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Abstract. Optimal Sobolev norms under volume preserving affine

transformations are considered. It turns out that this minimal

transform is equivalent to the (p, 2) Fisher information matrix de-

fined by Lutwak, Lv, Yang, and Zhang. Furthermore, some ana-

lytic inequalities regarding to the Lp affine and Lp sine energies

for the optimal function are investigated.

1. Introduction

For p ≥ 1 and n ≥ 2, the Lp Sobolev space W 1,p(Rn) is the space of

real-valued Lp functions on Rn with weak Lp partial derivatives. The

sharp Lp Sobolev inequality states that if f ∈ W 1,p(Rn) for 1 ≤ p < n,

then there exists a best constant An,p such that

‖∇f‖p ≥ An,p‖f‖ np
n−p

, (1.1)

where ‖ · ‖q denotes the Lq norm of the Euclidean norm of functions

and ∇f is the gradient of f . Inequality (1.1) goes back to Federer

and Fleming [12] and Maz’ya [31] for p = 1 and to Aubin [3] and

Talenti [35] for 1 < p < n. For strengthened versions of (1.1), see, e.g.,

[6, 7, 9, 10, 32, 39].

A stronger version of the sharp Lp Sobolev inequality, known as sharp

affine Lp Sobolev inequality, were introduced and established by Zhang

[42] for p = 1 and by Lutwak, Yang and Zhang [24] for 1 < p < n. It

2000 Mathematics Subject Classification. 46E35, 52A40.
Key words and phrases. Lp surface isotropic position, functional Lp surface

isotropic position, Lp affine energy, Lp sine energy, (p, 2) Fisher information matrix.
The second-named author was supported by NSFC-Henan Joint Fund

(U1204102) and Doctoral Fund of Henan Polytechnic University (B2011-024).
1



2 Q. HUANG AND A.-J. LI

states that if f ∈ W 1,p(Rn) for 1 ≤ p < n, then

Ep(f) ≥ An,p‖f‖ np
n−p

, (1.2)

where Ep(f) is the Lp affine energy, defined, for f ∈ W 1,p(Rn), by

Ep(f) = cn,p

( ∫
Sn−1

‖Duf‖−n
p du

)−1/n

, (1.3)

with

cn,p =
n

1
n

+ 1
p π

1
2p

+ 1
2 Γ(n+p

2
)

1
p

2
1
p Γ(1 + n

2
)

1
n

+ 1
p Γ(p+1

2
)

1
p

and Duf = u · ∇f(x) is the directional derivative of f in the direction

u. Note that the Lp affine energy is a fundamental concept in variants

of affine Sobolev inequalities (see e.g., [2, 8, 17–19, 24, 28, 36–38, 42]).

We emphasize the remarkable and important fact that Ep(f) is invari-

ant under volume preserving affine transformations on Rn, while ‖∇f‖p is

invariant only under rigid motions. Hence the affine Lp Sobolev in-

equality (1.2) is invariant under affine transformations of Rn, while

the classical Lp Sobolev inequality (1.1) is invariant only under rigid

motions.

Moreover, it was shown by Lutwak, Yang, and Zhang [24] that

‖∇f‖p ≥ Ep(f). (1.4)

Hence the affine Lp Sobolev inequality (1.2) is stronger than the Lp Sobolev

inequaliy (1.1). Denote fT (x) = f(Tx) for every T ∈ SL(n) and x ∈
Rn. From the above facts, we may ask the following question: Does

there exist a Tp ∈ SL(n) and a constant Bn,p such that

Bn,p‖∇fTp‖p ≤ Ep(fTp) = Ep(f)? (1.5)

In other words, it asks whether there exists a transformations Tp ∈
SL(n) minimizes ‖∇fT‖p for all T ∈ SL(n).

We answer this question in the following theorem.

Theorem 1.1. Given f ∈ W 1,p(Rn). There exists a unique (up to

orthogonal transformations) Tp ∈ SL(n) minimizes {‖∇fT‖p : T ∈
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SL(n)}. In particular, when p = 2, for the minimizer T2, we have

‖∇fT2‖2
2In = n

∫
Rn

∇fT2(x)⊗∇fT2(x)dx, (1.6)

where ∇fT2⊗∇fT2 is the rank-one orthogonal projection onto the space

spanned by the vector ∇fT2 and In denotes the identity operator on Rn.

It is shown in Section 6 that Tp in Theorem 1.1 is equivalent to

the (p, 2) Fisher information matrix Jp,2(X) defined by Lutwak, Lv,

Yang, and Zhang [22] in the context of the information theory. For the

related problem, please see [28] by Lutwak, Yang, and Zhang.

Thus, the problem (1.5) can be answered as follows.

Theorem 1.2. Given f ∈ W 1,p(Rn), we have

Bn,p‖∇fTp‖p ≤ Ep(f) ≤ ‖∇fTp‖p, (1.7)

where

Bn,p =
π

1
2p

+ 1
2 Γ(n+p

2
)

1
p Γ(1 + n

p
)

1
n

2
1
p
+1Γ(1 + n

2
)

1
n

+ 1
p Γ(p+1

2
)

1
p Γ(1 + 1

p
)
.

Moreover, let K be an origin-symmetric convex body in Rn and let f(x) =

g(‖x‖K) with g ∈ C1(0,∞). For p 6= 2, there is equality in the left in-

equality if and only if K is a parallelotope. If p is not an even integer,

then there is equality in the right inequality if and only if K is an

ellipsoid.

Unlike the Lp Sobolev norm ‖∇f‖p, the quantity

min
T∈SL(n)

‖∇fT‖p

is clearly invariant under volume preserving affine transformations on Rn.

Thus, the inequality (1.7) is invariant under affine transformations

of Rn, while the inequality (1.4) is invariant only under rigid motions.

Next, motivated by the work of Maresch, Schuster [29] and Guo,

Leng [16], we define the Lp sine energy, for f ∈ W 1,p(Rn), by

Gp(f) = dn,p

( ∫
Sn−1

‖Du⊥f‖−n
p du

)−1/n

, (1.8)
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where

dn,p =
n

1
n

+ 1
p π

1
2 Γ(n−1

2
)Γ(n+p

2
)

2Γ(1 + n
2
)1+ 1

n Γ(n+p−1
2

)

and Du⊥f = Pu⊥∇f(x). Here u⊥ is the central hyperplane perpen-

dicular to u and Pu⊥∇f(x) is the orthogonal projection of the vec-

tor ∇f(x) onto u⊥. Unfortunately, it is easy to see that Gp(f) is not

invariant under volume preserving affine transformations on Rn but is

still invariant under rigid motions. Similar to Theorem 1.2, the follow-

ing theorem is established.

Theorem 1.3. Given f ∈ W 1,p(Rn), we have

Cn,p‖∇fTp‖p ≤ Gp(fTp) ≤ ‖∇fTp‖p, (1.9)

where

Cn,p =
p

1
n−1 n

1
p
−1(n− 1)

1
p
− 1

n−1
+1Γ(1 + n

p
)

1
n Γ(n−1

2
)2Γ(n+p

2
)2

4Γ(n−1
p

)
1

n−1 Γ(n+2
2

)2Γ(n+p−1
2

)2
.

Moreover, let K be an origin-symmetric convex body in Rn and let f(x) =

g(‖x‖K) with g ∈ C1(0,∞). If p is not an even integer, then there is

equality in the right inequality if and only if K is an ellipsoid.

Furthermore, we establish the following inequalities.

Theorem 1.4. Given f ∈ W 1,p(Rn), for every u ∈ Sn−1,

n−
1
p‖∇fTp‖p ≤ ‖DufTp‖p ≤ n−

1
2‖∇fTp‖p, 1 ≤ p ≤ 2,

and

n−
1
p‖∇fTp‖p ≥ ‖DufTp‖p ≥ n−

1
2‖∇fTp‖p, p ≥ 2.

Theorem 1.5. Given f ∈ W 1,p(Rn), for every u ∈ Sn−1,(n− 1

n

) 1
p‖∇fTp‖p ≤ ‖Du⊥fTp‖p ≤

(n− 1

n

) 1
2‖∇fTp‖p, 1 ≤ p ≤ 2,

and(n− 1

n

) 1
p‖∇fTp‖p ≥ ‖Du⊥fTp‖p ≥

(n− 1

n

) 1
2‖∇fTp‖p, p ≥ 2.
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The rest of this paper is organized as follows: In Section 2 the basic

notations and preliminaries are provided. To prove our main theorems,

some facts about the Lp surface isotropic positions are given in Section

3. The interplay of the geometric inequalities and corresponding ana-

lytic inequalities is presented in Section 4 and Section 5. In Section 6,

the equivalence of Tp in Theorem 1.1 and the (p, 2) Fisher information

matrix Jp,2(X) is explored.

2. Notations and Preliminaries

We refer to the book [34] for the basic facts about convex bodies and

the Lp Brunn-Minkowski theory.

Denote by p∗ ∈ [1,∞) the Hölder conjugate of p ∈ [1,∞); i.e.,

1

p
+

1

p∗
= 1.

Denote by κn(p) the volume of the unit ball of the `n
p space, that is,

κn(p) =
2n(Γ(1 + 1

p
))n

Γ(1 + n
p
)

.

Abbreviate κn(2) by κn, the volume of n-dimensional Euclidean unit

ball Bn
2 . Define

αn,p :=
(Γ(1 + n

2
)Γ(1+p

2
)

Γ(1 + 1
2
)Γ(n+p

2
)

)n
p
,

βn,p :=
p

n
n−1 n

n
p
−n(n− 1)

n
p
− n

n−1
+nΓ(1 + n

p
)

Γ(n−1
p

)
n

n−1

,

and

γn,p :=
2Γ(n+2

2
)Γ(n+p−1

2
)

Γ(n−1
2

)Γ(n+p
2

)
.

A convex body is a compact convex set in Rn which is throughout

assumed to contain the origin in its interior. We denote by Kn
o the

class of convex bodies. Let Kn
e denote the class of origin-symmetric

members of Kn
o . Each convex body K is uniquely determined by its

support function hK = h(K, ·) : Rn → R defined by

hK(x) = h(K, x) := max{x · y : y ∈ K},
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where x · y denotes the standard inner product of x and y in Rn.

Let ‖ · ‖K : Rn → [0,∞) denote the Minkowski functional of K ∈ Kn
o ;

i.e., ‖x‖K = min{λ ≥ 0 : x ∈ λK}.
The polar set K∗ of K ∈ Kn

o is the convex body defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

Clearly, for K ∈ Kn
o ,

hK∗(·) = ‖ · ‖K . (2.1)

For K, L ∈ Kn
o , and ε > 0, the Lp Minkowski-Firey combination

K +p ε · L is the convex body whose support function is given by

h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p.

The Lp mixed volume Vp(K, L) of K, L ∈ Kn
o was defined in [21] by

Vp(K, L) =
p

n
lim

ε→0+

V (K +p ε · L)− V (K)

ε
.

where V is the n-dimensional volume (i.e. Lebesgue measure in Rn). In

particular, Vp(K, K) = V (K). It was shown in [21] that corresponding

to each K ∈ Kn
o , there is a positive Borel measure Sp(K, ·) on Sn−1,

called the Lp surface area measure of K, such that for every L ∈ Kn
o ,

Vp(K, L) =
1

n

∫
Sn−1

hp
L(u)dSp(K, u).

Moreover, the Lp surface area measure is absolutely continuous with

respect to the surface area measure S(K, ·) of K:

dSp(K, ·) = h1−p
K (·)dS(K, ·).

Recall that for a Borel set ω ⊂ Sn−1, S(K,ω) is the (n−1)-dimensional

Hausdorff measureHn−1 of the set of all boundary points of K for which

there exists a normal vector of K belonging to ω. When L = Bn
2 , the

Lp surface area Sp(K) of K is given by

Sp(K) = nV (K, Bn
2 ).

Clearly,

Sp(tK, ·)/V (tK) = t−pSp(K, ·)/V (K) (2.2)
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for all t > 0 and K ∈ Kn
o .

In [25], Lutwak, Yang, and Zhang established the following remark-

able result.

The solution of normalized even Lp Minkowski problem. Let

p ≥ 1. If µ is an even Borel measure on Sn−1 whose support is not

contained in a great subsphere of Sn−1, then there exists a unique

origin-symmetric convex body K such that Sp(K, ·)/V (K) = µ.

A finite nonnegative Borel measure µ on Sn−1 is called isotropic if∫
Sn−1

v ⊗ vdµ(v) = In. (2.3)

The measure µ is said to be even if it assumes the same value on antipo-

dal sets. The two most important examples of even isotropic measures

on Sn−1 are suitably normalized spherical Lebesgue measure and the

cross measure, i.e., measures concentrated uniformly on {±b1, . . . ,±bn},
where b1, . . . , bn denote orthonormal basis vectors of Rn.

3. The Lp surface isotropic position

A convex body K in Rn is said in Lp surface isotropic position if

its normalized Lp surface area measure nSp(K, ·)/Sp(K) is isotropic

on Sn−1. This concept was first introduced by Lutwak, Yang, Zhang

[27], while the L1 case was first defined in [33]. Moreover, Lutwak,

Yang, Zhang [27] obtained the following result (see also [40] by Yu).

For p = 1, it was due to Petty [33] and Giannopoulos, Papadimitrakis

[13].

Proposition 3.1. Suppose p ∈ [1,∞) and K ∈ Kn
o . Then Sp(K) =

min{Sp(TK) : T ∈ SL(n)} if and only if K is in Lp surface isotropic

position. The minimal Lp surface area position is unique up to orthog-

onal transformations.

Other extensions of this notion can be found in [1, 13–15, 30, 41].
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Define the convex body Cp(µ) in Rn whose support function, for u ∈
Sn−1, is given by

hCp(µ)(u) =
( ∫

Sn−1

|u · v|pdµ(v)
)1/p

. (3.1)

The following lemma, extending the results of Ball [4] and Barthe[5],

was due to Lutwak, Yang and Zhang [26].

Lemma 3.2. Suppose p ∈ [1,∞). If µ is an even isotropic measure

on Sn−1, then
κn

αn,p

≤ V (C∗pµ) ≤ κn(p). (3.2)

If p is not an even integer, then there is equality in the left inequality if

and only if µ is suitably normalized Lebesgue measure. For p 6= 2, there

is equality in the right inequality if and only if µ is a cross measure.

Define the convex body Sp(µ) in Rn whose support function, for u ∈
Sn−1, is given by

hSp(µ)(u) =
( ∫

Sn−1

(1−|u ·v|2)p/2dµ(v)
)1/p

=
( ∫

Sn−1

|Pv⊥u|pdµ(v)
)1/p

.

The following lemma, extending the case p = 1 due to Maresch and

Schuster [29], was proved by Guo and Leng [16].

Lemma 3.3. Suppose p ∈ [1,∞). If µ is an even isotropic measure

on Sn−1, then
κn

γn
n,p

≤ V (S∗pµ) ≤
κnγ

n
n,p

βn,p

. (3.3)

If p is not an even integer, then there is equality in the left inequality

if and only if µ is suitably normalized Lebesgue measure.

As shown in [29] and [16], the right inequality in (3.3) is asymptoti-

cally optimal.

For each convex body K ∈ Kn
o , the Lp projection body, ΠpK, of K

was introduced by Lutwak, Yang, and Zhang [23], which is the origin-

symmetric convex body whose support function, for u ∈ Sn−1, is given

by

hΠpK(u) =
( 1

V (K)

∫
Sn−1

|u · v|pdSp(K, v)
)1/p

. (3.4)
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From (2.2), we have

Πp(cK) = c−1ΠpK. (3.5)

The following lemma without the equality conditions was due to Yu

[40], which extended the case p = 1 by Giannopoulos and Papadimi-

trakis [13]. Here we characterize the equality conditions.

Lemma 3.4. Suppose p ∈ [1,∞). If K ∈ Kn
e is in Lp surface isotropic

position, then

nn/pκn

αn,p

≤ V (Π∗
pK)

(Sp(K)

V (K)

)n/p

≤ nn/pκn(p). (3.6)

If p is not an even integer, then there is equality in the left inequality

if and only if K is a ball. For p 6= 2, there is equality in the right

inequality if and only if K is a cube.

Proof. Define the even measure µ on Sn−1 by

µ =
n

Sp(K)
Sp(K, ·).

Since K is in Lp surface isotropic position, it follows that µ is isotropic.

By the definitions of Cpµ (3.1) and ΠpK (3.4), we have

C∗pµ =
( Sp(K)

nV (K)

)1/p

Π∗
pK.

Then, inequalities (3.6) immediately follows from (3.2).

Now, we deal with the characterization of the equalities in (3.6). The

equality conditions of (3.2) yield that if p is not an even integer, then

there is equality in the left inequality if and only if nSp(K, ·)/Sp(K) is

suitably normalized Lebesgue measure; For p 6= 2, there is equality in

the right inequality if and only if nSp(K, ·)/Sp(K) is a cross measure.

On the other hand, it is easy to verify that nSp(B
n
2 , ·)/Sp(B

n
2 ) is a

suitably normalized Lebesgue measure and nSp(OC0, ·)/Sp(OC0) is a

cross measure on Sn−1 for some O ∈ O(n), where C0 = [−1, 1]n. It

follows from (2.2) that

nSp(B
n
2 , ·)

Sp(Bn
2 )

=
Sp(λ1B

n
2 , ·)

V (λ1Bn
2 )

with λ1 =
(nV (Bn

2 )

Sp(Bn
2 )

)− 1
p
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and

nSp(OC0, ·)
Sp(OC0)

=
Sp(λ2OC0, ·)
V (λ2OC0)

with λ2 =
(nV (C0)

Sp(C0)

)− 1
p
.

Thus, the equality conditions follow from the uniqueness of the solution

of the normalized even Lp Minkowski problem and the fact that(nV (tK)

Sp(tK)

)− 1
p
tK =

(nV (K)

Sp(K)

)− 1
p
K

for all t > 0. �

Corresponding to the Lp projection body ΠpK, Maresch, Schuster

[29] and Guo, Leng [16] introduced a new convex body ΨpK whose

support function, for u ∈ Sn−1, is given by

hΨpK(u) =
( 1

V (K)

∫
Sn−1

|Pv⊥u|pdSp(K, v)
)1/p

. (3.7)

From (2.2), we have

Ψp(cK) = c−1ΨpK. (3.8)

Using the similar argument of Lemma 3.4, Guo and Leng [16] estab-

lished the following result.

Lemma 3.5. Suppose p ∈ [1,∞). If K ∈ Kn
e is in Lp surface isotropic

position, then

nn/pκn

γn
n,p

≤ V (Ψ∗
pK)

(Sp(K)

V (K)

)n/p

≤
nn/pκnγ

n
n,p

βn,p

. (3.9)

If p is not an even integer, then there is equality in the left inequality

if and only if K is a ball.

The following observation, extending the case p = 1 by Giannopoulos

and Papadimitrakis [13], was due to Yu [40]. For the completeness, we

present the proof here.

Lemma 3.6. Suppose p ∈ [1,∞). If K ∈ Kn
o is in Lp surface isotropic

position, then for every u ∈ Sn−1,

n−
1
p

(Sp(K)

V (K)

) 1
p ≤ h(ΠpK, u) ≤ n−

1
2

(Sp(K)

V (K)

) 1
p
, 1 ≤ p ≤ 2,
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and

n−
1
p

(Sp(K)

V (K)

) 1
p ≥ h(ΠpK,u) ≥ n−

1
2

(Sp(K)

V (K)

) 1
p
, p ≥ 2.

Proof. For p = 2, by the definition of ΠpK (3.4), we have

h(Π2K, u) =
( 1

V (K)

∫
Sn−1

|u · v|2dS2(K, v)
) 1

2
=

( S2(K)

nV (K)

) 1
2
,

for every u ∈ Sn−1.

For 1 ≤ p < 2, by (3.4) and the Hölder inequality, we obtain

h(ΠpK, u) =
( 1

V (K)

∫
Sn−1

|u · v|pdSp(K, v)
) 1

p

≤
[( 1

V (K)

∫
Sn−1

|u · v|2dSp(K, v)
) p

2
(Sp(K)

V (K)

)1− p
2
] 1

p

= n−
1
2

(Sp(K)

V (K)

) 1
p
,

for every u ∈ Sn−1. On the other hand, we have

h(ΠpK, u) ≥
( 1

V (K)

∫
Sn−1

|u · v|2dSp(K, v)
) 1

p
=

( Sp(K)

nV (K)

) 1
p
.

For p > 2, the argument is similar as the above arguments. �

To obtain the similar result of Lemma 3.6 about ΨpK, we need the

following lemma.

Lemma 3.7. If µ is an isotropic measure on Sn−1, then

1

n− 1

∫
Sn−1

|Pv⊥u|2dµ(v) = 1, for every u ∈ Sn−1.

Proof. It follows from the isotropicity assumption (2.3) that

Pu⊥ =

∫
Sn−1

Pu⊥v ⊗ Pu⊥vdµ(v). (3.10)

Notice that Pu⊥ has rank n− 1. Taking traces in (3.10), we get∫
Sn−1

|Pu⊥v|2dµ(v) = n− 1, for every u ∈ Sn−1.

The result now follows from the fact that |Pv⊥u| = |Pu⊥v| for ev-

ery u, v ∈ Sn−1. �
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Then we have

Lemma 3.8. Suppose p ∈ [1,∞). If K ∈ Kn
o is in Lp surface isotropic

position, then for every u ∈ Sn−1,(n− 1

n

) 1
p
(Sp(K)

V (K)

) 1
p ≤ h(ΨpK, u) ≤

(n− 1

n

) 1
2
(Sp(K)

V (K)

) 1
p
, 1 ≤ p ≤ 2,

and(n− 1

n

) 1
p
(Sp(K)

V (K)

) 1
p ≥ h(ΨpK, u) ≥

(n− 1

n

) 1
2
(Sp(K)

V (K)

) 1
p
, p ≥ 2.

Proof. Using Lemma 3.7 with the isotropic measure µ = ndSp(K, ·)/Sp(K),

we have

1

n− 1

∫
Sn−1

|Pv⊥u|2 n

Sp(K)
dSp(K, v) = 1, for every u ∈ Sn−1.

For p = 2, by (3.7), we have

h(Ψ2K, u) =
( 1

V (K)

∫
Sn−1

|Pv⊥u|2dS2(K, v)
) 1

2
=

((n− 1)S2(K)

nV (K)

) 1
2
,

for every u ∈ Sn−1.

For 1 ≤ p < 2, by (3.7) and the Hölder inequality, we obtain

h(ΨpK,u) =
( 1

V (K)

∫
Sn−1

|Pv⊥u|pdSp(K, v)
) 1

p

≤
[( 1

V (K)

∫
Sn−1

|Pv⊥u|2dSp(K, v)
) p

2
(Sp(K)

V (K)

)1− p
2
] 1

p

=
(n− 1

n

) 1
2
(Sp(K)

V (K)

) 1
p
,

for every u ∈ Sn−1. On the other hand, we have

h(ΨpK, u) ≥
( 1

V (K)

∫
Sn−1

|Pv⊥u|2dSp(K, v)
) 1

p
=

((n− 1)Sp(K)

nV (K)

) 1
p
.

For p > 2, the argument is similar as the previous. �
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4. The functional Lp surface isotropic position

The even functional Minkowski problem on W 1,p(Rn) was solved by

Lutwak, Yang, and Zhang [28].

Theorem 4.1. Given a function f ∈ W 1,p(Rn), there exists a unique

origin-symmetric convex body 〈f〉p such that∫
Rn

Φp(∇f(x))dx =
1

V (〈f〉p)

∫
Sn−1

Φ(v)pdSp(〈f〉p, v), (4.1)

for every even continuous function Φ : Rn → [0,∞) that is homoge-

neous of degree 1.

The lemma below (see [28, Proposition 5.4.]) describes how 〈f〉p be-

haves if f is composed with a volume preserving linear transformation.

Lemma 4.2. Suppose f ∈ W 1,p(Rn). Then for T ∈ SL(n),

〈f ◦ T−1〉p = T 〈f〉p.

We say that a function f ∈ W 1,p(Rn) is in the functional Lp surface

isotropic position if 〈f〉p is in the Lp surface isotropic position.

Theorem 4.3. Suppose f ∈ W 1,p(Rn) is in the functional Lp surface

isotropic position. Then

‖∇f‖p = min{‖∇(f ◦ T )‖p : T ∈ SL(n)}.

The minimal position is unique up to orthogonal transformations. More-

over, if f is in the functional L2 surface isotropic position, then

‖∇f‖2
2In = n

∫
Rn

∇f(x)⊗∇f(x)dx.

Proof. Taking Φ(v) = |v| in (4.1), we get

‖∇f‖p
p =

∫
Rn

|∇f(x)|pdx =
Sp(〈f〉p)
V (〈f〉p)

. (4.2)

From (4.2), Proposition 3.1 with K = 〈f〉p, Lemma 4.2, and (4.2)

again, we have

‖∇f‖p
p =Sp(〈f〉p)/V (〈f〉p)
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= min{Sp(T 〈f〉p)/V (T 〈f〉p) : T ∈ SL(n)}

= min{Sp(〈f ◦ T−1〉p)/V (〈f ◦ T−1〉p) : T ∈ SL(n)}

= min{‖∇(f ◦ T−1)‖p : T ∈ SL(n)}.

Now, we consider the case p = 2. Taking Φ(v) = |u · v| in (4.1), we

get ∫
Rn

|u · ∇f(x)|2dx =
1

V (〈f〉2)

∫
Sn−1

|u · v|2dS2(〈f〉2, v). (4.3)

Since f is in the functional L2 surface isotropic position, it follows

that nS2(〈f〉2, ·)/S2(〈f〉2) is isotropic. Thus, from (4.3) and (4.2), we

have ∫
Rn

|u · ∇f(x)|2dx =
S2(〈f〉2)
nV (〈f〉2)

=
‖∇f‖2

2

n
.

�

Theorem 4.4. Suppose f ∈ W 1,p(Rn) is in the functional Lp surface

isotropic position. Then

cn,p

n
1
n

+ 1
p κn(p)

1
n

‖∇f‖p ≤ Ep(f) ≤ ‖∇f‖p. (4.4)

For p 6= 2, there is equality in the left inequality if and only if 〈f〉p is

a cube. If p is not an even integer, then there is equality in the right

inequality if and only if 〈f〉p is a ball.

Proof. Taking Φ(v) = |u · v| in (4.1) and (3.4) , we have

‖Duf‖p
p =

∫
Rn

|u · ∇f(x)|pdx

=
1

V (〈f〉p)

∫
Sn−1

|u · v|pdSp(〈f〉p, v) = h(Πp〈f〉p, u)p. (4.5)

From (1.3) and the polar coordinate formula for volume, we obtain

Ep(f) = cn,p

( ∫
Sn−1

‖Duf‖−n
p du

)−1/n

= cn,p

( ∫
Sn−1

h(Πp〈f〉p, u)−ndu
)−1/n

= cn,pn
− 1

n V (Π∗
p〈f〉p)−

1
n . (4.6)
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The inequalities (4.4) and their equality conditions follow by combining

(4.2), (4.6) and Lemma 3.4. �

Theorem 4.5. Suppose f ∈ W 1,p(Rn) is in the functional Lp surface

isotropic position. Then

dn,pβ
1
n
n,p

n
1
n

+ 1
p κ

1
n
n γn,p

‖∇f‖p ≤ Gp(f) ≤ ‖∇f‖p. (4.7)

If p is not an even integer, then there is equality in the right inequality

if and only if 〈f〉p is a ball.

Proof. Taking Φ(v) = |Pu⊥v| in (4.1) and (3.7) , we have

‖Du⊥f‖p
p =

∫
Rn

|Pu⊥∇f(x)|pdx

=
1

V (〈f〉p)

∫
Sn−1

|Pu⊥v|pdSp(〈f〉p, v)

=
1

V (〈f〉p)

∫
Sn−1

|Pv⊥u|pdSp(〈f〉p, v)

= h(Ψp〈f〉p, u)p. (4.8)

The third equality follows from the fact that |Pu⊥v| = |Pv⊥u| for ev-

ery u, v ∈ Sn−1. From (1.8) and the polar coordinate formula for

volume, we obtain

Gp(f) = dn,p

( ∫
Sn−1

‖Du⊥f‖−n
p du

)−1/n

= dn,p

( ∫
Sn−1

h(Ψp〈f〉p, u)−ndu
)−1/n

= dn,pn
− 1

n V (Ψ∗
p〈f〉p)−

1
n . (4.9)

The inequalities (4.7) and their equality conditions follow by combining

(4.2), (4.9) and Lemma 3.5. �

By Lemma 3.6 and 3.8, together with (4.2), (4.5) and (4.8), we have

Theorem 4.6. Suppose f ∈ W 1,p(Rn) is in the functional Lp surface

isotropic position. Then for every u ∈ Sn−1,

n−
1
p‖∇f‖p ≤ ‖Duf‖p ≤ n−

1
2‖∇f‖p, 1 ≤ p ≤ 2,
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and

n−
1
p‖∇f‖p ≥ ‖Duf‖p ≥ n−

1
2‖∇f‖p, p ≥ 2.

Theorem 4.7. Suppose f ∈ W 1,p(Rn) is in the functional Lp surface

isotropic position. Then for every u ∈ Sn−1,(n− 1

n

) 1
p‖∇f‖p ≤ ‖Du⊥f‖p ≤

(n− 1

n

) 1
2‖∇f‖p, 1 ≤ p ≤ 2,

and (n− 1

n

) 1
p‖∇f‖p ≥ ‖Du⊥f‖p ≥

(n− 1

n

) 1
2‖∇f‖p, p ≥ 2.

Therefore, the previous theorems together with Proposition 3.1 im-

mediately yield our main results (Theorem 1.1–1.5).

5. From analytic to geometric inequalities

To obtain geometric inequalities from their analytic inequalities, the

following lemma will be needed (see e.g., [20, 37, 38]). Since the argu-

ment is slightly different, we give the proof for completeness.

Lemma 5.1. Suppose K ∈ Kn
e and f = g(‖x‖K) with g ∈ C1(0,∞).

Then 〈f〉p is a dilate of K; that is

〈f〉p = c(f)−
1
p K, (5.1)

where c(f) = V (K)
∫∞

0
tn−1|g′(t)|pdt.

Proof. Since hK∗ is a Lipschitz function and hK∗(x) = 1 on ∂K, for

almost every x ∈ ∂K, we have

νK(x) =
∇hK∗(x)

|∇hK∗(x)|
,

where νK(x) is the outer unit normal vector of K at the point x. Note

that hK(∇hK∗(x)) = 1 for almost every x ∈ Rn. Hence

hK(νK(x)) =
1

|∇hK∗(x)|
. (5.2)
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Then by (4.1) and (2.1), the co-area formula (see, e.g., [11, p.258]), the

fact that ∇hK∗ is homogeneous of degree 0, and (5.2), we get

1

V (〈f〉p)

∫
Sn−1

Φp(v)dSp(〈f〉p, v)

=

∫
Rn

Φp(∇f(x))dx

=

∫
Rn

Φp(g′(hK∗(x)∇hK∗(x)))dx

=

∫
Rn

|g′(hK∗(x))|pΦp
( ∇hK∗(x)

|∇hK∗(x)|

)
|∇hK∗(x)|pdx

=

∫ ∞

0

∫
∂K

tn−1|g′(t)|pΦp
( ∇hK∗(x)

|∇hK∗(x)|

)
|∇hK∗(x)|p−1dHn−1(x)dt

=

∫ ∞

0

tn−1|g′(t)|pdt

∫
∂K

Φp(νK(x))hK(νK(x))1−pdHn−1(x)

=

∫ ∞

0

tn−1|g′(t)|pdt

∫
Sn−1

Φp(v)dSp(K, v)

=
1

V (K0)

∫
Sn−1

Φp(v)dSp(K0, v)

for every even continuous function Φ that is homogeneous of degree 1.

From (2.2), we get K0 = K/c(f)1/p with c(f) = V (K)
∫∞

0
tn−1|g′(t)|pdt.

Thus, the uniqueness of the solution of the normalized even Lp Minkowski

problem yields

〈f〉p = K0 = K/c(f)1/p.

�

By Lemma 5.1, we see that the function f is in the functional Lp sur-

face isotropic position if and only if the convex body K is in the Lp sur-

face isotropic position when f = g(‖x‖K) with g ∈ C1(0,∞) and K ∈
Kn

e .

The assumption that f(x) = g(‖x‖K), together with (4.2), (5.1) and

(2.2), give that

‖∇f‖p =
(Sp(〈f〉p)

V (〈f〉p)

) 1
p

=
(Sp(c(f)−

1
p K)

V (c(f)−
1
p K)

) 1
p

= c(f)
1
p

(Sp(K)

V (K)

) 1
p
.
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From (4.5), (4.6), (5.1) and (3.5), we have

‖Duf‖p = h(Πp〈f〉p, u) = h(Πp(c(f)−
1
p K), u)

= c(f)
1
p h(ΠpK, u),

for u ∈ Sn−1, and

Ep(f) = cn,pn
− 1

n V (Π∗
p〈f〉p)−

1
n

= cn,pn
− 1

n V (Π∗
p(c(f)−

1
p K))−

1
n

= c(f)
1
p cn,pn

− 1
n V (Π∗

pK)−
1
n .

Similarly, from (4.8), (4.9), (5.1) and (3.8), we get

‖Du⊥f‖p = c(f)
1
p h(ΨpK, u),

for u ∈ Sn−1, and

Gp(f) = c(f)
1
p dn,pn

− 1
n V (Ψ∗

pK)−
1
n .

Consequently, we see that our analytic inequalities in Section 4 could

imply corresponding geometry inequalities in Section 3. Moreover,

the equality conditions of Theorem 1.2 and Theorem 1.3 follow from

Lemma 5.1 and the equality conditions of Theorem 4.4 and Theorem

4.5.

6. Relation to the (p, 2) Fisher information Matrix

The last section is dedicate to explain that Tp in Theorem 1.1 and

the (p, 2) Fisher information matrix Jp,2(X) are actually equivalent.

The following two minimization problem will be considered:

(i) Given f ∈ W 1,p(Rn), define

m1(f) = inf{‖T∇f‖p
p : T ∈ SL(n)}.

Does there exist Q1 ∈ SL(n) such that

‖Q1∇f‖p
p = m1(f)?

(ii) Given f ∈ W 1,p(Rn), define

m2(f) = inf{|T |−1 : ‖T∇f‖p
p = n and T ∈ GL(n)}.
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Does there exist Q2 ∈ GL(n) such that

|Q2|−1 = m2(f)?

Here |T | denotes the absolute value of the determinant of the matrix T .

The extremal problems (i) and (ii) are actually equivalent

Proposition 6.1. If Q1 is a solution of the problem (i), then Q2 =

n
1
p‖Q1∇f‖−1

p Q1 is a solution of the problem (ii). Conversely, if Q2 is

a solution of the problem (ii), then Q1 = |Q2|−
1
n Q2 is a solution of the

problem (i).

Proof. Suppose Q1 is a solution of (i). Clearly, the matrix Q2 =

n
1
p‖Q1∇f‖−1

p Q1 satisfies ‖Q2∇f‖p
p = n. Then for each T ∈ GL(n) such

that ‖T∇f‖p
p = n, we have

|Q2|−1 =
‖Q1∇f‖n

p

nn/p
|Q1|−1

= ‖|Q1|−1/nQ1∇f‖n
pn

−n/p

≤ ‖|T |−1/nT∇f‖n
pn

−n/p

=
‖T∇f‖n

p

nn/p
|T |−1

= |T |−1.

Thus, Q2 is a solution of (ii).

Conversely, suppose Q2 is a solution of (ii), then the matrix Q1 =

|Q2|−
1
n Q2 ∈ SL(n). Note that for each T ∈ SL(n), the matrix T̄ =

n
1
p‖T∇f‖−1

p T satisfies ‖T̄∇f‖p
p = n. Since Q2 is a solution of (ii), then

|Q2|−1 ≤ |T̄ |−1 = |n
1
p‖T∇f‖−1

p T |−1 = n−
n
p ‖T∇f‖n

p .

Therefore,

‖Q1∇f‖p
p = |Q2|−

p
n‖Q2∇f‖p

p

= n|Q2|−
p
n

≤ ‖T∇f‖p
p,

which means Q1 is a solution of (i).
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�

For T ∈ GL(n), there exists an orthogonal matrix O and a positive

definite symmetric matrix A such that T = OA. Let S denote the class

of positive definite symmetric n-by-n matrices. Then the problem (ii)

can be rewritten as: given f ∈ W 1,p(Rn),

m2(f) = inf{|A|−1 : ‖A∇f‖p
p = n and A ∈ S}

= inf{|A| : ‖A−1∇f‖p
p = n and A ∈ S}.

It follows from [22, Theorem 4.3] that there is a unique Ap ∈ S such

that ‖A−1
p ∇f‖p

p = n and |Ap| = m2(f). Thus,

Q2 = O2A
−1
p ,

for some O2 ∈ O(n). In [22, Definition 4.2], the (p, 2) Fisher informa-

tion matrix Jp,2(X) is defined as Jp,2(X) = Ap
p. Hence

Q2 = O2Jp,2(X)−
1
p . (6.1)

However, comparing the problem (i) and Theorem 1.1, we have

Q1 = O1T
t
p, (6.2)

for some O1 ∈ O(n).

Therefore, it follows from Proposition 6.1, (6.1) and (6.2) that

Jp,2(X)−
1
p = n

1
p‖T t

p∇f‖−1
p O3T

t
p, (6.3)

and

T t
p = |Jp,2(X)|

1
np O4Jp,2(X)−

1
p , (6.4)

for some O3, O4 ∈ O(n). Moreover, if we rewrite (6.3) and (6.4) with

the relation Ap = Jp,2(X)1/p, then

A−1
p = n

1
p‖T t

p∇f‖−1
p O3T

t
p,

and

T t
p = |Ap|

1
n O4A

−1
p .
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When p = 2, it is easy to verify that the identity (1.6):

‖T t
2∇f‖2

2In = n

∫
Rn

T t
2∇f(x)⊗ T t

2∇f(x)dx,

is equivalent to [22, (16)]:

In =

∫
Rn

A−1
2 ∇f(x)⊗ A−1

2 ∇f(x)dx.
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