
THE ORLICZ CENTROID INEQUALITY FOR STAR BODIES
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Abstract. Lutwak, Yang and Zhang established the Orlicz centroid inequality for convex bodies
and conjectured that their inequality can be extended to star bodies. In this paper, we confirm
this conjecture.

1. Introduction

The centroid body operator is one of the central notions in convex geometry. Blaschke con-
jectured that the ratio between the volume of an origin-symmetric convex body and that of the
volume of its centroid body attains its maximum precisely when the body is an origin symmetric
ellipsoid (see e.g., [15, 26, 37, 59]). By applying Busemann’s random simplex inequality (see [4]),
Petty proved Blaschke’s conjecture, extended the definition of centroid bodies, and gave centroid
bodies their name [57]. Petty’s theorem is known as the Busemann-Petty centroid inequality (see
e.g., [15, 35–37,59]).

With the development of the Lp Brunn-Minkowski theory and its dual (see e.g., [15,33,34,59]),
and the applications of this theory (see e.g., [1–3,5–11,13,18–22,24,27–39,41–44,46–55,58,60–62,64–
68]), the Lp analogues of centroid inequality became a central focus. The fundamental inequality for
Lp centroid bodies was established by Lutwak, Yang and Zhang [39] with an independent approach
presented by Campi and Gronchi [5]. After that, Haberl and Schuster proved a general asymmetric
Lp centroid inequality [22]. For additional references regarding centroid body inequalities and Lp
centroid body inequalities and their applications see e.g., [14, 16,17,25,53–55,69].

In [40] and [45] Lutwak, Yang and Zhang extended the Lp Brunn-Minkowski theory to an Orlicz
Brunn-Minkowski theory. In [40] they established the Orlicz centroid body inequality for convex
bodies. In this paper their inequality, along with its equality conditions, will be extended from
convex to star bodies.

Throughout let φ : R→ [0,∞) be convex and let φ (0) = 0. Thus φ is decreasing on (−∞, 0] and
increasing on [0,∞). We require that either one is happening strictly, that is φ is either strictly
decreasing on (−∞, 0] or strictly increasing on [0,∞). The class of such φ is denoted by C, and
the subset of C that contains strictly convex functions is denoted by Cs.

Let K is a star body (see Section 2 for precise definition) with respect to the origin in Rn with
volume |K|, and φ ∈ C. The Orlicz centroid body ΓφK of K is the convex body whose support
function at x ∈ Rn is given by

(1.1) h(ΓφK;x) = inf

{
λ > 0 :

1

|K|

∫
K

φ
(x · y

λ

)
dy ≤ 1

}
,

where x ·y denotes the standard inner product of x and y in Rn and the integration is with respect
to Lebesgue measure on Rn. Obviously, when φ (t) = |t|p, with p ≥ 1, the Orlicz centroid body
becomes the Lp centroid body.

In [40], Lutwak, Yang and Zhang proved the following theorem,
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Theorem A. If φ ∈ C and K is a convex body in Rn that contains the origin in its interior,
then the volume ratio

|ΓφK|/|K|

is minimized if and only if K is an ellipsoid centered at the origin.

By using the class reduction technique (introduced in [35]), Lutwak, Yang and Zhang showed
that once the Lp Busemann-Petty centroid inequality has been established for convex bodies, then
the inequality can be extended to all star bodies (see [39]). However, it is unclear whether there
exists a similar class reduction technique that is applicable for the Orlicz centroid inequality. They
also posted the following open problem:

Conjecture. If φ ∈ C and K is a star body with respect to the origin, then the volume ratio
|ΓφK|/|K| is minimized if and only if K is an ellipsoid centered at the origin.

In this paper, we extend the methods (used in [40]) for convex bodies to star bodies. As a result,
we can confirm the above conjecture,

Theorem. If φ ∈ C and K is a star body with respect to the origin, then the volume ratio

|ΓφK|/|K|

is minimized when K is an ellipsoid centered at the origin. If φ ∈ Cs, then ellipsoids centered at
the origin are the only minimizers.

This paper is organized as follows. In section 2, we recall some basic facts about convex bodies,
star bodies and compact sets. In section 3, basic properties for the Steiner symmetrization of star
bodies are developed. In section 4, we prove two auxiliary inequalities. In section 5, we extend two
inequalities proved for convex bodies in [40] to the class of star bodies. In section 6, we complete
the proof of the Orlicz centroid inequality for star bodies.

2. Some basics facts about convex bodies, star bodies and compact sets

All the subsets of Rn appearing in this paper are compact sets unless otherwise stated. If K
is a Borel subset of Rn and K is contained in an i−dimensional affine subspace of Rn but not in
any affine subspace of lower dimension, then |K| denotes the i−dimensional Lebesgue measure of
K. For x ∈ Rn, we will write |x| for the Euclidean norm of x. For A ∈GL(n) we write At for the
transpose of A, A−t for the inverse of the transpose of A, and |A| for the absolute value of the
determinant of A. We write e1, ..., en for the standard orthonormal basis of Rn and when we write
Rn = Rn−1 × R we always assume that en is associated with the last factor.

LetKn denote the set of convex bodies (compact convex sets with nonempty interiors), Kno denote
those convex bodies that contain the origin in their interiors. A compact set K ⊂ Rn is a star-
shaped set (with respect to the origin) if the intersection of every straight line through the origin
with K is a line segment. Let K ⊂ Rn be a compact star shaped set (with respect to the origin),
the radial function ρ(K, ·) : Rn\{o} → R is defined by ρ(K, x) = ρK(x) = max {λ ≥ 0 : λx ∈ K}.
If ρK is strictly positive and continuous, then we call K a star body (with respect to the origin),
denotes the class of star bodies (respect to the origin o) in Rn by Sno .

If K, L are two compact sets in Rn and λ ∈ R, their Minkowski sum K + L is defined by,

K + L = {x+ y : x ∈ K, y ∈ L},
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and for λ > 0, the scalar multiplication λK is given by

λK = {λx : x ∈ K}.
For two compact sets K,L in Rn, the Hausdorff distance between them is defined by

d(K,L) = min {t ≥ 0 : K ⊂ L+ tBn, L ⊂ K + tBn} .
Let h(K; ·) = hK : Rn → R denote the support function of the convex body K ∈ Kn; i.e.,

h(K;x) = max {x · y : y ∈ K}. It is known that the Hausdorff distance between two convex
bodies K and L is given by

d(K,L) = max
u∈Sn−1

|hK(u)− hL(u)|.

Obviously for K,L ∈ Kn, we have K ⊂ L if and only if hK ≤ hL. For c > 0 and x ∈ Rn, we
have hcK(x) = chK(x) and hK(cx) = chK(x). More generally for A ∈ GL (n) we have

hAK(x) = hK(Atx),

and
hK+L(u) = hK(u) + hL(u).

For a direction en = u ∈ Sn−1, a convex body K ⊂ Rn−1 × R and (x′, t) ∈ Rn−1 × R, we
will usually write h(K;x′, t) rather than h(K; (x′, t)). Let Ku denote the image of the orthogonal
projection of K onto u⊥, and let

K = {(y′, z) : −lu(K, y′) ≤ z ≤ l̄u(K, y
′), y′ ∈ Ku},

where lu(K; ·) : Ku → R and l̄u(K; ·) : Ku → R are the lowergraph and uppergraph functions of K
in the direction u. The following lemma will be needed (see e.g., [40]).

Lemma 2.1. Suppose K ∈ Kno and u ∈ Sn−1. For y′ ∈ relint Ku, the uppergraph function and
lowergraph function of K in the direction u are given by

lu(K; y′) = min
x′∈u⊥

{h(K;x′, 1)− x′ · y′} ,

and
lu(K; y′) = min

x′∈u⊥
{h(K;x′,−1)− x′ · y′} .

3. Steiner symmetrization of star bodies

In this section we discuss properties of the Steiner symmetrization of star bodies. For a compact
set K with nonzero measure, the intersection of K with any straight line is a compact set on the
line (so the intersection is a one dimensional Lebesgue measurable set). The Steiner symmetrized
body SuK of K with respect to the hyperplane u⊥ is characterized by the following properties:
First, SuK is symmetric with respect to the hyperplane u⊥. Second, any straight line that is
parallel to u and intersects K or SuK, intersects also the other and both intersections have the
same one-dimensional measure. Third, the intersection of a straight line parallel to u with SuK
is a segment or a point in u⊥. A further property of Steiner symmetrization is that, if K is a
compact set, then SuK is also compact for any u ∈ Sn−1 (see e.g., [12]).

Let {u⊥i }1≤i≤k be a finite set of hyperplanes. A multiple symmetrization is a composite of the
form

S∗ = Su⊥k ◦ Su⊥k−1
◦ · · · ◦ Su⊥1 .

For a nonempty compact set K, let S(K) denote the set of all S∗(K) multiple symmetrizations of
K. The following well known lemma proved by Lusterink and Gross will be needed (see e.g., [23]
p.170-173).
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Lemma 3.1. Let K be a nonempty compact set, then there is a sequence {Ki} ⊂ S(K) and a
closed ball rB̄n centered at the origin of radius r such that |rB̄n| = |K| and Ki → rB̄n with respect
to the Hausdorff distance.

Lemma 3.2. Let K be a star-shaped set with respect to o, then K is a star body with respect to o
if and only if for any u ∈ Sn−1, all the points of {tu : 0 ≤ t < ρK(u)} are interior points of K.

Proof. Assume K is a star body (respect to o) but there exist a u0 ∈ Sn−1 and a t0 ≥ 0, such that
t0u0 ∈ {tu0 : 0 ≤ t < ρK(u0)} is not an interior point of K. Let δ = 1

2
(ρK(u0) − t0), since t0u0

is not an interior point of K, there exist an open ball (t0 + δ)Bn centered at the origin of radius
(t0 + δ) and a sequence of points Pi such that Pi ∈ ((t0 + δ)Bn ∩ (Rn \K)) and Pi → t0u0. Let
ui = (oPi)/|oPi| ∈ Sn−1, then ui → u0. Since Pi are not from K, ρK(ui) < |oPi| for all i ∈ N and
|oPi| → t0 < ρK(u0). We have that ρK(u) is not continuous at u0, which is a contradiction. So for
any u ∈ Sn−1 all the points of {tu : 0 ≤ t < ρK(u)} are interior points of K.

If for any u ∈ Sn−1 all the points of {tu : 0 ≤ t < ρK(u)} are interior points of K, but K is not
a star body. Which means ρK(u) is not continuous on Sn−1, then there exist a δ > 0, a u0 ∈ Sn−1,
and a sequence of ui ∈ Sn−1 such that ui → u0 but |ρK(ui)− ρK(u0)| > δ for all i. Thus, we can
either find an infinite subsequence of the ui (without loss of generality we can suppose it is ui)
such that ρK(ui) − ρK(u0) > δ, or we can find an infinite subsequence of the ui (without loss of
generality we can suppose it is the ui) such that ρK(u0) − ρK(ui) > δ. For the first case, since
ui → u0 and ρK(ui)ui is bounded, the sequence ρK(ui)ui has at least one limit point P . Since K
is compact, P ∈ K and obviously P ∈ {tu0 : t ≥ ρK(u0) + δ}, which is a contradiction. For the
second case, since ui → u0 and ρK(ui)ui is bounded, the sequence ρK(ui)ui has at least one limit
point P , obviously P ∈ K and P ∈ {tu0 : 0 ≤ t ≤ ρK(u0)− δ}. Since K is a star-shaped set, the
sequence of points Qi = (ρK(ui) + 1/i)ui is not in K. Obviously P is a limit point of Qi and P is
not an interior point of K, which is a contradiction. Therefore K is a star body. �

Theorem 3.3. If K ∈ Sno and u ∈ Sn−1, then SuK ∈ Sno .

Proof. Since K is a compact set, SuK is compact (see e.g., [12]). For any v ∈ Sn−1 let a0 = a0(v) =
sup{a : a > 0, av ∈ SuK}. Since SuK is compact, a0v ∈ SuK. Furthermore we claim that for any
s (0 ≤ s < a0) we have, the point P = sv is an interior point of SuK. Then the intersection of
SuK with any straight line through o is a segment, and except the two end points, all the points
of this segment are interior points of SuK. Thus by Lemma 3.2, SuK is a star body.

For any point P = sv (0 ≤ s < a0), write (sv)u and (a0v)u for the projections of sv and a0v
onto u⊥. Since K is a star body, for any point Q ∈ K ∩ {(a0v)u + tu : t ∈ R}, we have

(s/a0)Q ∈ K ∩ {(sv)u + tu : t ∈ R}.

So the set (s/a0)(K ∩ {(a0v)u + tu : t ∈ R}) is a subset of K ∩ {(sv)u + tu : t ∈ R}, and it is
compact. By Lemma 3.2, for any point

Q ∈ (s/a0)(K ∩ {(a0v)u + tu : t ∈ R}),

Q is an interior point of K, so we can find an open cube ∆Q such that Q ∈ ∆Q, ∆Q ⊂ K and the
edges of ∆Q are parallel to the axes. Thus we have an open cover of the compact set

(s/a0)(K ∩ {(a0v)u + tu : t ∈ R}),

so we can choose a finite open cover of (s/a0)(K ∩{(a0v)u + tu : t ∈ R}), and denote this cover by
∆Q1 ,∆Q2 , ...,∆Qm . Obviously in u⊥, the point (Q1)u = (Q2)u = · · · = (Qm)u = (sv)u is an interior
point of ∆′ = ∩mi=1(∆Qi)u (where (∆Qi)u is the projection of ∆Qi onto u⊥). Let

tM = |(∪mi=1∆Qi) ∩ {(sv)u + tu : t ∈ R}|
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and
δ0 = |K ∩ {(a0v)u + tu : t ∈ R}|,

then
(s/a0){(a0v)u × [−δ0/2, δ0/2]} ⊂ ∆′ × (−tM/2, tM/2) ⊂ SuK.

Since ∆′ × (−tM/2, tM/2) is an open set and

P = sv ∈ (s/a0){(a0v)u × [−δ0/2, δ0/2]},
P is an interior point of SuK. Thus, by Lemma 3.2, SuK is a star body. �

4. Two auxiliary inequalities

In this section we prove two basic inequalities that will be needed in the following sections.

Lemma 4.1. Let φ ∈ C, a1a2 < 0, b1, b2 ∈ R, and c1, c2 > 0, then

f(t) = c1φ(a1t+ b1) + c2φ(a2t+ b2)

is a convex function and there exists a t0 such that f(t) is decreasing on (−∞, t0], increasing on
[t0,+∞), and limt→−∞ f(t) = limt→+∞ f(t) = +∞. If φ ∈ Cs, then f(t) is a strictly convex
function and there exists a unique t0 such that f(t) is strictly decreasing on (−∞, t0], strictly
increasing on [t0,+∞) and limt→−∞ f(t) = limt→+∞ f(t) = +∞.

Proof. Let fi(t) = ciφ(ait + bi). Since φ(t) is convex on R and c1, c2 > 0, for any 0 ≤ λ1 ≤ 1,
λ2 = 1− λ1 and t1, t2 ∈ R, we have

fi(λ1t1 + λ2t2) = ciφ[ai(λ1t1 + λ2t2) + bi]

= ciφ[λ1(ait1 + bi) + λ2(ait2 + bi)]

≤ ci[λ1φ(ait1 + bi) + λ2φ(ait2 + bi)]

= λ1fi(t1) + λ2fi(t2).

(4.1)

So f(t) = f1(t) + f2(t) is convex on R. Obviously when φ ∈ Cs, the functions f1(t), f2(t), f(t) are
strictly convex.

Let tm = min{− b1
a1
,− b2

a2
}, tM = max{− b1

a1
,− b2

a2
}. If tm = tM (denoted also by t0), then, since

φ ∈ C and a1a2 < 0, c1, c2 > 0, both f1 and f2 are increasing on [t0,+∞) and decreasing on
(−∞, t0], so is f = f1 + f2. If tm < tM , then f(t) is increasing on [tM ,+∞) and decreasing
on (−∞, tm]. Let f(t0) = mintm≤t≤tM f(t), if t0 = tM then f(t) is increasing on [t0,+∞); if
t0 < tM then choose any t0 < t1 < t2 ≤ tM and let λ = (t2 − t1)/(t2 − t0), then 0 ≤ λ ≤ 1 and
λt0 + (1− λ)t2 = t1, so

f(t1) = f [λt0 + (1− λ)t2] ≤ λf(t0) + (1− λ)f(t2) ≤ f(t2),

therefore f(t) is increasing on [t0, tM ]. Since f(t) is continuous on R, f(t) is increasing on [t0,+∞).
Similarly we can prove that f(t) is decreasing on (−∞, t0]. Since a1a2 < 0, c1, c2 > 0 and φ ∈ C,
limt→+∞ f(t) = limt→−∞ f(t) = +∞. Obviously when φ ∈ Cs, f(t) is strictly decreasing on
(−∞, t0] and strictly increasing on [t0,+∞) (otherwise f(t) will not be strictly convex), and
limt→+∞ f(t) = limt→−∞ f(t) = +∞. �

Lemma 4.2. Let f(t) ≥ 0 be a continuous function, decreasing on (−∞, t0] and increasing on
[t0,+∞). If E is a compact subset of R, then

(4.2)

∫
E

f(t)dt ≥
∫ t0+δ+

t0−δ−
f(t)dt,

where δ− = |E ∩ (−∞, t0]|, δ+ = |E ∩ [t0,+∞)|.
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If f is strictly decreasing on (−∞, t0], strictly increasing on [t0,+∞) and there exists a t′0 not
in E and |E ∩ (−∞, t′0]| > 0, |E ∩ [t′0,+∞)| > 0, then

(4.3)

∫
E

f(t)dt >

∫ t0+δ+

t0−δ−
f(t)dt.

Proof. We will prove

(4.4)

∫
E∩[t0,+∞)

f(t)dt ≥
∫ t0+δ+

t0

f(t)dt

and

(4.5)

∫
E∩(−∞,t0]

f(t)dt ≥
∫ t0

t0−δ−
f(t)dt.

Since E is a compact set, we have t+ = supE < +∞. Let ti = t0 + i
n
(t+−t0), (where 0 ≤ i ≤ n).

When ti ≤ t < ti+1 (0 ≤ i < n − 1), define fn(t) = f(ti) and fn(tn) = f(t+). Obviously {fn}∞n=1

is an increasing sequence of simple functions on E ∩ [t0,+∞) and fn(t)→ f(t). By the monotone
convergence theorem (see e.g., [63]) we have∫

E∩[t0,+∞)

f(t)dt = lim
n→+∞

∫
E∩[t0,+∞)

fn(t)dt

= lim
n→+∞

n−1∑
i=0

fn(ti) |E ∩ [ti, ti+1]| .
(4.6)

Let t′i = t0 + |E ∩ [t0, ti]| (0 ≤ i ≤ n), define f ′n(t) = f(t′i) when t ∈ [t′i, t
′
i+1], (0 ≤ i ≤ n − 1),

and f ′n(t′n) = f(t0 + δ+). Then {f ′n}+∞
n=1 is an increasing sequence of simple functions on [t0, t0 + δ+]

and f ′n(t)→ f(t). By the monotone convergence theorem we have∫ t0+δ+

t0

f(t)dt = lim
n→+∞

∫ t0+δ+

t0

f ′n(t)dt

= lim
n→+∞

n−1∑
i=0

f ′n(t′i)
∣∣t′i+1 − t′i

∣∣
= lim

n→+∞

n−1∑
i=1

f ′n(t′i) |E ∩ [ti, ti+1]| .

(4.7)

Since f(t) is increasing on [t0,+∞), f ′n(t′i) ≤ fn(ti), by (4.6) and (4.7), we obtain (4.4). By a
similar argument one can prove (4.5), so∫

E

f(t)dt ≥
∫ t0+δ+

t0−δ−
f(t)dt.

Assume now that f is strictly decreasing on (−∞, t0], strictly increasing on [t0,+∞) and there
exist a t′0 such that t′0 is not in E and |E ∩ [t′0,+∞)| > 0, |E ∩ (−∞, t′0]| > 0. Without loss of
generality we can assume that t0 ≤ t′0 < t+. Since E is a compact set, there exists a δ0 > 0 such that
[t′0, t

′
0+δ0]∩E is empty. And since f is continuous and strictly increasing on [t0,+∞), there exists a

δ′0 such that f(t)−f(t−δ0) > δ′0 on [t′0, t+], and when ti > t′i+δ0, f(ti)−f(t′i) > f(ti)−f(ti−δ0) > δ′0.
By (4.6) and (4.7), this yields∫

E∩[t0,+∞)

f(t)dt−
∫ t0+δ+

t0

f(t)dt ≥ |E ∩ [t′0,+∞)|δ′0 > 0.



THE ORLICZ CENTROID INEQUALITY FOR STAR BODIES 7

Together with (4.5), we obtain ∫
E

f(t)dt >

∫ t0+δ+

t0−δ−
f(t)dt.

�

5. Steiner symmetrization of Orlicz centroid bodies

In this section, we prove two inequalities for star bodies, both of them were proved by Lutwak,
Yang and Zhang for the case of convex bodies in [40].

Lemma 5.1. If φ ∈ C and K ∈ Sno , then for any u ∈ Sn−1, and x′1, x
′
2 ∈ u⊥,

h(Γφ(SuK);
1

2
x′1 +

1

2
x′2, 1) ≤ 1

2
h(ΓφK;x′1, 1) +

1

2
h(ΓφK;x′2,−1),

and

h(Γφ(SuK);
1

2
x′1 +

1

2
x′2,−1) ≤ 1

2
h(ΓφK;x′1, 1) +

1

2
h(ΓφK;x′2,−1).

If φ ∈ Cs, P1, P2 are two interior points of K, and the segment P1P2 does not completely lie in K,
then, for u = (P1 − P2)/|P1 − P2|, equality can not hold in either of the inequalities.

Proof. According to the affine properties of Orlicz centroid bodies (see [40]), for A ∈GL(n) and
K ∈ Sno , we have Γφ(AK) = AΓφK. Without loss of generality we can assume that |K| = |SuK| =
1.

Denote by K ′ = Ku the image of the projection of K onto u⊥. For y′ ∈ K ′, denote by
σy′(u) = σy′ = |K ∩ (y′ + Ru)| the one dimensional measure of K ∩ (y′ + Ru).

For fixed x′1, x
′
2, x
′
0 = 1

2
x′1 + 1

2
x′2 ∈ K ′ and any y′ ∈ K ′, s ∈ R and λ1, λ2, λ0 = 1

2
λ1 + 1

2
λ2 ∈ R+,

by Lemma 4.1 the function

g(s) =
λ1

λ0

φ

(
x′1 · y′ + s

λ1

)
+
λ2

λ0

φ

(
x′2 · y′ − s

λ2

)
is convex, and there exists a yu(y

′) = y(y′) such that g(s) is decreasing on (−∞, y(y′)] and increas-
ing on [y(y′),∞). Let σ+

y′ = |K ∩ (y(y′) + R+u)| and σ−y′ = |K ∩ (y(y′) + R−u)|.
By Lemma 4.2 we have

(5.1)

∫
K∩(y′+Ru)

g(s)ds ≥
∫ y(y′)+σ+

y′

y(y′)−σ−
y′

g(s)ds.

Let my′ = my′(u) be the midpoint of y(y′)− σ−y′ ≤ t ≤ y(y′) + σ+
y′ . By the convexity of φ(t) we

have

(5.2)
λ1

λ0

φ

(
x′1 · y′ + t+my′(u)

λ1

)
+
λ2

λ0

φ

(
x′2 · y′ + t−my′(u)

λ2

)
≥ 2φ

(
x′0 · y′ + t

λ0

)
.

Let

A =
λ1

λ0

∫
K

φ

(
(x′1, 1) · y

λ1

)
dy +

λ2

λ0

∫
K

φ

(
(x′2,−1) · y

λ2

)
dy.
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By Fubini’s theorem and (5.1), we have

A =

∫
K′

∫
K∩(y′+Ru)

[
λ1

λ0

φ

(
x′1 · y′ + s

λ1

)
+
λ2

λ0

φ

(
x′2 · y′ − s

λ2

)]
dy′ds

≥
∫
K′

∫ y(y′)+σ+
y′

y(y′)−σ−
y′

[
λ1

λ0

φ

(
x′1 · y′ + s

λ1

)
+
λ2

λ0

φ

(
x′2 · y′ − s

λ2

)]
dy′ds

=

∫
K′

∫ y(y′)+σ+
y′

y(y′)−σ−
y′

λ1

λ0

φ

(
x′1 · y′ + s

λ1

)
dy′ds+

∫
K′

∫ y(y′)+σ+
y′

y(y′)−σ−
y′

λ2

λ0

φ

(
x′2 · y′ − s

λ2

)
dy′ds.

(5.3a)

Since y(y′)−σ−y′ = my′− 1
2
σy′ , y(y′)+σ+

y′ = my′+
1
2
σy′ , by making the change of variables s = my′+t

for the first integral of the last equation in (5.3a), and making the change of variables s = my′ − t
for the second integral of the last equation in (5.3a). Together with Fubini’s theorem and (5.2) we
obtain

A ≥
∫
K′

∫ σy′/2

−σy′/2

λ1

λ0

φ

(
x′1 · y′ + t+my′

λ1

)
dy′dt+

∫
K′

∫ σy′/2

−σy′/2

λ2

λ0

φ

(
x′2 · y′ + t−my′

λ2

)
dy′dt

=

∫
SuK

[
λ1

λ0

φ

(
x′1 · y′ + t+my′

λ1

)
+
λ2

λ0

φ

(
x′2 · y′ + t−my′

λ2

)]
dy′dt

≥ 2

∫
SuK

φ

((
1
2
x′1 + 1

2
x′2
)
· y′ + t

1
2
λ1 + 1

2
λ2

)
dy′dt.

(5.3b)

Consequently

(5.3c)
λ1

λ0

∫
K

φ

(
(x′1, 1) · y

λ1

)
dy +

λ2

λ0

∫
K

φ

(
(x′2,−1) · y

λ2

)
dy ≥ 2

∫
SuK

φ

(
(x′0, 1) · y

λ0

)
dy.

Choose any numbers λ1 > h(ΓφK;x′1, 1) ≥ 0, λ2 > h(ΓφK;x′2,−1) ≥ 0. Then, since |K| =
|SuK| = 1, and by (1.1), we have

∫
K
φ((x′1, 1) · y/λ1)dy ≤ 1,

∫
K
φ((x′2,−1) · y/λ2)dy ≤ 1. From this

and (5.3c) we obtain

1 ≥ 1

|SuK|

∫
SuK

φ

(
(x′0, 1) · y

λ0

)
dy.

Since λ0 can be any positive number bigger than 1
2
h(ΓφK;x′1, 1) + 1

2
h(ΓφK, x

′
2,−1), by (1.1) we

conclude

(5.4) h(Γφ(SuK);
1

2
x′1 +

1

2
x′2, 1) ≤ 1

2
h(ΓφK;x′1, 1) +

1

2
h(ΓφK;x′2,−1).

Note, if we making the change of variables s = my′ − t for the first integral of the last equation
in (5.3a), and making the change of variable s = my′ + t for the second integral of the second
equation in (5.3a) then by similar argument one obtains,

(5.5) h(Γφ(SuK);
1

2
x′1 +

1

2
x′2,−1) ≤ 1

2
h(ΓφK;x′1, 1) +

1

2
h(ΓφK;x′2,−1).

Assume now that φ ∈ Cs and there exist two interior points P1, P2 of K and a point P such that
P ∈ P1P2 but not from K. Let u = (P1−P2)/|P1−P2|, and choose two open balls riB

n(Pi) (where
i = 1, 2) centered at Pi of radius ri. Since K is compact and P is not from K, there exists an open
ball rBn(P ) centered at P of radius r such that rBn(P )∩K is empty and (rBn(P ))u ⊂ (riB

n(Pi))u
for i = 1, 2. Thus, for any point Q ∈ rBn(P ) we have |K ∩ (Q+ R+u)| > 0, |K ∩ (Q+ R−u)| > 0.
From the condition φ is strictly convex, strictly decreasing on (−∞, 0] and strictly increasing on
[0,+∞). By Lemma 4.1, g(s) is also strictly convex and there exists a unique yu(y

′) such that
g(s) is strictly decreasing on (−∞, yu(y′)] and strictly increasing on [yu(y

′),+∞). Moreover, by
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Lemma 4.2 when y′ ∈ (rBn(P ))u the equality in (5.1) can not hold, and since |(rBn(P ))u| > 0,
the equality of the first inequality in (5.3a) can not hold either. Thus, equality in both (5.4) and
(5.5) can not hold. �

We note that for the Steiner symmetral SuK of K ∈ Kn in the direction u, the lowergraph and
uppergraph functions are given by

(5.6a) lu(SuK; y′) =
1

2

[
lu(K; y′) + l̄u(K; y′)

]
,

and

(5.6b) l̄u(SuK; y′) =
1

2

[
lu(K; y′) + l̄u(K, y

′)
]
.

Lemma 5.2. If φ ∈ C and K ∈ Sno , then for u ∈ Sn−1,

Γφ(SuK) ⊂ Su(ΓφK)

If φ ∈ Cs and there exist two interior points P1, P2 of K such that the segment P1P2 does not
completely lie in K, then, for u = (P1 − P2) /|P1 − P2| ∈ Sn−1, we have

Γφ(SuK) 6= Su(ΓφK).

Proof. For y′ ∈ relint(ΓφK)u, by Lemma 2.1, there exist x′1 = x′1(y′), x′2 = x′2(y′) ∈ u⊥ such that

(5.7a) lu(ΓφK, y
′) = hΓφK(x′1, 1)− x′1 · y′,

and

(5.7b) lu(ΓφK, y
′) = hΓφK(x′2,−1)− x′2 · y′.

Now by (5.6a), (5.6b), (5.7a), (5.7b) followed by Lemma 2.1, and Lemma 5.1 we have

lu(Su(ΓφK); y′) =
1

2
lu(ΓφK; y′) +

1

2
lu(ΓφK; y′)

=
1

2
(hΓφK(x′1, 1)− x′1 · y′) +

1

2
(hΓφK(x′2,−1)− x′2 · y′)

≥ hΓφ(SuK)(
1

2
x′1 +

1

2
x′2, 1)− (

1

2
x′1 +

1

2
x′2) · y′

≥ min
x′∈u⊥

{hΓφ(SuK)(x
′, 1)− x′ · y′}

= lu(Γφ(SuK); y′),

(5.8)

and

lu(Su(ΓφK); y′) =
1

2
lu(ΓφK; y′) +

1

2
lu(ΓφK; y′)

=
1

2
(hΓφK(x′1, 1)− x′1 · y′) +

1

2
(hΓφK(x′2,−1)− x′2 · y′)

≥ hΓφ(SuK)(
1

2
x′1 +

1

2
x′2,−1)− (

1

2
x′1 +

1

2
x′2) · y′

≥ min
x′∈u⊥

{hΓφ(SuK)(x
′,−1)− x′ · y′}

= lu(Γφ(SuK); y′).

(5.9)

So

Γφ(SuK) ⊂ Su(ΓφK).
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If φ ∈ Cs, P1, P2 are two interior points of K such that the segment P1P2 does not completely lie
in K, and u = (P1 − P2) /|P1 − P2| ∈ Sn−1. Then by Lemma 5.1 equality in inequality (5.8) and
(5.9) can not hold, thus Γφ(SuK) 6= Su(ΓφK). �

6. Orlicz centroid inequality For star bodies

In this section, we prove the Orlicz Busemann-Petty centroid inequality for star bodies.

Theorem. If φ ∈ C and K ∈ Sno , then the volume ratio

|ΓφK|/|K|
is minimized when K is an ellipsoid centered at the origin. If φ ∈ Cs, then ellipsoids centered at
the origin are the only minimizers.

Proof. We prove this theorem in two steps. First we prove the inequality and in the second step
we prove the uniqueness of minimizers.

For K0 = K ∈ Sno and a sequence of positive number εm → 0, by Lemma 3.1 and Theorem 3.3,
there exist a closed ball rB̄n centered at the origin of radius r and a sequence u11, u12, ..., u1i1 ∈
Sn−1, such that

d(K1, rB̄
n) < ε1,

where K1 = Su⊥1,i1
◦Su⊥1,i1−1

◦· · ·◦Su⊥1,1K is a star body obtained from K by multiple symmetrization.

In particular |rB̄n| = |K|.
From Lemma 5.2 we have

(6.1) |Γφ(Su⊥1,i1
◦ Su⊥1,i1−1

◦ · · · ◦ Su⊥1,1K)| ≤ |Γφ(Su⊥1,i1−1
◦ · · · ◦ Su⊥1,1K)|.

Therefore, in particular,

(6.2) |ΓφK1| ≤ |ΓφK0| = |ΓφK|.
If i = m − 1 then we can find a sequence u⊥m,1, u⊥m,2,...,u⊥m,im such that d(Km, rB̄

n) < εm and
|ΓφKm| ≤ |ΓφKm−1|, where Km = Su⊥m,im

◦ Su⊥m,im−1
◦ · · · ◦ Su⊥m,1Km−1 is a star body. When

i = m, since Km is a star body, by Lemma 3.1 and Theorem 3.3 we can find a sequence of u⊥m+1,1,

u⊥m+1,2,...,u⊥m+1,im+1
, such that d(Km+1, rB̄

n) < εm+1 and |ΓφKm+1| ≤ |ΓφKm|, where Km+1 =

Su⊥m+1,im+1
◦ Su⊥m+1,im+1−1

◦ · · · ◦ Su⊥m+1,1
Km is a star body and |Km+1| = |rB̄n|. By induction we

obtain a sequence of {Km} with |Km| = |K| such that

(6.3) d(Km, rB̄
n) < εm

for all m ∈ N, and

(6.4) |ΓφKm| ≤ |ΓφKm−1|
for all m ∈ N.

By (6.3), Km → rB̄n with respect to Hausdorff distance, so limm→+∞ |ΓφKm| = |Γφ(rB̄n)|,
(see [40]). By (6.2) and (6.4) we obtain that

(6.5) |ΓφK| ≥ |Γφ(rB̄n)|.
For A ∈ GL(n), we have Γφ(AK) = AΓφK, (see [40]), thus

|ΓφK|
|K|

≥ |ΓφB̄
n|

|B̄n|
.

Consequently, the volume ratio |ΓφK|/|K| is minimized when K is an ellipsoid centered at the
origin.
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We turn now to the equality conditions. For this assume that φ ∈ Cs and K ∈ Sno . If K ∈ Sno is
not convex, then for any point P ∈ ∂K, by Lemma 3.2 all the points of the segment oP except P
are interior points of K. Since K is not convex, we can choose P3, P4 ∈ ∂K such that there exists a
point Q ∈ P3P4, but not in K. Since K is compact, we can choose an open ball r′Bn(Q) centered
at Q of radius r′, such that r′Bn(Q) ∩K is empty. Also we can choose P1 ∈ oP3, (P3 6= P1) and
P2 ∈ oP4, (P4 6= P2), such that P1P2 ∩ (r′Bn(Q)) is not empty and from Lemma 3.2 P1, P2 are
interior points of K. Let u1 = (P1 − P2)/|P1 − P2| ∈ Sn−1, by Lemma 5.2 we have

(6.6) Γφ(Su1K) ⊂ Su1(ΓφK),

and the inclusion is not an identity. If we use Su1K to replace K = K0 in the first step, by (6.3),
(6.4), (6.5), (6.6) and the affine property of Orlicz centroid body, we have

|ΓφK|
|K|

>
|ΓφB̄n|
|B̄n|

.

If φ ∈ Cs and K ∈ Sno is a convex body, then, by Theorem A, ellipsoids centered at the origin
are the only minimizers of |ΓφK|/|K|. So when φ ∈ Cs and K ∈ Sno , ellipsoids centered at the
origin are the only minimizers. �

After work on this project was completed, the author learned of the work of Paouris [56]. While
there is some overlap of results, the methods employed to achieve them are quite different.

This work can be extended to compact sets and will be done in a future paper.

Acknowledgment. I thank the referee for very careful reading and helpful comments on the
paper.
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