel set ensure that we can

modify the value of f̃i on a subset Z ⊂ ∂K\∂̂K withHn−1(Z) = 0, such that the resulting function

is a Borel measurable function. Denote the resulting function by fi. Clearly fi(x) = f̃i(x) = i for

any x ∈ ∂̂K and fi(x) = f̃i(x) for Hn−1 almost all x ∈ ∂K. Define

hi(x) =


1
i
, if fi(x) < 1

i
,

fi, if 1
i
≤ fi(x) ≤ i,

i, if i < fi(x).

(3.10)

Note that both fi and hi are Borel measurable, and 1
i
≤ hi ≤ i.

By the fact that both C0(K, ·) and Cn−1(K, ·) are finite measures, the assumption that K
contains the origin in its interior, (2.8), the fact that Hn−1(β) = Cn−1(K, β) for each Borel set

β ⊂ ∂K, the choice of fi, and Hn−1(∂̂K) = 0, we can compute the following limit,

lim
i→∞

(∫
∂K

(f−ni (x) +
1

in
)dC0(K, x)

) p
n+p
(∫

∂K

(fpi (x) +
1

ip
)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

= lim
i→∞

(∫
∂K

f−ni (x)dC0(K, x)

) p
n+p
(∫

∂K

fpi (x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

= lim
i→∞

(∫
∂K

f−ni (x)HK(x)dHn−1(x) +
1

in

∫
∂̂K

dC0(K, x)

) p
n+p

·
(∫

∂K

fpi (x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

= lim
i→∞

(∫
∂K

f−ni (x)HK(x)dHn−1(x)

) p
n+p
(∫

∂K

fpi (x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

= lim
i→∞

(∫
H+

f−ni (x)HK(x)dHn−1(x)

) p
n+p

·
(∫

H+

fpi (x)(hK(νK(x)))1−pdHn−1(x) +
1

ip

∫
∂K\H+

hK(νK(x))1−pdHn−1(x)

) n
n+p

= lim
i→∞

(∫
H+

f−ni (x)HK(x)dHn−1(x)

) p
n+p
(∫

H+

fpi (x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

=

∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x). (3.11)

By (3.3), and the fact that h−ni ≤ f−ni + 1
in

, hpi ≤ fpi + 1
ip

,

lim sup
i→∞

L2(hi)

≤ lim
i→∞

(∫
∂K

(f−ni (x) +
1

in
)dC0(K, x)

) p
n+p
(∫

∂K

(fpi (x) +
1

ip
)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

.

(3.12)
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Equations (3.11) and (3.12) imply that there exists i0 such that

L2(hi0) ≤
∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x) + ε/2. (3.13)

Note that 1
i0
≤ hi0 ≤ i0. Let dη(x) = (hK(νK(x)))1−pdCn−1(K, x) + dC0(K, x). Note that η is a

finite positive Borel measure on a compact metric space. Hence η is regular. Since η(∂K) < ∞,
by Lusin’s Theorem (see Theorem 2.24 in [36]), there exists g̃j ∈ C(∂K) such that

η({x ∈ ∂K : g̃j(x) 6= hi0(x)}) < min{ 1

2in0
,

1

2ip0
}1

j
. (3.14)

Let

gj(x) =


1
i0
, if g̃j(x) < 1

i0
,

g̃j(x), if 1
i0
≤ g̃j(x) ≤ i0,

i0, if i0 < g̃j.

It is easy to see that gj is still continuous and 1
i0
≤ gj ≤ i0. Moreover, since whenever gj(x) 6=

hi0(x), it must be the case that g̃j(x) 6= hi0(x), we have by (3.14),

η({x ∈ ∂K : gj 6= hi0}) < min{ 1

2in0
,

1

2ip0
}1

j
.

Hence,∣∣∣∣∫
∂K

h−ni0 (x)dC0(K, x)−
∫
∂K

g−nj (x)dC0(K, x)

∣∣∣∣ ≤ 1

2in0

1

j
2in0 =

1

j
,∣∣∣∣∫

∂K

hpi0(x)(hK(νK(x)))1−pdCn−1(K, x)−
∫
∂K

gpj (x)(hK(νK(x)))1−pdCn−1(K, x)

∣∣∣∣ ≤ 1

2ip0

1

j
2ip0 =

1

j
.

This implies that limj→∞ L2(gj) = L2(hi0). As a result, there exists j0 such that

L2(gj0) ≤ L2(hi0) + ε/2. (3.15)

Choose g = gj0 . By (3.13) and (3.15), such a g will satisfy (3.8). �

It is immediate from (3.6) and (3.7) that

inf
g∈T1

{(∫
∂K

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

}

= inf
g∈T2

{(∫
∂K

g−n(x)dC0(K, x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

}
.

(3.16)

Theorem 1.6 suggests, in addition to (1.9), (1.10), and (1.11), there is a new representation of
the existing notion of Lp affine surface area:

Definition 3.1. Let p > 0 be a real number and K ⊂ Rn be a convex body that contains the origin
in its interior. The Lp affine surface area of K can be defined by

Ωp(K) = inf
g

{(∫
∂K

g−n(x)dC0(K, x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

}
,

(3.17)
where the infimum is taken over all positive continuous functions g : ∂K → R.
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Note that (3.17) is the Lp analogue of (1.8).
It is worthwhile to point out that, as can be seen from the proofs in this section, Definition

(3.17) is “dual” to Definition (1.11). Since it has already been established that Definitions (1.9),
(1.10), (1.11) are the same, it follows from Theorem 1.6 that Definition (3.17) is equivalent to
Definition (1.9). However, we wish to give a direct proof of the equivalence between Definitions
(3.17) and (1.9) as this will further reveal the relationship between the two formulations of Lp
affine surface area. This will be carried out in Section 6.

4. Properties of Lp Affine Surface Area

In this section, some basic properties of Lp affine surface area will be shown using the new
representation (3.17) ((1.8) if p = 1). Although the properties given in this section are not new,
different proofs are given using Definition (3.17) that do not depend on any results about Lp affine
surface area established using the previously known forms.

The following proposition shows that Ωp is a homogeneous functional on the set of convex bodies
containing the origin in their interiors.

Proposition 4.1. Let p > 0 be a real number. Suppose K ∈ Kn0 . For λ > 0, Ωp(λK) =

λ
n(n−p)
n+p Ωp(K).

Proof. For each positive continuous g on ∂K, define g̃ on ∂(λK) by

g̃(y) = g(x), if y = λx. (4.1)

Notice that for each Borel set β ⊂ ∂K,

C0(λK, λβ) = Hn−1(ν(λK, λβ)) = Hn−1(ν(K, β)) = C0(K, β). (4.2)

By (4.2) and (4.1), ∫
∂(λK)

g̃−n(y)dC0(λK, y) =

∫
∂K

g̃−n(λx)dC0(K, x)

=

∫
∂K

g−n(x)dC0(K, x).

(4.3)

By the homogeneity of the support function,∫
∂(λK)

g̃p(y)(hλK(νλK(y)))1−pdCn−1(λK, y) =

∫
∂K

g̃p(λx)λ1−p(hK(νK(x)))1−pλn−1dCn−1(K, x)

=λn−p
∫
∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x).

(4.4)
By (3.17), (4.3), and (4.4), we get the desired result. �

It is trivial to see that when p = 1, translation invariance is satisfied by Ω1.

Proposition 4.2. Let p > 0 be a real number. Suppose K is polytope that contains the origin in
its interior. Then,

Ωp(K) = 0.

Proof. Note that the measure C0(K, ·) in this case is concentrated on the set of vertices of K,
which has only finitely many points. This implies that we can let the second integral in (3.17) be
arbitrarily small while holding the value of the first integral constant. Hence Ωp(K) = 0. �

Another important property of Lp affine surface area that historically took a long time to prove
(settled in [26, 29]) is its upper semi-continuity.
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Theorem 4.3. Let p > 0 be a real number. Then, Ωp is upper semi-continuous with respect to
the Hausdorff metric.

Proof. This is a direct result from the weak continuity of C0(K, ·), Cn−1(K, ·) and the fact that
the infimum of continuous functionals is upper semi-continuous. �

By (3.16), the following variant of (3.17) will give us more flexibility in choosing the function g:

Ωp(K) = inf
g∈T1

{(∫
∂K

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

}
.

(4.5)
We will need the following two lemmas, which were established by Schütt & Werner in [41].

Lemma 4.4. Let K ∈ Kn0 and φ : Rn → Rn be a linear map with determinant either 1 or −1.
For each integrable function f : ∂K → R,∫

∂K

f(x)dHn−1(x) =

∫
∂(φK)

f(φ−1(y))
∣∣∣∣φ−t(νK(φ−1(y)))

∣∣∣∣−1 dHn−1(y). (4.6)

Lemma 4.5. Let K ∈ Kn0 and φ : Rn → Rn be a linear map with determinant either 1 or −1.
Suppose x is a normal boundary point of K. Then φ(x) is a normal boundary point of φK and
moreover,

HK(x) =
∣∣∣∣φ−t(νK(x))

∣∣∣∣n+1
HφK(φ(x)). (4.7)

The next proposition shows that Ωp is invariant under volume preserving linear transformations.

Proposition 4.6. Let p > 0 be a real number. Suppose K ∈ Kn0 and φ : Rn → Rn is a linear map
with determinant either 1 or −1. Then

Ωp(φK) = Ωp(K).

Proof. Note that | det(φ−1)| = 1 and φ−1(φK) = K. Thus, we only need to show Ωp(K) ≥ Ωp(φK).
If x is a regular boundary point of K, then φ(x) is a regular boundary point of φK and

νφK(φ(x)) =
φ−t(νK(x))

||φ−t(νK(x))|| . (4.8)

Hence, ∣∣∣∣φt(νφK(φ(x)))
∣∣∣∣ =

∣∣∣∣φ−t(νK(x))
∣∣∣∣−1 . (4.9)

The definitions of support function and outer unit normal, together with (4.8) and (4.9), imply

hK(νK(x)) =
∣∣∣∣φt(νφK(φ(x)))

∣∣∣∣−1 hφK(νφK(φ(x))). (4.10)

Let g ∈ T1 be a function defined on ∂K such that
∫
∂K
g−n(x)HK(x)dHn−1(x) < ∞. By (4.6),

(4.7), and (4.9),∫
∂K

g−n(x)HK(x)dHn−1(x) =

∫
∂(φK)

∣∣∣∣φt(νφK(y))
∣∣∣∣−n g−n(φ−1(y))HφK(y)dHn−1(y). (4.11)

By (4.6), (4.9), and (4.10),∫
∂K

gp(x)(hK ◦ νK(x))1−pdHn−1(x) =

∫
∂(φK)

∣∣∣∣φt(νφK(y))
∣∣∣∣p gp(φ−1(y))(hφK(νφK(y)))1−pdHn−1(y).

(4.12)
Let g̃ : ∂(φK)→ R be defined as

g̃(x) =

{
g(φ−1(y)) ||φt(νφK(y))|| , if y is a regular boundary point of K,

1, otherwise.
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The fact that Hn−1 almost all points on the boundary of a convex body are regular, the choice of
g, and (4.12) show that g̃ is a positive, Hn−1 measurable function on ∂(φK) and∫

∂(φK)

g̃p(y)(hφK(νφK(y)))1−pdHn−1(y) <∞.

By (4.11), (4.12), and (4.5), we immediately have Ωp(K) ≥ Ωp(φK). �

An immediate corollary of Proposition 4.1 and Proposition 4.6 is:

Corollary 4.7. Let p > 0 be a real number. Suppose K ∈ Kn0 and φ : Rn → Rn is an invertible
linear map. Then

Ωp(φK) = | det(φ)|
n−p
n+p Ωp(K).

The Lp affine surface area functional is also a valuation. That is, if K,L ∈ Kn0 are such that
K ∪ L ∈ Kn0 , then

Ωp(K ∩ L) + Ωp(K ∪ L) = Ωp(K) + Ωp(L).

This property, however, is not immediate under the new form (3.17). The reader is recommended
to see e.g., Schütt [39], Ludwig & Reitzner [22, 23] (and the references therein) for a proof of the
valuation property of Lp affine surface area and the role of Lp affine surface area in the theory of
valuation.

For each g ∈ T1, denote

Vp(K, g) =
1

n

∫
∂K

gp(x)(hK(νK(x)))1−pdHn−1(x),

W (K, g) =
1

n

∫
∂K

g−n(x)HK(x)dHn−1(x).

Notice that for a convex body L that contains the origin in its interior,

Vp(K,hL ◦ νK) = Vp(K,L).

Here Vp(K,L) is the Lp mixed volume of K and L and can be defined by

Vp(K,L) =
1

n

∫
Sn−1

hpL(u)h1−pK (u)dSK(u).

Built in (4.5) is the following Lp mixed volume type inequality,

1

n
Ωp(K) ≤ W (K,hL ◦ νK)

p
n+pVp(K,L)

n
n+p . (4.13)

We will postpone the proof of the Lp affine isoperimetric inequality (the Lp analogue of the
celebrated affine isoperimetric inequality (1.3), which was given by Lutwak in [29] for p ≥ 1, and
by Werner & Ye in [47] for all other p) to Section 6. The proof will utilize (4.13).

5. Lipschitz Property of Restrictions of τK

Recall that νK is the Gauss map defined on regK, the set of regular boundary points of K,
and τK is the inverse Gauss map defined on regnK, the set of regular normal vectors of K. See
Section 2.

One of the essential difficulties people encounter when trying to prove the equivalence between
Definitions (1.10) and (1.11), as well as Definitions (1.9) and (3.17), is linking an integral over the
unit sphere (image of the Gauss map or domain of the inverse Gauss map) with an integral over
the boundary of a convex body (domain of the Gauss map or image of the inverse Gauss map).
One of the direct bridges was built in [15] by exploring the Lipschitz property of restrictions of
νK .
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In particular, for each r > 0 and each convex body K ⊂ Rn, denote

(∂K)r =
{
x ∈ ∂K : ∃a ∈ Sn−1 such that B(x− ra, r) ⊂ K

}
.

The following lemma was shown in [31]:

Lemma 5.1. For each convex body K ⊂ Rn,

Hn−1(∂K \ (∪r>0(∂K)r) = 0.

Denote νK |(∂K)r by νr. Hug in [15, Lemmas 2.1, 2.3] showed that νr is a Lipschitz map and
calculated the approximate Jacobian of νr:

Lemma 5.2. Let K ⊂ Rn be a convex body and r > 0. The following results are true:

(1) (∂K)r is a closed subset of ∂K, and νr is Lipschitz;
(2) For Hn−1 almost all x ∈ (∂K)r, we have

(Hn−1 (∂K)r, n− 1) ap Jνr(x) = HK(x).

The following characterization of points at which the generalized curvature function is positive
was established in [15, Lemma 2.7]:

Lemma 5.3. Let K ⊂ Rn be a convex body. Suppose u0 ∈ D2(hK) ∩ Sn−1. Then the following
two conditions are equivalent:

(1) There is some r > 0 such that B(τK(u0)− ru0, r) ⊂ K.
(2) FK(u0) > 0.

In this section, the Lipschitz property of restrictions of τK will be discussed, which will be useful
in proving the equivalence between Definitions (1.9) and (3.17). In particular, we will divide the
unit sphere into a countable collection of subsets (up to a set of measure 0), such that τK restricted
to each subset is Lipschitz. Thus a change of variable will be made possible by using Federer’s
coarea formula.

Let K ⊂ Rn be a convex body. For each i ∈ N+, we define Ai ⊂ Sn−1 by

Ai = {u ∈ Sn−1 : ∃x ∈ τ(K, {u}) such that K ⊂ B[x− iu, i]}.
Here τ(K, {u}) is the inverse spherical image of {u} (see Section 2).

Remark 5.4. Note that it is easily seen that if u ∈ Ai, then u must be a regular normal vector of
K. Hence,

Ai = {u ∈ regnK : K ⊂ B[x− iu, i],where x = τK(u)}. (5.1)

We will denote the restriction of τK to Ai by τi, for each i ∈ N+.
The following lemma was observed by Hug in [15], which can be proved similarly to Lemma 2.7

in [15].

Lemma 5.5. Let K ⊂ Rn be a convex body. For each u0 ∈ D2(hK) ∩ Sn−1, there exists i ∈ N+

such that
K ⊂ B[x0 − iu0, i], (5.2)

where x0 = τK(u0).

The following corollary follows immediately from Lemma 5.5 and (2.5).

Corollary 5.6. Let K ⊂ Rn be a convex body. With respect to Hn−1, almost every point in Sn−1

is contained in ∪∞i=1Ai, i.e.,
Hn−1(Sn−1 \ ∪∞i=1Ai) = 0.

The following lemma will be needed.
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Lemma 5.7. Let K ⊂ Rn be a convex body. For each i ∈ N+, Ai is closed.

Proof. Suppose {uj}∞j=1 is a convergent sequence in Ai. Denote by u0 its limit. Let xj = τK(uj).
Since ∂K is compact, we can take a convergent subsequence of {xj}∞j=1. We denote the subsequence
and the corresponding subsequence of {uj}∞j=1 again by {xj}∞j=1 and {uj}∞j=1. Denote by x0 the limit
of {xj}∞j=1. Let P0 be the hyperplane that passes x0 and has u0 as its normal. Since xj = τK(uj),

〈x, uj〉 ≤ 〈xj, uj〉,
for each x ∈ K. Let j →∞, we have

〈x, u0〉 ≤ 〈x0, u0〉,
for each x ∈ K. Hence P0 is a supporting hyperplane of K at x0 and x0 ∈ τ(K, {u0}). Since
{uj}∞j=1 ⊂ Ai, we have K ⊂ B[xj − iuj, i]. Let j → ∞. We have K ⊂ B[x0 − iu0, i], where
x0 ∈ τ(K, {u0}). This implies that u0 ∈ Ai. Hence Ai is closed. �

Lemma 5.8. For each i ∈ N+ and each convex body K ⊂ Rn, τi is Lipschitz.

Proof. Let u1, u2 ∈ Ai. Denote by θ ∈ [0, π] the angle formed by u1 and u2. Let x1 = τi(u1), and
x2 = τi(u2).

We first assume 0 < θ < π/2. Suppose x1 6= x2. Otherwise, there is nothing to prove. Since
u1, u2 are not parallel to each other, the points x1 − iu1 and x2 − iu2 cannot both lie on the line
passing x1, x2. Suppose x1 − iu1 does not lie on the line passing x1, x2. Denote x1 − iu1 by C.
Without loss of generality, since this lemma is invariant under translation, we may assume that
C is the origin. Let P be the two dimensional subspace spanned by x1 and x2. Note that u1 is
parallel to x1. Write

u2 = v2 + w2, (5.3)

where v2 ∈ P and w2 ∈ P⊥. Since u1 and u2 are not perpendicular, we have v2 6= 0. Let
ũ2 = v2

||v2|| ∈ P . Denote by θ̃ ∈ [0, π] the angle formed by u1 and ũ2. Notice that by the definition

of ũ2, (5.3), and the fact that u1 ∈ P ,

cos θ̃ = 〈ũ2, u1〉 =
1

||v2||
〈v2, u1〉 =

1

||v2||
〈u2, u1〉 =

1

||v2||
cos θ. (5.4)

This implies that if 0 < θ < π/2, we have 0 ≤ θ̃ < π/2. In this case, by (5.4) and that ||v2|| ≤ 1,

we have cos θ̃ ≥ cos θ. By the monotonicity of the cosine function on [0, π/2), we have

θ̃ ≤ θ, (5.5)

when 0 < θ < π/2.
By the definition of Ai, the fact that u1 ∈ Ai implies that P ∩ K is a subset of the disc

P ∩B[x1− iu1, i]. Note that P ∩K is non-empty and is either the line segment joining x1 and x2
or a convex body in P . In either case, for any x ∈ P ∩K, by the definition of ũ2, (5.3), the fact
that x2 = τi(u2), (5.3), and the definition of ũ2 once again,

〈ũ2, x〉 =
1

||v2||
〈v2, x〉 =

1

||v2||
〈u2, x〉 ≤

1

||v2||
〈u2, x2〉 =

1

||v2||
〈v2, x2〉 = 〈ũ2, x2〉. (5.6)

Now, we show that θ̃ 6= 0 as a result of x1 6= x2. If otherwise, ũ2 = u1. Since P ∩ K ⊂
P ∩ B[x1 − iu1, i], the line lx1 ⊂ P passing x1 and perpendicular to u1 can only intersect P ∩K
at x1. Note also that since x1 = τi(u1), we have 〈u1, x〉 ≤ 〈u1, x1〉 for each x ∈ P ∩K. But (5.6)
implies that 〈u1, x1〉 = 〈ũ2, x1〉 ≤ 〈ũ2, x2〉 = 〈u1, x2〉. Hence 〈u1, x2〉 = 〈u1, x1〉 and as a result, we
have x2 ∈ lx1 . This immediately implies x1 = x2, which contradicts with our assumption. Thus, it

suffices to look at the case when 0 < θ̃ ≤ θ < π/2, with x1 6= x2. In this case, let l ⊂ P be the line
passing through x2 and is perpendicular to ũ2. Extend Cx1 so that it intersects l at D. Starting
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C

x1

x2

D

θ̃

E

l

P ∩B(x1 − iu1, i)

φ

ψ

Figure 1.

from C, make an ray in the direction of ũ2 (perpendicular to l as a result), so that it crosses the
boundary of B[x1 − iu1, i] at E. Let φ, ψ be the angles indicated in Figure 1. By (5.6) and that

0 < θ̃ < π/2, the point D does not belong to the interior of B(x1− iu1, i). Hence φ ≥ ψ = π/2− θ̃.
The fact that x2 ∈ B[x1 − iu1, i], together with (5.5), implies

||x1 − x2|| ≤ 2i cosφ ≤ 2i cos(π/2− θ̃) = 2i sin θ̃ ≤ 2i sin θ. (5.7)

Observe that ||u1 − u2|| = 2 sin θ
2
. Since

lim
θ→0

2i sin θ

2 sin θ
2

= 2i,

we conclude that there exists 0 < δ0 < π/2, such that

||x1 − x2|| ≤ 3i ||u1 − u2|| , (5.8)

for any u1, u2 ∈ Ai, satisfying 0 < θ < δ0. (Note that (5.8) trivially holds if x1 = x2.)
For the case δ0 ≤ θ ≤ π, since ||u1 − u2|| = 2 sin θ

2
and K is bounded, we have

||x1 − x2||
||u1 − u2||

is bounded from above. This and (5.8) prove the existence of M > 0 such that

||x1 − x2|| ≤M ||u1 − u2|| ,
for any u1, u2 ∈ Ai. Hence τi is Lipschitz. �

The following characterization of normal boundary points with positive curvature was shown
in [15] as Corollary 3.2 (see also [19]).

Lemma 5.9. Let K ⊂ Rn be a convex body and x0 be a normal boundary point. The following
two conditions are equivalent:

(1) HK(x0) > 0;
(2) there exists i ∈ N+ such that K ⊂ B[x0 − iu0, i] where u0 = νK(x0).

The following lemma was proved in [15, Lemma 2.5].
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Lemma 5.10. Let K ⊂ Rn be a convex body. Suppose x0 is a normal boundary point and
u0 = νK(x0) ∈ D2(hK). Then HK(x0)FK(u0) = 1.

There is still one piece missing that hinders us from applying Federer’s coarea formula to τi,
namely, the Jacobian of τi. Taking the Jacobian of τi in the classical sense is impossible since
the classical Jacobian requires τi to be defined in an open set. Therefore we have to consider the
approximate Jacobian of τi instead.

Lemma 5.11. Let K ⊂ Rn be a convex body. For each given i ∈ N+,

(Hn−1 Ai, n− 1) ap Jτi(u) = FK(u), (5.9)

for Hn−1 almost all u ∈ Ai.
Proof. Observe that Ai is an (Hn−1, n−1) rectifiable andHn−1 measurable subset (since Ai is closed
by Lemma 5.7) of Rn. By Theorem 3.2.19 in [8], forHn−1 almost all u0 ∈ Ai, Tann−1(Hn−1 Ai, u0)
is an (n− 1) dimensional subspace of Rn. By definition,

Tann−1(Hn−1 Ai, u0) ⊂ Tan(Sn−1, u0) = u⊥0 .

Hence,

Tann−1(Hn−1 Ai, u0) = u⊥0 , (5.10)

for Hn−1 almost all u0 ∈ Ai. This and (2.5) imply that Hn−1 almost all vectors in Ai are in D2(hK)
and satisfy (5.10). Thus, to prove this lemma, we may assume that u0 ∈ D2(hK) and u0 satisfies
(5.10).

Let ε > 0 be a real number and ϑ : Rn → Rn be an arbitrary subgradient choice of hK . The fact
that u0 ∈ D2(hK) implies that there exists δ0 > 0 and a symmetric linear map AhK(u0) : Rn → Rn

such that

{u ∈ Ai : ||ϑ(u)− ϑ(u0)− AhK(u0)(u− u0)|| > ε ||u− u0||} ∩B(u0, δ) = ∅,
for 0 < δ ≤ δ0.

Since each u ∈ Ai is a regular normal vector, we have ϑ(u) = τi(u) for each u ∈ Ai. Hence by
the definition of Θn−1, we have

Θn−1 ({(Hn−1 Ai) (Rn\{u ∈ Ai : ||τi(u)− τi(u0)− AhK(u0)(u− u0)||
≤ ε ||u− u0||}), u0}) = 0.

By the definition of (Hn−1 Ai, n− 1) ap Dτi(u0) and (5.10), we have

(Hn−1 Ai, n− 1) ap Dτi(u0) = AhK(u0)|Tann−1(Hn−1 Ai,u0)
= AhK(u0)|u⊥0 .

By this, the definition of (Hn−1 Ai, n−1) ap Jτi(u0), that u⊥0 is an invariant subspace of AhK(u0),
and the definition of the generalized curvature function, we have

(Hn−1 Ai, n− 1) ap Jτi(u0) = FK(u0).

�

6. Equivalence between Definitions (1.9) and (3.17)

In this section, the relationship between Definitions (1.9) and (3.17) will be unveiled by providing
a direct proof of the equivalence between the two. The proof utilizes the tool we established in
Section 5. At the end of this section, the Lp affine isoperimetric inequality (with equality condition)
is established using the new representation (3.17) of Lp affine surface area.

Let us first introduce some notations.
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Let

T3 =

{
h : Sn−1 → R Hn−1measurable : 0 < h <∞ and

∫
Sn−1

hn(u)dHn−1(u) <∞
}
,

T4 =
{
h : Sn−1 → R continuous : h > 0

}
.

Note that T3 ⊃ T4.
We claim that for each positive real number p and each K ∈ Kn0 ,

inf
g∈T1

{(∫
∂K

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

}

= inf
g∈T1

{(∫
H+

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

H+

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

}
.

(6.1)

Indeed, for each g ∈ T1, let

gε(x) =

{
ε, if x 6∈ H+ and g(x) > ε,

g(x), otherwise.

Notice that gε ≤ ε on ∂K \H+. By (2.3), (2.4), the choice of gε, and the fact that∫
∂K\H+

hK(νK(x))1−pdHn−1(x)

is a finite number,

lim
ε→0

(∫
∂K

g−nε (x)HK(x)dHn−1(x)

) p
n+p
(∫

∂K

gpε(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

≤
(∫

H+

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

H+

gp(x)(hK(νK(x)))1−pdHn−1(x)

+ lim
ε→0

εp
∫
∂K\H+

(hK(νK(x)))1−pdHn−1(x)

) n
n+p

=

(∫
H+

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

H+

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

.

This shows that the left side is less than or equal to the right side in (6.1). By the fact that
H+ ⊂ ∂K and that all integrands in (6.1) are non-negative, the left side is greater than or equal
to the right side in (6.1).

By (3.16), we can further show that

Lemma 6.1. Let p > 0 be a real number. Suppose K ∈ Kn0 . We have

inf
g∈T2

{(∫
∂K

g−n(x)dC0(K, x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

}

= inf
g∈T1

{(∫
H+

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

H+

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

}
.
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Recall that F+ is the set of unit vectors at which the curvature function FK is positive (see
(2.6)). By a similar argument from above,

inf
h∈T3

{(∫
Sn−1

hn(u)dHn−1(u)

) p
n+p
(∫

Sn−1

h−p(u)h1−pK (u)FK(u)dHn−1(u)

) n
n+p

}

= inf
h∈T3

{(∫
F+

hn(u)dHn−1(u)

) p
n+p
(∫

F+

h−p(u)h1−pK (u)FK(u)dHn−1(u)

) n
n+p

}
.

This, together with Hilfssatz 2 and 3 in [18] (see also [19]), immediately implies

Lemma 6.2. Let p > 0 be a real number. Suppose K ∈ Kn0 . We have

inf
h∈T4

{(∫
Sn−1

hn(u)dHn−1(u)

) p
n+p
(∫

Sn−1

h−p(u)h1−pK (u)dSK(u)

) n
n+p

}

= inf
h∈T3

{(∫
F+

hn(u)dHn−1(u)

) p
n+p
(∫

F+

h−p(u)h1−pK (u)FK(u)dHn−1(u)

) n
n+p

}
.

Now, we shall prove the equivalence between Definitions (1.9) and (3.17).

Theorem 6.3. Let p > 0 be a real number. Suppose K ∈ Kn0 . We have

inf
h

{(∫
Sn−1

hn(u)dHn−1(u)

) p
n+p
(∫

Sn−1

h−p(u)h1−pK (u)dSK(u)

) n
n+p

}

= inf
g

{(∫
∂K

g−n(x)dC0(K, x)

) p
n+p
(∫

∂K

gp(x)(hK(νK(x)))1−pdCn−1(K, x)

) n
n+p

}
,

where the infimums are taken over all positive continuous functions h : Sn−1 → R and g : ∂K → R
respectively.

Proof. By Lemmas 6.1 and 6.2, it suffices to show

inf
g∈T1

{(∫
H+

g−n(x)HK(x)dHn−1(x)

) p
n+p
(∫

H+

gp(x)(hK(νK(x)))1−pdHn−1(x)

) n
n+p

}

= inf
h∈T3

{(∫
F+

hn(u)dHn−1(u)

) p
n+p
(∫

F+

h−p(u)h1−pK (u)FK(u)dHn−1(u)

) n
n+p

}
.

(6.2)

Let us first show that the left side is greater than or equal to the right side in (6.2).
Let g ∈ T1 be such that

∫
H+ g

−n(x)HK(x)dHn−1(x) <∞ and r > 0. We first observe that (∂K)r
and Sn−1 are (Hn−1, n−1) rectifiable and Hn−1 measurable (since (∂K)r is closed by Lemma 5.2).

By Lemma 5.2, νr, the restriction of νK to (∂K)r, is Lipschitz and

(Hn−1 (∂K)r, n− 1) ap Jνr(x) = HK(x), (6.3)

for Hn−1 almost all x ∈ (∂K)r.
The fact that νr is Lipschitz and (2.3) give,

Hn−1(νr((∂K)r \ norK)) = 0. (6.4)
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By (6.3) and Federer’s coarea formula,∫
(∂K)r∩H+

g−n(x)HK(x)dHn−1(x) =

∫
(∂K)r

1H+(x)g−n(x)HK(x)dHn−1(x)

=

∫
Sn−1

(∫
(νr)−1(u)

1H+(x)g−n(x)dH0(x)

)
dHn−1(u).

(6.5)

It is implied in Federer’s coarea formula that∫
(νr)−1(u)

1H+(x)g−n(x)dH0(x)

is Hn−1 measurable on Sn−1 in u. By (2.5), (6.4), Lemma 5.10, and (2.5), (6.4) once again, the
following holds for Hn−1 almost all u ∈ Sn−1,∫

(νr)−1(u)

1H+(x)g−n(x)dH0(x) =1νr((∂K)r))∩D2(hK)(u)1H+(τK(u))g(τK(u))−n

=1νr((∂K)r)∩norK)∩D2(hK)(u)1H+(τK(u))g(τK(u))−n

=1νr((∂K)r)∩norK)∩D2(hK)(u)1F+(u)g(τK(u))−n

=1νr((∂K)r)(u)1F+(u)g(τK(u))−n.

(6.6)

Hence 1νr((∂K)r)(u)1F+(u)(g(τK(u)))−n, as a function of u, is Hn−1 measurable on Sn−1. By (6.5)
and (6.6),∫

(∂K)r∩H+

g−n(x)HK(x)dHn−1(x) =

∫
Sn−1

1νr((∂K)r)(u)1F+(u)(g(τK(u)))−ndHn−1(u). (6.7)

Note that (∂K)r is increasing as r → 0. Let r → 0 in (6.7). It follows from the monotone
convergence theorem, Lemma 5.1, and Lemma 5.3 that,∫

H+

g−n(x)HK(x)dHn−1(x) =

∫
F+

(g(τK(u)))−ndHn−1(u). (6.8)

With the same technique, one can prove that∫
H+

gp(x)(hK(νK(x)))1−pdHn−1(x) =

∫
F+

(g(τK(u)))ph1−pK (u)FK(u)dHn−1(u). (6.9)

Set

h(u) =

{
1/g(τK(u)), if u ∈ F+,

1, otherwise.

Note that 0 < h <∞ and h is Hn−1 measurable on Sn−1. By (6.8), hn is Hn−1 integrable on Sn−1.
Hence h ∈ T3. By (6.8), (6.9), the left side is greater than or equal to the right side in (6.2).

Now we show that the left side is less than or equal to the right side in (6.2).
Let h ∈ T3 be such that

∫
F+ h

−p(u)h1−pK (u)FK(u)dHn−1(u) < ∞ and i ∈ N+. We first observe
that Ai and ∂K are (Hn−1, n− 1) rectifiable and Hn−1 measurable (since Ai is closed by Lemma
5.7). By Lemma 5.8, τi, the restriction of τK to Ai, is Lipschitz. By Lemma 5.11, for Hn−1 almost
all u ∈ Ai,

(Hn−1 Ai, n− 1) ap Jτi(u) = FK(u). (6.10)

The fact that τi is Lipschitz and (2.5) give,

Hn−1(τi(Ai \D2(hK))) = 0. (6.11)
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By (6.10) and Federer’s coarea formula,∫
Ai∩F+

h−p(u)h1−pK (u)FK(u)dHn−1(u) =

∫
Ai

1F+(u)h−p(u)h1−pK (u)FK(u)dHn−1(u)

=

∫
∂K

(∫
(τi)−1(x)

1F+(u)h−p(u)h1−pK (u)dH0(u)

)
dHn−1(x).

(6.12)
It is implied in Federer’s coarea formula that∫

(τi)−1(x)

1F+(u)h−p(u)h1−pK (u)dH0(u)

is Hn−1 measurable on ∂K in x. By (2.3), (6.11), Lemma 5.10 and (2.3), (6.11) once again, the
following holds for Hn−1 almost all x ∈ ∂K,∫

(τi)−1(x)

1F+(u)h−p(u)h1−pK (u)dH0(u) =1τi(Ai)∩norK(x)1F+(νK(x))h(νK(x))−phK(νK(x))1−p

=1τi(Ai∩D2(hK))∩norK(x)1F+(νK(x))h(νK(x))−phK(νK(x))1−p

=1τi(Ai∩D2(hK))∩norK(x)1H+(x)h(νK(x))−phK(νK(x))1−p

=1τi(Ai)(x)1H+(x)h(νK(x))−phK(νK(x))1−p.
(6.13)

Hence 1τi(Ai)(x)1H+(x)(h(νK(x)))−p(hK(νK(x)))1−p, as a function of x, is Hn−1 measurable on
∂K. By (6.12) and (6.13),∫
Ai∩F+

h−p(u)h1−pK (u)FK(u)dHn−1(u) =

∫
∂K

1τi(Ai)(x)1H+(x)(h(νK(x)))−p(hK(νK(x)))1−pdHn−1(x).

(6.14)
Note that Ai is increasing as i → ∞. Let i → ∞ in (6.14). It follows from the monotone
convergence theorem, Corollary 5.6, and Lemma 5.9 that∫

F+

h−p(u)h1−pK (u)FK(u)dHn−1(u) =

∫
H+

(h(νK(x)))−p(hK(νK(x)))1−pdHn−1(x). (6.15)

With the same technique, one can prove∫
F+

hn(u)dHn−1(u) =

∫
H+

(h(νK(x)))nHK(x)dHn−1(x). (6.16)

Set

g(x) =

{
1/h(νK(x)), if x ∈ H+,

1, otherwise.

Note that 0 < g < ∞ and g is Hn−1 measurable. By (6.15), gp(hK ◦ νK)1−p is Hn−1 integrable
on ∂K. Hence g ∈ T1. By (6.15), (6.16), the left side is less than or equal to the right side in
(6.2). �

The proof given above reveals that Definition (3.17) is “polar” to (1.9) and they are linked by
the Gauss map and the inverse Gauss map.

The Lp affine isoperimetric inequality, which is the extension of the affine isoperimetric inequality
(1.3) of affine differential geometry, was first established by Lutwak in [29]. Thanks to (4.13), we
are ready to prove the Lp affine isoperimetric inequality using the new representation (3.17).
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Theorem 6.4. Let p > 0 be a real number. Suppose K ∈ Kn0 and has the origin as its centroid.
We have,

Ωp(K) ≤ nω
2p

n+p
n V (K)

n−p
n+p , (6.17)

with equality if and only if K is an ellipsoid.

Proof. Recall from (4.13) that, for each convex body L that has the origin as its centroid,

1

n
Ωp(K) ≤ W (K,hL ◦ νK)

p
n+pVp(K,L)

n
n+p . (6.18)

Based on the change of variable formula established in the proof of Theorem 6.3,

W (K,hL ◦ νK) ≤ V (L∗), (6.19)

where L∗ is the polar body of L. Combining (6.18) and (6.19), we get,

1

n
Ωp(K) ≤ V (L∗)

p
n+pVp(K,L)

n
n+p . (6.20)

It was observed in [26, 29] that (6.20) is stronger than (6.17). Indeed, just by replacing L in
(6.20) by K and using the Blaschke-Santaló inequality, we get (6.17).

Equality holds only if the equality holds for the Blaschke-Santaló inequality, i.e., K is an ellip-
soid. That the equality does hold for ellipsoids follows from a direct calculation. �

7. A Further Application of Section 5

Hug in [15] proved the equivalence between Definitions (1.10) and (1.11) by applying Federer’s
coarea formula to the Lipschitz map νr, the restriction of νK to (∂K)r. Here we provide a dual proof
of the same result by applying Federer’s coarea formula to the Lipschitz map τi, the restriction of
τK to Ai, which is made possible by the discussion in Section 5.

Theorem 7.1. Let p > 0 be a real number. Suppose K ∈ Kn0 . We have

∫
Sn−1

(
FK(u)

hp−1K (u)

) n
n+p

dHn−1(u) =

∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x).

Proof. For each i ∈ N+, observe that Ai and ∂K are (Hn−1, n−1) rectifiable and Hn−1 measurable
(since Ai is closed by Lemma 5.7).
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By Lemmas 5.8, 5.11, Federer’s coarea formula, (2.3), (6.11), Lemma 5.10, and (6.11) once
again, we have∫

Ai

(
FK(u)

hp−1K (u)

) n
n+p

dHn−1(u) =

∫
Ai∩F+

(
FK(u)

hp−1K (u)

) n
n+p

dHn−1(u)

=

∫
Ai

1F+(u)

(
F
− p

n
K (u)

hp−1K (u)

) n
n+p

FK(u)dHn−1(u)

=

∫
∂K

∫
τ−1
i (x)

1F+(u)

(
F
− p

n
K (u)

hp−1K (u)

) n
n+p

dH0(u)

 dHn−1(x)

=

∫
τi(Ai)∩norK

1F+(νK(x))

(
(FK(νK(x)))−

p
n

(hK(νK(x)))p−1

) n
n+p

dHn−1(x)

=

∫
τi(Ai∩D2(hK))∩norK

1F+(νK(x))

(
(FK(νK(x)))−

p
n

(hK(νK(x)))p−1

) n
n+p

dHn−1(x)

=

∫
τi(Ai∩D2(hK))∩norK

1H+(x)

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x)

=

∫
τi(Ai)∩norK

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x).

(7.1)
Now, let i→∞ in (7.1). It follows from the monotone convergence theorem, Corollary 5.6, and

Lemma 5.9 that∫
Sn−1

(
FK(u)

hp−1K (u)

) n
n+p

dHn−1(u) =

∫
H+

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x)

=

∫
∂K

(
HK(x)

(hK(νK(x)))(p−1)
n
p

) p
n+p

dHn−1(x).

�

This material is based upon work supported in part by the National Science Foundation under
Grant DMS-1312181.
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