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Abstract. The centro-affine Minkowski problem, a critical case of the Lp-Minkowski
problem in the n+ 1 dimensional Euclidean space is considered. By applying meth-
ods of calculus of variations and blow-up analyses, two sufficient conditions for the
existence of solutions to the centro-affine Minkowski problem are established.
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1. Introduction

In this paper, we study the existence of solutions to the following Monge-Ampère
type equation

(1.1) det(∇2H +HI) =
f

Hn+2
on Sn,

where f is a given positive function, H is the support function of a bounded convex
body K in Rn+1, I is the unit matrix and ∇2H = (∇ijH) is the Hessian matrix of
covariant derivatives of H with respect to an orthonormal frame on Sn.

Let K be a convex body whose boundary is smooth and has positive Gauss curva-
ture. If K contains the origin in its interior, then the quantity

1

Hn+2 det(∇2H +HI)

is called centro-affine Gauss curvature of ∂K. Notations related to the centro-affine
Gauss curvature, such as affine support function and affine distance, appeared in
the subject Affine Differential Geometry (see, e.g., [45], pp. 62-63). The question
describing the centro-affine Gauss curvature is called the centro-affine Minkowski
problem, which was posed by Chou and Wang [12].

Obviously, the centro-affine Minkowski problem is equivalent to solving equation
(1.1). Equation (1.1) is also a special case of the Lp-Minkowski problem posed by
Lutwak [39].

The first and second authors were supported by Natural Science Foundation of China (11131005,
11271118, 11401527) and the Doctoral Programme Foundation of Institution of Higher Education
of China.
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Let K be a convex body in Rn+1 that contains the origin in its interior, then the
Lp surface area measure, Sp(K, ·), of K is a Borel measure on Sn defined for a Borel
ω ⊂ Sn, by

Sp(K,ω) =

∫
x∈ν−1

K (ω)

(x · νK(x))1−pdHn−1(x),

where νK : ∂′K → Sn is the Gauss map of K, defined on ∂′K, the set of boundary
points ofK that have a unique outer unit normal, andHn is (n)-dimensional Hausdorff
measure.

The Lp surface area measure was introduced by Lutwak [39], which is a core nota-
tion in modern convex geometric analysis. In recent years the Lp surface area measure
appeared in, e.g., [8, 24, 25, 26, 36, 37, 39, 46, 49, 50, 51, 58, 60]. As special cases,
S1(K, ·) (is also denoted by SK in this paper) is the classical surface area measure
of K, S0(K, ·) is the cone-volume measure of K, and S−n−1(K, ·) is the centro-affine
surface area measure of K.

In [39], Lutwak posed the following question:

Lp Minkowski problem: Find necessary and sufficient conditions on a finite Borel
measure, µ, on the unit sphere Sn so that µ is the Lp surface area measure of a convex
body in Rn+1.

The Lp-Minkowski problem is a central problem in modern convex geometric anal-
ysis. It has attracted great attention over the last two decades, and was studied by,
e.g., Lutwak [39], Lutwak & Oliker [40], Lutwak, Yang & Zhang [41], Chou & Wang
[12], Guan & Lin [21], Hug, Lutwak, Yang & Zhang [29], Böröczky, Lutwak, Yang &
Zhang [6, 7], Stancu [52, 53], Huang, Liu, & Xu [28], Jian, Lu, & Wang [30], Jian
& Wang [31], Lu & Jian [34], Lu & Wang [35], Dou & Zhu [16], Böröczky, Hegedűs
and Zhu [5], Zhu [65, 63, 64] and Sun and Long [54]. Analogues of the Minkowski
problems were studied in, e.g., [3, 4, 11, 15, 17, 18, 19, 20, 22, 23, 27, 33, 59]. Ap-
plications of solutions to the Lp-Minkowski problem can be found in the work, e.g.,
Cianchi, Lutwak, Yang & Zhang [14], Lutwak, Yang & Zhang [42], and Zhang [61].

Obviously, for the case where µ has a density function, the Lp-Minkowski problem
is equivalent to solving the following Monge-Ampère type equation

(1.2) det(∇2H +HI) = fHp−1 on Sn.

Clearly, equation (1.1) is the special case of equation (1.2) for p = −n−1. It is known
that equation (1.1) also arises in anisotropic Gauss curvature flows [13, 57] and image
processing [2]. Besides, equation (1.1) can be reduced to a singular Monge-Ampère
equation in the half Euclidean space Rn+1

+ , the regularity of which was extensively
studied in [31, 32].

The PDE (1.1) remains invariant under projective transforms on Sn. When f
is a constant function, equation (1.1) only has constant solution up to a projective
transformation. This result has been known for a long time, see [9] for example,
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which implies that there is no a priori estimates on solutions for general f . Besides,
equation (1.1) corresponds to the critical case of the Blaschke-Santaló inequality in
convex geometry [44]:

(1.3) vol(K) inf
ξ∈K

∫
Sn

dS(x)

(H(x)− ξ · x)n+1 ≤ (n+ 1)ω2
n+1,

where K is any convex body, vol(K) is the volume of the convex body K, and ωn+1

is the volume of the unit ball in Rn+1. Chou and Wang [12] found an obstruction
for solutions to equation (1.1). This situation is similar, in some aspects, to the pre-
scribed scalar curvature problem on Sn, which involves critical exponents of Sobolev
inequalities and the Kazdan-Warner obstruction for solutions [10, 48]. Because of
these features, the existence of solutions to equation (1.1) is a rather complicated
problem. For n = 1, the existence of solutions of equation (1.1) was investigated in
[1, 3, 11, 13, 16, 33, 56]. Especially, in [33] Jiang, Wang and Wei proved an exis-
tence result under some nondegenerate and topological degree conditions imposed on
general f . However, there are few existence results for general f in higher dimensions.

Recently, by applying a blow-up analysis method, Lu and Wang [35] obtained a
priori estimates for equation (1.1) and found a sufficient condition for the existence
when f is a rotationally symmetric function for all n ≥ 1. In [34], the results of [35]
were generalized slightly by a topological degree method. In [63, 65], Zhu consid-
ered the centro-affine Minkowski problem for measures, and proved the existences of
solutions to the centro-affine Minkowski problem for discrete measures.

A function f defined on Sn is said to be (n+ 1)-mirror symmetric, if for any

x = (x1, · · · , xn+1) ∈ Sn,
there is

f(x1, · · · , xi, · · · , xn+1) = f(x1, · · · ,±xi, · · · , xn+1), ∀ 1 ≤ i ≤ n+ 1.

Obviously, a support function H is (n + 1)-mirror symmetric if and only if the
convex body K in Rn+1 determined by H is (n + 1)-mirror symmetric, namely K is
symmetric with respect to all coordinate hyperplanes.

We denote σn to be the area of the unit n-sphere, and ωn+1 to be the volume of
the unit ball in Rn+1. Note that,

σn = (n+ 1)ωn+1.

Hence, the mean value of a continuous function, f , on Sn is

1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u).

It is the first aim of this paper to establish:

Theorem 1.1. If f is an (n+1)-mirror symmetric positive continuous function on the
unit sphere Sn, such that the value of f restricted to the n+ 1 coordinate hyperplanes
is less than the mean value of f on the unit sphere, then equation (1.1) admits an
(n+ 1)-mirror symmetric solution.
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Obviously, the condition given in our first theorem involves only values of f itself,
which is completely different from previous results that involve derivatives of f , see,
e.g., [1, 33, 34, 35].

Before stating our second theorem, we need to extend the definitions of ni(f)
and pi(f) from rotationally symmetric function (defined in [35]) to (n + 1)-mirror
symmetric function.

Let e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), en+1 = (0, 0, ..., 0, 1) and let

Sn−1j = {x ∈ Sn : xj = 0} ,
for j = 1, · · · , n+ 1. We use coordinate 2-plane to denote any 2-dimensional plane in
Rn+1 spanned by {ei, ej} with i 6= j. For j = 1, 2, · · · , n+ 1, we define functions NIj
and PIj on Sn−1j as follows:

NIj(x) =

{
−f̃ ′′(π

2
), n ≥ 2,∫ π

0
(f̃ ′(θ)− f̃ ′(π

2
)) tan θ dθ, n = 1,

and

PIj(x) =

∫ π

0

f̃ ′(θ) cot θ dθ,

where f̃ is the restriction of f on the half great circle on Sn through the three points
x and ±ej, parameterized by an arc parameter θ ∈ [0, π]. One can easily see that NIj
and PIj are well defined for smooth (n+ 1)-mirror symmetric functions, and are also
(n + 1)-mirror symmetric in their domain Sn−1j . Note that for given x, NIj(x) and
PIj(x) are just ni(f) and pi(f) defined in [35]. When n = 1, the domain of NIj or
PIj is a set of two points. Hence, NIj and PIj are numbers for n = 1.

It is the second aim of this paper to establish:

Theorem 1.2. Suppose f is a positive (n+ 1)-mirror symmetric function on Sn that
satisfies one of the following

(1) When n = 1, f ∈ C2(Sn), PI1 > 0 and PI2 > 0;
(2) When n ≥ 2, f ∈ C6(Sn), for each j = 1, 2, · · · , n+ 1, NIj ≤ 0 on Sn−1j with

at least one negative value on each coordinate 2-plane, and that PIj ≥ 0 on
Sn−1j with at least one positive value on Sn−1j .

Then equation (1.1) admits an (n+ 1)-mirror symmetric solution.

Remark 1.3. Here, we list some useful comments on Theorem 1.2:

(a) When n = 1, by the definitions, one can easily see that

NI1 = −PI2, NI2 = −PI1.
So our Theorem 1.2 is the same as the existence result in [35] for n = 1.

(b) When n = 2, the assumptions about NIj can be relaxed to
∫
Sn−1
j

NIj < 0.

(c) Besides the definitions above, we can compute ni(f) and pi(f) by (3.28) and
(3.29).
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We next to show that the function in the following example satisfies the conditions
in Theorem 1.2.

Example 1.4. Let

f(x) = 2−
n+1∑
i=1

x4i , ∀x ∈ Sn.

Obviously, f is an (n + 1)-mirror symmetric smooth positive function. For as-
sumptions on NIj and PIj in Theorem 1.2, by the symmetry of f with respect to
x1, x2, · · · , xn+1, we only need to verify them for NI1 and PI1.

For each x = (0, x2, · · · , xn+1) in the equator Sn−11 , the corresponding half great
circle connecting (±1, 0, · · · , 0) is given by

γ(θ) = (cos θ, x2 sin θ, · · · , xn+1 sin θ).

Hence,

f(θ) = f(γ(θ)) = 2− cos4 θ − sin4 θ
n+1∑
i=2

x4i .

By definition, when n ≥ 2

NI1(0, x2, · · · , xn+1) = −f ′′(π
2

) = −4
n+1∑
i=2

x4i ≤ −
4

n
,

and

PI1(0, x2, · · · , xn+1) =

∫ π

0

f ′(θ) cot θ dθ

=

∫ π

0

4 cos2 θ
(

cos2 θ −
n+1∑
i=2

x4i sin2 θ
)
dθ

≥
∫ π

0

4 cos2 θ
(
cos2 θ − sin2 θ

)
dθ

= π.

Note that any generalized solution to equation (1.1) must be positive on Sn, see
Corollary 2.4 in [35]. Therefore, the regularity of solutions obtained in our theorems
follows the standard regularity theory about Monge-Ampère equation, see [12] for
example.

The proofs of our main theorems are based on an analogous variational argument
on the Lp-Minkowski problem given in Section 5 of [12]. It was proved in [12] that,
for 1 < q < n+ 2, a nonnegative solution H to the equation

(1.4) det(∇2H +HI) =
f

Hq
on Sn,
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can be obtained by considering the maximizing problem

(1.5) sup
|K|=1

inf
ξ∈K

J [H − ξ · x],

where the supremum is taken among all convex bodies K with volume 1, the infimum
is taken among all points ξ ∈ K, H is the support function of K, and the functional
J is given by

J [H] =
1

q − 1

∫
Sn

f

Hq−1 .

For positive f and 1 < q < n + 2, Chou and Wang [12] proved that the maxi-
mizing sequence for (1.5) is uniformly bounded, and hence converges uniformly to a
maximizer h. Further more, the maximizer h is proved to be C1 and strictly convex.
Computing the variation at h, and rescaling h by a proper constant, Chou and Wang
obtained a generalized solution to (1.4).

The argument fails for q = n+ 2, because a maximizing sequence for (1.5) may fail
to be uniformly bounded, and then a maximizer may not exist. However, if we can find
a maximizer via a uniformly bounded maximizing sequence, the above argument still
works, providing a solution to equation (1.4) with q = n+ 2, namely equation (1.1).
The key step of proofs for our theorems is to show that any sequence of convex bodies
that maximizing problem (1.5) and satisfying our conditions is uniformly bounded.

2. Proof of theorem 1.1

We first standardize some notation and list some basic facts about convex bodies
for this section. For general reference regarding convex bodies see Schneider [47].

For x, y ∈ Rn+1, we will write x · y for the standard inner product of x and y, and
write |x| for the Euclidean norm of x. We write Sn = {x ∈ Rn+1 : |x| = 1} for the
boundary of the Euclidean unit ball Bn+1 in Rn+1.

The set of (n + 1)-mirror symmetric continuous functions on Sn is denoted by
Cun(Sn), and the set of positive continuous (n + 1)-mirror symmetric functions on
Sn is denoted by C+

un(Sn). An (n + 1)-mirror symmetric convex body in this paper
is a convex body that symmetric with respect to the n + 1 coordinate hyperplanes.
The set of (n+ 1)-mirror symmetric convex bodies is denoted by Kn+1

un . Obviously, if
K ∈ Kn+1

un then K is origin symmetric.
The support function HK : Rn+1 → R of a convex body K is defined, for x ∈ Rn+1,

by

HK(x) = max{x · y : y ∈ K}.
Obviously, for c ≥ 0 and x ∈ Rn+1, we have

HcK(x) = HK(cx) = cHK(x).

Let K be a convex body that contains the origin in its interior. Then the radial
function ρK : Rn+1\{0} → R+ is defined by

ρK(x) = max {λ ≥ 0 : λx ∈ K} .
6



Let K be a convex body that contains the origin in its interior. Then the polar
body, K∗, of K is defined by

K∗ =
{
x ∈ Rn+1 : x · y ≤ 1, for all y ∈ K

}
.

Obviously, for λ > 0

(λK)∗ =
1

λ
K∗,

and for x ∈ Rn+1 \ {0},

ρK∗(x) =
1

HK(x)
.

The following symmetric version of Blaschke-Santalo inequality will be needed: Let
K be an origin symmetric convex body in Rn+1, then

V (K)V (K∗) ≤ ω2
n+1,

with equality if and only if K is an origin symmetric ellipsoid.
The following lemma gives a lower bound of the volumes product of a convex body

and its polar.

Lemma 2.1. Let K be an origin symmetric convex body in Rn+1, then

V (K)V (K∗) ≥
ω2
n+1

(n+ 1)
n+1
2

.

Proof. By John’s theorem (see, e.g., [43]), there exists a unique origin symmetric
ellipsoid E with maximum volume such that

E ⊂ K ⊂
√
n+ 1E.

Hence,

(
√
n+ 1E)∗ ⊂ K∗ ⊂ E∗.

By this and the fact that
(√

n+ 1E
)∗

= 1√
n+1

E∗,

V (K)V (K∗) ≥ V (E)V (
1√
n+ 1

E∗)

=

(
1

n+ 1

)n+1
2

V (E)V (E∗)

=
ω2
n+1

(n+ 1)
n+1
2

.

�

The following lemma will be needed.
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Lemma 2.2. Let {Ki}∞i=1 be a sequence of (n + 1)-mirror symmetric convex bodies
such that the diameter, d(Ki), of Ki converges to +∞, and V (Ki) ≤ c for some
positive c and all i ∈ N. Then, there exist 1 ≤ i0 ≤ n and a subsequence, ij, of i such
that

lim
j→∞

HKij
(ei0) = 0.

Proof. Since Ki is an (n+ 1)-mirror symmetric convex body, K is origin symmetric.
By John’s theorem, there exists an unique ellipsoid Ei with maximum volume such
that

Ei ⊂ Ki ⊂
√
n+ 1Ei.

Obviously, Ei is an (n + 1)-mirror symmetric ellipsoid (otherwise Ei is not unique).
Thus,

(2.1) HEi(e1) · · ·HEi(en+1) =
V (Ei)

ωn+1

≤ V (Ki)

ωn+1

≤ c

ωn+1

.

By (2.1) and the fact that

d(Ei) = 2 max{HEi(e1), ..., HEi(en+1)}
goes to ∞, there exist 1 ≤ i0 ≤ n+ 1 and a subsequence, ij, of i such that

lim
j→∞

HEij
(ei0) = 0.

Since
Eij ⊂ Kij ⊂

√
n+ 1Eij ,

lim
j→∞

HKij
(ei0) = 0.

�

For (n+ 1)-mirror symmetric case, the following lemma solves problem (1.5).

Lemma 2.3. If f is an (n+ 1)-mirror symmetric positive continuous function on Sn

satisfies

max
{
f(u) : u ∈ Sn ∩ {e⊥1 ∪ ... ∪ e⊥n+1}

}
<

1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u),

then there exists a convex body K ∈ Kn+1
un with V (K) = 1 such that∫

Sn
HK(u)−n−1f(u)dS(u) = sup

{∫
Sn
HL(u)−n−1f(u)dS(u) : L ∈ Kn+1

un , V (L) = 1

}
.

Proof. By conditions, we can take a sequence Ki ∈ Kn+1
un such that V (Ki) = 1 and

lim
i→∞

∫
Sn
HKi(u)−n−1f(u)dS(u) = sup

{∫
Sn
HL(u)−n−1f(u)dS(u) : L ∈ Kn+1

un , V (L) = 1

}
.

Since B1 = ω
−1/(n+1)
n+1 Bn+1 ∈ Kn+1

un and V (B1) = 1,

(2.2) lim
i→∞

∫
Sn
HKi(u)−n−1f(u)dS(u) ≥

∫
Sn
HB1(u)−n−1f(u)dS(u).
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We next prove that Ki is bounded. We only need to show that if limi→∞ d(Ki) =∞,
then (2.2) can not hold.

Since f is continuous on Sn and

max
{
f(u) : u ∈ Sn ∩ {e⊥1 ∪ ... ∪ e⊥n+1}

}
<

1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u),

there exists a t0 (0 < t0 < 1) such that

max {f(u) : u ∈ {S1 ∪ · · · ∪ Sn+1}} <
1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u),

where

Si = {u : u ∈ Sn, |u · ei| ≤ t0}

is a spherical stripe near the great subsphere Sn ∩ e⊥i .
Since S1 ∪ · · · ∪ Sn+1 is a closed set and f is continuous, there exists a δ0 > 0 such

that

(2.3) max {f(u) : u ∈ {S1 ∪ · · · ∪ Sn+1}} <
1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u)− δ0.

Since Ki is an (n+ 1)-mirror symmetric convex body with V (K) = 1 and Ki is not
bounded, K∗ is an (n+ 1)-mirror symmetric convex body with V (K∗) ≤ ω2

n+1 (from
the Blaschke-Santalo inequality) and K∗i is not bounded. By Lemma 2.2, without
loss of generality, we can suppose

(2.4) lim
i→∞

HK∗
i
(e1) = 0.

Since Ki is between the two hyperplanes x1 = HK∗
i
(e1) and x1 = −HK∗

i
(e1),

ρK∗
i
(u) ≤

HK∗
i
(e1)

t0

for all u ∈ (Sn\S1). By this and (2.4), for ε > there exists a N0 ∈ N such that

(2.5) ρK∗
i
(u) < ε

for all i > N0 and u ∈ (Sn\S1).
Let

b = max
u∈Sn

f(u).

When n > N0, from the fact that HKi = 1/ρK∗
i
(u); inequality (2.3) and the def-

inition of b; the fact that V (K∗i ) ≤ ω2
n+1, Lemma 2.1, inequality (2.5) and the fact

that ∫
Sn\S1

dS(u) ≤ (n+ 1)ωn+1,
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we have∫
Sn
HKi(u)−n−1f(u)dS(u) =

∫
S1

ρK∗
i
(u)n+1f(u)dS(u) +

∫
Sn\S1

ρK∗
i
(u)n+1f(u)dS(u)

<

(
1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u)− δ0

)
(n+ 1)V (K∗i )

+ b

∫
Sn\S1

ρK∗
i
(u)n+1dS(u)

=

(
1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u)

)
(n+ 1)V (K∗i )

− (n+ 1)δ0V (K∗i ) + b

∫
Sn\S1

ρK∗
i
(u)n+1dS(u)

≤
∫
Sn
ωn+1f(u)dS(u)− δ0

ω2
n+1

(n+ 1)
n+1
2
−1

+ (n+ 1)bωn+1ε
n+1.

Since ε is arbitrary,

lim
i→∞

∫
Sn
HKi(u)−n−1f(u)dS(u) <

∫
Sn
ωn+1f(u)dS(u) =

∫
Sn
HB1(u)−n−1f(u)dS(u),

where B1 = ω
− 1
n+1

n+1 Bn+1. This contradicts with (2.2).
Therefore, Ki is bounded. By the Blaschke selection theorem, there exists a K ∈
Kn+1
un with V (K) = 1 such that∫
Sn
HK(u)−n−1f(u)dS(u) = sup

{∫
Sn
HL(u)−n−1f(u)dS(u) : L ∈ Kn+1

un , V (L) = 1

}
.

�

Let H ∈ C+(Sn), then the Aleksandrov body associated with H is defined by

K =
⋂
u∈Sn

{
x ∈ Rn+1 : x · u ≤ H(u)

}
.

The volume V (H) of a function H ∈ C+(Sn) is defined as the volume of the
Aleksandrov body associated with H. Let I ⊂ R be an interval containing 0 and
Ht(u) = H(t, u) : I×Sn → (0,∞) be continuous. For t ∈ I, let Kt be the Aleksandrov
body associated with Ht.

The following lemma proved by Haberl et al. [23] will be needed.

Lemma 2.4. Suppose I ⊂ R is an open interval containing 0 and that the function
Ht = H(t, u) : I × Sn → (0,∞) is continuous. If, as t→ 0, then convergence in

Ht −H0

t
→ f =

∂Ht

∂t

∣∣∣∣
t=0
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is uniform on Sn, and if Kt denotes the Aleksandov body associated with Ht, then

lim
t→0

V (Kt)− V (K0)

t
=

∫
Sn
fdSK0 .

Let B be a Borel subset of Sn, and Bi (1 ≤ i ≤ n+ 1) be the set such that Bi and
B are symmetric with respect to e⊥i . In this section, an (n + 1)-mirror symmetric
Borel measure, µ, on Sn is a measure that

µ(B) = µ(Bi)

for all 1 ≤ i ≤ n + 1 and all Borel subset, B, of Sn. The set of (n + 1)-mirror
symmetric Borel measures on Sn is denoted by Mun(Sn).

The following lemma will be needed.

Lemma 2.5. Let µ1 and µ2 be two (n+ 1)-mirror symmetric Borel measures on Sn.
If for all f ∈ Cun(Sn) ∫

Sn
fdµ1 =

∫
Sn
fdµ2,

then
µ1 = µ2.

Proof. We only need to prove that

µ1(B) = µ2(B)

for any Borel B ⊂ Sn. Without loss of generality, we can assume that B is symmetric
with respect to e⊥1 , ..., e

⊥
n+1.

For S ⊂ Sn and u ∈ S, define

d(u, S) = inf
{
|u− v| : v ∈ S

}
.

Let F be a closed subset of Sn that is symmetric with respect to e⊥1 , ..., e
⊥
n+1, and

for m ∈ N let

Am =
{
u ∈ Sn, d(u, F ) <

1

m

}
.

Then, Am is open and

fm(u) =

{
1− d(u,Am)

d(u,F )
, u /∈ F,

1, u ∈ F

is an (n + 1)-mirror symmetric continuous function on Sn. By conditions of the
lemma, ∫

Sn
fmdµ1 =

∫
Sn
fmdµ2.

On the other hand, fm converges pointwise and monotonically to the characteristic
function, 1F , of F . By monotone convergence,

µ1(F ) = µ2(F )
11



for all closed set F . Thus,
µ1(O) = µ2(O)

for all open set O.
For ε > 0, we can find a closed set F (symmetric with respect to e⊥1 , ..., e

⊥
n+1) and

an open set O (symmetric with respect to e⊥1 , ..., e
⊥
n+1) such that

F ⊂ B ⊂ O,

and
µi(O \ F ) < ε

for i = 1, 2.
Since µ1(O) = µ2(O),

|µ1(B)− µ2(B)| ≤ |µ1(B)− µ1(O)|+ |µ2(B)− µ1(O)|
= |µ1(B)− µ1(O)|+ |µ2(B)− µ2(O)|
< 2ε.

Since ε is arbitrary,
µ1(B) = µ2(B).

�

Now, we have prepared enough to prove the main theorem. We only need to prove
the following theorem.

Theorem 2.6. If f is an (n + 1)-mirror symmetric positive continuous function on
Sn that satisfies

max
{
f(u) : u ∈ Sn ∩ {e⊥1 ∪ ... ∪ e⊥n+1}

}
<

1

(n+ 1)ωn+1

∫
Sn
f(u)dS(u),

then there exists a convex body K1 such that the centro-affine surface area measure of
K1 has density f .

Proof. For q ∈ C+
un(Sn), define the continuous functional, Φ, by

Φ(q) = V (q)

∫
Sn
q(u)−n−1f(u)dS(u).

We are searching for a function at which Φ attains a maximum. The search can
be restricted to support functions from Kn+1

un . In fact for a q ∈ C+
un(Sn), let K be

the Alksandrov body associated with q, we have 0 < HK ≤ q and V (q) = V (HK).
Since f > 0, it follows that Φ(HK) ≥ Φ(q). Since Φ is a 0-homogeneous function,
the search can be restricted to support functions of (n+ 1)-mirror symmetric convex
bodies with volume 1.

By the above discussion and Lemma 2.3, there exists a convex body K ∈ Kn+1
un

with V (K) = 1 such that

(2.6) Φ(HK) = sup
q∈C+

un(Sn)

V (q)

∫
Sn
q−n−1fdS(u).
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Suppose g ∈ Cun(Sn), choose |t| small enough so that H−n−1K + tg ∈ C+
un(Sn). Let

Ht =
(
H−n−1K + tg

)− 1
n+1 .

Then K0 = K, Kt ∈ Kn+1
un , and

Ht −H0

t
→ − 1

n+ 1
H2+n
K0

g,

uniformly on Sn, as t→ 0. By Lemma 2.4,

d

dt
V (Kt)

∣∣
t=0

= − 1

n+ 1

∫
Sn
gH2+n

K0
dSK0 .

By (2.6), the fact Kt ∈ Kn+1
un , and the fact that V (K0) = 1,

0 =
d

dt
Φ(Ht)

∣∣
t=0

=

(
− 1

n+ 1

∫
Sn
gH2+n

K0
dSK0

)(∫
Sn
HK0(u)−n−1f(u)dS(u)

)
+

∫
Sn
gfdS(u).

Let

K1 =

(∫
Sn
HK0(u)−n−1f(u)dS(u)

n+ 1

) 1
2(n+1)

K0,

we have ∫
Sn−1

gH2+n
K1

dSK1 =

∫
Sn
gfdS(u).

From Lemma 2.5, g ∈ Cun(Sn) is arbitrary, and K1 ∈ Kn+1
un , we have, the centro-

affine surface area measure of K1 has a density f . �

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. First, recall John’s Lemma (for non-
symmetric case) in convex geometry, see, e.g., [43, 55]. It says that for any convex
body K in Rn+1, there is a minimum ellipsoid of K, denoted by E, such that

1

n+ 1
E ⊂ K ⊂ E,

where λE = {x0 + λ(x − x0) : x ∈ E} and x0 is the center of E. We say K is
normalized if the E is a ball.

It is known that for any convex body K in Rn+1, one can choose a unimodular
linear transformation AT ∈ SL(n+ 1), which transforms K into a normalized convex
body KA. In the following, we use HA to denote the support function of KA. Then

(3.1) HA(x) = |Ax| ·H
(
Ax

|Ax|

)
, x ∈ Sn,

where H is the support function of K. See [35] for more details about this type of
transformation. Associating with the linear transformation, we have the following
integral formula.
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Lemma 3.1. For any given integral function g on Sn, and any matrix A ∈ GL(n+1),
we have the variable substitution formula

(3.2)

∫
Sn
g(y) dS(y) =

∫
Sn
g

(
Ax

|Ax|

)
· |detA|
|Ax|n+1 dS(x).

Proof. This lemma easily follows from the formula for integral variable substitution
in Rn+1. �

As a direct result of (3.1) and (3.2), we have that

(3.3)

∫
Sn

f

Hn+1
=

∫
Sn

fA

Hn+1
A

, fA(x) = f

(
Ax

|Ax|

)
for any unimodular linear transformation A ∈ SL(n+ 1).

Now we start the proof. We will use a variational method and blow-up analyses
to prove Theorem 1.2. To obtain one solution to equation (1.1), following [12] we
consider the maximizing problem

(3.4) sup
|K|=1

inf
ξ∈K

J [H(x)− ξ · x],

where the supremum is taken among all convex bodies K with volume 1, the infimum
is taken among all points ξ ∈ K, H is the support function of K, and the functional
J is given by

(3.5) J [H] =

∫
Sn

f

Hn+1
.

By virtue of the Blaschke-Santaló inequality (1.3), we see the maximizing problem
(3.4) has a finite upper bound. According to the variational argument in [12], if (3.4)
has a convergent maximizing sequence, then equation (1.1) has a solution. Therefore
our main work is to find a uniformly bounded maximizing sequence. Unfortunately,
a maximizing sequence need not to be uniformly bounded in general. For example,
when f is constant, any ellipsoid centered at the origin is a maximizing point. So our
aim is to impose proper restrictions on convex bodies K and function f , such that
any maximizing sequence is uniformly bounded.

Since we assume that f is (n+1)-mirror symmetric, we restrict ourselves to (n+1)-
mirror symmetric convex bodies K when considering the maximizing problem (3.4).
Now the variational argument above still works, and solutions coming from the max-
imizing problem are also (n + 1)-mirror symmetric. We observe in this situation
that

inf
ξ∈K

J [H(x)− ξ · x] = J [H].

Also for any (n + 1)-mirror symmetric convex body K in Rn+1, the normalizing
unimodular linear transformation A can be required to be

(3.6) A = diag(λ1, λ2, · · · , λn, λn+1) ∈ SL(n+ 1).
14



In the following, we make use of blow-up analysis method to prove that under the
assumptions on f in Theorem 1.2, problem (3.4) has a uniformly bounded maximizing
sequence, which then completes the proof.

For this purpose, let {Kk} be a maximizing sequence of (3.4), and assume that
the corresponding support functions Hk satisfy supSn Hk → ∞ as k → ∞. We
will deduce a contradiction by this assumption. Hence, the sequence {Hk} will be
uniformly bounded, and the theorem will be proved.

For each k choose a unimodular linear transformation Ak as (3.6) which normalizes
the Kk. Let KAk be the normalized convex body of Kk, and HAk be the support
function of KAk . Then KAk is uniformly bounded from both below and above, by
their volumes 1 and centers origin. On account of Blaschke’s selection theorem, we
assume without loss of generality that KAk converges to some normalized convex

body K̂, namely HAk converges to Ĥ, the support function of K̂, uniformly on Sn.
Applying (3.3) and the bounded convergence theorem, one gets

Jsup := lim
k→∞

J [Hk]

= lim
k→∞

∫
Sn

fAk
Hn+1
Ak

=

∫
Sn

f̂

Ĥn+1
,

(3.7)

where f̂ is the limit function of fAk . We will find some (n + 1)-mirror symmetric
support function H such that the volume of the convex body determined by H is 1
and

J [H] > Jsup,

which is a contradiction. Hence it will assert the maximizing sequence {Hk} is uni-
formly bounded.

To do this, we need to explore f̂ carefully. Write the unimodular linear transfor-
mation Ak as

Ak = diag(λ1,k, λ2,k, · · · , λn,k, λn+1,k),

and assume without loss of generality that

λ1,k ≥ λ2,k ≥ · · · ≥ λn,k ≥ λn+1,k.

From (3.3), we have

fAk(x1, x2, · · · , xn, xn+1) = f

 λ1,kx1, λ2,kx2, · · · , λn,kxn, λn+1,kxn+1√
λ21,kx

2
1 + λ22,kx

2
2 + · · ·+ λ2n,kx

2
n + λ2n+1,kx

2
n+1

 .

Denote

δm := lim
k

λm,k
λ1,k

, m = 1, · · · , n+ 1,
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then δm ∈ [0, 1], δ1 = 1, δn+1 = 0 by the blow-up assumption that supSn Hk →∞ as
k →∞. Hence

(3.8) f̂(x1, x2, · · · , xn, xn+1) = f

(
x1, δ2x2, · · · , δnxn, 0√
x21 + δ22x

2
2 + · · ·+ δ2nx

2
n

)
.

We first consider the situation where δm ∈ {0, 1}. Then there are only n cases,
namely {

δ1, · · · , δm = 1,
δm+1, · · · , δn+1 = 0,

for m = 1, · · · , n. Now (3.8) becomes into

(3.9) f̂(x1, · · · , xn+1) = f

(
x1, · · · , xm, 0, · · · , 0√

x21 + · · ·+ x2m

)
.

To find some support function H such that J [H] > Jsup, we consider the family of

convex bodies K̂A(a) with A(a) ∈ SL(n+ 1) given by

A(a) =

(
a
n+1−m
n+1 Im 0

0 a−
m
n+1 In+1−m

)
, a > 0,

where Im and In+1−m are unit matrixes of order m and n + 1 − m respectively.
Obviously, the volume of K̂A(a) are all 1 since that of K̂ is 1. We compute by (3.3)
that

J(a) := J [ĤA(a)] =

∫
Sn

f

Ĥn+1
A(a)

=

∫
Sn

fA(a)−1

Ĥn+1
:=

∫
Sn

fa

Ĥn+1
,

where the function fa is defined as

(3.10) fa(x1, · · · , xn+1) = f

(
x1, · · · , xm, axm+1, · · · , axn+1√

x21 + · · ·+ x2m + a2(x2m+1 + · · ·+ x2n+1)

)
, a ≥ 0.

Observing (3.7) and (3.9), one gets that

(3.11) J(0) = Jsup.

Now we only need to find some a > 0 such that J(a) > J(0), namely

(3.12)

∫
Sn

fa − f0
Ĥn+1

> 0.

This can be achieved by analysing the asymptotic behavior of the above integral
when a → 0+. As a preparation, we introduce some notations for convenience. For
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the function f defined on Sn, one can extend it to Rn+1 such that it is homogeneous
of degree zero. For a point x ∈ Rn+1, we write x = (y, z) where

y = (x1, · · · , xm), z = (xm+1, · · · , xn+1).

Then we can use the standard notations in Euclidean space such as f ′z for the gradient
and f ′′zz for the Hessian of f with respect to z. From now on, we always use these
conventions unless explicitly stated otherwise.

To prove (3.12), we need the following lemma.

Lemma 3.2. Let ϕ ∈ Cα(Sn) be an (n+1)-mirror symmetric positive function where
α ∈ (0, 1). Given fa as (3.10), there exists some sufficiently small a > 0 such that

(3.13)

∫
Sn
ϕ(x) (fa(x)− f0(x)) dS(x) > 0

if f ∈ C2(Sn) for n = 1 and f ∈ C6(Sn) for n ≥ 2, satisfying

either (a) when m ≥ 2, f ′′zz (y, 0) is positive semi-definite for any |y| = 1, and∫
|y|=1

tr f ′′zz (y, 0) dS(y) > 0;

or (b) when m = 1,∫
{x=(y,z)∈Sn:z/|z|=ξ}

f ′y(x) · y
1− |y|2

dS(x) ≤ 0, ∀ ξ ∈ Sn−1,

and ∫
Sn−1

dS(ξ)

∫
{x=(y,z)∈Sn:z/|z|=ξ}

f ′y(x) · y
1− |y|2

dS(x) < 0.

Proof. Let Λa denote the integral on the left hand side of (3.13). To prove (3.13), we
consider three cases: m ≥ 3, m = 2, m = 1, respectively.

First, assume m ≥ 3. By virtue of the Taylor’s expansion, for almost any x =
(y, z) ∈ Sn, there exists a t(x) ∈ (0, a) such that

Λa =
1

2

∫
Sn
ϕ(x)zf ′′zz (y, tz) zTdS(x) · a2,

where the first order item vanishes since f ′z(y, 0) = 0 by its mirror-symmetry. Using
the coarea formula twice, we have

2a−2Λa =

∫
|y|≤1

dy√
1− |y|2

∫
|z|=
√

1−|y|2
ϕ(y, z)zf ′′zz (y, tz) zTdS(z)

=

∫ 1

0

dr

∫
|y|=r

dS(y)√
1− r2

∫
|z|=
√
1−r2

ϕ(y, z)zf ′′zz (y, tz) zTdS(z).

(3.14)

Writing

(3.15) ρ(r) =
√

1− r2,
17



and applying the area formula for the scaling transformations, one gets that

2a−2Λa =

∫ 1

0

dr

∫
|y|=r

dS(y)

∫
|z|=1

ϕ(y, ρz)zf ′′zz (y, tρz) zTρn+1−mdS(z)

=

∫ 1

0

dr

∫
|y|=1

dS(y)

∫
|z|=1

ϕ(ry, ρz)zf ′′zz (ry, tρz) zTρn+1−mrm−1dS(z).

(3.16)

Observing that f ′′zz is homogeneous of degree −2, we find

∣∣zf ′′zz (ry, tρz) zT rm−1
∣∣ =

∣∣∣∣∣zf ′′zz
(

ry, tρz√
r2 + t2ρ2

)
zT · rm−1

r2 + t2ρ2

∣∣∣∣∣
≤ ‖f ′′zz‖Sn · r

m−3,

which is bounded since m ≥ 3. Applying the bounded convergence theorem to (3.16),
one gets that

lim
a→0+

2a−2Λa =

∫ 1

0

dr

∫
|y|=1

dS(y)

∫
|z|=1

ϕ(ry, ρz)zf ′′zz (y, 0) zTρn+1−mrm−3dS(z).

Observing the assumption (a), we see (3.13) holds for sufficiently small a > 0.
Next, assume m = 2. For almost any x = (y, z) ∈ Sn, we construct the following

function

g(t;x) := f
(√

1− t2|z|2 · y
|y|
, tz
)
, t ∈ [0, 1].

By the assumption that f ∈ C6(Sn) is (n+ 1)-mirror symmetric, one can verify that

g′′′(t;x) := ∂3g
∂t3

(t;x) is bounded by ‖f‖C6(Sn) up to a positive constant depending only

on n, for every t ∈ [0, 1] and almost every x ∈ Sn. Since g is an even function of t,
by virtue of the Taylor’s expansion, we have

g(t;x)− g(0;x) =
1

2

[
zf ′′zz

(
y

|y|
, 0

)
zT − f ′y

(
y

|y|
, 0

)
· y
|y|
|z|2
]
t2 +O(1)t3

=
1

2
zf ′′zz

(
y

|y|
, 0

)
zT t2 +O(1)t3,

(3.17)

where the second equality holds because of ∇f(x) · x = 0 by its homogeneity. Note
that

g

(
a√

|y|2 + a2|z|2
;x

)
= fa(x), ∀ a ∈ [0, 1].
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It follows from (3.17) that

Λa =
1

2

∫
Sn
ϕ(x)zf ′′zz

(
y

|y|
, 0

)
zT

(
a√

|y|2 + a2|z|2

)2

dS(x)

+O(1)

∫
Sn

(
a√

|y|2 + a2|z|2

)3

dS(x)

:=
1

2
Ia +O(1)IIa.

(3.18)

Similar to (3.14), we compute

Ia =

∫ 1

0

dr

∫
|y|=r

dS(y)

ρ(r)

∫
|z|=ρ(r)

ϕ(y, z)zf ′′zz

(
y

|y|
, 0

)
zT · a2

r2 + a2ρ2
dS(z),

where ρ(r) is the same as (3.15). Using the area formula for the scaling transforma-
tions, we obtain that

Ia =

∫ 1

0

dr

∫
|y|=1

dS(y)

∫
|z|=1

ϕ(ry, ρz)zf ′′zz (y, 0) zTρn+1−m · a2rm−1

r2 + a2ρ2
dS(z).

Note that m = 2 and ϕ ∈ Cα(Sn), one can see that as a→ 0+,

Ia =

∫ 1

0

a2rdr

r2 + a2ρ2

∫
|y|=1

dS(y)

∫
|z|=1

ϕ(0, z)zf ′′zz (y, 0) zTdS(z) +O(a2)

= −a2 log a ·
(∫
|y|=1

dS(y)

∫
|z|=1

ϕ(0, z)zf ′′zz (y, 0) zTdS(z) + o(1)

)
.

(3.19)

Following the same steps to compute the Ia, we find that

(3.20) IIa = O(a2), as a→ 0+.

Substituting (3.19) and (3.20) in (3.18), one has

Λa = −a2 log a ·
(

1

2

∫
|y|=1

dS(y)

∫
|z|=1

ϕ(0, z)zf ′′zz (y, 0) zTdS(z) + o(1)

)
, as a→ 0+.

Now our assumption (a) tells that (3.13) is true when a is positive and becomes very
close to 0.

Finally, assume m = 1. We start from the following equality,

fa(x)− f0(x) =

∫ a

0

f ′z(y, tz) · zdt

for almost every x = (y, z) ∈ Sn. Then

Λa =

∫
Sn
ϕ(x)dS(x)

∫ a

0

f ′z(y, tz) · zdt

=

∫ a

0

dt

∫
Sn
ϕ(x)f ′z(y, tz) · zdS(x).(3.21)
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To deal with the inner integral above, for 0 < t < a, we use the variable substitution
(3.2) with

A =

(
t

n
n+1 0

0 t−
1

n+1 In

)
to obtain that∫

Sn
ϕ(x)f ′z(y, tz) · zdS(x) = t

∫
Sn
ϕ

(
ty, z

|ty, z|

)
f ′z

(
tx

|ty, z|

)
· z

|ty, z|n+2
dS(x)

=

∫
Sn
ϕ

(
ty, z

|ty, z|

)
f ′z(x) · z
|ty, z|n+1

dS(x)

:= G(t),

(3.22)

where we have used the notation |ty, z| = |(ty, z)| =
√
t2|y|2 + |z|2 and the fact that

f ′z is homogeneous of degree −1 for the second equality. Hence (3.21) is turned to be
the following

(3.23) Λa =

∫ a

0

G(t)dt.

One need to analyse the asymptotic behavior of G(t) as t → 0+. For this, we claim
that for every x = (y, z) ∈ Sn,

(3.24) |f ′z(x)| ≤ 2 ‖f‖C2(Sn) |z|.

Indeed, if |z| ≥ 1/
√

2, then

|f ′z(x)| ≤ ‖f‖C2(Sn) ≤ 2 ‖f‖C2(Sn) |z|.

If |z| ≤ 1/
√

2, then |y| ≥ 1/
√

2. Noting f ′z(y, 0) = 0, we estimate f ′z(x) as follows:

|f ′z(x)| = |f ′z(y, z)− f ′z(y, 0)|
≤ sup

λ∈(0,1)
|f ′′zz(y, λz)| · |z|

= sup
λ∈(0,1)

∣∣∣∣f ′′zz ( y, λz

|y, λz|

)
1

|y, λz|2

∣∣∣∣ · |z|
≤ 2 ‖f‖C2(Sn) |z|.

Hence the inequality (3.24) holds. Therefore, we have

(3.25)

∣∣∣∣ϕ( ty, z

|ty, z|

)
f ′z(x) · z
|ty, z|n+1

∣∣∣∣ ≤ C

|z|n−1
, ∀ x ∈ Sn

with C = 2 ‖ϕ‖C(Sn) ‖f‖C2(Sn). Since m = 1, simple calculations show that∫
Sn

1

|z|n−1
dS(x) = C(n) < +∞.
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Noting the definition of G(t) given in (3.22), and using the estimate (3.25) and the
dominated convergence theorem, one can see that

lim
t→0+

G(t) =

∫
Sn
ϕ

(
0,

z

|z|

)
f ′z(x) · z
|z|n+1

dS(x)

= −
∫
Sn
ϕ

(
0,

z

|z|

)
f ′y(x) · y
|z|n+1

dS(x),

(3.26)

where the fact ∇f(x) · x = 0 has been used for the second equality. Hence, by (3.23)
we get that

lim
a→0+

a−1Λa = lim
t→0+

G(t).

This, together with the coarea formula, implies that

(3.27) lim
a→0+

a−1Λa = −
∫
Sn−1

ϕ (0, ξ) dS(ξ)

∫
{x=(y,z)∈Sn:z/|z|=ξ}

f ′y(x) · y
1− |y|2

dS(x).

Applying the assumption (b) to (3.27) we see that (3.13) holds for sufficiently small
a > 0. In this way, we have completed the proof of the lemma. �

We continue to prove Theorem 1.2. As was said before, it is sufficient to prove
(3.12). By virtue of Lemma 3.2, it is enough to verify the assumptions on f given in
Theorem 1.2 imply the ones (a) and (b) in Lemma 3.2. In fact, any half great circle
γ connecting some pair of axial antipodal points, say (±1, 0, · · · , 0) for example, can
be parameterized as

γ(θ) = (cos θ, sin θ · ξ), θ ∈ [0, π],

where ξ ∈ Sn−1. Then the restriction of f on the half great circle γ is written as

f(θ) = f (γ(θ)) = f (cos θ, sin θ · ξ) .
We compute

f ′(θ) = − sin θ f ′1 + cos θ f ′ξ · ξ
= − sin θ f ′1 − cos θ f ′1 cot θ

= − f ′1
sin θ

,

where that ∇f(x) ·x = 0 was used for the second equality. Therefore one immediately
gets that

(3.28) − ni(f) = f ′′(π/2) = f ′′11(0, ξ), for n ≥ 2,

and

(3.29)

∫
γ

f ′1(x) · x1
1− |x1|2

dS(x) = −
∫ π

0

f ′(θ) cot θ dθ = −pi(f), for n ≥ 1.

Similar computations as (3.28) and (3.29) hold for f along any other half great circles.
Hence we can apply Lemma 3.2 to the f in Theorem 1.2. Therefore one finds some
a > 0 such that the inequality (3.12) is true.
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For general situation where δm ∈ [0, 1], we can reduce it to the special case that we

have just considered above. Indeed, we observe the fact that Ĥ is normalized is not
necessary in our above proof. Let

Aδ = diag(a1, a2, · · · , an, an+1),

where for m = 1, · · · , n,

am =

{
1, if δm = 0,
δ−1m , if 0 < δm ≤ 1,

and an+1 is chosen such that Aδ ∈ SL(n+ 1). Then by (3.3) and (3.7), we have

Jsup =

∫
Sn

f̂

Ĥn+1

=

∫
Sn

f̂Aδ
Ĥn+1
Aδ

:=

∫
Sn

f̃

H̃n+1
.

Simple computation shows that if f̃ is written as the form of the right hand side of
(3.8), then δm is equal to 0 or 1. Replacing f̂ by f̃ and Ĥ by H̃ in the previous
arguments, we still get (3.12).

To summarize, we have got a contradiction for any possible blow-up sequences
under the assumptions of Theorem 1.2, according to our previous discussion, which
completes the proof of the theorem.
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