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Abstract

The centro-affine Minkowski problem in affine differential ge-
ometry is considered. Existence for the solution of the discrete
centro-affine Minkowski problem is proved.

1. Introduction

The setting for this paper is n-dimensional Euclidean space Rn. A
convex body in Rn is a compact convex set that has non-empty interior.
Let K be a convex body in Rn whose boundary ∂K is a C2 closed convex
hypersurface with positive Gauss curvature. If K contains the origin in
its interior, then the affine support function of K (also called the affine
distance see, e.g., [30], pp. 62-63) is defined by

h̃ = hκ−
1

n+1 ,

where, as functions of the unit outer normal, h is the support function
and κ is the Gauss curvature.

It is known that the affine support function of a convex body is in-
variant when the convex body undergoes an SL(n) transformation. In
particular, the affine support function is constant if the convex body is
an ellipsoid centered at the origin. Conversely, for a convex body with
C∞ boundary if the affine support function of the convex body is a pos-
itive constant, then the convex body is an ellipsoid (see, e.g., Tzitséica
[35], Loewner and Nirenberg [23], Calabi [6], and Leichtweiss [22]).

The function
κ̃ = h̃−n−1 = h−n−1κ

is called the centro-affine Gauss curvature (see, e.g., [10], pp. 76).
Characterizing the centro-affine Gauss curvature (or the affine sup-

port function) is of great interest. The problem (posed explicitly by
Chou and Wang in [10], pp. 76; see also Jian and Wang [19], pp. 432)
is:
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Centro-affine Minkowski problem: Given a positive function f on
the unit sphere Sn−1, find necessary and sufficient conditions for f so
that f is the centro-affine Gauss curvature of a convex body in Rn.

Obviously, the centro-affine Minkowski problem is equivalent to the
following Monge-Ampère type equation:

(1.1) h1+n det(hij + hδij) = 1/f,

where hij is the covariant derivative of h with respect to an orthonormal
frame on Sn−1 and δij is the Kronecker delta.

In [10], Chou and Wang posed the centro-affine Minkowski problem
and established a necessary condition for the existence of solutions to
this problem. For the case where the data is rotationally symmetric,
existence for the centro-affine Minkowski problem was proved by Lu
and Wang [24].

The centro-affine Minkowski problem is a special case of the Lp Minkows-
ki problem (posed by Lutwak [26]).

If p ∈ R and K is a convex body in Rn that contains the origin in
its interior, then the Lp surface area measure, Sp(K, ·), of K is a Borel
measure on Sn−1 defined for a Borel ω ⊂ Sn−1, by

Sp(K,ω) =

∫
x∈ν−1

K (ω)
(x · νK(x))1−pdHn−1(x),

where νK : ∂′K → Sn−1 is the Gauss map of K, defined on ∂′K, the
set of boundary points of K that have a unique outer unit normal, and
Hn−1 is (n− 1)-dimensional Hausdorff measure.

Obviously, S1(K, ·) is the classical surface area measure of K. In
addition, 1

nS0(K, ·) is the cone-volume measure of K. In recent years,
the Lp surface area measure appeared in, e.g., [17, 25, 26, 31].

In [26], Lutwak posed the following Lp Minkowski problem.

Lp Minkowski problem: Find necessary and sufficient conditions on
a finite Borel measure µ on Sn−1 so that µ is the Lp surface area mea-
sure of a convex body in Rn.

Obviously, the centro-affine Minkowski problem is a special case of
the Lp Minkowski problem when p = −n and µ has a density. For this
reason, the L−n surface area measure and the L−n Minkowski problem
in this paper, will be called respectively the centro-affine surface area
measure and the general centro-affine Minkowski problem.

General centro-affine Minkowski problem: Find necessary and
sufficient conditions on a finite Borel measure µ on Sn−1 so that µ is
the centro-affine surface area measure of a convex body in Rn.
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Besides the general centro-affine Minkowski problem, there are two
other important cases for the Lp Minkowski problem. The case p =
1 of the Lp Minkowski problem is of course the classical Minkowski
problem, which is completely solved (see, e.g., Alexandrov [1], Cheng
and Yau [8], and Schneider [32]). The case p = 0 of the Lp Minkowski
problem is called the logarithmic Minkowski problem. Very recently, a
major breakthrough in the logarithmic Minkowski problem was made
by Böröczky, Lutwak, Yang and Zhang [4].

Today, the Lp Minkowski problem is one of the central problems in
convex geometric analysis, and is studied in, e.g., [5, 7, 11, 16, 20, 21,
24, 27, 29, 33], especially by Lutwak [26], Chou and Wang [10], Guan
and Lin [15], Hug, Lutwak, Yang and Zhang [18]. The solutions to
the Minkowski problem and the Lp Minkowski problem are connected
to some important flows (see, e.g., [2, 3, 9, 12]), and play key roles in
establishing the affine Sobolev-Zhang inequality [36] and the Lp affine
Sobolev inequality [28].

The centro-affine Minkowski problem is the continuous case of the
general centro-affine Minkowski problem when µ has a density. Another
important case of the general centro-affine Minkowski problem is the
polytopal case, that is, µ is a discrete measure.

A polytope in Rn is the convex hull of a finite set of points in Rn
provided that the convex hull has positive n-dimensional volume. The
convex hull of a subset of these points is called a facet of the polytope
if the convex hull lies entirely on the boundary of the polytope and has
positive (n−1)-dimensional volume. If a polytope P contains the origin
in its interior with N facets whose outer unit normals are u1, ..., uN , and
if the facet with outer unit normal uk has area ak and distance from
the origin hk for all k ∈ {1, ..., N}. Then the centro-affine surface area
measure of P is

N∑
k=1

h1+nk akδuk(·),

where δuk denotes the delta measure that is concentrated at the point uk.

Centro-affine Minkowski problem for polytopes: Find necessary
and sufficient conditions on a discrete measure µ on Sn−1 so that µ is
the centro-affine surface area measure of a convex polytope in Rn.

The Minkowski problem and the Lp Minkowski problem for polytopes
are of great importance. One reason that the problem for polytopes is
so important is that the Minkowski problem and the Lp Minkowski
problem (for p > 1) for arbitrary measures can be solved by an approx-
imation argument by first solving the polytopal case (see, e.g., [18] or
[32] pp. 392-393). It is the aim of this paper to solve the centro-affine
Minkowski problem for polytopes.
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A finite set U of no less than n unit vectors in Rn is said to be in
general position if any n elements of U are linearly independent.

It is the aim of this paper to solve the general centro-affine Minkowski
problem for the case of discrete measures whose supports are in general
position:

Theorem. Let µ be a discrete measure on the unit sphere Sn−1. Then
µ is the centro-affine surface area measure of a polytope whose outer
unit normals are in general position if and only if the support of µ is in
general position and not contained in a closed hemisphere.

Our theorem is a necessary and sufficient condition on the class of
polytopes whose outer unit normals are in general position. However,
the condition that the support of µ is in general position is not necessary
for general discrete measures (e.g., when µ is the centro-affine surface
area measure of the unique cube). The condition that µ is not contained
in a closed hemisphere is necessary for general measures. Otherwise, the
corresponding general centro-affine Minkowski problem will not have
bounded solution.

For the case where the measure µ has a positive density, it is easy to
construct discrete measures µi whose supports are in general position
that converge weakly to µ. This may provide a possible way to solve the
centro-affine Minkowski problem in affine differential geometry by using
an approximation argument and the solution to the discrete centro-affine
Minkowski problem.

2. Preliminaries

In this section, we collect some notation regarding convex bodies. For
general references regarding convex bodies, see, e.g., [13, 14, 32, 34].

The sets in this paper are subsets of the n-dimensional Euclidean
space Rn. For x, y ∈ Rn, we write x ·y for the standard inner product of
x and y, |x| for the Euclidean norm of x, and Sn−1 for the unit sphere
of Rn.

For convex bodies K1,K2 in Rn and c1, c2 ≥ 0, the Minkowski com-
bination is defined by

c1K1 + c2K2 = {c1x1 + c2x2 : x1 ∈ K1, x2 ∈ K2}.

The support function hK : Rn → R of a convex body K is defined, for
x ∈ Rn, by

h(K,x) = max{x · y : y ∈ K}.

Obviously, for c ≥ 0 and x ∈ Rn,

h(cK, x) = h(K, cx) = ch(K,x).
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The Hausdorff distance of two convex bodies K1,K2 in Rn is defined
by

δ(K1,K2) = inf{t ≥ 0 : K1 ⊂ K2 + tBn,K2 ⊂ K1 + tBn},
where Bn is the unit ball.

If K is a convex body in Rn and u ∈ Sn−1, then the support set
F (K,u) of K in direction u is defined by

F (K,u) = K ∩ {x ∈ Rn : x · u = h(K,u)}.
The diameter of a convex body K in Rn is defined by

d(K) = max{|x− y| : x, y ∈ K}.
Let P be the set of polytopes in Rn. If the unit vectors u1, ..., uN

(N ≥ n + 1) are in general position and not contained in a closed
hemisphere, let P(u1, ..., uN ) be the subset of P such that a polytope
P ∈ P(u1, ..., uN ) if

P =
N⋂
k=1

{x : x · uk ≤ h(P, uk)}.

Obviously, if P ∈ P(u1, ..., uN ), then P has at most N facets, and the
outer unit normals of P are a subset of {u1, ..., uN}. Let PN (u1, ..., uN )
be the subset of P(u1, ..., uN ) such that a polytope P ∈ PN (u1, ..., uN )
if P ∈ P(u1, ..., uN ), and P has exactly N facets.

The following lemmas will be needed (see, [37], Lemma 4.1 & Theo-
rem 4.3).

Lemma 2.1. If the unit vectors u1, ..., uN (N ≥ n+1) are in general
position and not contained in a closed hemisphere, and P ∈ P(u1, ..., uN ),
then F (P, ui) is either a point or a facet of P for all 1 ≤ i ≤ N .

Lemma 2.2. If the unit vectors u1, ..., uN (N ≥ n+1) are in general
position and not contained in a closed hemisphere, Pi ∈ P(u1, ..., uN )
(with o ∈ Pi) is a sequence of polytopes, and V (Pi) = 1, then Pi is
bounded.

3. An extremal problem related to the centro-affine
Minkowski problem

In this section, we solve an extremal problem. Its solution also solves
the centro-affine Minkowski problem.

If α1, ..., αN ∈ R+, the unit vectors u1, ..., uN (N ≥ n + 1) are in
general position and not contained in a closed hemisphere, and P ∈
P(u1, ..., uN ), then define ΦP : Int (P )→ R by

ΦP (ξ) =

N∑
k=1

αk(h(P, uk)− ξ · uk)−n,
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where Int (P ) is the interior of P .

Lemma 3.1. If α1, ..., αN ∈ R+, the unit vectors u1, ..., uN (N ≥
n+ 1) are in general position and not contained in a closed hemisphere,
and P ∈ P(u1, ..., uN ), then there exists a unique point ξ(P ) ∈ Int (P )
such that

ΦP (ξ(P )) = inf
ξ∈Int (P )

ΦP (ξ).

Proof. Obviously, t−n is strictly convex on (0,+∞). Thus, for 0 <
λ < 1 and ξ1, ξ2 ∈ Int (P ),

λΦP (ξ1) + (1− λ)ΦP (ξ2) = λ
N∑
k=1

αk(h(P, uk)− ξ1 · uk)−n

+ (1− λ)

N∑
k=1

αk(h(P, uk)− ξ2 · uk)−n

=
N∑
k=1

αk
[
λ(h(P, uk)− ξ1 · uk)−n

+ (1− λ)(h(P, uk)− ξ2 · uk)−n
]

≥
N∑
k=1

αk [h(P, uk)− (λξ1 + (1− λ)ξ2) · uk]−n

= ΦP (λξ1 + (1− λ)ξ2),

with equality if and only if ξ1 · uk = ξ2 · uk for all k = 1, ..., N . Since
u1, ..., uN are in general position, ξ1 = ξ2. Thus, ΦP is strictly convex
on Int (P ).

Since P ∈ P(u1, ..., uN ), for any boundary point x ∈ ∂P , there exists
a ui0 ∈ {u1, ..., uN} such that

h(P, ui0) = x · ui0 .

Thus, ΦP (ξ) goes to +∞ whenever ξ ∈ Int (P ) and ξ → ∂P . Therefore,
there exists a unique interior point ξ(P ) of P such that

ΦP (ξ(P )) = min
ξ∈Int (P )

ΦP (ξ).

q.e.d.
By definition, for λ > 0 and P ∈ P(u1, ..., uN ),

(3.1) ξ(λP ) = λξ(P ).

Obviously, if Pi ∈ P(u1, ..., uN ) and Pi converges to a polytope P ,
then P ∈ P(u1, ..., uN ).

Lemma 3.2. If α1, ..., αN are positive, the unit vectors u1, ..., uN
(N ≥ n + 1) are in general position and not contained in a closed
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hemisphere, Pi ∈ P(u1, ..., uN ), and Pi converges to a polytope P , then
limi→∞ ξ(Pi) = ξ(P ) and

lim
i→∞

ΦPi(ξ(Pi)) = ΦP (ξ(P )),

where ΦP (ξ) =
∑N

k=1 αk(h(P, uk)− ξ · uk)−n.

Proof. Let a0 = minu∈Sn−1{h(P, u)−ξ(P )·u} > 0. Since Pi converges
to P and ξ(P ) ∈ Int (P ), there exists a N0 > 0 such that

h(Pi, uk)− ξ(P ) · uk >
a0
2
,

for all k = 1, ..., N, whenever i > N0. Thus,

(3.2) ΦPi(ξ(Pi)) ≤ ΦPi(ξ(P )) <
( N∑
k=1

αk
)
(
a0
2

)−n,

whenever i > N0.
From the conditions, ξ(Pi) is bounded. Suppose that ξ(Pi) does not

converge to ξ(P ), then there exists a subsequence Pij of Pi such that Pij
converges to P , ξ(Pij )→ ξ0 but ξ0 6= ξ(P ). Obviously, ξ0 ∈ P . We claim
that ξ0 is not a boundary point of P , otherwise limj→∞ΦPij

(ξ(Pij )) =

+∞, this contradicts (3.2). If ξ0 is an interior point of P with ξ0 6= ξ(P ),
then

lim
j→∞

ΦPij
(ξ(Pij )) = ΦP (ξ0)

> ΦP (ξ(P ))

= lim
j→∞

ΦPij
(ξ(P )).

This contradicts

ΦPij
(ξ(Pij )) ≤ ΦPij

(ξ(P )).

Therefore, limi→∞ ξ(Pi) = ξ(P ) and thus,

lim
i→∞

ΦPi(ξ(Pi)) = ΦP (ξ(P )).

q.e.d.
The following lemma will be needed.

Lemma 3.3. If P is a polytope, ui0 ∈ Sn−1,F (P, ui0) is a point, and

Pδ = P ∩ {x : x · ui0 ≤ h(P, ui0)− δ}.

Then there exists a positive δ0 such that when 0 < δ < δ0, P \ Pδ is a
cone and

V (P \ Pδ) = c0δ
n,

where c0 is a constant that depends on P and ui0.
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Proof. Since P is a polytope and F (P, ui0) is a point, there exists a
positive δ0 (depends on P and ui0) such that when 0 < δ ≤ δ0, P \ Pδ
is a cone and F (P, ui0) is the apex. Then, when 0 < δ ≤ δ0,

Vn−1
(
P ∩ {x : x · ui0 = h(P, ui0)− δ}

)
Vn−1

(
P ∩ {x : x · ui0 = h(P, ui0)− δ0}

) =

(
δ

δ0

)n−1
.

Therefore, when 0 < δ < δ0,

V (P \ Pδ) =

∫ δ

0
Vn−1(P ∩ {x : x · ui0 = h(P, ui0)− t})dt = c0δ

n,

where c0 is a constant depends on P and ui0 . q.e.d.

Lemma 3.4. If α1, ..., αN are positive, and the unit vectors u1, ..., uN
(N ≥ n + 1) are in general position and not contained in a closed
hemisphere, then there exists a P ∈ PN (u1, ..., uN ) with ξ(P ) = o and
V (P ) = 1 such that

ΦP (o) = sup{ min
ξ∈Int (Q)

ΦQ(ξ) : Q ∈ PN (u1, ..., uN ) and V (Q) = 1},

where ΦQ(ξ) =
∑N

k=1 αk(h(Q, uk)− ξ · uk)−n.

Proof. Obviously, for P,Q ∈ PN (u1, ..., uN ), if there exists an x ∈ Rn
such that P = Q+ x, then

ΦP (ξ(P )) = ΦQ(ξ(Q)).

Thus, we can choose a sequence Pi ∈ PN (u1, ..., uN ) with ξ(Pi) = o and
V (Pi) = 1 such that ΦPi(o) converges to

sup{ min
ξ∈Int (Q)

ΦQ(ξ) : Q ∈ PN (u1, ..., uN ) and V (Q) = 1}.

Because of Lemma 2.2, Pi is bounded. Thus, from Lemma 3.2 and
the Blaschke selection theorem, there exists a subsequence of Pi that
converges to a polytope P such that P ∈ P(u1, ..., uN ), V (P ) = 1,
ξ(P ) = o and
(3.3)

ΦP (o) = sup{ min
ξ∈Int (Q)

ΦQ(ξ) : Q ∈ PN (u1, ..., uN ) and V (Q) = 1}.

We next prove that F (P, ui) are facets for all i = 1, ..., N . Otherwise,
from Lemma 2.1, there exist 1 ≤ i0 < ... < im ≤ N with m ≥ 0 such
that

F (P, ui)

is a point for i ∈ {i0, ..., im} and is a facet of P for i /∈ {i0, ..., im}.
Choose δ > 0 small enough so that the polytope

Pδ = P ∩ {x : x · ui0 ≤ h(P, ui0)− δ}
has exactly (N −m) facets and

P ∩ {x : x · ui0 ≥ h(P, ui0)− δ}
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is a cone. From this and Lemma 3.3, we have,

(3.4) h(Pδ, uk) = h(P, uk)

for k 6= i0,

(3.5) h(Pδ, ui0) = h(P, ui0)− δ,

and

V (Pδ) = 1− c0δn,
where c0 > 0 is a constant that depends on P and direction ui0 .

Because of Lemma 3.2, for any δi → 0, it is always true that ξ(Pδi)→
o. We have

lim
δ→0

ξ(Pδ) = o.

Let δ be small enough so that

(3.6) h(P, uk) > ξ(Pδ) · uk + δ

for all k ∈ {1, ..., N}, and let

(3.7) λ = V (Pδ)
− 1
n = (

1

1− c0δn
)
1
n .

From (3.6), (3.1), (3.4) and (3.5), we have

ΦλPδ(ξ(λPδ)) =

N∑
k=1

αk
(
h(λPδ, uk)− ξ(λPδ) · uk

)−n
= λ−n

N∑
k=1

αk
(
h(Pδ, uk)− ξ(Pδ) · uk

)−n
= λ−n

N∑
k=1

αk
(
h(P, uk)− ξ(Pδ) · uk

)−n
+ αi0λ

−n
[(
h(P, ui0)− ξ(Pδ) · ui0 − δ

)−n
−
(
h(P, ui0)− ξ(Pδ) · ui0

)−n]
= ΦP (ξ(Pδ)) + (λ−n − 1)

N∑
k=1

αk
(
h(P, uk)− ξ(Pδ) · uk

)−n
+ αi0λ

−n
[(
h(P, ui0)− ξ(Pδ) · ui0 − δ

)−n
−
(
h(P, ui0)− ξ(Pδ) · ui0

)−n]
= ΦP (ξ(Pδ)) +B(δ),

(3.8)
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where

B(δ) = (λ−n − 1)
N∑
k=1

αk
(
h(P, uk)− ξ(Pδ) · uk

)−n
+ αi0λ

−n
[(
h(P, ui0)− ξ(Pδ) · ui0 − δ

)−n
−
(
h(P, ui0)− ξ(Pδ) · ui0

)−n]
= −c0δn

N∑
k=1

αk(h(P, uk)− ξ(Pδ) · uk)−n

+ αi0(1− c0δn)

[(
h(P, ui0)− ξ(Pδ) · ui0 − δ

)−n
−
(
h(P, ui0)− ξ(Pδ) · ui0

)−n]
.

Let d0 be the diameter of P . Since

d0 > h(P, ui0)− ξ(Pδ) · ui0 > h(P, ui0)− ξ(Pδ) · ui0 − δ > 0,(
h(P, ui0)−ξ(Pδ)·ui0−δ

)−n−(h(P, ui0)−ξ(Pδ)·ui0
)−n

> (d0−δ)−n−d−n0 .

Then,

B(δ) > −c0δn
N∑
k=1

αk(h(P, uk)− ξ(Pδ) · uk)−n

+ αi0(1− c0δn)
[
(d0 − δ)−n − d−n0

]
.

(3.9)

On the other hand, for 0 < δ < d0,

(3.10) (d0 − δ)−n − d−n0 > 0,

(3.11) lim
δ→0

N∑
k=1

αk
(
h(P, uk)− ξ(Pδ) · uk

)−n
=

N∑
k=1

αkh(P, uk)
−n,

and

(3.12) lim
δ→0

−c0δn

(d0 − δ)−n − d−n0

= lim
δ→0

−nc0δn−1

(−n)(d0 − δ)−n−1(−1)
= 0.

From Equations (3.9), (3.10), (3.11), (3.12), we have B(δ) > 0 for
small enough δ > 0. From Equation (3.8), there exists a small δ0 > 0
such that Pδ0 has exactly (N −m) facets and

Φλ0Pδ0
(ξ(λ0Pδ0)) > ΦP (ξ(Pδ0)) ≥ ΦP (ξ(P )) = ΦP (o),

where λ0 = V (Pδ0)−
1
n . Let P0 = λ0Pδ0−ξ(λ0Pδ0), then P0 ∈ P(u1, ..., uN ),

V (P0) = 1, ξ(P0) = o and

(3.13) ΦP0(o) > ΦP (o).



THE CENTRO-AFFINE MINKOWSKI PROBLEM FOR POLYTOPES 11

If m = 0, then (3.13) and (3.3) yield a contradiction. If m ≥ 1, choose
positive δi so that δi → 0 as i→∞,

Pδi = P0 ∩
(
∩mj=1{x : x · uij ≤ h(P0, uij )− δi}

)
and λiPδi ∈ PN (u1, ..., uN ), where λi = V (Pδi)

− 1
n . Obviously, λiPδi

converges to P0. From Lemma 3.2, Equation (3.13) and Equation (3.3),
we have

lim
n→∞

ΦλiPδi
(ξ(λiPδi))

= ΦP0(o)

> ΦP (o)

= sup{ min
ξ∈Int (Q)

ΦQ(ξ) : Q ∈ PN (u1, ..., uN ), V (Q) = 1}.

This contradicts (3.3). Therefore,

P ∈ PN (u1, ..., uN ).

q.e.d.

4. The centro-affine Minkowski problem for polytopes

In this section, we prove the main theorem. We only need prove the
following theorem:

Theorem 4.1. If α1, ..., αN ∈ R+, the unit vectors u1, ..., uN (N ≥
n+ 1) are in general position and not contained in a closed hemisphere,
then there exists a polytope P0 such that

S−n(P0, ·) =
N∑
k=1

αkδuk(·).

Proof. From Lemma 3.4, there exists a polytope P ∈ PN (u1, ..., uN )
with ξ(P ) = o and V (P ) = 1 such that

ΦP (o) = sup{ min
ξ∈Int (Q)

ΦQ(ξ) : Q ∈ PN (u1, ..., uN ) and V (Q) = 1},

where ΦQ(ξ) =
∑N

k=1 αk(h(Q, uk)− ξ · uk)−n.
For δ1, ..., δN ∈ R, choose |t| small enough so that the polytope Pt

defined by

Pt =
N⋂
i=1

{x : x · ui ≤ h(P, ui) + tδi}

has exactly N facets. Then,

V (Pt) = V (P ) + t

(
N∑
i=1

δiai

)
+ o(t),
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where ai is the (n− 1)-dimensional volume of F (P, ui). Thus,

lim
t→0

V (Pt)− V (P )

t
=

N∑
i=1

δiai.

Let λ(t) = V (Pt)
− 1
n , then λ(t)Pt ∈ PN (u1, ..., uN ), V (λ(t)Pt) = 1 and

(4.1) λ′(0) = − 1

n

N∑
i=1

δiai.

For convenience, let ξ(t) = ξ(λ(t)Pt), and

Φ(t) = min
ξ∈Int (λ(t)Pt)

N∑
k=1

αk(λ(t)h(Pt, uk)− ξ · uk)−n

=

N∑
k=1

αk(λ(t)h(Pt, uk)− ξ(t) · uk)−n.

(4.2)

From Equation (4.2) and the fact that ξ(t) is an interior point of
λ(t)Pt, we have

(4.3)
N∑
k=1

αk
uk,i

[λ(t)h(Pt, uk)− ξ(t) · uk]1+n
= 0,

for i = 1, ..., n, where uk = (uk,1, ..., uk,n)T . As a special case when
t = 0, we have

N∑
k=1

αk
uk,i

h(P, uk)1+n
= 0,

for i = 1, ..., n. Therefore,

(4.4)

N∑
k=1

αk
uk

h(P, uk)1+n
= 0.

Let

Fi(t, ξ1, ..., ξn) =
N∑
k=1

αk
uk,i

[λ(t)h(Pt, uk)− (ξ1uk,1 + ...+ ξnuk,n)]1+n

for i = 1, ..., n. Then,

∂Fi
∂ξj

∣∣∣∣
(0,...,0)

=

N∑
k=1

(1 + n)αk
h(P, uk)2+n

uk,iuk,j .

Thus, (
∂F

∂ξ

∣∣∣∣
(0,...,0)

)
n×n

=

N∑
k=1

(1 + n)αk
h(P, uk)2+n

uk · uTk ,

where uk · uTk is an n× n matrix.
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For any x ∈ Rn with x 6= 0, from the fact that u1, ..., uN are in general
position, there exists a ui0 ∈ {u1, ..., uN} such that ui0 · x 6= 0. Then,

xT ·

(
N∑
k=1

(1 + n)αk
h(P, uk)2+n

uk · uTk

)
· x =

N∑
k=1

(1 + n)αk
h(P, uk)2+n

(x · uk)2

≥ (1 + n)αi0
h(P, ui0)2+n

(x · ui0)2 > 0.

Thus, (∂F∂ξ
∣∣
(0,...,0)

) is positive definite. From this, the fact ξ(0) = 0,

Equations (4.3), and the implicit function theorem, we have

ξ′(0) = (ξ′1(0), ..., ξ′n(0))

exists.
From the fact that t = 0 is an extreme point of Φ(t) (in Equation

(4.2)), Equation (4.1) and Equation (4.4), we have

0 = Φ′(0)/(−n)

=

N∑
k=1

αkh(P, uk)
−n−1 (λ′(0)h(P, uk) + δk − ξ′(0) · uk

)
=

N∑
k=1

αkh(P, uk)
−n−1

[
− 1

n

(
N∑
i=1

aiδi

)
h(P, uk) + δk

]

− ξ′(0) ·

[
N∑
k=1

αk
uk

h(P, uk)1+n

]

=
N∑
k=1

αkh(P, uk)
−n−1δk −

(
N∑
i=1

aiδi

)∑N
k=1 αkh(P, uk)

−n

n

=
N∑
k=1

(
αkh(P, uk)

−n−1 −
∑N

j=1 αjh(P, uj)
−n

n
ak

)
δk.

Since δ1, ..., δN are arbitrary,∑N
j=1 αjh(P, uj)

−n

n
h(P, uk)

1+nak = αk,

for all k = 1, ..., N . Thus for

P0 =

(∑N
j=1 αjh(P, uj)

−n

n

) 1
2n

P,

we have

S−n(P0, ·) =
N∑
k=1

αkδuk(·).

q.e.d.
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