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Abstract. Quite recently, an Orlicz Minkowski problem has

been posed and the existence part of this problem for even

measures has been presented. In this paper, the existence

part of the Orlicz Minkowski problem for polytopes is demon-

strated. Furthermore, we obtain a solution of the Orlicz

Minkowski problem for general (not necessarily even) mea-

sures.

1. Introduction

The solution of the classical Minkowski problem for convex bodies is a central topic

in convexity with many applications. Although the solution of the Minkowski problem

has been known in the mathematical literature since the work of Minkowski [44, 45],

Alexandrov [1–3], Fenchel and Jessen [10], analytic versions or algorithmic issues of the

problem are still subject of current research and highly relevant (see, e.g., Chou and

Wang [7], Jerison [21], Klain [23], Lamberg [24], Lamberg and Kaasalainen [25], and the

reference therein).

The Lp Minkowski problem extends the classical Minkowski problem, which was first

defined by Lutwak in [30] as part of the Lp Brunn-Minkowski theory (see, e.g., [4, 5, 8,

13–16, 20, 26–40, 43, 46–48, 50, 55, 56] ). It asks for necessary and sufficient conditions on

a Borel measure µ on Sn−1 to be the Lp surface area measure of a convex body; i.e., is

there a convex body K such that

h1−p
K dSK = dµ ?

Here, hK is the support function of K and SK is the surface area measure of K. The

even Lp Minkowski problem asks which even measures are Lp surface area measures of
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convex bodies. For p = 1, this problem reduces to the classical Minkowski problem.

For p > 1 but p 6= n, the even Lp Minkowski problem was solved by Lutwak [30].

However, in [36] an equivalent volume-normalized version of the Lp Minkowksi problem

was proposed, and the even volume-normalized Lp Minkowksi problem was solved for

all p > 1. The solution of the Lp Minkowksi problem for polytopes for all p > 1 was given

by Chou and Wang [8], while an alternate approach to this problem was presented by Hug

et al [20]. Other approaches towards the Lp Minkowksi problem have also been extensively

studied over the last years (see, e.g., [6, 9, 17, 19, 22, 51–54]). Despite impressive success

in this direction, not all problems concerning the Lp Minkowski problem are completely

solved.

Quite recently, an embryonic Orlicz-Brunn-Minkowksi theory emerged in a series of

papers [18, 41, 42]. The Orlicz Minkowski problem is a natural and important task to

be considered. Haberl, Lutwak, Yang and Zhang [18] first proposed the following Or-

licz Minkowski problem: what are necessary and sufficient conditions for a Borel mea-

sure µ on Sn−1 to be the Orlicz surface area of a convex body; i.e., given a suitable

continuous function ϕ : (0, +∞) → (0, +∞), is there a convex body K such that for

some c

cϕ(hK)dSK = dµ ?

In the case that ϕ(t) = t1−p (p 6= n), this problem reduces to Lp Minkowski problem.

Under some suitable conditions on ϕ, the even Orlicz Minkowski problem was solved

by Haberl, Lutwak, Yang and Zhang in [18]. One of their results [18, Theorem 2] is

the following: Suppose ϕ : (0,∞) → (0,∞) is a continuous function such that φ(t) =∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as t → ∞, and µ is an even finite

Borel measure on Sn−1 which is not concentrated on a great subsphere of Sn−1, then

there exists an origin symmetric convex body K ⊂ Rn and c > 0 such that cϕ(hK)dSK =

dµ and ‖hK‖φ,µ = 1 simultaneously, where ‖hK‖φ,µ is the Orlicz norm of the support

function hK with respect to µ.

The main purpose of this paper is to provide a solution of the general Orlicz Minkowski

problem without assuming that µ is an even measure. But besides the assumptions on ϕ

in [18], we have to assume that ϕ(s) tends to infinity as s → 0+. In order to serve this

purpose, we first solve the Orlicz Minkowski problem for discrete measures, that is, if µ is

a discrete measure then the solution body K is a polytope (Theorem 1.1). The proof

relies on techniques developed by Haberl, Hug, Lutwak, Yang, and Zhang in [18] and [20],

but it is not just an immediate generalization. Next, we give a solution of the Orlicz

Minkowski problem for general measures (Theorem 1.2), by means of an approximation

argument.
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We denote by Kn the set of convex bodies in Rn, Pn
0 the set of convex polytopes in Rn

which contain the origin in their interiors, h(P, ·) the support function of P , S(P, ·) the

surface area measure of P , δui
the probability measure with unit point mass at ui. One

can consult Section 2 and 3 for more details.

Our main result may be formulated as follows:

THEOREM 1.1(discrete measures) Suppose ϕ : (0,∞) → (0,∞) is a continuous

function such that φ(t) =
∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as t →∞,

and ϕ(s) tends to infinity as s → 0+. For vectors u1, . . . , um ∈ Sn−1 that are not contained

in a closed hemisphere and real numbers α1, . . . , αm > 0, let µ :=
∑m

i=1 αiδui
. Then, there

exists a polytope P ∈ Pn
0 and c > 0 such that

µ = cϕ(h(P, ·))S(P, ·), (1)

‖hP‖φ,µ = 1. (2)

THEOREM 1.2(general measures) Suppose ϕ : (0,∞) → (0,∞) is a continuous

function such that φ(t) =
∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as t →∞,

and ϕ(s) tends to infinity as s → 0+. Let µ be a finite Borel measure on Sn−1 whose

support is not contained in a closed hemisphere. Then there exists a convex body K ∈
Kn with 0 ∈ K and c > 0 such that

dµ

ϕ(h(K, ·))
= cdS(K, ·), (3)

‖hK‖φ,µ = 1. (4)

However, formula (3) has to be presented in a form that is different from formula (1), since

the solution body K may have the origin in its boundary and the domain of 1/ϕ(x) can

be extended right continuously to the origin (Lemma 4.1).

Just as the case of even measures, the uniqueness part of the Orlicz Minkowski problem

for general measures cannot also be solved. Hence, this problem is still open and seems

to be very difficult.

This paper is organized as follows: In Section 2 we list for quick reference some basic

facts regarding convex bodies. In Section 3 we study some properties of the Orlicz norm

on the basis of [18]. The proofs of Theorem 1.1 and Theorem 1.2 are presented in Section

4 and 5, respectively.

2. Background and Notation
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In this section we present the terminology and notation we shall use throughout. For

general reference the reader may wish to consult the books of Gardner [11], Gruber [12],

and Schneider [49].

For x, y ∈ Rn , we denote their inner product by x · y and the Euclidean norm

of x by |x| =
√

x · x. The unit sphere {x ∈ Rn : |x| = 1} is denoted by Sn−1 and the unit

ball {x ∈ Rn : |x| ≤ 1} by Bn
2 . For u ∈ Sn−1, let H−

u,t := {y ∈ Rn : u · y ≤ t} denote the

halfspace with exterior normal vector u and the distance t ≥ 0 from the origin.

Let V stand for n−dimensional Lebesgue measure, and |µ| := µ(Sn−1) for a finite Borel

measure µ on Sn−1. We write C(Sn−1) for the set of continuous functions on Sn−1 which

will always be viewed as equipped with the max-norm metric:

‖f − g‖∞ = max
u∈Sn−1

|f(u)− g(u)|, (5)

for f, g ∈ C(Sn−1).

A convex body is a compact convex set of Rn with nonempty interior. Let Kn denote

the set of convex bodies in Rn endowed with the Hausdorff metric, and Pn the subset of

convex polytopes. We write Kn
0 for the set of convex bodies containing the origin in their

interiors, and Pn
0 := Pn ∩ Kn

0 .

For K ∈ Kn, let hK = h(K, ·) : Rn → R denote the support function of K; i.e., for

any x ∈ Rn, hK(x) = h(K, x) = max{x · y : y ∈ K}. It is easy to show that the support

function of the line segment v̂ joining the points 0, v ∈ Rn is given by

hv̂(u) = (u · v)+ = max{u · v, 0} =
|u · v|+ u · v

2
u ∈ Rn. (6)

We shall require the obvious facts that for compact, convex K, L ⊂ Rn,

K ⊂ L if and only if hK ≤ hL, (7)

and that for c > 0 and x ∈ Rn,

hcK(x) = chK(x) and hK(cx) = chK(x). (8)

If Ki ∈ Kn, we say that Ki → K ∈ Kn in the Hausdorff metric provided

‖hKi
− hK‖∞ := max

u∈Sn−1
|hKi

(u)− hK(u)| → 0. (9)

For a Borel set ω ⊂ Sn−1, the surface area measure SK(ω) = S(K, ω) of the convex

body K is the (n − 1)-dimensional Hausdorff measure of the set of all boundary points
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of K for which there exists a normal vector of K belonging to ω. Observe that for the

surface area measure of cK we have

ScK = cn−1SK , c > 0. (10)

We will use the fact that SK is weakly continuous in K [49]; i.e., for Ki ∈ Kn,

Ki → K ∈ Kn =⇒ SKi
→ SK , weakly, as i → +∞. (11)

For K, L ∈ Kn, the mixed volume V1(K, L) may be defined by

V1(K, L) =
1

n

∫
Sn−1

hLdSK . (12)

In particular, for K ∈ Kn,

V1(K, K) = V (K),

or equivalently,

V (K) =
1

n

∫
Sn−1

hKdSK . (13)

Minkowski’s inequality states that for convex bodies K, L:

V1(K, L)n ≥ V (K)n−1V (L) (14)

with equality if and only if K and L are homothetic.

We will use the following simple fact:

Let f, f1, . . . ∈ C(Sn−1), µ, µ1, . . . be finite measures on Sn−1. If fi → f uniformly

on Sn−1, and µi → µ weakly on Sn−1, then

lim
i→+∞

∫
Sn−1

fi(u)dµi(u) =

∫
Sn−1

f(u)dµ(u). (15)

3. Orlicz norms

DEFINITION 3.1 ( [18] ) Let φ : [0,∞) → [0,∞) be continuous, strictly increasing,

continuously differentiable on (0,∞) with positive derivative, and satisfy lim
t→∞

φ(t) = ∞.

Let µ be a finite Borel measure on the sphere Sn−1. For a continuous function f : Sn−1 →
[0,∞), the Orlicz norm ‖f‖φ,µ is defined by

‖f‖φ,µ = inf
{

λ > 0 :
1

|µ|

∫
Sn−1

φ
(f

λ

)
dµ ≤ φ(1)

}
. (16)

5



As in [18], the Orlicz norm of a function f not only depends on µ but also depends

on φ. The usual Lp norm is obtained by taking φ(t) = tp.

As was shown in [18], the following properties for continuous f : Sn−1 → [0,∞) hold:

‖cf‖φ,µ = c‖f‖φ,µ, c > 0. (17)

In particular

‖c‖φ,µ = c, c > 0. (18)

Moreover, the monotonicity of φ guarantees that for continuous f, g : Sn−1 → [0,∞),

f ≤ g =⇒ ‖f‖φ,µ ≤ ‖g‖φ,µ. (19)

LEMMA 3.2 ( [18, Lemma 3] ) Suppose µ is a finite Borel measure on Sn−1 and the

function f : Sn−1 → [0,∞) is continuous and such that µ({f 6= 0}) > 0. Then the Orlicz

norm ‖f‖φ,µ is positive and

‖f‖φ,µ = λ0 ⇐⇒ 1

|µ|

∫
Sn−1

φ
( f

λ0

)
dµ = φ(1).

LEMMA 3.3( [18, Lemma 4] ) Suppose f : Sn−1 → [0,∞) is a continuous function

with µ({f 6= 0}) > 0 and {fi} is a sequence of nonnegative functions in C(Sn−1) with µ({fi 6=
0}) > 0. If

fi → f in C(Sn−1),

then

‖fi‖φ,µ → ‖f‖φ,µ.

LEMMA 3.4 Suppose f : Sn−1 → [0,∞) is a continuous function with µ({f 6= 0}) >

0 and {µi} is a sequence of finite Borel measures on Sn−1. If

µi → µ weakly on Sn−1, (20)

then

‖f‖φ,µi
→ ‖f‖φ,µ. (21)

Proof. First, we will show that the sequence {‖f‖φ,µi
} is bounded. The fact f ∈

C(Sn−1) guarantees that there exists a real C > 0 such that f(u) ≤ C for all u ∈ Sn−1.

Together with (18) and (19), it follows that

0 ≤ ‖f‖φ,µi
≤ ‖C‖φ,µi

= C
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for all Borel measures µi on Sn−1, i ∈ N. Thus the boundedness of the sequence {‖f‖φ,µi
} is

established.

The Bolzano-Weierstrass theorem guarantees that the sequence {‖f‖φ,µi
} has a con-

vergent subsequence. In order to show that the sequence {‖f‖φ,µi
} converges to ‖f‖φ,µ,

it suffices to prove that every convergent subsequence converges to ‖f‖φ,µ. To simplify

the notation, we denote an arbitrary convergent subsequence of {‖f‖φ,µi
} by {‖f‖φ,µi

} as

well.

Next, we will show lim
i→∞

‖f‖φ,µi
> 0. Suppose it is not true; i.e., ‖f‖φ,µi

→ 0.

The condition µ({f > 0}) > 0 yields that there exists a sufficiently small c > 0 such

that µ({f ≥ c}) > 0. Given M > 0, there exists a sufficiently small δ > 0 such

that φ( c
δ
) > M |µ|

µ({f≥c}) , since φ is strictly increasing and lim
t→∞

φ(t) = ∞. Then the assump-

tion lim
i→∞

‖f‖φ,µi
= 0 implies there exists N1 such that ‖f‖φ,µi

< δ whenever i > N1 for the

above given δ. Thus φ
(

f
‖f‖φ,µi

)
≥ φ

(
f
δ

)
for i > N1. Note that since µ({f 6= 0}) > 0, f ∈

C(Sn−1) and µi → µ weakly on Sn−1, there exists N2 such that µi({f 6= 0}) > 0 when-

ever i > N2. From Lemma 3.2, it follows that

‖f‖φ,µi
> 0, (22)

and
1

|µi|

∫
Sn−1

φ
( f

‖f‖φ,µi

)
dµi = φ(1), (23)

whenever i > N2.

We therefore deduce

φ(1) = lim
i→∞

1

|µi|

∫
Sn−1

φ

(
f

‖f‖φ,µi

)
dµi

≥ lim inf
i→∞

1

|µi|

∫
Sn−1

φ

(
f

δ

)
dµi

=
1

|µ|

∫
Sn−1

φ

(
f

δ

)
dµ (by (20))

≥ 1

|µ|

∫
{f≥c}

φ

(
f

δ

)
dµ

≥ φ
(c

δ

) 1

|µ|

∫
{f≥c}

dµ

>
M |µ|

µ({f ≥ c})
· µ({f ≥ c})

|µ|
= M,

since M > 0 is arbitrary, this is a contradiction.
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Since lim
i→∞

‖f‖φ,µi
> 0, by (22), there exists a real c > 0 such that ‖f‖φ,µi

> c when-

ever i > N2. Let λi := ‖f‖φ,µi
, then we may rewrite (23) as∫

Sn−1

φ
( f

λi

)
dµ̄i = φ(1), (24)

where dµ̄i = dµi/|µi|, for i > N2.

Suppose that for the subsequence {λi} we have λi → λ.

Finally, we prove λ = ‖f‖φ,µ. Observe that∣∣∣f(u)

λi

− f(u)

λ

∣∣∣ =
f(u)|λi − λ|

λiλ
≤ C|λi − λ|

c2
whenever i > N2,

which means that f(u)/λi uniformly converges to f(u)/λ for all u ∈ Sn−1. Note that |f/λi| ≤
C/c for i > N2, and φ is uniformly continuous on [0, C/c], hence the function φ(f(u)/λi) uni-

formly converges to φ(f(u)/λ) on Sn−1. Moreover, µi → µ weakly on Sn−1 implies µ̄i →
µ̄ weakly on Sn−1, by (15), we obtain from (24) that∫

Sn−1

φ
(f

λ

)
dµ̄ = φ(1).

Then, Lemma 3.2 again yields the desired result.�

COROLLARY 3.5 Suppose f : Sn−1 → [0,∞) is a continuous function with µ({f 6=
0}) > 0, {fi} is a sequence of nonnegative functions in C(Sn−1) and {µi} is a sequence

of finite Borel measures on Sn−1. If

fi → f in C(Sn−1),

and

µi → µ weakly on Sn−1,

then

‖fi‖φ,µi
→ ‖f‖φ,µ.

Proof. Let ε > 0 be given, by Lemma 3.3, there exists a sufficiently small δ > 0 such

that ∣∣∣‖f + δ‖φ,µ − ‖f‖φ,µ

∣∣∣ < ε

2
(25)

and ∣∣∣‖f0‖φ,µ − ‖f‖φ,µ

∣∣∣ < ε

2
, (26)

where f0 := max{f − δ, 0} satisfies that µ(f0 > 0) > 0.
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Evidently, f0 : Sn−1 → [0,∞) is a continuous function. Since fi → f ∈ C(Sn−1), there

exists N1 such that f0 ≤ fi ≤ f +δ for i ≥ N1. Using (19), we obtain ‖f0‖φ,µi
≤ ‖fi‖φ,µi

≤
‖f + δ‖φ,µi

for i ≥ N1.

We now apply Lemma 3.4 to the function f + δ: there exists N2 such that∣∣∣‖f + δ‖φ,µi
− ‖f + δ‖φ,µ

∣∣∣ < ε

2
, whenever i ≥ N2. (27)

Similarly, there exists N3 such that∣∣∣‖f0‖φ,µi
− ‖f0‖φ,µ

∣∣∣ < ε

2
whenever i ≥ N3. (28)

For N = max{N1, N2, N3}, the inequalities (25) and (27) yield∣∣∣‖f + δ‖φ,µi
− ‖f‖φ,µ

∣∣∣ < ε whenever i ≥ N.

Similarly, the inequalities (26) and (28) yield∣∣∣‖f0‖φ,µi
− ‖f‖φ,µ

∣∣∣ < ε whenever i ≥ N.

Since ‖f0‖φ,µi
≤ ‖fi‖φ,µi

≤ ‖f + δ‖φ,µi
, the two inequalities above give∣∣∣‖fi‖φ,µi

− ‖f‖φ,µ

∣∣∣ < ε

whenever i > N . �

Recall (6) that hv̂(u) = (u · v)+ = |u·v|+u·v
2

.

LEMMA 3.6 If µ is a finite Borel measure on the sphere Sn−1 whose support is not

contained in a closed hemisphere, then there exists a real c > 0 such that ‖hv̂‖φ,µ ≥ c for

every v ∈ Sn−1.

Proof. Since the support of µ is not contained in a closed hemisphere of Sn−1

µ({hv̂ > 0}) = µ(Sn−1\H−
v,0) > 0 for every v ∈ Sn−1.

According to Lemma 3.2, we have ‖hv̂‖φ,µ > 0. Since Sn−1 is compact, it suffices to show

that the function v 7→ ‖hv̂‖φ,µ is continuous.

Suppose vi ∈ Sn−1 and vi → v as i → +∞. Note that hv̂(u) = |u·v|+u·v
2

implies hv̂i
→

hv̂ uniformly on Sn−1, and thus ‖hv̂i
‖φ,µ converges to ‖hv̂‖φ,µ by Lemma 3.3. So the

desired continuity of v 7→ ‖hv̂‖φ,µ is established. �

COROLLARY 3.7 If a sequence of finite discrete measures {µi} weakly converges

to a finite Borel measure µ on Sn−1, and the supports of µi and µ are all not contained

in a closed hemisphere, i ∈ N. Then, there exists a real c > 0 such that ‖hv̂‖φ,µi
≥ c for

every v ∈ Sn−1 and i ∈ N.
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Proof. Recall that a finite discrete measure µi on Sn−1 is a Borel measure. Observe

that hv̂ ≤ 1, combining (19) and (18), we have ‖hv̂‖φ,µ ≤ 1 for any Borel measure µ. From

Lemma 3.6, for each i, let

ci = min
v∈Sn−1

‖hv̂‖φ,µi
= ‖hv̂i

‖φ,µi
> 0, (29)

where vi ∈ Sn−1 is any point where this minimum is attained. Similarly, there exists c0 > 0

such that ‖hv̂‖φ,µ ≥ c0 for all v ∈ Sn−1. The compactness of [0, 1] guarantees that the

sequence {ci} has a convergent subsequence.

In order to prove this Corollary, it suffices to show that no convergent subsequence of

the sequence {ci} converges to 0. We argue by contradiction, assume there exists a subse-

quence {ci′} of the sequence {ci} such that ci′ → 0. From (29), for the subsequence {ci′}
we can write ci′ = ‖hv̂i′

‖φ,µi′
for some vi′ ∈ Sn−1 as well. Since Sn−1 is compact, there ex-

ists a subsequence {vi′′} of the sequence {vi′} such that vi′′ converges to v0 ∈ Sn−1. Thus

we obtain a subsequence {ci′′} of the sequence {ci′} such that ci′′ converges to 0 by the as-

sumption, where ci′′ = ‖hv̂i′′
‖φ,µi′′

. Meanwhile, hv̂i′′
converges to hv̂ uniformly on Sn−1 as

shown in Lemma 3.6. By Corollary 3.5, we see that ci′′ = ‖hv̂i′′
‖φ,µi′′

→ ‖hv̂0‖φ,µ. Note

that ‖hv̂‖φ,µ ≥ c0 for all v ∈ Sn−1, while ci′′ = ‖hv̂i′′
‖φ,µi′′

→ 0, this is the desired

contradiction.�

4. The Orlicz Minkowski problem for discrete measures

This section is devoted to the proof of Theorem 1.1.

LEMMA 4.1 Suppose ϕ : (0,∞) → (0,∞) is a continuous function such that φ(t) =∫ t

o
1

ϕ(s)
ds exists for every positive t and is unbounded as t →∞, and ϕ(s) tends to infinity

as s → 0+. Then,

i) lim
t→0+

φ(t) = 0, lim
t→0+

φ′(t) = 0.

ii) Let α(t) := 1
ϕ(t)

, β(t) := t
ϕ(t)

, both of them are continuous on (0,∞). Moreover, we

can extend the domain of α(t), β(t) right continuously to the origin; i.e., α(0) =

lim
t→0+

α(t) = 0, β(0) = lim
t→0+

β(t) = 0.

iii) lim
t→0+

(φ−1)′(φ(h)− bφ(t)) is bounded from above and below by positive reals, for any

given b, h > 0.

Proof. First, we extend the domain of φ to [0,∞) by

φ(t) =
∫ t

o
1

ϕ(s)
ds, for t > 0, and φ(0) = lim

t→0+
φ(t).
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Indeed, (i),(ii) is easily verified.

Next, we will show (iii).

Note that the function φ is strictly increasing and continuously differentiable on (0,∞),

and φ′ > 0. Since lim
t→0+

φ(t) = 0 and lim
t→∞

φ(t) = ∞, φ has an inverse φ−1 : [0,∞) →
[0,∞) which is continuously differentiable on (0,∞).

Hence for any given b, h > 0, there exists δ > 0 such that

φ(h)− bφ(t) ∈ φ((
h

2
, h))

for all t ∈ (0, δ). Obviously, φ((h
2
, h)) ⊂ (0,∞), thus (φ−1)′(φ(h) − bφ(t)) exists for

a sufficiently small t. Observe (φ−1)′(φ(s)) = 1
φ′(s)

= ϕ(s) when s ∈ (h
2
, h), and the

function ϕ is continuous on (0,∞), thus lim
t→0+

(φ−1)′(φ(h)− bφ(t)) is bounded from above

and below by positive reals.�

By this lemma we can assume in the proofs of Theorem 1.1 and 1.2 that the domains

of φ(t), α(t), and β(t) contain zero; i.e., φ(0) = lim
t→0+

φ(t) = 0, α(0) = lim
t→0+

α(t) = 0,

and β(0) = lim
t→0+

β(t) = 0.

In the following, we denote by Rm
+ the set of all x = (x1, . . . , xm) ∈ Rm with positive

components. Recall that H−
u,t := {y ∈ Rn : u ·y ≤ t} is the halfspace with exterior normal

vector u and the distance t ≥ 0 from the origin.

LEMMA 4.2 ( [20, Lemma 3.2] ) Let u1, . . . , um ∈ Sn−1 be pairwise distinct vectors

which are not contained in a closed hemisphere. For x ∈ Rm
+ , let P (x) :=

⋂m
i=1 H−

ui,xi
.

Then V (P (x)) is of class C1 and ∂iV (P (x)) = S(P (x), {ui}) for i = 1, . . . ,m.

With these lemmas in hand, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let Rm
∗ be the set of all x = (x1, . . . , xm) ∈ Rm with

nonnegative components, define the set

M := {x ∈ Rm
∗ :

m∑
i=1

αiφ(xi) =
m∑

i=1

αiφ(1)}.

Since φ is strictly increasing, the surface M is compact. For x ∈ M , we define P (x) as

the convex polytope

P (x) :=
m⋂

i=1

H−
ui,xi

=
m⋂

i=1

H−
ui,hx

i
, (30)

where hx
i := h(P (x), ui) for i = 1, . . . ,m.

Since M is compact and the function x 7→ V (P (x)) is continuous, there is a point z ∈
M such that

V (P (x)) ≤ V (P (z)) for all x ∈ M .
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Note that if we set x∗ = (1, . . . , 1) ∈ Rm, then clearly x∗ ∈ M . Since 0 < V (Bn
2 ) ≤

V (P (x∗)) ≤ V (P (z)), this gives that P (z) ∈ Pn.

We will prove that P (z) is the desired polytope.

First, we want to show

0 ∈ int(P (z)). (31)

Observe for any x ∈ M , 0 ∈ P (x), that is either 0 ∈ bd(P (z)) or 0 ∈ int(P (z)). Recall

that hz
i := h(P (z), ui) for i = 1, . . . ,m. Suppose 0 ∈ bd(P (z)), so there exists hz

1 = . . . =

hz
k = 0 and hz

k+1, . . . , h
z
m > 0 for some 1 ≤ k < m. We shall get a contradiction by

showing that under this assumption there is some zt ∈ M such that V (P (zt)) > V (P (z)),

which contradicts the definition of z. For a small t > 0, we define

zt :=
(
φ−1(φ(z1) + φ(t)), . . . , φ−1(φ(zk) + φ(t)),

φ−1(φ(zk+1)− αφ(t)), . . . , φ−1(φ(zm)− αφ(t))
)
,

where

α :=

∑k
i=1 αi∑m

i=k+1 αi

.

Obviously, zt ∈ M if t > 0 is sufficiently small.

Analogously, for a small t > 0, we define

hz
t :=

(
φ−1(φ(hz

1) + φ(t)), . . . , φ−1(φ(hz
k) + φ(t)),

φ−1(φ(hz
k+1)− αφ(t)), . . . , φ−1(φ(hz

m)− αφ(t))
)
.

Since φ(0) = 0, by (30), we have

P (hz
t ) :=

k⋂
i=1

H−
ui,t
∩

m⋂
i=k+1

H−
ui,φ−1(φ(hz

i )−αφ(t)).

A glance at (30) again shows P (hz
0) = P (z). Since hz

i ≤ zi for all i ≤ m and the

function φ is strictly increasing, P (hz
t ) ⊂ P (zt) and 0 ∈ int(P (hz

t )), if t > 0 is sufficiently

small. We write

Si := S(P (z), ui) and St
i := S(P (hz

t ), ui).

Note that Si, St
i also depend on z. Thus for the n-dimensional polytope P (hz

t ), P (z),

according to the discrete form of (13) and (12), it follows that

nV (P (hz
t )) = t

k∑
i=1

St
i +

m∑
i=k+1

φ−1(φ(hz
i )− αφ(t))St

i ,

12



and

nV1(P (hz
t ), P (z)) = 0

k∑
i=1

St
i +

m∑
i=k+1

hz
i S

t
i .

Note that each open set intersecting P (z) intersects P (hz
t ) if t > 0 is sufficiently

small and each closed set having empty intersection with P (z) has empty intersection

with P (hz
t ) if t > 0 is sufficiently small. Hence P (hz

t ) → P (z) as t → 0+ [49, p.57],

and (11) gives that St
i → Si as t → 0+. Now, we conclude that

lim
t→0+

V (P (hz
t ))− V1(P (hz

t ), P (z))

t

=
1

n
lim

t→0+

(
k∑

i=1

t− 0

t
St

i +
m∑

i=k+1

φ−1(φ(hz
i )− αφ(t))− hz

i

t
St

i

)

=
1

n

k∑
i=1

Si > 0.

Since lim
t→0+

φ′(t) = 0 and lim
t→0+

(φ−1)′(φ(hz
i )− αφ(t)) is bounded by Lemma 4.1

lim
t→0+

φ−1(φ(hz
i )− αφ(t))− hz

i

t
= lim

t→0+
(φ−1)′(φ(hz

i )− αφ(t))(−αφ′(t)) = 0,

thus the last equality is obtained. By Minkowski’s inequality (14) and P (hz
t ) → P (z) as t →

0+, we obtain

0 < lim
t→0+

V (P (hz
t ))− V1(P (hz

t ), P (z))

t
≤ lim inf

t→0+

V (P (hz
t ))− V (P (hz

t ))
1− 1

n V (P (z))
1
n

t

= V (P (z))1− 1
n lim inf

t→0+

V (P (hz
t ))

1
n − V (P (z))

1
n

t
.

Consequently, V (P (hz
t )) > V (P (z)) if t > 0 is sufficiently small. However, since P (hz

t ) ⊂
P (zt), the required contradiction V (P (zt)) > V (P (z)) follows.

Next, we will prove the main conclusions (1) and (2). From (31), we have

z ∈ M+ := {x ∈ Rm
+ :

m∑
i=1

αiφ(xi) =
m∑

i=1

αiφ(1)}.

By the Larange multiplier rule there is some λ ∈ R such that

∇V (P (z)) = λ∇(
m∑

i=1

αiφ(zi)−
m∑

i=1

αiφ(1)),

13



where V (P (z)) is differentiable by Lemma 4.2, and φ′(zi) exists since zi > 0 for all i =

1, . . . ,m. Thus

Si = λ
αi

ϕ(zi)
, i = 1, . . . ,m. (32)

The fact that Si > 0 for some i ∈ {1, . . . ,m} and αi, ϕ(zi) > 0 for all i = 1, . . . ,m,

shows λ > 0. Together with the above expression (32), it follows that Si > 0 for all i =

1, . . . ,m. Hence, h(P (z), ui) = zi for all i = 1, . . . ,m. By the discrete form of (13), and

(32), it follows that

nV (P (z)) =
m∑

i=1

Sizi = λ

m∑
i=1

αizi

ϕ(zi)
.

Therefore, for i = 1, . . . ,m,

S(P (z), ui) = Si =
αi

cϕ(zi)
,

where c = 1
nV (P (z))

∑m
i=1

αizi

ϕ(zi)
.

Indeed, together with h(P (z), ui) = zi, it follows that

µ =
m∑

i=1

αiδui
= cϕ(h(P (z), ·))S(P (z), ·).

Observe the definition of M+ and h(P (z), ui) = zi, hence

m∑
i=1

αiφ(h(P (z), ui)) =
m∑

i=1

αiφ(1).

Moreover, take µ =
∑m

i=1 αiδui
in Lemma 3.2 to conclude

‖hP (z)‖φ,µ = 1.�

5. The Orlicz Minkowski Problem for general measures

Proof of Theorem 1.2. As was shown in [49, Theorem 7.1.2], for a given Borel

measure µ on Sn−1 which is not concentrated in a closed hemisphere, one can construct

a sequence of discrete measures {µi} on Sn−1, i ∈ N, such that the support of µi is not

contained in a closed hemisphere and µi → µ weakly as i → ∞. By Theorem 1.1, for

each i ∈ N there exists a polytope Pi ∈ Pn
0 with

µi = ciϕ(h(Pi, ·))S(Pi, ·).

14



First, we claim that the sequence {Pi} is bounded. For each i, let vi ∈ Sn−1 be chosen

such that rivi ∈ Pi with |rivi| maximal for suitable ri > 0. Thus we derive rihv̂i
(u) ≤

hPi
(u) for all u ∈ Sn−1 from (8) and (7). Together with (17), (19) and (2), we see that

ri‖hv̂i
‖φ,µi

= ‖rihv̂i
‖φ,µi

≤ ‖hPi
‖φ,µi

= 1. (33)

By Corollary 3.7, there exists a real c > 0 such that ‖hv̂‖φ,µi
≥ c for every v ∈ Sn−1,

i ∈ N. It follows that the ri’s are bounded from above, and hence the sequence {Pi} is

bounded. We set hPi
≤ R for i ∈ N.

Now Blaschke’s selection theorem guarantees the existence of a convergent subsequence

of {Pi}, which will also be denoted by {Pi}, with lim
i→∞

Pi = K. Now, 0 < V (Bn
2 ) ≤

V (Pi) for all i ∈ N implies that 0 < V (Bn
2 ) ≤ V (K), that is K ∈ Kn. Thus, from (9) it

is clear that h(Pi, ·) → h(K, ·) uniformly on Sn−1. Since 0 ∈ int(Pi) for all i ∈ N, this

gives 0 ∈ K.

For a discrete measure µi, we rewrite ci = 1
nV (Pi)

∫
Sn−1

hPi

ϕ(hPi
)
dµi. We also set c =

1
nV (K)

∫
Sn−1

hK

ϕ(hK)
dµ. From Lemma 4.1 (ii) and 0 < hPi

≤ R , we obtain that β(t) := t
ϕ(t)

is

uniformly continuous on [0, R]. Meanwhile, h(Pi, ·) → h(K, ·) uniformly on Sn−1, and

it follows that h(Pi,·)
ϕ(h(Pi,·)) uniformly converges to h(K,·)

ϕ(h(K,·)) on Sn−1. Combining V (Pi) →
V (K) and µi → µ weakly, as i →∞, by (15), we obtain ci → c as i →∞.

Next, for a continuous function f ∈ C(Sn−1) and i ∈ N, we have∫
Sn−1

f(u)

ϕ(h(Pi, u))
dµi(u) = ci

∫
Sn−1

f(u)dS(Pi, u). (34)

From Lemma 4.1 (ii) and 0 < hPi
≤ R, we obtain that α(t) := 1

ϕ(t)
is uniformly

continuous on [0, R]. Meanwhile, h(Pi, ·) → h(K, ·) uniformly on Sn−1, and it follows

that 1
ϕ(h(Pi,·)) uniformly converges to 1

ϕ(h(K,·)) on Sn−1. And since µi → µ and S(Pi, ·) →
S(K, ·) weakly by (11), as i →∞, using (15) again, it follows from (34) that∫

Sn−1

f(u)

ϕ(h(K,u))
dµ(u) = c

∫
Sn−1

f(u)dS(K, u). (35)

The existence assertion (3) now follows, since (35) holds for any f ∈ C(Sn−1).

Moreover, since ‖hPi
‖φ,µi

= 1, and h(Pi, ·) → h(K, ·) uniformly on Sn−1, we obtain

from Corollary 3.5 that

‖hK‖φ,µ = 1.�

The following proof of Corollary 5.1 is similar to the one of [18, Corollary 2], which is

known as the Lp-Minkowski problem. We include it for the sake of completeness.
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COROLLARY 5.1 If µ is a finite Borel measure on Sn−1 which is not concentrated

on a closed hemisphere, then

(i) for p > 1, there exists a convex body K ∈ Kn with 0 ∈ K such that

hp−1
K dµ = cdSK , (36)

where c = 1/V (K).

(ii) for 1 < p 6= n, there exists a convex body K ∈ Kn with 0 ∈ K such that

hp−1
K dµ = dSK . (37)

Proof. (i) Note that ϕ(t) = t1−p for p > 1 satisfies the requirements of Theorem 1.2.

From (3) we have (36) and from (4) it follows that

1

|µ|

∫
Sn−1

hp
Kdµ = 1. (38)

Using (13) and (3), we conclude ∫
Sn−1

hp
Kdµ = cnV (K). (39)

From (38) and (39) it follows that c = |µ|/nV (K). Therefore

hp−1
K dµ =

|µ|
nV (K)

dSK .

In order to get the desired c = 1/V (K), we will show that a dilation of K yields this c.

Let K = λK ′, then the homogeneity properties of (8) and (10) imply

λphp−1
K′ dµ =

|µ|
nV (K ′)

dSK′ .

Then K ′ is the desired convex body, by choosing λp = |µ|/n.

(ii) If K ′′ = λK satisfies (37), then by (8) and (10) we have

hp−1
K dµ = λn−pdSK .

Since there exists K satisfying (36), we can choose λn−p = c, where n 6= p makes the

reverse process feasible. �
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