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Abstract. The logarithmic Minkowski problem asks for necessary and sufficient conditions for a
finite Borel measure on the unit sphere so that it is the cone-volume measure of a convex body.
This problem was solved recently by Böröczky, Lutwak, Yang and Zhang for even measures (JAMS
2013). This paper solves the case of discrete measures whose supports are in general position.

1. Introduction

A convex body in n-dimensional Euclidean space, Rn, is a compact convex set that has non-
empty interior. The classical surface area measure, SK , of a convex body K is a Borel measure on
the unit sphere, Sn−1, defined for a Borel ω ⊂ Sn−1, by

SK(ω) =

∫
x∈ν−1

K (ω)

dHn−1(x),

where νK : ∂′K → Sn−1 is the Gauss map of K, defined on ∂′K, the set of boundary points of K
that have a unique outer unit normal, and Hn−1 is (n− 1)-dimensional Hausdorff measure.

One of the cornerstones of the Brunn-Minkowski theory is the Minkowski problem. It asks:
what are the necessary and sufficient conditions on a finite Borel measure µ on Sn−1 so that µ is
the surface area measure of a convex body in Rn? The answer is: if µ is not concentrated on a
great subsphere, then µ is the surface area measure of a convex body if and only if∫

Sn−1

udµ(u) = 0;

i.e., if µ is considered as a mass distribution on the unit sphere, then its centroid is the origin.
The surface area measure of a convex body has clear geometric significance. Another important

measure (defined on the unit sphere) that is associated with a convex body and that has clear
geometric importance is the cone-volume measure. If K is a convex body in Rn that contains the
origin in its interior, then the cone-volume measure, VK , of K is a Borel measure on Sn−1 defined
for each Borel ω ⊂ Sn−1 by

VK(ω) =
1

n

∫
x∈ν−1

K (ω)

x · νK(x) dHn−1(x).

The cone-volume measure has many important applications. For instance, by using a proba-
bilistic representation of the normalized volume measure on Bn

p (:= {x ∈ Rn : ‖x‖p ≤ 1}), Barthe,
Guédon, Mendelson and Naor [5] computed moments of linear functionals on Bn

p , which give sharp
constants in Khinchine’s inequalities on Bn

p and determine the ψ2-constant of all directions on Bn
p .

For additional references regarding cone-volume measure see, e.g., [6, 7, 18,44,45,57,58,61,67].
The Minkowski problem deals with the question of prescribing the surface area measure. An

important, natural problem is prescribing the cone-volume measure.
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Logarithmic Minkowski problem: What are the necessary and sufficient conditions on a finite
Borel measure µ on Sn−1 so that µ is the cone-volume measure of a convex body in Rn?

In a special case, this question goes back to to Firey [15]. When nµ has a density f , with respect
to spherical Lebesgue measure, the associated partial differential equation for the logarithmic
Minkowski problem is the following Monge-Ampère type equation on Sn−1

(1.1) h det(hij + hδij) = f,

where hij is the covariant derivative of h with respect to an orthonormal frame on Sn−1 and δij is
the Kronecker delta.

In [46], Lutwak introduced the notion of the Lp surface area measure and posed the associated
Lp Minkowski problem which has the classical Minkowski problem and the logarithmic Minkowski
problem as two importance cases.

If p ∈ R and K is a convex body in Rn that contains the origin in its interior, then the Lp
surface area measure, Sp(K, ·), of K is a Borel measure on Sn−1 defined for each Borel ω ⊂ Sn−1

by

Sp(K,ω) =

∫
x∈ν−1

K (ω)

(x · νK(x))1−pdHn−1(x).

Obviously, S1(K, ·) is the classical surface area measure of K, and 1
n
S0(K, ·) is the cone-volume

measure of K. The notion of the Lp surface area measure has been rapidly attracting much
attention; see, e.g., [9, 24,26,27,43,48–50,53,55,60].

Today, the Lp Minkowski problem is one of the central problems in convex geometric analysis.
The problem asks: what are the necessary and sufficient conditions on a finite Borel measure µ on
Sn−1 so that µ is the Lp surface area measure of a convex body in Rn?

When µ has a density f , with respect to spherical Lebesgue measure, the associated partial
differential equation for the Lp Minkowski problem is the following Monge-Ampère type equation
on Sn−1

(1.2) h1−p det(hij + hδij) = f.

Obviously, the L1 Minkowski problem is the classical Minkowski problem, while the L0 Minkows-
ki problem is the logarithmic Minkowski problem.

More than a century ago, Minkowski himself completely solved the classical Minkowski problem
for the case where the given measure is discrete [56]. The complete solution to this problem
for arbitrary measures was given by Aleksandrov, and Fenchel and Jessen (see, e.g., [64] or [1]).
Landmark contributions to establishing regularity for the classical Minkowski problem are due to
(among others) Lewy [41], Nirenbeng [59], Cheng and Yau [11], Pogorelov [62], and Caffarelli [8].

The even Lp Minkowski problem for p > 1 (but with p 6= n) was solved by Lutwak [46]. The
regular, even Lp Minkowski problem for p > 1 (but also with p 6= n) was studied by Lutwak
and Oliker [47]. In [52], Lutwak, Yang and Zhang showed that for p 6= n, the Lp Minkowski
problem is equivalent to a volume-normalized Lp Minkowski problem, and in [52] they solved the
even volume-normalized Lp Minkowski problem for all p > 1. Without the assumption that the
measure is even, the Lp Minkowski problem was treated by Guan and Lin [22], and by Chou and
Wang [13]. Later, Hug, Lutwak, Yang and Zhang [34] gave an alternate proof of some of the results
of Chou and Wang [13], and solved the corresponding volume-normalized Lp Minkowski problem.
By now, the Lp Minkowski problem and its extensions, have generated a considerable literature;
see, e.g., [6, 10,13,21–25,32–34,37,38,40,42,46,47,52,54,65,66,69].

Theory of curvature flows has roots in convexity (see, e.g., [2,3]) and plays an important role in
solving geometric problems. It is known (see, e.g., [2,3,12,16]) that in Rn, homothetic solutions to
curvature flows are solutions of the Lp Minkowski problem; and when µ is proportional to Lebesgue
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measure on S1, homothetic solutions to isotropic flows (classified by Andrews [3]) are solutions
of the Lp Minkowski problem. Remarkable work has been done for the mean curvature flow (see
Huisken [35,36]) and the Gauss curvature flow (see, e.g., [3,4,12]) that are related to convex bodies.

The solutions to the Minkowski problem and the Lp Minkowski problem have a number of impor-
tant applications. For instance, by using the convexification, a notion that depends on the solution
of the Minkowski problem, Zhang [72] extended the Petty projection inequality from convex bodies
to compact domains, and extended the classical Sobolev inequality to a much stronger one: the
affine Sobolev-Zhang inequality. By using the solution of the even Lp Minkowski problem, Lutwak,
Yang and Zhang [51] extended the affine Zhang-Sobolev inequality to the Lp affine Zhang-Sobolev
inequality, an affine inequality far stronger than the classical Lp Sobolev inequality. Later, Ciachi,
Lutwak, Yang and Zhang [14] used the solution of the even Lp Minkowski problem to establish the
affine Moser-Trudinger and the affine Morrey-Sobolev inequalities, both inequalities stronger than
their classical euclidean counterparts. These affine inequalities were then further strengthened by
Haberl and Schuster [28–30], and Wang [70].

Most past work on the Lp Minkowski problem and the Monge-Ampère type PDE (1.2) is limited
to the case p > 1. When p < 1, the Lp Minkowski problem becomes much harder. Even in the
case where µ has a non-negative density that equals 0 on a subset of Sn−1 with positive spherical
Lebesgue measure, the Monge-Ampère type PDE (1.2) becomes challenging.

The cone-volume measure is the only one among all the Lp surface area measure that is SL(n)
invariant (see, e.g., [6]). The logarithmic Minkowski problem is clearly the most important of
the Lp Minkowski problems, with clear geometric significance because it is the singular case. The
polygonal case, in R2, of the logarithmic Minkowski problem was studied by Stancu [65,66]. In [13],
Chou and Wang treated the logarithmic Minkowski problem for the case where the measure has a
positive density.

A finite Borel measure µ on Sn−1 is said to satisfy the subspace concentration condition if, for
every subspace ξ of Rn, such that 0 < dim ξ < n,

(1.3) µ(ξ ∩ Sn−1) ≤ dim ξ

n
µ(Sn−1),

and if equality holds in (1.3) for some subspace ξ, then there exists a subspace ξ′, that is comple-
mentary to ξ in Rn, so that also

µ(ξ′ ∩ Sn−1) =
dim ξ′

n
µ(Sn−1).

In [6], Böröczky, Lutwak, Yang and Zhang gave the following necessary and sufficient conditions
for the existence of solutions to the even logarithmic Minkowski problem.

Theorem A. A non-zero finite even Borel measure on the unit sphere Sn−1 is the cone-volume
measure of an origin-symmetric convex body in Rn if and only if it satisfies the subspace concen-
tration condition.

It is important to point out that the logarithmic Minkowski problem for general measures is
much harder than the special case where the measure is a function (the Monge-Ampère type PDE
(1.1)). For instance, the subspace concentration condition, which is satisfied by all cone-volume
measures of origin-symmetric convex bodies, is also the critical and only condition that is needed
for existence. For functions the subspace concentration condition is trivially satisfied but for
measure it is precisely what is necessary.

The Minkowski problem and the Lp Minkowski problem for polytopes are of great importance.
One reason that the problem for polytopes is so important is that the Minkowski problem and
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the Lp Minkowski problem (for p > 1) for arbitrary measures can be solved by an approximation
argument by first solving the polytopal case (see, e.g., [34] or [64], pp.392-393).

It is the aim of this paper to solve the existence question for the logarithmic Minkowski problem
for polytopes without the assumption that the measure is even — an assumption that Böröczky,
Lutwak, Yang and Zhang were forced to make.

In this paper, a polytope in Rn is the convex hull of a finite set of points in Rn providing that
it has positive n-dimensional volume. The convex hull of a subset of these points is called a j-
dimensional face (with 1 ≤ j ≤ n− 1) of the polytope provided it lies entirely on the boundary of
the polytope and that it has positive j-dimensional volume. When j = n − 1, the convex hull, is
called a facet of the polytope.

If a polytope P contains the origin in its interior, then the cone-volume associated with a facet
of P is the volume of the convex hull of the facet and the origin. Obviously, if P is a polytope
with cone-volumes γ1, ..., γN and corresponding outer unit normals u1, ..., uN , then the cone-volume
measure of P is given by

VP =
N∑
k=1

γkδuk ,

where δuk denotes the delta measure that is concentrated at the point uk.

Definition. A finite set U of unit vectors in Rn is said to be in general position if U is not
contained in a closed hemisphere of Sn−1 and any n elements of U are linearly independent.

Note that, if U has no more than n elements, then U must be contained in a closed hemisphere.
Therefore, N ≥ n+ 1 is always true if U is in general position.

Polytopes whose facet normals are in general position consist an important class of polytopes.
Károlyi and Lovász [39] were among the first to study this class of polytopes and established
beautiful decomposition theorem. For convenience, the notion of general position in this paper is
slightly different from what is defined in [39].

The origin-symmetric convex bodies is an important class of convex bodies. Polytopes whose
facet normals are in general position is another important class of convex bodies. Theorem A
solved the logarithmic Minkowski problem for even measures. The main theorem in this paper
solves the case of discrete measures whose support are in general position:

Theorem. Let µ be a discrete measure on the unit sphere Sn−1. Then µ is the cone-volume
measure of a polytope whose outer unit normals are in general position if and only if the supports
of µ is in general position.

In [6], Böröczky, Lutwak, Yang and Zhang (for polytopes see He, Leng and Li [31], and Xiong
[71]) showed that if ξ is a subspace of Rn with 0 < dim ξ < n and µ is the cone-volume measure
of an origin-symmetric convex body, then

µ(ξ ∩ Sn−1) ≤ dim ξ

n
µ(Sn−1).

This imposes a strict condition on all even measures that may arise as the cone-volume measures of
origin-symmetric convex bodies. Surprisingly, without the assumption that the measure be even,
the data may be arbitrary. This may provide a possible way to solve the logarithmic Minkowski
problem for arbitrary measures, by applying the main theorem in our paper to an approximation
argument.
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Uniqueness for the logarithmic Minkowski problem was completely settled for even measures in
R2 in [7].

2. Preliminaries

In this section, we standardize some notation and list some basic facts about convex bodies. For
general reference regarding convex bodies see, e.g., [17, 19,20,64,68].

The vectors of this paper are column vectors. For x, y ∈ Rn, we will write x · y for the standard
inner product of x and y, and write |x| for the Euclidean norm of x. We write Sn−1 = {x ∈ Rn :
|x| = 1} for the boundary of the Euclidean unit ball Bn in Rn. If x1, ..., xn−1 ∈ Rn are linearly
independent, we write x1 ∧ ... ∧ xn−1 for the unique vector for which

det
(
x1, ..., xn−1, x1 ∧ ... ∧ xn−1

)
> 0

and |x1 ∧ ... ∧ xn−1| is equal to the (n− 1)-dimensional volume of the parallelotope

{λ1x1 + ...+ λn−1xn−1 : 0 ≤ λ1, ..., λn−1 ≤ 1}.
If 1 ≤ i ≤ n, K is a Borel subset of Rn, and K is contained in an i-dimensional affine subspace of

Rn but not in any affine subspace of lower dimension, then let |K| be the i-dimensional Lebesgue
measure of K.

If K, L are two compact sets in Rn, their Minkowski sum K + L is defined by

K + L = {x+ y : x ∈ K, y ∈ L},
and for c > 0, the scalar multiplication cK is defined by

cK = {cx : x ∈ K}.
The support function hK : Rn → R of a compact convex set K is defined, for x ∈ Rn, by

h(K, x) = max{x · y : y ∈ K}.
Obviously, for c > 0 and x ∈ Rn,

h(cK, x) = h(K, cx) = ch(K, x).

The Hausdorff distance of two compact sets K,L in Rn is defined by

δ(K,L) = inf{t ≥ 0 : K ⊂ L+ tBn, L ⊂ K + tBn}.
It is known that the Hausdorff distance between two convex bodies, K and L, is

δ(K,L) = max
u∈Sn−1

|h(K, u)− h(L, u)|.

For a convex body K in Rn, and u ∈ Sn−1, the support hyperplane H(K, u) in direction u is
defined by

H(K, u) = {x ∈ Rn : x · u = h(K, u)},
the half-space H−(K, u) in direction u is defined by

H−(K, u) = {x ∈ Rn : x · u ≤ h(K, u)},
and the support set F (K, u) in direction u is defined by

F (K, u) = K ∩H(K, u).

For a compact K ∈ Rn, the diameter of it is defined by

d(K) = max{|x− y| : x, y ∈ K}.
If K1, K2 are subset of Rn, define

d(K1, K2) = inf{|x1 − x2| : x1 ∈ K1, x2 ∈ K2}.
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Let P be the set of polytopes in Rn. If u1, ..., uN ∈ Sn−1 in general position, let P(u1, ..., uN) be
the subset of P such that a polytope P ∈ P(u1, ..., uN) if

P =
N⋂
k=1

H−(P, uk).

Obviously, if P ∈ P(u1, ..., uN), then P has at most N facets, and the outer unit normals of P
are a subset of {u1, ..., uN}. Let PN(u1, ..., uN) be the subset of P(u1, ..., uN) such that a polytope
P ∈ PN(u1, ..., uN) if, P ∈ P(u1, ..., uN), and P has exactly N facets.

The following lemma will be needed.

Lemma 2.1. If 1 ≤ j ≤ n − 2, u1, ..., uN ∈ Sn−1 are in general position and P ∈ P(u1, ..., uN),
then each j-dimensional face of P is the intersection of n− j facets of P .

Proof. Since u1, ..., uN are in general position and the outer unit normals of P are a subset of
{u1, ..., uN}, the dimensions of the intersection of any m (m > n− j) facets of P is less than j. On
the other hand, each j-dimensional face of P is the intersection of the family (containing at least
n − j members) of facets of P (see, e.g., [20], pp.35, Theorem 7). Therefore, each j-dimensional
face of P is the intersection of n− j facets of P . �

3. An extreme problem

In this section, we study an extreme problem. Its solution also solves the logarithmic Minkowski
problem. The analogous problem was studied by Chou and Wang [13].

Let γ1, ..., γN ∈ R+, u1, ..., uN ∈ Sn−1 are in general position and P ∈ P(u1, ..., uN). Define ΦP :
Int (P )→ R by

ΦP (ξ) =
N∑
k=1

γk log(h(P, uk)− ξ · uk).

Lemma 3.1. If γ1, ..., γN ∈ R+, the unit vectors u1, ..., uN are in general position and P ∈
P(u1, ..., uN), then there exists a unique point ξ(P ) ∈ Int (P ) such that

ΦP (ξ(P )) = max
ξ∈Int (P )

ΦP (ξ).

Proof. Since log t is strictly concave on (0,∞), for 0 < λ < 1 and ξ1, ξ2 ∈ Int (P ),

λΦP (ξ1) + (1− λ)ΦP (ξ2) = λ
N∑
k=1

γk log(h(P, uk)− ξ1 · uk) + (1− λ)
N∑
k=1

γk log(h(P, uk)− ξ2 · uk)

=
N∑
k=1

γk [λ log(h(P, uk)− ξ1 · uk) + (1− λ) log(h(P, uk)− ξ2 · uk)]

≤
N∑
k=1

γk log [h(P, uk)− (λξ1 + (1− λ)ξ2) · uk]

= ΦP (λξ1 + (1− λ)ξ2),

with equality if and only if ξ1 · uk = ξ2 · uk for all k = 1, ..., N . Since u1, ..., uN are in general
position, ξ1 = ξ2. Thus, ΦP is strictly concave on Int (P ).

Since P ∈ P(u1, ..., uN), for any x ∈ ∂P , there exists a ui0 ∈ {u1, ..., uN} such that

h(P, ui0) = x · ui0 .
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Thus, ΦP (ξ)→ −∞ whenever ξ ∈ Int (P ) and ξ → ∂P . Then, there exists a unique interior point
ξ(P ) of P such that

ΦP (ξ(P )) = max
ξ∈Int (P )

ΦP (ξ).

�

By definition, for λ > 0 and P ∈ P(u1, ..., uN),

(3.1) ξ(λP ) = λξ(P ).

Obviously, if Pi ∈ P(u1, ..., uN) and Pi converges to a polytope P , then P ∈ P(u1, ..., uN).

Lemma 3.2. If the unit vectors u1, ..., uN are in general position, Pi ∈ P(u1, ..., uN) and Pi
converges to a polytope P , then limi→∞ ξ(Pi) = ξ(P ) and

lim
i→∞

ΦPi(ξ(Pi)) = ΦP (ξ(P )).

Proof. Let a0 = minu∈Sn−1{h(P, u) − ξ(P ) · u} > 0. Since Pi converges to P and ξ(P ) ∈ Int (P ),
there exists a N0 > 0 such that

h(Pi, uk)− ξ(P ) · uk >
a0
2
,

for all k = 1, ..., N, whenever i > N0. Thus,

(3.2) ΦPi(ξ(Pi)) ≥ ΦPi(ξ(P )) > (
N∑
k=1

γk) log
a0
2
,

whenever i > N0.
From the conditions, ξ(Pi) is bounded. Suppose that ξ(Pi) does not converge to ξ(P ), then

there exists a subsequence Pij of Pi such that Pij → P , ξ(Pij) → ξ0, but ξ0 6= ξ(P ). Obviously,
ξ0 ∈ P . We claim that ξ0 is not a boundary point of P , otherwise limj→∞ΦPij

(ξ(Pij)) = −∞; this

is a contradiction with Equation (3.2). If ξ0 is an interior point of P with ξ0 6= ξ(P ), then

lim
j→∞

ΦPij
(ξ(Pij)) = ΦP (ξ0)

< ΦP (ξ(P ))

= lim
j→∞

ΦPij
(ξ(P )).

This is a contradiction with the fact that

ΦPij
(ξ(Pij)) ≥ ΦPij

(ξ(P )).

Therefore, limi→∞ ξ(Pi) = ξ(P ) and thus,

lim
i→∞

ΦPi(ξ(Pi)) = ΦP (ξ(P )).

�

Consider the extreme problem,

inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) =

N∑
k=1

γk

}
.

Lemma 3.3. If γ1, ..., γN ∈ R+, the unit vectors u1, ..., uN are in general position and there exists
a P ∈ PN(u1, ..., uN) with ξ(P ) = o, V (P ) =

∑N
k=1 γk such that

ΦP (o) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) =

N∑
k=1

γk

}
.
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Then,

VP =
N∑
k=1

γkδuk .

Proof. When noticing Equation (3.1), it is sufficient to establish the lemma under the assumption

that
∑N

k=1 γk = 1.
From the conditions, there exists a polytope P ∈ PN(u1, ..., uN) with ξ(P ) = o and V (P ) = 1

such that

ΦP (o) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) = 1

}
,

where ΦQ(ξ) =
∑N

k=1 γk log(h(Q, uk)− ξ · uk).
For δ1, ..., δN ∈ R, choose |t| small enough so that the polytope Pt defined by

Pt =
N⋂
i=1

{x : x · ui ≤ h(P, ui) + tδi}

has exactly N facets. Then,

V (Pt) = V (P ) + t

(
N∑
i=1

δiSi

)
+ o(t),

where Si = |F (P, ui)|. Thus,

lim
t→0

V (Pt)− V (P )

t
=

N∑
i=1

δiSi.

Let λ(t) = V (Pt)
− 1
n , then λ(t)Pt ∈ PN(u1, ..., uN), V (λ(t)Pt) = 1 and

(3.3) λ′(0) = − 1

n

N∑
i=1

δiSi.

Let ξ(t) = ξ(λ(t)Pt), and

Φ(t) = max
ξ∈λ(t)Pt

N∑
k=1

γk log(h(λ(t)Pt, uk)− ξ · uk)

=
N∑
k=1

γk log(λ(t)h(Pt, uk)− ξ(t) · uk).

(3.4)

From the definition of ξ(t), Equation (3.4) and the fact that ξ(t) is an interior point of λ(t)Pt, we
have

(3.5)
N∑
k=1

γk
uk,i

λ(t)h(Pt, uk)− ξ(t) · uk
= 0,

for i = 1, ..., n, where uk = (uk,1, ..., uk,n)T . As a special case when t = 0, we have

N∑
k=1

γk
uk,i

h(P, uk)
= 0,

for i = 1, ..., n. Therefore,

(3.6)
N∑
k=1

γk
uk

h(P, uk)
= 0.
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Let

Fi(t, ξ1, ..., ξn) =
N∑
k=1

γk
uk,i

λ(t)h(Pt, uk)− (ξ1uk,1 + ...+ ξnuk,n)

for i = 1, ..., n. Then,

∂Fi
∂ξj

∣∣∣∣
(0,...,0)

=
N∑
k=1

γk
h(P, uk)2

uk,iuk,j.

Thus, (
∂F

∂ξ

∣∣∣∣
(0,...,0)

)
n×n

=
N∑
k=1

γk
h(P, uk)2

uku
T
k ,

where uku
T
k is a n × n matrix. For any x ∈ Rn with x 6= 0, from the fact that u1, ..., uN are in

general position, there exists a ui0 ∈ {u1, ..., uN} such that ui0 · x 6= 0. Then,

xT

(
N∑
k=1

γk
h(P, uk)2

uku
T
k

)
x =

N∑
k=1

γk
h(P, uk)2

(x · uk)2

≥ γi0
h(P, ui0)

2
(x · ui0)2 > 0.

Thus, (∂F
∂ξ

∣∣
(0,...,0)

) is positive defined. From this, the fact that ξ(0) = 0, Equation (3.5), and the

inverse function theorem,

ξ′(0) = (ξ′1(0), ..., ξ′n(0))

exists.
From the fact that Φ(0) is a minimizer of Φ(t) (in Equation (3.4)), Equation (3.3), the fact∑N
k=1 γk = 1 and Equation (3.6), we have

0 = Φ′(0)

=
N∑
k=1

γk
λ′(0)h(P, uk) + λ(0)dh(Pt,uk)

dt

∣∣
t=0
− ξ′(0) · uk

h(P, uk)

=
N∑
k=1

γk
− 1
n
(
∑N

i=1 δiSi)h(P, uk) + δk − ξ′(0) · uk
h(P, uk)

= −
N∑
i=1

Siδi
n

+
N∑
k=1

γkδk
h(P, uk)

− ξ′(0) ·

[
N∑
k=1

γk
uk

h(P, uk)

]

=
N∑
k=1

(
γk

h(P, uk)
− Sk

n

)
δk.

Since δ1, ..., δN are arbitrary, γk = 1
n
h(P, uk)Sk for k = 1, ..., N . �

4. The compactness of the extreme problem

In this section, we prove that if a sequence of polytopes from P(u1, ..., uN) has a bounded volume
it also has a bounded diameter.

Lemma 4.1. If the unit vectors u1, ..., uN are in general position and P ∈ P(u1, ..., uN), then
F (P, ui) is either a point or a facet for all 1 ≤ i ≤ N . Moreover, if n ≥ 3 and F (P, ui) is a facet,
then the outer unit normals of F (P, ui) (in H(P, ui)) are in general position.



10 GUANGXIAN ZHU

Proof. Since

F (P, ui) = H(P, ui) ∩ P
= H(P, ui) ∩

(
∩Nk=1 H

−(P, uk)
)

= ∩Nk=1

(
H(P, ui) ∩H−(P, uk)

)
,

F (P, ui) is a lower dimensional polytope or a point.
For the first part, if F (P, ui) is a m-dimensional polytope with 1 ≤ m ≤ n−2 for some i (1 ≤ i ≤

N), then from Lemma 2.1, there exist ui1 , ..., uin−m ∈ {u1, ..., uN}\{ui} with F (P, ui1), ..., F (P, uin−m)
are facets of P such that

F (P, ui) = F (P, ui1) ∩ ... ∩ F (P, uin−m)

= P ∩H(P, ui1) ∩ ... ∩H(P, uin−m).

Thus,

F (P, ui) = F (P, ui) ∩H(P, ui)

= P ∩H(P, ui) ∩H(P, ui1) ∩ ... ∩H(P, uin−m).

On the other hand, ui, ui1 , ..., uin−1 are linearly independent. Thus, the dimensions of

P ∩H(P, ui) ∩H(P, ui1) ∩ ... ∩H(P, uin−m)

are no more than m− 1. This is a contradiction. Therefore, F (P, ui) is either a point or a facet of
P .

We now turn to the second part. We only need to prove that every n− 1 distinct vectors chosen
from the outer unit normals of F (P, ui) (in H(P, ui)) are linearly independent. If it is not correct,
then from Lemma 2.1 there exist 1 ≤ i1 < ... < in−1 ≤ N with ij 6= i for all 1 ≤ j ≤ n − 1 and
v1, ..., vn−1 ∈ Sn−1 ∩ u⊥i such that

H(P, ui1) ∩ F (P, ui), ..., H(P, uin−1) ∩ F (P, ui)

are (n− 2)-dimensional facets of F (P, ui), v1, ..., vn−1 are the corresponding outer unit normals in
H(P, ui), and v1, ..., vn−1 are linearly dependent. Then, there exists a vector v ∈ Sn−1 ∩ u⊥i such
that

v · v1 = ... = v · vn−1 = 0.

Thus, v is parallel to H(P, uij) ∩H(P, ui) for all 1 ≤ j ≤ n− 1. We have,

v · ui = v · ui1 = ... = v · uin−1 = 0.

This is a contradiction with the fact that ui, ui1 , ..., uin−1 are linearly independent. �

Lemma 4.2. If the unit vectors u1, ..., uN are in general position, 1 ≤ i1 < ... < in−1 ≤ N , and
P ∈ P(u1, ..., uN), then

Li1,...,in−1 =
n−1⋂
j=1

F (P, uij)

is either empty, a point, or a 1-dimensional face of P . Moreover, if n ≥ 3 and Li1,...,in−1 is a
1-dimensional face of P , then F (P, ui1), ..., F (P, uin−1) are facets of P and Li1,...,in−1 is parallel to

ui1 ∧ ... ∧ uin−1 .

Proof. Since u1, ..., uN are in general position,

n−1⋂
j=1

H(P, uij)
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is a line. Thus,

Li1,...,in−1 = ∩n−1j=1F (P, uij)

= P ∩ (∩n−1j=1H(P, uij))

is either empty, a point, or a 1-dimensional face of P . On the other hand, from Lemma 4.1, F (P, uj)
is either a point or a facet of P for all 1 ≤ j ≤ N . Thus, if Li1,...,in−1 is a 1-dimensional face of P ,
then F (P, ui1), ..., F (P, uin−1) are facets of P and Li1,...,in−1 is parallel to ui1 ∧ ... ∧ uin−1 . �

Theorem 4.3. If the unit vectors u1, ..., uN are in general position, Pi ∈ P(u1, ..., uN) with o ∈ Pi
and V (Pi) = 1, then Pi is bounded.

Proof. We only need to prove that if the unit vectors u1, ..., uN are in general position, Pi ∈
P(u1, ..., uN) and d(Pi) is not bounded, then V (Pi) is not bounded.

We proceed by induction on the dimensions of the ambient space, Rn. When n = 2, let

c2 = min

{√
1− |ui · uj|2 : 1 ≤ i < j ≤ N

}
.

Since u1, ..., uN are in general position, c2 > 0.
Obviously, all the facets (line segments) of Pi are from the finite set

{F (Pi, uk) : k = 1, ..., N}.

We note that F (Pi, uk) may be a point, in this case, |F (Pi, uk)| = 0. Then,

d(Pi) <
N∑
k=1

|F (Pi, uk)|.

Since d(Pi) is not bounded, there exists an i0 (1 ≤ i0 ≤ N) such that |F (Pi, ui0)| is not bounded.
Since ∑

k 6=i0

|F (Pi, uk)| > |F (Pi, ui0)|,

there exists an i1 (1 ≤ i1 ≤ N) different from i0 such that

|F (Pi, ui1)| >
1

N − 1
|F (Pi, ui0)|

is not bounded. Thus, for any M > 0, there exists an i such that

|F (Pi, ui0)| > M

and

|F (Pi, ui1)| > M.

Let x0 ∈ F (Pi, ui1) such that

d(x0, H(Pi, ui0)) = max{d(x,H(Pi, ui0)) : x ∈ F (Pi, ui1)}.

Then,

Conv (F (Pi, ui0) ∪ {x0}) ⊂ Conv (F (Pi, ui0) ∪ F (Pi, ui1)).

Let

Proj ui0 (F (Pi, ui1))

be the projection of F (Pi, ui1) on the line

{tui0 : t ∈ R}.
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Since H(Pi, ui0) is a support line of Pi, F (Pi, ui1) lies on one side of H(Pi, ui0). Then,

d(x0, H(Pi, ui0)) ≥
∣∣∣Proj ui0 (F (Pi, ui1))

∣∣∣
= |F (Pi, ui1)| ·

√
1− |ui0 · ui1|2

≥ c2M.

Thus,

S(Pi) ≥ S (Conv (F (Pi, ui0) ∪ F (Pi, ui1)))

≥ S (Conv (F (Pi, ui0) ∪ {x0}))

=
1

2
|F (Pi, ui0)| · d(x0, H(Pi, ui0))

≥ c2
2
M2.

Therefore, S(Pi) is not bounded.
Suppose the Lemma is true for dimensions n − 1; we next prove that the theorem is true for

dimensions n. For dimensions n (n ≥ 3), let

cn = min

{∣∣∣∣ui · ui1 ∧ ... ∧ uin−1

|ui1 ∧ ... ∧ uin−1|

∣∣∣∣ : 1 ≤ i1 < ... < in−1 ≤ N, i 6= ij

}
.

Since u1, ..., uN are in general position, cn > 0.
From Lemma 2.1 and Lemma 4.2, the set of the 1-dimensional faces of Pi is a subset of{

n−1⋂
j=1

F (Pi, uij) : 1 ≤ i1 < ... < in−1 ≤ N

}
.

We have
d(Pi) ≤

∑
1≤j1<...<jn−1≤N

|Li;j1,...,jn−1|,

where |Li;j1,...,jn−1| is the length of ∩n−1k=1F (Pi, ujk) and equals 0 whenever the intersection is a point
or empty. Since d(Pi) is not bounded, there exist i1, ..., in−1 (with 1 ≤ i1 < ... < in−1 ≤ N) such
that the length of

Li;i1,...,in−1 =
n−1⋂
j=1

F (Pi, uij)

is not bounded. On the other hand ∑
1≤j1<...<jn−1≤N

|Li;j1,...,jn−1 |

− |Li;i1,...,in−1| > |Li;i1,...,in−1|.

Thus, there exist 1 ≤ i′1 < ... < i′n−1 ≤ N such that Li;i1,...,in−1 6= Li;i′1,...,i′n−1
and

|Li;i′1,...,i′n−1
| > 1(

N
n−1

)
− 1
|Li;i1,...,in−1|

is not bounded. Without loss of generality, we can suppose

i′1 6= ij

for all 1 ≤ j ≤ n− 1.
Therefore, there exists a subsequence ik of i such that

lim
k→∞
|Lik;i1,...,in−1| = lim

k→∞
|Lik;i′1,...,i′n−1

| =∞.
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From this and Lemma 4.1, when ik is big enough, F (Pik , ui′1) is a facet of Pik , and the outer unit
normals of F (Pik , ui′1) (in H(Pik , ui′1), and is a subset of the unit normals of H(Pik , uj)∩H(Pik , ui′1)
for j 6= i′1) are in general position (in H(Pik , ui′1)). By the inductive hypothesis, |F (Pik , ui′1)| is
not bounded. Thus, for any M > 0 there exists an i such that Li;i1,...,in−1 and Li;i′1,...,i′n−1

are

1-dimensional faces of Pi, F (Pi, ui′1) is a facet of Pi with

|Li;i1,...,in−1| > M,

and

|F (Pi, ui′1)| > M.

Let x0 ∈ Li;i1,i2,...,in−1 such that

d(x0, H(Pi, ui′1)) = max{d(x,H(Pi, ui′1)) : x ∈ Li;i1,i2,...,in−1}.
Then,

Conv
(
F (Pi, ui′1) ∪ {x0}

)
⊂ Conv

(
F (Pi, ui′1) ∪ Li;i1,i2,...,in−1

)
.

Let

Proj ui′1

(
Li;i1,i2,...,in−1

)
be the projection of Li;i1,i2,...,in−1 on the line

{tui′1 : t ∈ R}.

Since H(Pi, ui′1) is a support hyperplane of Pi, Li;i1,i2,...,in−1 lies on one side of H(Pi, ui′1). From this
and Lemma 4.2, we have

d(x0, H(Pi, ui′1)) ≥
∣∣∣Proj ui′1

Li;i1,i2,...,in−1

∣∣∣
= |Li;i1,i2,...,in−1| ·

∣∣∣∣ui′1 · ui1 ∧ ui2 ∧ ... ∧ uin−1

|ui1 ∧ ui2 ∧ ... ∧ uin−1|

∣∣∣∣
≥ cnM.

Thus,

V (Pi) ≥ V
(
Conv (F (Pi, ui′1) ∪ Li;i1,i2,...,in−1)

)
≥ V

(
Conv (F (Pi, ui′1) ∪ {x0})

)
=

1

n
|F (Pi, ui′1)| · d(x0, H(Pi, ui′1))

≥ cn
n
M2.

Therefore, V (Pi) is not bounded. �

5. The logarithmic Minkowski problem for polytopes

In this section, we prove the main theorem.

Lemma 5.1. If γ1, ..., γN are positive and the unit vectors u1, ..., uN are in general position, then
there exists a P ∈ PN(u1, ..., uN) such that ξ(P ) = o, V (P ) =

∑N
k=1 γk and

ΦP (o) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) =

N∑
k=1

γk

}
,

where ΦQ(ξ) =
∑N

k=1 γk log(h(Q, uk)− ξ · uk).
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Proof. It is easily seen that it is sufficient to establish the lemma under the assumption that∑N
k=1 γk = 1.
Obviously, for P,Q ∈ PN(u1, ..., uN), if there exists a x ∈ Rn such that P = Q+ x, then

ΦP (ξ(P )) = ΦQ(ξ(Q)).

Thus, we can choose a sequence Pi ∈ PN(u1, ..., uN) with ξ(Pi) = o and V (Pi) = 1 such that ΦPi(o)
converges to

inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) = 1

}
.

From Theorem 4.3, Pi is bounded. Thus, from Lemma 3.2 and the Blaschke selection theorem,
there exists a subsequence of Pi that converges to a polytope P such that P ∈ P(u1, ..., uN),
V (P ) = 1, ξ(P ) = o and

(5.1) ΦP (o) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) = 1

}
.

We next prove that F (P, ui) are facets for all i = 1, ..., N . Otherwise, from Lemma 4.1 and the
fact that N ≥ n+ 1, there exist 1 ≤ i0 < ... < im ≤ N with m ≥ 0 such that

F (P, ui)

is a point for i ∈ {i0, ..., im} and is a facet of P for i ∈ {1, ..., N}\{i0, ..., im}.
Choose δ > 0 small enough so that the polytope

Pδ = P ∩ {x : x · ui0 ≤ h(P, ui0)− δ}
has exactly (N −m) facets and

P ∩ {x : x · ui0 ≥ h(P, ui0)− δ}
is a cone. Then,

V (Pδ) = 1− c0δn,
where c0 > 0 is a constant that depends on P and direction ui0 .

From Lemma 3.1, for any δi → 0 it is always true that ξ(Pδi) → o. We have ξ(Pδ) → o as
δ → 0. Let δ be small enough so that h(P, uk) > ξ(Pδ) ·uk + δ for all k ∈ {1, ..., N}, let d0 = d(P ),

and let λ = V (Pδ)
− 1
n = ( 1

1−c0δn )
1
n . From this, Equation (3.1), the fact that

∑N
k=1 γk = 1, and

d0 > h(P, ui0)− ξ(Pδ) · ui0 > 0, we have

N∏
k=1

(h(λPδ, uk)− ξ(λPδ) · uk)γk = λ

N∏
k=1

(h(Pδ, uk)− ξ(Pδ) · uk)γk

= λ

[
N∏
k=1

(h(P, uk)− ξ(Pδ) · uk)γk
][

h(P, ui0)− ξ(Pδ) · ui0 − δ
h(P, ui0)− ξ(Pδ) · ui0

]γi0
=

[
N∏
k=1

(h(P, uk)− ξ(Pδ) · uk)γk
]

(1− δ
h(P,ui0 )−ξ(Pδ)·ui0

)γi0

(1− c0δn)
1
n

≤

[
N∏
k=1

(h(P, uk)− ξ(Pδ) · uk)γk
]

(1− δ
d0

)γi0

(1− c0δn)
1
n

.

Let g(δ) = (1− c0δn)
1

nγi0 + 1
d0
δ − 1, then g(0) = 1 and

g′(δ) =
1

d0
− c0
γi0
δn−1(1− c0δn)

1
nγi0

−1
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is bigger than 0 for small positive δ. Thus, there exists a δ0 > 0 such that Pδ0 has exactly (N −m)
facets and (

1− δ0
d0

)γi0
(1− c0δn0 )

1
n

< 1.

Then
N∏
k=1

(h(λ0Pδ0 , uk)− ξ(λ0Pδ0) · uk)
γk <

N∏
k=1

(h(P, uk)− ξ(Pδ0) · uk)
γk ,

where λ0 = V (Pδ0)
− 1
n . Thus,

Φλ0Pδ0
(ξ(λ0Pδ0)) < ΦP (ξ(Pδ0)) ≤ ΦP (ξ(P )) = ΦP (o).

Let P0 = λ0Pδ0 − ξ(λ0Pδ0), then P0 ∈ P(u1, ..., uN), V (P0) = 1, ξ(P0) = o and

(5.2) ΦP0(o) < ΦP (o).

If m = 0, then Equation (5.2) is a contradiction with Equation (5.1). If m ≥ 1, choose positive δi
so that δi → 0 as i→∞,

Pδi = P0 ∩
(
∩mj=1{x : x · uij ≤ h(P0, uij)− δi}

)
,

and λiPδi ∈ PN(u1, ..., uN), where λi = V (Pδi)
− 1
n . Obviously, λiPδi converges to P0. From Lemma

3.1 and Equation (5.2), we have

lim
i→∞

ΦλiPδi
(ξ(λiPδi)) = ΦP0(o)

< ΦP (o)

= inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) = 1

}
.

This is a contradiction with Equation (5.1). Therefore, P ∈ PN(u1, ..., uN). �

Now, we have prepared enough to prove the main theorem.

Theorem 5.2. If γ1, ..., γN ∈ R+ and the unit vectors u1, ..., uN are in general position, then there
exists a polytope P (containing the origin in its interior) such that

VP =
N∑
k=1

γkδuk .

Proof. From Lemma 5.1, there exists a P ∈ PN(u1, ..., uN) with ξ(P ) = o and V (P ) =
∑N

k=1 γk
such that

ΦP (o) = inf

{
max

ξ∈Int (Q)
ΦQ(ξ) : Q ∈ PN(u1, ..., uN) and V (Q) =

N∑
k=1

γk

}
.

From this and Lemma 3.3, we have

VP =
N∑
k=1

γkδuk .

�
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[7] Böröczky, J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231,

1974-1997 (2012).
[8] Caffarelli, L.: Interior W 2,p-estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131,

135-150 (1990).
[9] Campi, S., Gronchi, P.: The Lp-Busemann-Petty centroid inequality. Adv. Math. 167, 128-141 (2002).

[10] Chen, W.: Lp Minkowski problem with not necessarily positive data. Adv. Math. 201, 77-89 (2006).
[11] Cheng, S.-Y., Yau, S.-T.: On the regularity of the solution of the n-dimensional Minkowski problem. Comm.

Pure Appl. Math. 29, 495-561 (1976).
[12] Chou, K.-S.: Deforming a hypersurface by its Gauss-Kronecker curvature. Comm. Pure Appl. Math. 38,

867-882 (1985).
[13] Chou, K.-S., Wang, X.-J.: The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry.

Adv. Math. 205, 33-83 (2006).
[14] Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser-Trudinger and Morrey-Sobolev inequalities.

Calc. Var. Partial Differential Equations 36, 419-436 (2009).
[15] Firey, W.: Shapes of worn stones. Mathematika 21, 1-11 (1974).
[16] Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves. J. Differential Geom. 23, 69-96

(1986).
[17] Gardner, R.J.: Geometric Tomography, 2nd edition, Encyclopedia of Mathematics and its Applications.

Cambridge University Press, Cambridge, 2006.
[18] Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality for uniformly convex

Banach Spaces. Composito Math. 62, 263-282 (1987).
[19] Gruber, P.M.: Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften, 336.

Springer, Berlin, 2007.
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