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Abstract. It is shown that there are two Gaussian inequali-

ties for Wulff shapes corresponding to Schuster and Webern-

dorfer’s results for the Lebesgue measure. Barthe’s mean

width inequality for continuous isotropic measures and its

dual inequality are special cases of these new inequalities.

Moreover, two new Gaussian inequalities related to the LYZ

ellipsoid are obtained.

1. Introduction

A non-negative Borel measure ν on the unit sphere Sn−1 is said to be isotropic if, when

viewed as a mass distribution on Sn−1, it has the same moment of inertia about every

1-dimensional subspace of Rn. The notion is closely related to John’s theorem and was

exploited by Ball [2] in the proof of his celebrated normalized Brascamp-Lieb inequality.

A few years later, Barthe [6] discovered the important reverse Brascamp-Lieb inequality,

giving at the same time a simpler approach to the proof of the Brascamp-Lieb inequality

and its equality conditions. These inequalities have had a profound influence (see, e.g.,

[1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 23, 25, 26]). Using his transportation of mass technique,

Lutwak, Yang, and Zhang [18, 20, 21] developed a new approach based on the work of Ball

and Barthe, which helped them to extend the results of Ball-Barthe for discrete measures

to general measures, along with characterizations of all extremals.

In 2010, Lutwak, Yang, and Zhang [21] introduced the notion of isotropic embedding,

which can be dated back to Ball. Very recently, using this technique, Li and Leng [14]

obtained Barthe’s mean width inequality for continuous isotropic measures together with

its dual inequality, which are closely related to Gaussian inequalities. Since Schuster and
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Weberndorfer [27] have established inequalities for the Lebesgue measure of Wulff shapes,

the natural question arises: What corresponding inequalities for the Gaussian measure

of Wulff shapes hold? In this paper, we will answer this question. In order to state our

main results, several notations are needed.

Throughout this paper, a convex body K in Euclidean space Rn is a compact convex

set that contains the origin in its interior. The polar body of a convex body K is defined

by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K},

where x ·y denotes the standard inner product of x and y in Rn. We denote the Euclidean

norm of x by ‖x‖ =
√

x · x, and the Euclidean unit sphere by Sn−1. Let supp ν de-

note the support of a measure ν, and conv L denotes the convex hull of a set L ⊂ Rn.

Moreover, γn is the standard Gaussian measure with density 1
(
√

2π)n e−‖x‖
2/2.

The notion of Wulff shape has its roots in the theory of crystal growth, and it is a

powerful tool to study geometric objects (see, e.g, [8, 16, 22]).

Definition Suppose ν is a Borel measure on Sn−1 and f is a positive continuous

function on Sn−1. The Wulff shape Wν,f determined by ν and f is defined by

Wν,f := {x ∈ Rn : x · u ≤ f(u) for all u ∈ supp ν}.

Corresponding to the case of the Lebesgue measure that Schuster and Weberndorfer

[27] considered, we obtain the following inequalities for the Gaussian measure of Wulff

shapes.

Theorem 1 Suppose f is a positive continuous function on Sn−1 such that ‖f‖L2(ν) =

1, and ν is an isotropic f -centered measure. Then,∫ ∞

0

e−
r2

2 γn(rWν,f )dr ≤
√

π

22n+1
.

If f is constant on supp ν, then equality holds if and only if conv supp ν is a regular

simplex inscribed in Sn−1.

Theorem 2 Suppose f is a positive continuous function on Sn−1 such that ‖f‖L2(ν) =

1, and ν is an isotropic f -centered measure. Then,∫ ∞

0

e−
r2

2 γn(rW ∗
ν,f )dr ≥

√
π

22n+1
.

If f is constant on supp ν, then equality holds if and only if conv supp ν is a regular

simplex inscribed in Sn−1.

In fact, we establish two more general inequalities with an extra variable λ (see The-

orem 4.2 and Theorem 4.3). As has been shown in [5, 14], this variable λ is crucial in the
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proofs of Barthe’s mean width inequality and its dual inequality. Following the same steps,

the results of Li and Leng [14] on Barthe’s mean width inequality for continuous isotropic

measures and its dual inequality are direct consequences of Theorem 4.2 and Theorem

4.3 (see Corollary 5.2 and Corollary 5.3). Moreover, we obtain two inequalities related to

the LYZ ellipsoid [17] and Gaussian measure via Theorem 1 and Theorem 2. The ideas

and techniques of Ball, Barthe, Lutwak-Yang-Zhang, and Schuster-Weberndorfer play a

critical role throughout this paper. It would be impossible to overstate our reliance on

their work.

This paper is organized as follows: In Section 2 we list for quick reference some basic

notations and preliminaries. In Section 3 we introduce the notion of isotropic embedding

and recall several needed lemmas. Section 4 contains the proofs of our main results. Some

applications of these theorems are presented in Section 5.

2. Background and notation

For a general reference, the reader may wish to consult the books of Gardner [9],

Gruber [12], and Schneider [24].

If K is a convex body (i.e., a compact, convex subset of Rn that contains the origin

in its interior), then its support function hK = h(K, ·) : Rn → R is defined for x ∈ Rn by

hK(x) = h(K, x) := max{x · y : y ∈ K}.

Let ‖ · ‖K : Rn → [0,∞) denote the Minkowski functional of a convex body K;

i.e., ‖x‖K = min{λ ≥ 0 : x ∈ λK}.
We now list some results from the quadratic Brunn-Minkowski theory, which is the

special case p = 2 of the evolving Lp-Brunn-Minkowski theory.

For convex bodies K, L, and ε > 0, the quadratic Firey-combination K +2

√
εL is

defined as the convex body whose support function is given by

h(K +2

√
εL, ·)2 = h(K, ·)2 + εh(L, ·)2.

The quadratic mixed volume V2(K, L) of convex bodies K, L was defined in [16] by

n

2
V2(K, L) = lim

ε→0+

V (K +2

√
εL)− V (K)

ε
.

In particular, for K = L,

V2(K, K) = V (K).
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It was shown in [16] that corresponding to each convex body K, there is a positive

Borel measure S2(K, ·) on Sn−1, called the quadratic surface area measure of K, such that

V2(K,L) =
1

n

∫
Sn−1

h2
L(u)dS2(K, u),

for each convex body L. It was also shown in [16] that the quadratic surface area measures

is hK-centered; i.e., ∫
Sn−1

uhK(u)dS2(K, u) = o. (1)

Note that the Wulff shape that is determined by the quadratic surface area measure S2(K, ·)
and the support function h(K, ·) of K is the convex body K:

WS2(K,·),h(K,·) = K. (2)

In 2000, Lutwak, Yang, and Zhang [17] introduced a new ellipsoid Γ−2K associated

with a convex body K, which is defined by

‖u‖2
Γ−2K =

1

V (K)

∫
Sn−1

(u · v)2dS2(K, v) (3)

for u ∈ Sn−1 (see also [15, 19]).

Next, we introduce several other notions related to positive continuous functions f on Sn−1.

A Borel measure ν on Sn−1 is called f -centered provided that∫
Sn−1

f(u)udν(u) = o.

The measure ν is called isotropic if∫
Sn−1

u⊗ udν(u) = In, (4)

where u ⊗ u is the rank 1 linear operator on Rn that takes x to (x · u)u, and In denotes

the identity operator on Rn. Moreover, taking traces in (4), we get

ν(Sn−1) = n. (5)

The displacement of Wν,f [27] is defined by

disp(Wν,f ) =
1

V (Wν,f )

∫
Wν,f

xdx ·
∫

Sn−1

u

f(u)
dν(u).

Similarly, we define the Gaussian displacement of Wν,f by

Gdisp(Wν,f ) =
1

γn(Wν,f )

∫
Wν,f

xdγn(x) ·
∫

Sn−1

u

f(u)
dν(u), (6)
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where γn is the standard Gaussian measure with density 1
(
√

2π)n e−‖x‖
2/2.

The `-norm of a convex body K in Rn is an important quantity in local theory of

Banach spaces. It is defined by

`(K) =

∫
Rn

‖x‖Kdγn(x).

The mean width of a convex body K is

W (K) =

∫
Sn−1

(hK(u) + hK(−u))dσ(u) = 2

∫
Sn−1

hK(u)dσ(u),

where σ is the Haar probability measure on the unit sphere Sn−1.

Note that

2`(K∗) = cn

√
nW (K).

Here cn is a numerical constant satisfying

cn → 1, n →∞.

The following observation is crucial in the proof of Barthe’s mean width inequality

and its dual inequality. Let K be a convex body, then

`(K) =

∫
Rn

‖x‖Kdγn(x) =

∫
Rn

( ∫ ‖x‖K

0

dt
)
dγn(x)

=

∫ ∞

0

∫
Rn

1{‖x‖K>t}dγn(x)dt =

∫ ∞

0

(1− γn(tK))dt.

(7)

3. Isotropic embeddings

The concept of isotropic embeddings was first proposed by Lutwak, Yang, and Zhang

[21]. Here, we adopt the definition of this concept given in [27].

Definition If ν is a Borel measure on Sn−1, then a continuous function g : Sn−1 →
Rn+1\{o} is called an isotropic embedding of ν if the Borel measure ν̄ on Sn, defined by∫

Sn

t(w)dν̄(w) =

∫
Sn−1

t
( g(u)

‖g(u)‖

)
‖g(u)‖2dν(u) (8)

for every continuous t : Sn → R, is isotropic.

In order to obtain our results, several lemmas from [27] are needed.

Lemma 3.1 Suppose f is a positive continuous function on Sn−1 and ν is an isotropic

measure on Sn−1. Then g± : Sn−1 → Rn+1 = Rn × R, defined by

g±(u) = (±u, f(u)), (9)
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are isotropic embeddings of ν if and only if ν is f -centered and ‖f‖L2(ν) = 1.

The following two special cases of isotropic embeddings of the form (8) are well known

(see [4, 5, 14, 20, 21, 27]).

(i) If ν is a 1-centered isotropic measure, then, by Lemma 3.1, the functions g± :

Sn−1 → Rn+1, defined by

g±(u) = (±u,
1√
n

) (10)

are isotropic embeddings of ν.

(ii) If K ⊂ Rn is a convex body such that Γ−2K = Bn
2 . By (1) and

1

V (K)

∫
Sn−1

(h(K, u)√
n

)2

dS2(K, u) = 1,

it follows from (3) and Lemma 3.1 that g± : Sn−1 → Rn+1, defined by

g±(u) =
(
± u,

h(K, u)√
n

)
(11)

are isotropic embeddings of S2(K, ·)/V (K).

The following critical lemma is due to Ball, Barthe [6]. In [18], Lutwak, Yang, and

Zhang give a different proof along with the new equality conditions.

The Ball-Barthe Lemma If ν̄ is an isotropic measure on Sn and t is a positive

continuous function on supp ν̄, then

det

∫
Sn

t(w)w ⊗ wdν̄(w) ≥ exp
( ∫

Sn

log t(w)dν̄(w)
)

(12)

with equality if and only if t(v1) · · · t(vn+1) is constant for linearly independent v1, · · · , vn+1 ∈
supp ν̄.

The Ball-Barthe Lemma plays a critical role in the proof of statements about isotropic

measures including our results. Applying the equality conditions, Schuster and Webern-

dorfer [27] obtained the following characterization of the support of 1-centered isotropic

measures which are embedded by the functions given in (10).

Lemma 3.2 Let ν be a 1-centered isotropic measure on Sn−1, let ν̄± denote the

isotropic measures on Sn defined by (8), isotropically embedded by g± defined in (10), and

let D ⊂ Rn+1 be an open cone with apex at the origin containing en+1 such that w·z > 0 for

every w ∈ supp ν̄± and z ∈ D.

For every z ∈ D, defined tz : supp ν̄± → (0,∞) by

tz(w) = φw(w · z),
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where φw : (0,∞) → (0,∞) is smooth nonconstant such that tz(w), for every fixed z ∈ D,

depends continuously on w ∈ supp ν̄±. If there is equality in (12) for ν̄+, or ν̄− respectively,

and every tz, z ∈ D, then conv supp ν is a regular simplex inscribed in Sn−1.

4. Proof of the main results

A simple use of the Cauchy-Schwarz inequality and the definition of isotropy yields

Lemma 4.1 ([20]) If µ is an isotropic measure on Sn and J ∈ L2(µ), then∥∥∥∫
Sn

uJ(u)dµ(u)
∥∥∥ ≤ ‖J‖L2(µ) (13)

with equality if and only if J(u) = u ·
∫

Sn vJ(v)dµ(v) for almost all u ∈ Sn with respect to

the measure µ.

We now prove the more general Gaussian inequalities. Note that Theorem 1 and

Theorem 2 are simply deduced from Theorem 4.2 and Theorem 4.3 by setting λ = 0.

Theorem 4.2 Suppose f is a positive continuous function on Sn−1 such that ‖f‖L2(ν) =

1, and ν is an isotropic f -centered measure. Then, for any real λ,∫ ∞

0

e−
r2

2
+λ(n+1)r−λGdisp(rWν,f )γn(rWν,f )dr ≤ 1

(2π)n/2
exp

( ∫
Sn−1

(log Gλ,u)(1+f 2(u))dν(u)
)
,

where Gλ,u =
∫∞

0
exp(− s2

2
+

λs
√

1+f2(u)

f(u)
)ds. If f is constant on supp ν, then equality holds

if and only if conv supp ν is a regular simplex inscribed in Sn−1.

Proof. Since ‖f‖L2(ν) = 1 and ν is isotropic, by application of Lemma 3.1, let ν̄ denote

the measure on Sn defined by (8), isotropically embedded by g− = (−u, f(u)), u ∈ Sn−1.

Define the cone C ⊂ Rn+1 = Rn × R by

C =
⋃
r>0

rWν,f × {r} ⊂ Rn+1.

Obviously, en+1 ∈ C. Note that w ∈ supp ν̄ ⊂ Rn × R if and only if

w =
(−u, f(u))√

1 + f 2(u)
(14)

for some u ∈ supp ν. Thus, by the definition of Wν,f , we have that, for every w ∈
supp ν̄ and z = (x, r) ∈ C,

w · z =
−u · x + rf(u)√

1 + f 2(u)
≥ 0.
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Now, for w ∈ supp ν̄, let

Gλ,w =

∫ ∞

0

e
− s2

2
+ λs

en+1·w ds.

Define the smooth and strictly increasing function Tw : (0,∞) → R by

1

Gλ,w

∫ t

0

e
− s2

2
+ λs

en+1·w ds =

∫ Tw(t)

−∞
e−πs2

ds.

Differentiating both sides with respect to t gives

1

Gλ,w

(e
− t2

2
+ λt

en+1·w ) = e−πT 2
w(t)T ′

w(t).

Taking the log of both sides and putting t = w · z for w ∈ supp ν̄ and z ∈ int C, we get

−(w · z)2

2
+

λ(w · z)

en+1 · w
− log Gλ,w = −πT 2

w(w · z) + log T ′
w(w · z). (15)

Define the transformation T : int C → Rn+1 by

T (z) =

∫
Sn

Tw(w · z)wdν̄(w).

Hence, for every z ∈ int C,

dT (z) =

∫
Sn

T ′
w(w · z)w ⊗ wdν̄(w). (16)

Since T ′
w > 0 and ν̄ is not concentrated on a proper subspace of Rn+1, we conclude that

the matrix dT (z) is positive definite for int C. Therefore, the mean value theorem shows

that T : int C → Rn+1 is globally 1-1 onto its image.

Moreover, by Lemma 4.1 with J(w) = Tw(w · z), we obtain

‖T (z)‖2 ≤
∫

Sn

T 2
w(w · z)dν̄(w). (17)

By (15), the Ball-Barthe Lemma with t(w) = T ′
w(w · z), (16), (17), and the change of

variables y = T (z), we have∫
int C

exp
( ∫

Sn

(
− (w · z)2

2
+

λ(w · z)

en+1 · w
− log Gλ,w

)
dν̄(w)

)
dz

=

∫
int C

exp
( ∫

Sn

−πT 2
w(w · z)dν̄(w)

)
exp

( ∫
Sn

log T ′
w(w · z)dν̄(w)

)
dz

≤
∫

int C

exp(−π‖T (z)‖2) det dT (z)dz ≤
∫

Rn+1

exp(−π‖y‖2)dy = 1.

(18)
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By definition (8) of ν̄, (5), and since ν is f -centered and ‖f‖L2(ν) = 1, we obtain

for z = (x, r) ∈ C∫
Sn

(x, r) · w
en+1 · w

dν̄(w) =

∫
Sn−1

(x, r) · (−u, f(u))/
√

1 + f 2(u)

en+1 · (−u, f(u))/
√

1 + f 2(u)
(1 + f 2(u))dν(u)

=

∫
Sn−1

(−x · u
f(u)

+ r − x · uf(u) + rf 2(u))dν(u)

= −
∫

Sn−1

x · u
f(u)

dν(u) + (n + 1)r.

(19)

Applying Jensen’s inequality and (6) shows that

1

(2π)
n
2 γn(rWν,f )

∫
rWν,f

exp
(
− λ

∫
Sn−1

x · u
f(u)

dν(u)
)
e−

‖x‖2
2 dx

≥ exp
( −λ

(2π)
n
2 γn(rWν,f )

∫
rWν,f

∫
Sn−1

x · u
f(u)

dν(u)e−
‖x‖2

2 dx
)

= exp(−λGdisp(rWν,f )).

(20)

Now, we consider the left-hand side of (18). By the isotropy of ν̄, (19), and (20), we

have ∫
int C

exp
(
− ‖z‖2

2
+

∫
Sn

λ(w · z)

en+1 · w
dν̄(w)

)
dz

=

∫ ∞

0

∫
rWν,f

exp
(
− r2 + ‖x‖2

2
− λ

∫
Sn−1

x · u
f(u)

dν(u) + λ(n + 1)r
)
dxdr

≥ (2π)
n
2

∫ ∞

0

exp
(
− r2

2
+ λ(n + 1)r − λGdisp(rWν,f )

)
γn(rWν,f )dr.

Hence∫ ∞

0

exp
(
−r2

2
+λ(n+1)r−λGdisp(rWν,f )

)
γn(rWν,f )dr ≤ 1

(2π)
n
2

exp
( ∫

Sn

log Gλ,wdν̄(w)
)
.

Now if f is constant on the support of ν, we have f ≡ 1√
n

because ‖f‖L2(ν) = 1. Thus,

applying Lemma 3.2, where D = int C and φw = T ′
w, concludes the proof. �

Theorem 4.3 Suppose f is a positive continuous function on Sn−1 such that ‖f‖L2(ν) =

1, and ν is an isotropic f -centered measure. Then, for any real λ,∫ ∞

0

exp
(
− r2

2
+ λr

)
γn(rW ∗

ν,f )dr ≥ 1

(2π)n/2
exp

( ∫
Sn−1

(log Ĝλ,u)(1 + f 2(u))dν(u)
)
,

where Ĝλ,u =
∫∞

0
exp(− s2

2
+ λf(u)s√

1+f2(u)
)ds. If f is constant on supp ν, then equality holds

if and only if conv supp ν is a regular simplex inscribed in Sn−1.
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Proof. Since ‖f‖L2(ν) = 1 and ν is isotropic, let ν̄ denote the measure defined on Sn by

(8), isotropically embedded by g+(u) = (u, f(u)), u ∈ Sn−1 (see Lemma 3.1).

For w ∈ supp ν̄, let

Ĝλ,w =

∫ ∞

0

e−
s2

2
+(en+1·w)λsds.

Define the smooth and strictly increasing function T̂w : R → (0,∞) by

1

Ĝλ,w

∫ T̂w(t)

0

e−
s2

2
+(en+1·w)λsds =

∫ t

−∞
e−πs2

ds.

Differentiating both sides with respect to t gives

1

Ĝλ,w

(e−
T̂2

w(t)

2
+(en+1·w)λT̂w(t))T̂ ′

w(t) = e−πt2 .

Taking the log of both sides and putting t = w · z for w ∈ supp ν̄ and z ∈ Rn+1, we get

− T̂ 2
w(w · z)

2
+ (en+1 · w)λT̂w(w · z) + log T̂ ′

w(w · z)− log Ĝλ,w = −π(w · z)2. (21)

Define the transformation T̂ : Rn+1 → Rn+1 by

T̂ (z) :=

∫
Sn

T̂w(w · z)wdν̄(w). (22)

Define the cone Ĉ ⊂ Rn+1 = Rn × R by

Ĉ :=
⋃
r>0

rW ∗
ν,f × {r}.

Next, we will show that T̂ (z) ⊂ Ĉ for all z ∈ Rn+1. It is sufficient to prove that

if T̂ (z) = (x, r) ∈ Rn+1 = Rn×R and y ∈ Wν,f , then x · y ≤ r. By definition (8) of ν̄, the

definition of T̂ , and the fact that u · y ≤ f(u) for every u ∈ supp ν, we obtain

x · y =

∫
Sn−1

T̂ (u,f(u))√
1+f2(u)

( (u, f(u))√
1 + f 2(u)

· z
)( u√

1 + f 2(u)
· y

)
(1 + f 2(u))dν(u)

=

∫
Sn−1

T̂ (u,f(u))√
1+f2(u)

( (u, f(u))√
1 + f 2(u)

· z
)
(u · y)

√
1 + f 2(u)dν(u)

≤
∫

Sn−1

T̂ (u,f(u))√
1+f2(u)

( (u, f(u))√
1 + f 2(u)

· z
)
f(u)

√
1 + f 2(u)dν(u)

=

∫
Sn

T̂w

(
w · z

)
(en+1 · w)dν̄(w) = r.
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From (22) it follows that

dT̂ (z) =

∫
Sn

T̂ ′
w(w · z)w ⊗ wdν̄(w). (23)

Since T̂ ′
w > 0 and ν̄ is not concentrated on a proper subspace of Rn+1, we conclude that

the matrix dT̂ (z) is positive definite for Rn+1. Therefore, the mean value theorem shows

that T̂ : Rn+1 → Ĉ is globally 1-1 onto its image.

By the isotropy of ν̄, it follows that

‖z‖2 =

∫
Sn

(w · z)2dν̄(w). (24)

Moreover, by Lemma 4.1 with J(w) = T̂w(w · z), we obtain

‖T̂ (z)‖2 ≤
∫

Sn

T̂ 2
w(w · z)dν̄(w).

Together with (21), (22), and (24), this implies∫
Sn

log T̂ ′
w(w · z)dν̄(w) =

∫
Sn

(
− π(w · z)2 +

T̂ 2
w(w · z)

2
−

(en+1 · w)λT̂w(w · z) + log Ĝλ,w

)
dν̄(w)

≥− π‖z‖2 +
‖T̂ (z)‖2

2
− λT̂ (z) · en+1 +

∫
Sn

log Ĝλ,wdν̄(w).

Consequently,

1 =

∫
Rn+1

e−π‖z‖2dz

≤
∫

Rn+1

exp
( ∫

Sn

log T̂ ′
w(w · z)dν̄(w)− ‖T̂ (z)‖2

2
+ λT̂ (z) · en+1

)
exp

(
−

∫
Sn

log Ĝλ,wdν̄(w)
)
dz

= exp
(
−

∫
Sn

log Ĝλ,wdν̄(w)
) ∫

Rn+1

exp
(
− ‖T̂ (z)‖2

2
+ λT̂ (z) · en+1

)
exp

( ∫
Sn

log T̂ ′
w(w · z)dν̄(w)

)
dz.

(25)

Now, we consider the right-hand side of (25). The Ball-Barthe Lemma with t(w) =

T̂ ′
w(w · z) and the change of variables y = T̂ (z) give
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∫
Rn+1

exp
(
− ‖T̂ (z)‖2

2
+ λT̂ (z) · en+1

)
exp

( ∫
Sn

log T̂ ′
w(w · z)dν̄(w)

)
dz

≤
∫

Rn+1

exp
(
− ‖T̂ (z)‖2

2
+ λT̂ (z) · en+1

)
det dT̂ (z)dz

≤
∫

Ĉ

exp
(
− ‖y‖2

2
+ λy · en+1

)
dy

=

∫ ∞

0

∫
rW ∗

ν,f

exp
(
− r2 + ‖x‖2

2
+ λr

)
dxdr

=(2π)
n
2

∫ ∞

0

exp
(
− r2

2
+ λr

)
γn(rW ∗

ν,f )dr.

Hence ∫ ∞

0

exp
(
− r2

2
+ λr

)
γn(rW ∗

ν,f )dr ≥ 1

(2π)
n
2

exp
( ∫

Sn

log Ĝλ,wdν̄(w)
)
.

If f is constant on the support of ν, then we have that f ≡ 1√
n

because ‖f‖L2(ν) = 1.

In order to apply Lemma 3.2, define the open cone D ⊂ Rn+1 by

D = {z ∈ Rn+1 : w · z > 0 for every w ∈ supp ν̄},

and let φw = T̂ ′
w. This concludes the proof. �

5. Applications

Let 4n denote a regular n-simplex inscribed in Sn−1. Then, its polar body 4∗
n is a

regular n-simplex that contains Sn−1.

Lemma 5.1 ([5, 14]) Suppose ν is an isotropic measure. If∫ ∞

0

e−
r2

2
+λ(n+1)rγn(

r√
n

(conv supp ν)∗)dr ≤
∫ ∞

0

e−
r2

2
+λ(n+1)rγn(

r√
n
4∗

n)dr

holds for every real λ, then

`((conv supp ν)∗) ≥ `(4∗
n).

If ∫ ∞

0

e−
r2

2
+λrγn(r

√
n conv supp ν)dr ≥

∫ ∞

0

e−
r2

2
+λrγn(r

√
n4n)dr

holds for every real λ, then

`(conv supp ν) ≤ `(4n).

12



Proof. It is sufficient to prove the first case. The proof of the second case is analog.

Since λ is arbitrary, making the change of variables t = r√
n
, it follows that for all

real a, b ∫ ∞

0

e−
n2

2
(t2+at+b)γn(t(conv supp ν)∗)dt ≤

∫ ∞

0

e−
n2

2
(t2+at+b)γn(t4∗

n)dt.

In particular, for all α ∈ R,∫ ∞

0

e−
n2

2
(t−α)2γn(t(conv supp ν)∗)dt ≤

∫ ∞

0

e−
n2

2
(t−α)2γn(t4∗

n)dt.

Thus, for all α ∈ R,∫ ∞

0

e−
n2

2
(t−α)2(1− γn(t(conv supp ν)∗))dt ≥

∫ ∞

0

e−
n2

2
(t−α)2(1− γn(t4∗

n))dt.

Integration with respect to α yields∫ ∞

0

( ∫
R

e−
n2

2
(t−α)2dα

)
(1−γn(t(conv supp ν)∗))dt ≥

∫ ∞

0

( ∫
R

e−
n2

2
(t−α)2dα

)
(1−γn(t4∗

n))dt.

Notice that the inmost integral does not depend on t, hence∫ ∞

0

(1− γn(t(conv supp ν)∗))dt ≥
∫ ∞

0

(1− γn(t4∗
n))dt.

Together with (7), we obtain

`((conv supp ν)∗) ≥ `(4∗
n).

�

For discrete measures, the following two results (Corollary 5.2 and Corollary 5.3) were

proved by Schmuckenschläger [26] and Barthe [5], respectively. Recently, Li and Leng [14]

extended these inequalities to continuous isotropic measures using the isotropic embedding

(10). Here, we also apply this isotropic embedding.

Corollary 5.2 If ν is a 1-centered isotropic measure on Sn−1, then

`((conv supp ν)∗) ≥ `(4∗
n)

with equality if and only if conv supp ν = 4n.

Proof. Let f ≡ 1√
n
. Since ν is a 1-centered isotropic measure on Sn−1, we have

Wν, 1√
n

=
1√
n

(conv supp ν)∗ and Gdisp(Wν, 1√
n
) = 0.

13



Applying Theorem 4.2, we obtain∫ ∞

0

e−
r2

2
+λ(n+1)rγn

( r√
n

(conv supp ν)∗
)
dr ≤ 1

(2π)
n
2

( ∫ ∞

0

e−
s2

2
+λs

√
n+1ds

)n+1

.

Now an application of Lemma 5.1 concludes the proof. �

The same arguments, together with Theorem 4.3, yield the following result.

Corollary 5.3 If ν is a 1-centered isotropic measure on Sn−1, then

`(conv supp ν) ≤ `(4n)

with equality if and only if conv supp ν = 4n.

By an application of the isotropic embedding (11), we obtain the following two corol-

laries.

Corollary 5.4 If K ⊂ Rn is a convex body such that Γ−2K = Bn
2 , then∫ ∞

0

e−
r2

2 γn

( r√
n

K
)
dr ≤

√
π

22n+1
.

Moreover, if K = 4∗
n, then equality holds.

Proof. Let f ≡ hK√
n
. By the fact that the measure ν := 1

V (K)
S2(K, ·) is f -centered and

(2), we have

Wν,hK/
√

n =
1√
n

K and
∥∥∥h(K, ·)√

n

∥∥∥
L2(ν)

= 1.

By Theorem 1, the inequality follows.

A straightforward computation yields Γ−24∗
n = Bn

2 , and the equality case in Theorem

1 is satisfied. �

The same arguments, together with Theorem 2, yield the following result.

Corollary 5.5 If K ⊂ Rn is a convex body such that Γ−2K = Bn
2 , then∫ ∞

0

e−
r2

2 γn

(
r
√

nK∗
)
dr ≥

√
π

22n+1
.

Moreover, if K = 4∗
n, then equality holds.
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