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Abstract. The Ball-Loomis-Whitney inequality for isotropic measures is ex-

tended from volume to all intrinsic volumes along with a complete description

of equality conditions. The proof is based on a reverse intrinsic volume inequality

for zonoids.

1. Introduction

The classical Loomis-Whitney inequality states that the n-dimensional volume

λn of a compact set A in Rn is dominated by the geometric mean of the (n − 1)-

dimensional volumes λn−1 of its coordinate projections:

λn(A)n−1 ≤
n∏

i=1

λn−1(Pe⊥i
A), (1.1)

with equality if and only if A is a coordinate box (a rectangular parallelepiped whose

facets are parallel to the coordinate hyperplanes) in Rn. Here, Pe⊥i
A denotes the

orthogonal projection of A onto the 1-codimensional subspace e⊥i perpendicular to

ei and {e1, . . . , en} is the standard Euclidean basis of Rn. Inequality (1.1) was first

proved by Loomis and Whitney [19] in 1949 and has been widely studied in recent

years (see e.g., [1, 2, 7–12,17,18,28]).

An important generalization of (1.1) was established by Ball [2], which states

that (1.1) still holds when the basis vectors e1, . . . , en are replaced by a sequence

of directions satisfying John’s condition [16]. More specifically, let K be a convex

body (a compact convex set with non-empty interior) in Rn. If there are unit
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vectors (ui)
m
i=1 and positive numbers (ci)

m
i=1 satisfying John’s condition

m∑
i=1

ciui ⊗ ui = In, (1.2)

then

λn(K)n−1 ≤
m∏

i=1

λn−1(Pu⊥i
K)ci . (1.3)

Here, ui ⊗ ui is the rank-one orthogonal projection onto the space spanned by the

unit vector ui and In is the identity map on Rn. Clearly, inequality (1.3) reduces to

(1.1) when ui = ei and ci = 1 for all i = 1, . . . , n.

A finite nonnegative Borel measure µ on the unit sphere Sn−1 of Rn is said to be

isotropic if ∫
Sn−1

u⊗ udµ(u) = In. (1.4)

The measure µ is said to be even if it assumes the same value on antipodal sets.

Note that condition (1.4) reduces to (1.2) if the isotropic measure µ in (1.4) is of

the form (1/2)
∑m

i=1(ciδui
+ ciδ−ui

) on Sn−1 (δx stands for the Dirac mass at x). In

particular, an isotropic measure of the form (1/2)
∑n

i=1(δvi
+ δ−vi

), where (vi)
n
1 is an

orthonormal basis of Rn, is called a cross measure. We shall say that K is a cube

formed by the cross measure µ (concentrated on ±v1, . . . ,±vn), if there is a positive

number α such that

K = α
n∑

i=1

[−vi, vi]. (1.5)

The body K is said to be a box formed by µ, if there are positive numbers (αi)
n
1

such that

K =
n∑

i=1

αi[−vi, vi]. (1.6)

Volume inequalities for isotropic measures have been the focus of intensive research

in recent years, see, e.g., [3–6,14,15,21–24,26,27].

Denote the j-th intrinsic volume of a convex body K in Rn by Vj(K), 0 ≤ j ≤ n.

This notion extends the usual concept of volume, that is Vn(K) = λn(K), and it

turns out that intrinsic volumes do not depend on the dimension of the ambient

space. Moreover, up to a constant, Vn−1(K) and V1(K) are the surface area and the

mean width of K, respectively.

The main purpose of this paper is to extend (1.3) from volume to all intrinsic

volumes and from discrete to general isotropic measures. Also complete equality

conditions will be established.
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Theorem 1.1. Let K be a convex body in Rn and 1 ≤ j ≤ n. If µ is an even

isotropic measure on Sn−1, then

Vj(K)j−1 ≤
(

n
j

)j−1(
n−1
j−1

)j exp
( j

n

∫
Sn−1

log Vj−1(Pu⊥K)dµ(u)
)
. (1.7)

For j = 1, inequality (1.7) holds with equality. For 2 ≤ j ≤ n− 1, equality in (1.7)

holds if and only if µ is a cross measure on Sn−1 and K is a cube formed by µ, up

to translations. For j = n, equality in (1.7) holds if and only if µ is a cross measure

on Sn−1 and K is a box formed by µ, up to translations.

Note that for discrete isotropic measures µ and j = n, inequality (1.7) reduces

to (1.3). For more information about the Loomis-Whitney inequality for intrinsic

volumes, see [9, 11,12].

Assume that µ is an even Borel measure on Sn−1, whose support, supp µ, is not

contained in a subsphere of Sn−1. Let α : Sn−1 → (0, +∞) be an even continuous

function. The zonoid Zα with generating measure αdµ is defined as the convex body

whose support function, for x ∈ Rn, is given by

hZα(x) =

∫
Sn−1

|x · u|α(u)dµ(u), (1.8)

where x · u denotes the standard inner product of x and u. Zonoids are limits of

Minkowski sums of line segments and play an important role in the classical Brunn-

Minkowski theory (see e.g., [25, p.191]). The proof of Theorem 1.1 relies on the

following reverse inequality for zonoids.

Theorem 1.2. Let µ be an even isotropic measure on Sn−1, α : Sn−1 → (0, +∞) an

even continuous function and 1 ≤ j ≤ n. If Zα is the zonoid with generating measure

αdµ, then

Vj(Zα) ≥ 2j

(
n

j

)
exp

( j

n

∫
Sn−1

log α(u)dµ(u)
)
. (1.9)

For j = 1, equality in (1.9) holds if and only if the function α is constant on supp µ.

For 2 ≤ j ≤ n − 1, equality in (1.9) holds if and only if µ is a cross measure on

Sn−1 and Zα is a cube formed by µ. For j = n, equality in (1.9) holds if and only if

µ is a cross measure on Sn−1 and Zα is a box formed by µ.

Inequality (1.9) for α ≡ 1 was proved by Hug and Schneider [15], and generalized a

previously established inequality for volumes by Lutwak, Yang and Zhang [21]. For
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discrete measures, but without the equality conditions, inequality (1.9) for volumes

was proved by Ball [2].

2. Background material

We list some basic facts about convex bodies. As general references we recommend

the books of Gardner [13] and Schneider [25].

As usual, Bn
2 denotes the Euclidean unit ball in Rn. Its volume is denoted by

κn. For x ∈ Rn, we denote the Euclidean norm of x by ‖x‖. If K is a convex body

in Rn, then its support function hK : Rn → R is defined for x ∈ Rn by

hK(x) = max{x · y : y ∈ K}.

Let V (K1, . . . , Kn) denote the mixed volume of the compact convex sets K1, . . . , Kn

in Rn. Mixed volumes arise as coefficients in the expansion of λn(t1K1 + · · · +

tmKm) as a homogeneous polynomial of degree n in the parameters t1, . . . , tm ≥ 0:

λn(t1K1 + · · ·+ tmKm) =
m∑

i1,...,in=1

ti1 · · · tinV (Ki1 , . . . , Kin),

where t1K1+ · · ·+tmKm is the Minkowski linear combination of the compact convex

sets K1, . . . , Km in Rn. The notation V (K, j; L, n − j) means K appears j times

and L appears n− j times. It is well-known that

V (L; K, j − 1; Bn
2 , n− j) =

1

n

∫
Sn−1

hL(v)dSj−1(K, v), (2.1)

where Sj−1(K, ·) is the area measure of order j − 1 of K. Note that Sn−1(K, ·) is

the classical surface area measure of K. The j-th intrinsic volume, 0 ≤ j ≤ n, of a

compact convex set K is defined by

Vj(K) =

(
n
j

)
κn−j

V (K, j; Bn
2 , n− j).

We shall use the following formula (see e.g., [13, p.408]): If 2 ≤ j ≤ n, then

Vj−1(PuK) =

(
n−1
j−1

)
2κn−j

∫
Sn−1

|u · v|dSj−1(K, v). (2.2)

A fundamental inequality about mixed volumes and intrinsic volumes (see e.g., [13,

p.420]) states that, if 1 ≤ j ≤ n, then for convex bodies K1, K2 in Rn,

V (K1; K2, j − 1; Bn
2 , n− j)j ≥

(
κn−j(

n
j

) )j

Vj(K2)
j−1Vj(K1). (2.3)
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For 1 < j ≤ n, equality in (2.3) holds if and only if K1 and K2 are homothetic, that

is, they coincide up to a translation and a dilatation. For j = 1, inequality (2.3)

holds with equality.

It is well-known that the isotropicity assumption (1.4) is equivalent to

‖x‖2 =

∫
Sn−1

|x · u|2dµ(u)

for all x ∈ Rn. Moreover, taking the trace in (1.4), we see that

µ(Sn−1) = n. (2.4)

Next, we need the following formula for the zonoid Zα. The j-th intrinsic volume

of Zα, 1 ≤ j ≤ n, can be expressed as (see e.g., [25, (5.83)])

Vj(Zα) =
2j

j!

∫
Sn−1

· · ·
∫

Sn−1

[u1, . . . , uj]α(u1) · · ·α(uj)dµ(u1) · · · dµ(uj), (2.5)

where [u1, . . . , uj] denotes the j-dimensional volume of the parallelepiped spanned

by the vectors u1, . . . , uj.

3. Proof of Theorem 1.2

Proof of Theorem 1.2. For u1, . . . , uj ∈ Sn−1, let

Uk := span{u1, . . . , uk}, for k = 1, · · · , j − 1,

where span{u1, . . . , uk} denotes the linear span of the vectors u1, . . . , uk. If u1, . . . , uk are

linearly independent, then

[u1, . . . , uj] = ‖u1‖‖PU⊥1
u2‖ · · · ‖PU⊥j−2

uj−1‖‖PU⊥j−1
uj‖. (3.1)

By the isotropicity assumption (1.4), we have

PU⊥k
=

∫
Sn−1

PU⊥k
u⊗ PU⊥k

udµ(u). (3.2)

If u1, . . . , uk are linearly independent, then PU⊥k
has rank n − k. Taking traces in

(3.2), we see that ∫
Sn−1

‖PU⊥k
u‖2dµ(u) = n− k. (3.3)

Define the set Ωk, k = 1, . . . , j, by

Ωk = {(u1, . . . , uk) ∈ (Sn−1)k : [u1, u2, . . . , uk] 6= 0}. (3.4)

Note that if uk ∈ span{u1, . . . , uk−1}, then we have

‖PU⊥k−1
uk‖ = 0. (3.5)
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Applying Fubini’s theorem iteratively, integrating first with respect to uj, then uj−1 and

so on, and using (3.4), (3.1), (3.5), and (3.3), we obtain∫
(Sn−1)j

[u1, u2, . . . , uj]
2dµ(u1) · · · dµ(uj)

=

∫
Ωj

[u1, u2, . . . , uj]
2dµ(u1) · · · dµ(uj)

=

∫
Ωj

(‖PU⊥1
u2‖ · · · ‖PU⊥j−1

uj‖)2dµ(u1) · · · dµ(uj)

=

∫
Ωj−1

( ∫
Sn−1

‖PU⊥j−1
uj‖2dµ(uj)

)
(‖PU⊥1

u2‖ · · · ‖PU⊥j−2
uj−1‖)2dµ(u1) · · · dµ(uj−1)

= (n− j + 1)

∫
Ωj−1

(‖PU⊥1
u2‖ · · · ‖PU⊥j−2

uj−1‖)2dµ(u1) · · · dµ(uj−1)

· · ·

=
n!

(n− j)!
. (3.6)

By (3.6), the measure (n−j)!
n!

[u1, . . . , uj]
2dµ(u1) · · · dµ(uj) is a probability measure.

In a similar way, we obtain∫
(Sn−1)j

[u, u2, . . . , uj]
2dµ(u2) · · · dµ(uj) =

(n− 1)!

(n− j)!
, for all u ∈ Sn−1. (3.7)

Note that the discrete case of formula (3.6) was proved by Lutwak, Yang, and

Zhang [20, Lemma 2.1] in a different way.

It follows from (3.7) that∫
(Sn−1)j

log α(u1)[u1, . . . , uj]
2dµ(u1) · · · dµ(uj)

=

∫
Sn−1

log α(u1)
[ ∫

(Sn−1)j−1

[u1, . . . , uj]
2dµ(u2) · · · dµ(uj)

]
dµ(u1)

=
(n− 1)!

(n− j)!

∫
Sn−1

log α(u1)dµ(u1).

Thus, for each 1 ≤ i ≤ j,∫
(Sn−1)j

log α(ui)[u1, . . . , uj]
2dµ(u1) · · · dµ(uj) =

(n− 1)!

(n− j)!

∫
Sn−1

log α(ui)dµ(ui).

(3.8)

From (2.5), the fact that [u1, . . . , uj] ≤ 1, Jensen’s inequality and (3.8), we obtain

Vj(Zα) =
2j

j!

∫
(Sn−1)j

[u1, . . . , uj]α(u1) · · ·α(uj)dµ(u1) · · · dµ(uj)
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≥ 2j

j!

∫
(Sn−1)j

[u1, . . . , uj]
2α(u1) · · ·α(uj)dµ(u1) · · · dµ(uj)

≥ 2jn!

j!(n− j)!
exp

((n− j)!

n!

∫
(Sn−1)j

log(α(u1) · · ·α(uj))

× [u1, . . . , uj]
2dµ(u1) · · · dµ(uj)

)
= 2j

(
n

j

)
exp

( j

n

∫
Sn−1

log α(u)dµ(u)
)
, (3.9)

which is the desired inequality.

Now, we deal with the equality conditions of (3.9). For j = 1, the first inequality

in (3.9) holds with equality. Equality in the second inequality in (3.9) holds if and

only if the function α is constant on supp µ. For 2 ≤ j ≤ n, equality in the first

inequality in (3.9) implies

[u1, . . . , uj] = 1 or [u1, . . . , uj] = 0 (3.10)

for µ⊗ · · · ⊗ µ-almost all (u1, . . . , uj) ∈ (Sn−1)j. By continuity, (3.10) holds when-

ever ui ∈ supp µ, for i = 1, . . . , j. Thus, for arbitrary linearly independent u1, . . . , uj ∈
supp µ, the vectors u1, . . . , uj must be pairwise orthogonal. In particular, supp µ ⊂
{±v1} ∪ v⊥1 for given v1 ∈ supp µ. If we choose v2 ∈ supp µ ∩ v⊥1 , then supp µ ⊂
{±v2} ∪ v⊥2 . Therefore, supp µ ⊂ {±v1} ∪ {±v2} ∪ span{v1, v2}⊥. Repeating these

steps, we see that supp µ ⊂ {±v1, . . . ,±vn}, where v1, . . . , vn form an orthonor-

mal basis of Rn. Since µ is not concentrated on any great subsphere of Sn−1 and

even, we conclude that µ is a cross measure on Sn−1. Equality in the second in-

equality in (3.9) implies that the function α(u1) · · ·α(uj) is constant on the sup-

port of the probability measure (n−j)!
n!

[u1, . . . , uj]
2dµ(u1) · · · dµ(uj). As shown in

[21, Lemma A.1], this implies that α(u1) · · ·α(uj) is constant for linearly indepen-

dent u1, . . . , uj ∈ supp µ. We claim that α must be constant on supp µ when j 6= n.

Suppose that supp µ = {±v1, . . . ,±vn} and that

α(v1)α(v3) · · ·α(vj) = α(v2)α(v3) · · ·α(vj).

Then we have α(v1) = α(v2), and hence α is constant on supp µ for 1 ≤ j ≤ n− 1.

By the definition of Zα (1.8), we get that Zα is a cube formed by the cross measure

µ. If j = n, we see that the numbers α(vi) may be distinct. That is, Zα is a box

formed by the cross measure µ. �
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4. Proof of Theorem 1.1

We are now in a position to prove the Loomis-Whitney inequality for intrinsic

volumes.

Proof of Theorem 1.1. For j = 1, inequality (1.7) trivially holds with equality.

For 2 ≤ j ≤ n and u ∈ supp µ, let

α−1(u) =

∫
Sn−1

|u · v|dSj−1(K, v) =
2κn−j(

n−1
j−1

) Vj−1(Pu⊥K), (4.1)

where the second equality follows from (2.2). From (2.3), (2.1), the definition of Zα

(1.8), Fubini’s theorem, (4.1) and (2.4), we obtain

Vj(K)j−1 ≤
( (

n
j

)
κn−j

)j

Vj(Zα)−1V (Zα; K, j − 1; Bn
2 , n− j)j

=

( (
n
j

)
κn−j

)j

Vj(Zα)−1
( 1

n

∫
Sn−1

hZα(v)dSj−1(K, v)
)j

=

( (
n
j

)
κn−j

)j

Vj(Zα)−1
( 1

n

∫
Sn−1

∫
Sn−1

|v · u|α(u)dµ(u)dSj−1(K, v)
)j

=

( (
n
j

)
κn−j

)j

Vj(Zα)−1
( 1

n

∫
Sn−1

∫
Sn−1

|v · u|dSj−1(K, v)α(u)dµ(u)
)j

=

( (
n
j

)
κn−j

)j

Vj(Zα)−1.

Thus, by (1.9) and (4.1), we have

Vj(K)j−1 ≤
( (

n
j

)
κn−j

)j

Vj(Zα)−1

≤
( (

n
j

)
κn−j

)j(
2j

(
n

j

)
exp

( j

n

∫
Sn−1

log α(u)dµ(u)
))−1

=

(
n
j

)j−1

2jκj
n−j

exp
( j

n

∫
Sn−1

log
(2κn−j(

n−1
j−1

) Vj−1(Pu⊥K)
)
dµ(u)

)

=

(
n
j

)j−1(
n−1
j−1

)j exp
( j

n

∫
Sn−1

log Vj−1(Pu⊥K)dµ(u)
)
, (4.2)

which is the desired inequality.

By (2.3), equality in the first inequality in (4.2) holds if and only if K and Zα

are homothetic when 2 ≤ j ≤ n. Combining this with the equality conditions of
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Theorem 1.2, we immediately see that K is of the form (1.5) and (1.6), respectively,

up to translations.

Conversely, we will show that equality in (1.7) holds if K is of the form (1.5) and

(1.6), respectively, up to translations. As in the proof of (4.2), we only have to verify

that K and Zα are homothetic when 2 ≤ j ≤ n. For 2 ≤ j ≤ n− 1, let

K = αC + v0,

for some vector v0 ∈ Rn and a positive number α, where C =
∑n

i=1[−vi, vi] and supp µ =

{±v1, . . . ,±vn} for some orthonormal basis (vi)
n
1 of Rn. From (4.1), we get

α(vk) =
( ∫

Sn−1

|vk · v|dSj−1(K, v)
)−1

=
( ∫

Sn−1

|vk · v|dSj−1(αC + v0, v)
)−1

= α1−j
( ∫

Sn−1

|vk · v|dSj−1(C, v)
)−1

for every k = 1, . . . , n. Thus, α(vk) = α1−jβ−1, where β =
∫

Sn−1 |vk · v|dSj−1(C, v) is

a constant for all k = 1, . . . , n. Therefore, by the definition of Zα (1.8),

Zα =
1

2
α1−jβ−1C.

That is, K and Zα are homothetic for 2 ≤ j ≤ n− 1. For j = n, let

K =
n∑

i=1

αi[−vi, vi] + v0,

for some vector v0 ∈ Rn and positive numbers (αi)
n
1 , where supp µ = {±v1, . . . ,±vn}

and (vi)
n
1 is an orthonormal basis of Rn. Obviously, Sn−1(K, {vk}) = 2n−1α1 · · ·αn/αk.

It follows from (4.1) that α(vk) = S−1
n−1(K, {vk}) = αk/2

n−1α1 · · ·αn for every k =

1, . . . , n. Therefore, by the definition of Zα (1.8),

Zα =
1

2nα1 · · ·αn

n∑
i=1

αi[−vi, vi].

That is, K and Zα are homothetic for j = n.
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