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Abstract. A new notion of complex isotropic measures is

introduced and volume inequalities for their Lp-cosine and

their sine transform are established.

1. Introduction

A finite nonnegative Borel measure µ on Sn−1 is said to be (real) isotropic if

‖x‖2 =

∫
Sn−1

〈x, v〉2dµ(v),

for x ∈ Rn, where 〈x, v〉 denotes the standard scalar product. Isotropic measures have

been the focus of recent studies, in particular, in relation with a variety of extremal

problems for convex bodies (see, e.g., [17, 18,20,27,29–32,36,39]).

One purpose of this article is to introduce the concept of complex isotropic measures:

A finite nonnegative Borel measure µ on the sphere Sn−1
c = S2n−1 of Cn is said to be

complex isotropic if

‖x‖2 =

∫
S2n−1

|〈x, v〉c|2dµ(v),

for x ∈ Cn, where 〈x, v〉c denotes the complex scalar product. It turns out that the class

of complex isotropic measures is larger than the class of (real) isotropic measures (see

Theorem 3.1). The idea to find analogs of known results from Euclidean geometry in

complex vector spaces is not new. In recent years, the study of convex bodies in Cn has

received considerable attention (see, e.g., [1–5,13,15,19,22–26,33,34,37,41,42]).

In this paper, we establish volume inequalities for the Lp-cosine and the sine trans-

form of complex isotropic measures. Volume inequalities for the Lp-cosine transform of
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isotropic measures were obtained by Lutwak, Yang and Zhang [29] and Barthe [11], which

generalized results of Ball [7,8] and Barthe [9]. Volume inequalities for the sine transform

of isotropic measures were recently obtained by Maresch and Schuster [32].

For p ≥ 1, the Lp-cosine transform Cpµ of a finite Borel measure µ on Sn−1 is the

continuous function defined by

(Cpµ)(ξ) =
( ∫

Sn−1

|〈ξ, v〉|pdµ(v)
)1/p

, ξ ∈ Rn.

The Lp-cosine transform of an isotropic Borel measure µ on Sn−1 determines a norm

on Rn whose unit ball we denote by Cp(µ)∗.

The (spherical) sine transform Sµ of a finite Borel measure µ on Sn−1 is the continuous

function defined by

(Sµ)(ξ) =

∫
Sn−1

√
1− 〈ξ, v〉2dµ(v), ξ ∈ Sn−1.

The sine transform of an isotropic Borel measure µ on Sn−1 determines a norm on Rn (by 1-

homogeneous extension) whose unit ball we denote by S(µ)∗.

Volume inequalities for Cp(µ)∗, S(µ)∗ and their polars, Cp(µ), S(µ) for which suitably

normalized Lebesgue measures are extremal, are easily obtained by using inequalities such

as the Urysohn and the Hölder inequality.

Optimal reverse inequalities for Cp(µ)∗, Cp(µ) where equality holds when µ is a cross

measure (see Section 4 for definition), are much more difficult to establish. Two ap-

proaches have been developed. Ball [7,8] and Barthe [9,11] attacked these problems using

the Brascamp-Lieb inequality [14, 28, 38] and the reverse Brascamp-Lieb inequality [9];

Motivated by their results, Lutwak, Yang and Zhang [29] gave self-contained proofs that

rely on the Ball-Barthe Lemma and mass transport techniques (see [29] for more details).

Optimal reverse inequalities for S(µ)∗, and its polar, S(µ) for which equality holds

when µ is a cross measure were conjectured by Maresch and Schuster [32]. Using the

multidimensional Brascamp-Lieb inequality and its reverse due to Lieb [28] and Barthe

[9], Maresch and Schuster also obtained asymptotically optimal bounds for these reverse

inequalities.

The main purpose of this paper is to establish complex versions of the existing results

for the Lp-cosine and the sine transform. Inspired by the results of Ball-Barthe and

Maresch-Schuster, the method we adopted to treat these complex counterparts relies

on the multidimensional Brascamp-Lieb inequality and its reverse due to Lieb [28] and

Barthe [9].
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With our first results we extend the volume inequalities for Cp(µ)∗ and Cp(µ) to the

complex case. In order to state these results, denote by p∗ ∈ [1,∞] the Hölder conjugate

of p ∈ [1,∞], that is
1

p
+

1

p∗
= 1.

For n, p ∈ (0,∞), denote by κ2n(p), the volume of the unit ball of `p(Cn) (see Propo-

sition 6.1), that is,

κ2n(p) =
πn(Γ(1 + 2

p
))n

Γ(1 + 2n
p

)
.

Define κ2n(∞) = limp→∞ κ2n(p) = πn, and abbreviate κ2n(2) by κ2n. Note that for positive

integers n, the Euclidean unit ball of R2n has precisely volume κ2n. For p ∈ (0,∞),

define α2n,p by

α2n,p =
[Γ(n + 1)Γ(p

2
+ 1)

Γ(n + p
2
)

] 2n
p
,

and define α2n,∞ = limp→∞ α2n,p = 1.

For each p ∈ [1,∞), define the convex body Cc
p(µ) in R2n to be the body whose support

function, for ξ ∈ S2n−1, is given by

hCc
p(µ)(ξ) =

( ∫
S2n−1

|〈ξ, v〉c|pdµ(v)
)1/p

,

and, for p = ∞, let

hCc
∞(µ)(ξ) = lim

p→∞
hCc

p(µ)(ξ) = sup
v∈suppµ

|〈x, v〉c|,

where supp µ denotes the support of the measure µ.

Our volume inequalities for the Lp-cosine transform of complex isotropic measures

(see [29, p.163] for the real counterpart) can be stated as follows:

Theorem 1 Suppose p ∈ [1,∞]. If µ is a complex isotropic measure on S2n−1, then

κ2n(p∗) ≤ |Cc
p(µ)| ≤ κ2nα2n,p. (1)

There is equality in the left inequality if µ is a complex cross measure. There is equality

in the right inequality if µ is suitably normalized Lebesgue measure.

Theorem 2 Suppose p ∈ [1,∞]. If µ is a complex isotropic measure on S2n−1, then

κ2n/α2n,p ≤ |Cc
p(µ)∗| ≤ κ2n(p). (2)

There is equality in the left inequality if µ is suitably normalized Lebesgue measure. There

is equality in the right inequality if µ is a complex cross measure.
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For the definition of complex cross measures we refer to Section 4. If p = 2, then

equality in the left hand inequality of (1) and in the right hand inequality of (2) holds for

arbitrary complex isotropic measures.

In order to extend the volume inequalities for S(µ)∗ and S(µ) to the complex case

define

β2n :=
(2n)(2n− 1)(n− 1)4n

Γ(2n− 1)1/(n−1)

and let Sc(µ) be the convex body whose support function, for ξ ∈ S2n−1, is given by

hSc(µ)(ξ) =

∫
S2n−1

√
1− |〈ξ, v〉c|2dµ(v).

Our volume inequalities for the sine transform of complex isotropic measures (see [32,

p.4] for the real counterpart) can be stated as follows:

Theorem 3 If µ is a complex isotropic measure on S2n−1, then

κ2nβ2n

( 2n− 1

2n(n− 1)

)2n

≤ |Sc(µ)| ≤ κ2n

(2n(n− 1)

2n− 1

)2n

. (3)

There is equality in the right inequality if µ is suitably normalized Lebesgue measure.

Theorem 4 If µ is a complex isotropic measure on S2n−1, then

κ2n

( 2n− 1

2n(n− 1)

)2n

≤ |Sc(µ)∗| ≤ κ2n

β2n

(2n(n− 1)

2n− 1

)2n

. (4)

There is equality in the left inequality if µ is suitably normalized Lebesgue measure.

As in [32, Theorem 4.3], we can also show that the left inequality in (3) and the right

inequality in (4) are asymptotically optimal. More precisely, up to a factor tending to

one as n goes infinity, |Sc(µ)| is minimized and |Sc(µ)∗| is maximized by complex cross

measures, respectively. However, the problems whether |S(µ)| (or |Sc(µ)|) is minimized

and |S(µ)∗| (or |Sc(µ)∗|) is maximized precisely by real (or complex) cross measures

remains open.

In Section 2 we collect definitions and basic facts about convex bodies and complex

vector spaces. In Section 3 we introduce the notion of complex isotropic measures and

explain their difference to real isotropic measures. The Lp-cosine transform and sine

transform in complex vector spaces will be introduced in Section 4. In Section 5, we will

recall the multidimensional Brascamp-Lieb inequality and its reverse form. The proofs of

our main results are contained in Sections 6 and 7.

2. Notations and preliminaries
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For general reference about convex geometry, the reader may wish to consult the books

of Gardner [16], Koldobsky [21] and Schneider [35].

For x, y ∈ Rn, we denote their scalar product by 〈x, y〉 =
∑n

i=1 xiyi and the Euclidean

norm of x by ‖x‖ =
√
〈x, x〉. The unit sphere {x ∈ Rn : ‖x‖ = 1} is denoted by Sn−1.

Similarly, for x, y ∈ Cn, we denote their complex scalar product by 〈x, y〉c =
∑n

i=1 xiyi and

the modulus of x by ‖x‖ =
√
〈x, x〉c. The unit sphere {x ∈ Cn : ‖x‖ = 1} is denoted

by S2n−1. We use |K| for the volume of a compact set K.

If K is a nonempty compact convex subset of Rn, then

hK(x) = h(K,x) := max{〈x, y〉 : y ∈ K}, (5)

for x ∈ Rn, is its support function. A nonempty compact convex set is uniquely de-

termined by its support function. Support functions are homogeneous of degree 1, that

is,

hK(rx) = rhK(x), (6)

for all x ∈ Rn and r ≥ 0, and are therefore often regarded as functions on Sn−1. They

are also subadditive, i.e.,

hK(x + y) ≤ hK(x) + hK(y), (7)

for all x, y ∈ Rn. Any real-valued function on Rn that is sublinear, that is, both homo-

geneous of degree 1 and subadditive, is the support function of a unique compact convex

set.

A convex body is a compact convex subset of Rn containing the origin in its interior.

The Minkowski functional ‖ · ‖K of a convex body K is defined by ‖x‖K = min{λ ≥ 0 :

x ∈ λK}.
The support function of a convex body K and the Minkowski functional of the polar

body K∗ is related by

h(K, ·) = ‖ · ‖K∗ , (8)

where the polar body K∗ of K is defined by

K∗ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K}. (9)

For φ ∈ SL(Rn) and a convex body K, we have

(φK)∗ = φ−tK∗, (10)

where φ−t is the inverse of the transpose of φ. Using the polar coordinate formula for

volume, it is easy to see that the volume of a convex body K ∈ Rn is given by

|K| = 1

Γ(1 + n
p
)

∫
Rn

exp(−‖x‖p
K)dx, (11)
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where integration is with respect to Lebesgue measure on Rn. The classical Urysohn

inequality [35, p. 318] provides an upper bound for the volume of a convex body in terms

of the average value of its support function: If K is a convex body in Rn, then( |K|
κn

)1/n

≤ 1

nκn

∫
Sn−1

h(K, v)dv, (12)

with equality if and only if K is a ball. Here the integral is with respect to spherical

Lebesgue measure.

In the following we list some basic facts about complex vector spaces.

Origin symmetric complex convex bodies in Cn are the unit balls of norms on Cn. We

denote by ‖ · ‖K the norm corresponding to the body K, that is,

K = {z ∈ Cn : ‖z‖K ≤ 1}.

In order to define volume, we identify Cn with R2n using the standard mapping

ξ = (ξ1, · · · , ξn) = (ξ11 + iξ12, · · · , ξn1 + iξn2)
τ7→ (ξ11, ξ12, · · · , ξn1, ξn2). (13)

Since norms on Cn satisfy the equality

‖λz‖ = |λ|‖z‖,∀z ∈ Cn,∀λ ∈ C,

origin symmetric complex convex bodies correspond to those origin symmetric bodies K in

R2n that are invariant with respect to any coordinate-wise two-dimensional rotation,

namely for each θ ∈ [0, 2π] and each (ξ11, ξ12, · · · ξn1, ξn2) ∈ R2n:

‖ξ‖K = ‖Rθ(ξ11, ξ12), · · · , Rθ(ξn1, ξn2)‖K , (14)

where Rθ stands for the counterclockwise rotation of R2 by the angle θ with respect to

the origin. We shall simply say that K is Rθ-invariant if it satisfies equation (14).

For ξ ∈ Cn such that ‖ξ‖ = 1, denote by

Hξ = {z ∈ Cn : 〈z, ξ〉c =
n∑

k=1

zkξk = 0}, (15)

the complex hyperplane through the origin, perpendicular to ξ. Under the standard

mapping from Cn to R2n the hyperplane Hξ turns into a (2n − 2)-dimensional subspace

of R2n orthogonal to the vectors

ξ = (ξ11, ξ12, · · · , ξn1, ξn2) and ξ† = (−ξ12, ξ11, · · · ,−ξn2, ξn1).
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The orthogonal two-dimensional subspace H⊥
ξ has orthonormal basis ξ, ξ†.

We identify `p(Cn) with the real 2n-dimensional space equipped with the norm

‖x‖Bp(Cn) = [(x2
11 + x2

12)
p/2 + · · ·+ (x2

n1 + x2
n2)

p/2]1/p, (16)

if 1 ≤ p < ∞, and

‖x‖B∞(Cn) = max
1≤j≤n

(x2
j1 + x2

j2
)1/2, (17)

where we used Bp(Cn) for the unit ball of `p(Cn). If p ≥ 1, Bp(Cn) is an Rθ-invariant

convex body in R2n. As usual, we denote by Bp(Rn) the `p(Rn)-balls. Note that B2(Cn) =

B2(R2n).

The following proposition establishes a familiar relation for the spaces `p(Cn).

Proposition 2.1 Suppose p ∈ [1,∞]. Then

(Bp(Cn))∗ = Bp∗(Cn).

Proof. We first assume that 1 < p < ∞. Using Hölder’s inequality twice, we have

〈x, y〉 =
n∑

i=1

(xi1yi1 + xi2yi2) ≤
n∑

i=1

(x2
i1 + x2

i1)
1/2(y2

i1 + y2
i1)

1/2

≤
( n∑

i=1

(x2
i1 + x2

i1)
p∗/2

)1/p∗( n∑
i=1

(y2
i1 + y2

i1)
p/2

)1/p

= ‖x‖Bp∗ (Cn)‖y‖Bp(Cn),

for x = (x1, x2, · · · , xn) = (x11, x12, x21, x22, · · · , xn1, xn2) and y = (y1, y2, · · · , yn) =

(y11, y12, y21, y22, · · · , yn1, yn2). In addition, equality holds precisely when

yi1 = α‖xi‖p∗−2xi1 and yi2 = α‖xi‖p∗−2xi2 for α ≥ 0, i = 1, · · · , n. (18)

Hence, 〈 x

‖x‖Bp∗ (Cn)

,
y

‖y‖Bp(Cn)

〉
≤ 1. (19)

Since y/‖y‖Bp(Cn) lies on the boundary of the convex body Bp(Cn), formula (9) immedi-

ately implies that
x

‖x‖Bp∗ (Cn)

∈ (Bp(Cn))∗.

Therefore,

‖x‖(Bp(Cn))∗ ≤ ‖x‖Bp∗ (Cn).
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Note that, since for given x ∈ R2n equality in (19) is attained for suitable y, the last

inequality is in fact an equality. Indeed, if ‖x‖(Bp(Cn))∗ < ‖x‖Bp∗ (Cn), by (19), we obtain〈 x

‖x‖(Bp(Cn))∗
,

y

‖y‖Bp(Cn)

〉
> 1

when y is chose in (18). However, this contradicts (9). Thus, we obtain

(Bp(Cn))∗ = Bp∗(Cn), for p ∈ (1,∞).

The cases p = 1 and p = ∞ are treated in a similar way. For p = ∞, it follows that

〈x, y〉 =
n∑

i=1

(xi1yi1 + xi2yi2) ≤
n∑

i=1

(x2
i1 + x2

i1)
1/2(y2

i1 + y2
i1)

1/2

≤
n∑

i=1

(x2
i1 + x2

i1)
1/2 max

1≤i≤n
(y2

i1 + y2
i1)

1/2

= ‖x‖B1(Cn)‖y‖B∞(Cn),

with equality precisely when

yi1 =
αxi1

‖xi‖
and yi2 =

αxi2

‖xi‖
for α ≥ 0, i = 1, · · · , n.

Now the result follows from a similar argument as for p ∈ (1,∞). �

3. Real and complex isotropic measures

We say a measure on S2n−1 is Rθ-invariant if it assumes the same value on a set and

its Rθ image for each θ ∈ [0, 2π].

Recall that a Borel measure µ on Sn−1 is isotropic provided∫
Sn−1

〈ξ, v〉2dµ(v) = ‖ξ‖2, (20)

for all ξ ∈ Rn.

A Borel measure µ on S2n−1 is complex isotropic provided∫
S2n−1

|〈ξ, v〉c|2dµ(v) = ‖ξ‖2, (21)

for all ξ ∈ Cn. Since we identify Cn with R2n, the following simple fact is crucial when

considering complex isotropic measures:

|〈ξ, v〉c|2 = 〈ξ, v〉2 + 〈ξ, v†〉2 = 〈ξ, v〉2 + 〈ξ†, v〉2. (22)
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Consequently, (21) becomes∫
S2n−1

[〈ξ, v〉2 + 〈ξ, v†〉2]dµ(v) = ‖ξ‖2. (23)

Geometrically, this means that∫
S2n−1

‖ξ| span{v, v†}‖2dµ(v) = ‖ξ‖2, (24)

whereas (20) can be rewritten as∫
Sn−1

‖ξ| span{v}‖2dµ(v) = ‖ξ‖2. (25)

Here, ‖ξ| span{v, v†}‖ is the length of the orthogonal projection of ξ onto the 2-dimensional

subspace span{v, v†} and ‖ξ| span{v}‖ is the length of the orthogonal projection of ξ onto

the 1-dimensional subspace span{v}. Note that (23) can also be rewritten as∫
S2n−1

(v ⊗ v + v† ⊗ v†)dµ(v) = I2n, (26)

where I2n denotes the identity operator on R2n, and v⊗v is the matrix such that (v⊗v)ij =

vivj for v = (v1, · · · , v2n) ∈ S2n−1.

From the definition of isotropic measures (20), it is easy to see that an isotropic

measure cannot be concentrated on a great subsphere of Sn−1. Similarly, since, by (22),

(23) can also be written as∫
S2n−1

[〈ξ, v〉2 + 〈ξ†, v〉2]dµ(v) = ‖ξ‖2, (27)

the complex isotropic measure µ is not concentrated on Hξ ∩ S2n−1 for any ξ ∈ S2n−1,

where the hyperplane Hξ is defined by (15).

Let e1, · · · , e2n denote the canonical basis for R2n. From (27), by taking ξ = e2i−1 for 1 ≤
i ≤ n, we obtain ∫

S2n−1

(v2
i1 + v2

i2)dµ(v) = 1.

Summing over 1 ≤ i ≤ n, it follows that

µ(S2n−1) = n. (28)

Theorem 3.1

(i) If µ is an isotropic measure on S2n−1, then 1
2
µ is complex isotropic.

(ii) There exists a complex isotropic measure µ on S2n−1 such that 2µ is not isotropic.
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(iii) If µ is a complex isotropic measure and Rθ-invariant for every θ ∈ [0, 2π], then 2µ is

isotropic.

Proof.

(i). By (20), we need to verify (23). We have

1

2

∫
S2n−1

[〈ξ, v〉2 + 〈ξ, v†〉2]dµ(v) =
1

2

[ ∫
S2n−1

〈ξ, v〉2dµ(v) +

∫
S2n−1

〈ξ†, v〉2dµ(v)
]

=
1

2
[‖ξ‖2 + ‖ξ†‖2] = ‖ξ‖2.

(ii). Using (24) and (25), it is easy to construct a measure to prove this fact. For

example, taking the discrete measure µ such that supp µ ⊂ {e1, e2, e3 . . . , e2n}, µ({e1}) =

1, µ({e2}) = 0, and µ({ei}) = 1
2

for 3 ≤ i ≤ 2n.

(iii). Since µ is a complex isotropic Rθ-invariant measure we have, by (23),

‖ξ‖2 =

∫
S2n−1

[〈ξ, v〉2 + 〈ξ, v†〉2]dµ(v)

=

∫
S2n−1

〈ξ, v〉2dµ(v) +

∫
S2n−1

〈ξ, v†〉2dµ(v)

=

∫
S2n−1

〈ξ, v〉2dµ(v) +

∫
S2n−1

〈ξ, v†〉2dµ(v†)

= 2

∫
S2n−1

〈ξ, v〉2dµ(v).

�

By Theorem 3.1, the class of complex isotropic measures is larger than the one of real

isotropic measures. Moreover, complex isotropic measures which are Rθ-invariant are in

one-to-one correspondence with isotropic measures.

In [11], Barthe showed that any isotropic measure can be approximated by a sequence

of discrete isotropic measures. Inspired by this result, we prove a similar result for complex

isotropic measures.

Since we identify Cn with R2n, we shall consider the following 1-1 map ι : L(Cn) →
L(R2n):

 c11
1 + ic11

2 · · · c1n
1 + ic1n

2
...

...

cn1
1 + icn1

2 · · · cnn
1 + icnn

2

 ι7−→


c11
1 −c11

2 · · · c1n
1 −c1n

2

c11
2 c11

1 · · · c1n
2 c1n

1
...

...
...

...

cn1
1 −cn1

2 · · · cnn
1 −cnn

2

cn1
2 cn1

1 · · · cnn
2 cnn

1

 .

It is easy to verify that τ(Tx) = ι(T )τ(x) for T ∈ L(Cn), x ∈ Cn, where τ is defined

by (13), and ι(AB) = ι(A)ι(B) for A, B ∈ L(Cn). Moreover, (ι(T )x)† = ι(T )x† for T ∈
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L(Cn), x ∈ R2n and T ∈ L(Cn) is a Hermitian matrix if and only if ι(T ) is a symmetric

matrix.

Theorem 3.2 Suppose µ is an arbitrary complex isotropic measure on S2n−1. Then

there exists a sequence µk, k ∈ N, of discrete complex isotropic measures such that µk con-

verges weakly to µ as k →∞.

Proof. Given ε > 0, we choose a finite maximal ε-net Nε in S2n−1 such that S2n−1 is

partitioned into Borel sets (Ux)x∈N with Ux ⊂ B(x, ε) (the closed ball of radius ε around x).

Given a finite measure µ on S2n−1, we consider its approximation

µε =
∑
x∈Nε

µ(Ux)δ[x],

where δ[x] denotes the Dirac measure at x. For any continuous function f : S2n−1 → R,∣∣∣ ∫
fdµ−

∫
fdµε

∣∣∣ =
∣∣∣ ∑

x∈Nε

∫
Ux

(f − f(x))dµ
∣∣∣ ≤ µ(S2n−1)ωf (ε), (29)

where ωf (ε) is the modulus of continuity of f . Thus, µε converges weakly to µ as ε → 0.

Since the complex isotropic measure µ is not concentrated on Hξ ∩ S2n−1 for any ξ ∈
S2n−1, also µε is not concentrated on Hξ∩S2n−1 for any ξ ∈ S2n−1 when ε is small enough.

Therefore,

ξ∗Mεξ =

∫
S2n−1

|〈ξ, v〉c|2dµε(v) > 0, for all ξ ∈ Cn/{o},

where ξ∗ is the conjugate transpose of ξ and the complex matrix Mε is defined by

Mε =

∫
S2n−1

v ⊗c vdµε(v)

with (v ⊗c v)ij = vivj for v = (v1, · · · , vn) ∈ Cn. Consequently, Mε is positive defi-

nite when ε is small enough. Thus, we can write Mε = U∗
ε diag(λ1(ε), · · · , λn(ε))Uε such

that Uε is a unitary matrix and λi(ε) > 0 for all 1 ≤ i ≤ n, where U∗
ε is the con-

jugate transpose of Uε (see e.g., [40, Theorem 6.1]). It follows that Sε = M
−1/2
ε =

U∗
ε diag(λ

−1/2
1 (ε), · · · , λ

−1/2
n (ε))Uε. Hence, Sε is a Hermitian matrix, i.e., ι(Sε) is a sym-

metric matrix. Observe that ι(v ⊗c v) = v ⊗ v + v† ⊗ v†. Therefore,

ι(Mε) =

∫
S2n−1

(v ⊗ v + v† ⊗ v†)dµε(v). (30)

Using the fact that (ι(T )x)† = ι(T )x† for T ∈ L(Cn), x ∈ R2n and ι(AB) = ι(A)ι(B) for A, B ∈
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L(Cn), we have∫
S2n−1

[ ι(Sε)v

‖ι(Sε)v‖
⊗ ι(Sε)v

‖ι(Sε)v‖
+

( ι(Sε)v

‖ι(Sε)v‖

)†
⊗

( ι(Sε)v

‖ι(Sε)v‖

)†]
‖ι(Sε)v‖2dµε(v)

=

∫
S2n−1

[ ι(Sε)v

‖ι(Sε)v‖
⊗ ι(Sε)v

‖ι(Sε)v‖
+

ι(Sε)v
†

‖ι(Sε)v‖
⊗ ι(Sε)v

†

‖ι(Sε)v‖

]
‖ι(Sε)v‖2dµε(v)

=

∫
S2n−1

(
ι(Sε)v ⊗ ι(Sε)v + ι(Sε)v

† ⊗ ι(Sε)v
†
)
dµε(v)

= ι(Sε)

∫
S2n−1

(v ⊗ v + v† ⊗ v†)dµε(v)ι(Sε)

= ι(Sε)ι(Mε)ι(Sε) = ι(SεMεSε) = ι(In) = I2n.

Let

u =
ι(Sε)v

‖ι(Sε)v‖
and νε =

∑
x∈Nε

µε(x)‖ι(Sε)x‖2δ
[ ι(Sε)x

‖ι(Sε)x‖

]
.

It follows that ∫
S2n−1

(u⊗ u + u† ⊗ u†)dνε(u) = I2n.

That is, the measure νε is complex isotropic.

For any continuous function f : S2n−1 → R,∣∣∣ ∫
fdνε −

∫
fdµε

∣∣∣ ≤
∑
x∈Nε

µε(x)
∣∣∣‖ι(Sε)x‖2f

( ι(Sε)x

‖ι(Sε)x‖

)
− f(x)

∣∣∣
≤ µ(S2n−1) max

x∈S2n−1

∣∣∣‖ι(Sε)x‖2f
( ι(Sε)x

‖ι(Sε)x‖

)
− f(x)

∣∣∣
≤ µ(S2n−1) max

x∈S2n−1
‖ι(Sε)x‖2

∣∣∣f( ι(Sε)x

‖ι(Sε)x‖

)
− f(x)

∣∣∣
+µ(S2n−1) max

x∈S2n−1

∣∣∣‖ι(Sε)x‖2 − 1
∣∣∣ max

x∈S2n−1
|f(x)|.

From the assumption that µ is complex isotropic, we deduce (26). Since µε converges

weakly converges to µ as ε → 0 and ι(Mε) involves n2 continuous functions, (30) shows

that ι(Mε) converges to I2n in the maximum norm, i.e., there exists a function ω1(ε) with

limit zero at zero such that |(ι(Mε)− I2n)ij| ≤ ω1(ε). Since ι(Sε) = ι(Mε)
−1/2, the above

quantity can be bounded from above by a function ω2(ε) which is zero at zero, and

depending on ω1, on the modulus of continuity ωf and on max |f |.
Hence, (29) yields∣∣∣ ∫
fdνε −

∫
fdµ

∣∣∣ ≤ ∣∣∣ ∫
fdνε −

∫
fdµε

∣∣∣ +
∣∣∣ ∫

fdµε −
∫

fdµ
∣∣∣ ≤ ω2(ε) + µ(S2n−1)ωf (ε).
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Therefore, there exists a subsequence νεk
, k ∈ N, of discrete complex isotropic measure

such that νεk
weakly converges to µ. �

4.The Lp-cosine and the sine transform in complex vector spaces

The following lemma is a complex version of a lemma obtained by Lutwak, Yang and

Zhang [29, Lemma 4.3].

Lemma 4.1 Suppose µ is a complex isotropic Borel measure on S2n−1. Let {v1, · · · , vn} ⊂
S2n−1 such that vi /∈ span{vj, v

†
j} for i 6= j, and

supp µ ⊆ {span{v1, v
†
1} ∩ S2n−1, · · · , span{vn, v

†
n} ∩ S2n−1},

then µ(span{vi, v
†
i } ∩ S2n−1) = 1 for 1 ≤ i ≤ n and {v1, v

†
1, · · · , vn, v

†
n} is an orthonormal

basis of R2n.

Proof. Since µ is complex isotropic, (23) and the fact that |〈ξ, v〉c| = |〈ξ, Rθv〉c| for

all ξ ∈ R2n, yield
n∑

i=1

ai[〈ξ, vi〉2 + 〈ξ, v†i 〉2] = ‖ξ‖2,

where ai = µ(span{vi, v
†
i } ∩ S2n−1). Taking ξ = vj, we obtain 〈vj, vj〉2 + 〈vj, v

†
j〉2 = 1.

Meanwhile,
n∑

i=1

ai[〈vj, vi〉2 + 〈vj, v
†
i 〉2] = 1, (31)

which shows that aj ≤ 1. However, by (28), we have
∑n

i=1 ai = n, and hence aj = 1.

Hence, from (31), we deduce that |〈vj, vi〉| = |〈vj, v
†
i 〉| = 0 for j 6= i. �

Lemma 4.2 Let {v1, v
†
1, · · · , vn, v

†
n} be an orthonormal basis of R2n and let µ be a

Borel measure on S2n−1 such that

supp µ = {span{v1, v
†
1} ∩ S2n−1, · · · , span{vn, v

†
n} ∩ S2n−1},

and

µ(span{vi, v
†
i } ∩ S2n−1) = 1

for 1 ≤ i ≤ n. Then, µ is complex isotropic, but not necessarily isotropic.

Proof. Since {v1, v
†
1, · · · , vn, v

†
n} is an orthonormal basis of R2n, we have for all ξ ∈ R2n,

ξ =
n∑

i=1

[〈ξ, vi〉vi + 〈ξ, v†i 〉v
†
i ]

=
n∑

i=1

µ(span{vi, v
†
i } ∩ S2n−1)[〈ξ, vi〉vi + 〈ξ, v†i 〉v

†
i ].

13



Thus,

‖ξ‖2 = 〈ξ, ξ〉 =
n∑

i=1

µ(span{vi, v
†
i } ∩ S2n−1)[〈ξ, vi〉2 + 〈ξ, v†i 〉2]

=

∫
S2n−1

[〈ξ, v〉2 + 〈ξ, v†〉2]dµ(v).

Thus, µ is complex isotropic by (23). However, µ may not be isotropic as can be seen

from the example given in the proof of Theorem 3.1 (ii). �

An important example of (real) isotropic measures on Sn−1 are the cross measures,

i.e., even isotropic measures concentrated on {±v1, · · · ,±vn}, where v1, · · · , vn is an or-

thonormal basis of Rn. The basic cross measure is the cross measure such that vi =

ei for 1 ≤ i ≤ n. In view of Lemma 4.1 and Lemma 4.2, we introduce complex

cross measures µ, that is, Rθ-invariant complex isotropic measures such that supp µ =

{span{v1, v
†
1} ∩ S2n−1, · · · , span{vn, v

†
n} ∩ S2n−1}, where v1, v

†
1 · · · , vn, v

†
n is an orthonor-

mal basis of R2n. The basic complex cross measure is the complex cross measure such

that vi = e2i−1 for 1 ≤ i ≤ n. Note that a complex cross measure is just a rotation of the

basic complex cross measure, since {v1, v
†
1, · · · , vn, v

†
n} is an orthonormal basis of R2n by

Lemma 4.1.

The convex bodies defined by the Lp-cosine and the sine transform in real vector spaces

are well understood. Assume that the measure µ is not concentrated on a great subsphere

of Sn−1. For each p ∈ [1,∞), the origin-symmetric convex body Cp(µ) in Rn is defined to

be the body whose support function, for ξ ∈ Sn−1, is given by

hCp(µ)(ξ)
p =

∫
Sn−1

|〈ξ, v〉|pdµ(v),

and, for p = ∞, is given by

hC∞(µ)(ξ) = lim
p→∞

hCp(µ)(ξ) = sup
v∈suppµ

|〈ξ, v〉|.

The origin-symmetric convex body S(µ) in Rn is defined to be the body whose support

function, for ξ ∈ Sn−1, is given by

hS(µ)(ξ) =

∫
Sn−1

(1− 〈ξ, v〉2)1/2dµ(v).

Now, we introduce their complex counterparts. Assume that the measure µ is not

concentrated on Hξ∩S2n−1 for any ξ ∈ S2n−1. For each p ∈ [1,∞), define the Rθ-invariant

convex body Cc
p(µ) in R2n to be the body whose support function , for ξ ∈ S2n−1, is given

by

hCc
p(µ)(ξ)

p =

∫
S2n−1

|〈ξ, v〉c|pdµ(v) =

∫
S2n−1

[〈ξ, v〉2 + 〈ξ, v†〉2]
p
2 dµ(v), (32)
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and, for p = ∞, is given by

hCc
∞(µ)(ξ) = lim

p→∞
hCc

p(µ)(ξ) = sup
v∈suppµ

|〈ξ, v〉c| = sup
v∈suppµ

[〈ξ, v〉2 + 〈ξ, v†〉2]
1
2 . (33)

Define the Rθ-invariant convex body Sc(µ) in R2n to be the body whose support function,

for ξ ∈ S2n−1, is given by

hSc(µ)(ξ) =

∫
S2n−1

√
1− |〈ξ, v〉c|2dµ(v) =

∫
S2n−1

√
1− 〈ξ, v〉2 − 〈ξ, v†〉2dµ(v). (34)

As shown in [29], if µ is a basic cross measure, then Cp(µ) = Bp∗(Rn). Analogously,

if µ is a basic complex cross measure, then, by Lemma 4.1, we have µ(span{e2i−1, e
†
2i−1}∩

S2n−1) = 1. Together with (32), (16), (8) and Proposition 2.1, it follows that for 1 ≤ p <

∞, ξ ∈ S2n−1,

hCc
p(µ)(ξ)

p =

∫
S2n−1

[〈ξ, v〉2 + 〈ξ, v†〉2]
p
2 dµ(v)

=
n∑

i=1

µ(span{e2i−1, e
†
2i−1} ∩ S2n−1)[〈ξ, e2i−1〉2 + 〈ξ, e†2i−1〉2]

p
2

=
n∑

i=1

[〈ξ, e2i−1〉2 + 〈ξ, e†2i−1〉2]
p
2 =

n∑
i=1

(ξ2
i1 + ξ2

i2)
p/2

= ‖ξ‖p
Bp(Cn) = h(Bp(Cn))∗(ξ)

p = hBp∗ (Cn)(ξ)
p,

i.e., Cc
p(µ) = Bp∗(Cn). By (33), (17) and (8), we also have Cc

∞(µ) = B1(Cn).

Theorem 4.3 Assume that the measure µ is not concentrated on Hξ ∩ S2n−1 for

any ξ ∈ S2n−1. Then, Cc
p(µ), 1 ≤ p ≤ ∞, and Sc(µ) are Rθ-invariant convex bodies.

Proof. The assumption that the measure µ is not concentrated on Hξ ∩ S2n−1 for

any ξ ∈ S2n−1 implies that Cc
p(µ) (p ∈ [1,∞]) contains the origin in its interior. We may

rewrite (32) as follows:

hCc
p(µ)(x)p =

∫
S2n−1

‖x| span{v, v†}‖pdµ(v), (35)

for x ∈ R2n. Here, ‖x| span{v, v†}‖ is the length of the orthogonal projection of x onto

the 2-dimensional subspace span{v, v†}. In order to prove Cc
p(µ) is convex we need to

show that hCc
p(µ) satisfies (6) and (7). Clearly, hCc

p(µ) is homogeneous of degree 1. Observe

that

‖(x + y)| span{v, v†}‖ = ‖x| span{v, v†}+ y| span{v, v†}‖
≤ ‖x| span{v, v†}‖+ ‖y| span{v, v†}‖.
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The latter inequality, together with the fact that the Lp norm ‖·‖p with respect to µ is

increasing for p ∈ [1,∞) and Minkowski’s inequality, yield

hCc
p(µ)(x + y) =

( ∫
S2n−1

‖(x + y)| span{v, v†}‖pdµ(v)
) 1

p

≤
( ∫

S2n−1

(‖x| span{v, v†}‖+ ‖y| span{v, v†}‖)pdµ(v)
) 1

p

≤
( ∫

S2n−1

‖x| span{v, v†}‖pdµ(v)
) 1

p
+

( ∫
S2n−1

‖y| span{v, v†}‖pdµ(v)
) 1

p

= hCc
p(µ)(x) + hCc

p(µ)(y).

Similarly, one can verify that Cc
∞(µ) is convex.

Just as in the real case, we can extend the domain of hSc(µ) from S2n−1 to R2n by

hSc(µ)(x) =

∫
S2n−1

‖x| [span{v, v†}]⊥‖dµ(v), (36)

for x ∈ R2n. Here, ‖x| [span{v, v†}]⊥‖ is the length of the orthogonal projection of x onto

the (2n − 2)-dimensional subspace [span{v, v†}]⊥. In order to prove that Sc(µ) contains

the origin in its interior under the assumption that the measure µ is not concentrated

on Hξ∩S2n−1 for any ξ ∈ S2n−1, we need the following simple fact: for each v ∈ S2n−1 there

exists ξ ∈ S2n−1 such that

span{v, v†} ⊆ Hξ.

Indeed, there exists ξ ∈ S2n−1 such that 〈ξ, v〉 = 〈ξ, v†〉 = 0. Thus, ξ ⊥ span{v, v†} and ξ† ⊥
span{v, v†}, which, by (15), proves the claim. Next, we show that the set Sc(µ) is convex.

For x, y ∈ R2n,

hSc(µ)(x + y) =

∫
S2n−1

‖(x + y)| [span{v, v†}]⊥‖dµ(v)

≤
∫

S2n−1

(‖x| [span{v, v†}]⊥‖+ ‖y| [span{v, v†}]⊥‖)dµ(v)

= hSc(µ)(x) + hSc(µ)(y).

Now, since |〈Rθξ, v〉c| = |〈ξ, v〉c|, (8) and (14), definitions (32), (33), (34), yield that Cc
p(µ)∗

and Sc(µ)∗ are Rθ-invariant. Moreover, since Rθ ∈ SO(R2n), (10) implies that also Cc
p(µ)

and Sc(µ) are Rθ-invariant. �

Remark: Note that given a complex isotropic measure µ, there always exists an Rθ-

invariant complex isotropic measure µ̃ such that∫
S2n−1

|〈ξ, v〉c|2dµ(v) =

∫
S2n−1

|〈ξ, v〉c|2dµ̃(v).
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By Theorem 3.1 (iii), 2µ̃ is also isotropic. Thus, one can consider the convex body Cc
p(µ̃) and

Sc(µ̃) instead. However, we can not directly apply the results for real isotropic measures

(except for p = 2) due to Barthe [11], Lutwak, Yang and Zhang [29], Maresch and Schus-

ter [32]. The reason is that to determine Cc
p(µ̃)’s extremum we have to consider projec-

tions onto 2-dimensional subspaces span{v, v†} rather than 1-dimensional projections as

for Cp(µ̃), and, similarly, for Sc(µ̃). Thus, we use the multidimensional Brascamp-Lieb

inequality and its reverse as motivated by [11,32].

5. The multidimensional Brascamp-Lieb inequality and its reverse

The tools we use to investigate the complex Lp-cosine and sine transforms are Theorem

5.2 and Theorem 5.3, below. These results can be seen as special cases of the following

multidimensional Brascamp-Lieb inequality and its reverse due to Lieb [28] and Barthe [9,

Theorem 6].

Theorem 5.1 Let m, n be integers. For i = 1, · · · , m let Ei be subspaces of Rn of

dimension ni and let Pi be the orthogonal projections onto Ei. Assume that there exist

positive numbers (ci)
m
i=1 such that

m∑
i=1

ciPi = In.

If for i = 1, · · · , m, fi is a non-negative integrable function on Ei, then∫
Rn

m∏
i=1

fi(Pix)cidx ≤
m∏

i=1

( ∫
Ei

fi

)ci

, (37)

and ∫ ∗

Rn

sup
{ m∏

i=1

fi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ Ei

}
dx ≥

m∏
i=1

( ∫
Ei

fi

)ci

. (38)

Note that the normalized Brascamp-Lieb inequality which was first discovered by

Ball can be easily deduced from (37) by setting ni = 1 for i = 1, · · · , m. Similarly,

Barthe’s normalized reverse Brascamp-Lieb inequality can be easily deduced from (38)

by setting ni = 1 for i = 1, · · · , m. These inequalities have had a profound impact

on convex geometric analysis (see, e.g., [6–12, 17, 18]). Using the same notations, we

write Pspan{u,u†} and P[span{u,u†}]⊥ , u ∈ S2n−1, for the orthogonal projections onto the 2-

dimensional subspace span{u, u†} and the (2n− 2)-dimensional subspace [span{u, u†}]⊥,

respectively. Using Theorem 5.1 with ni = 2 for i = 1, · · · , m, we obtain:
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Theorem 5.2 Suppose that v1, · · · , vm ∈ S2n−1 and there exist c1, · · · , cm > 0 such

that
m∑

i=1

ciPspan{vi,v
†
i }

= I2n. (39)

Then for all integrable functions fi : span{vi, v
†
i } → [0,∞), 1 ≤ i ≤ m,∫

R2n

m∏
i=1

f ci
i (x| span{vi, v

†
i })dx ≤

m∏
i=1

( ∫
span{vi,v

†
i }

fi

)ci

and ∫ ∗

R2n

sup
{ m∏

i=1

fi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ span{vi, v
†
i }

}
dx ≥

m∏
i=1

( ∫
span{vi,v

†
i }

fi

)ci

.

The following result is also deduced from Theorem 5.1 by combining (37) and (38),

for ni = 2n− 2, i = 1, · · · , m.

Theorem 5.3 Suppose that v1, · · · , vm ∈ S2n−1 and that there exist c1, · · · , cm >

0 such that
m∑

i=1

ciP[span{vi,v
†
i }]⊥

= I2n. (40)

If fi, gi : [span{vi, v
†
i }]⊥ → [0,∞), 1 ≤ i ≤ m, are integrable functions such that∫

[span{vi,v
†
i }]⊥

fi =

∫
[span{vi,v

†
i }]⊥

gi = 1,

then∫
R2n

m∏
i=1

fi(x| [span{vi, v
†
i }]⊥)cidx ≤

∫
R2n

sup
{ m∏

i=1

gi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ [span{vi, v
†
i }]⊥

}
dx.

6. The Lp-cosine transform of complex isotropic measures

Recall that, for p ∈ (0,∞),

κ2n(p) =
πn(Γ(1 + 2

p
))n

Γ(1 + 2n
p

)
, and κ2n(∞) = πn.

The following lemma is proved in the same way as its real counterpart (see e.g., [21,

p.32]).
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Proposition 6.1 Suppose p ∈ [1,∞]. Then

|Bp(Cn)| = κ2n(p).

Proof. Clearly, |B∞(Cn)| = πn. Thus, we may assume that 1 ≤ p < ∞. Recall that

‖x‖Bp(Cn) = [(x2
11 + x2

12)
p/2 + · · ·+ (x2

n1 + x2
n2)

p/2]1/p.

Therefore, on the one hand∫
R2n

exp
(
− ‖x‖p

Bp(Cn)

)
dx =

n∏
i=1

( ∫
R2

e−(x2
i1+x2

i2)p/2

dxi1dxi2

)
=

(
πΓ

(
1 +

2

p

))n

.

On the other hand, by (11), we obtain∫
R2n

exp
(
− ‖x‖p

Bp(Cn)

)
dx = Γ

(
1 +

2n

p

)
|Bp(Cn)|.

Comparing these two expressions for the same integral, yields the desired result. �

Corollary 6.2 Suppose p ∈ [1,∞] and µ is a complex cross measure. Then

|Cc
p(µ)∗| = κ2n(p).

Proof. Observe that if µ is a basic complex cross measure, then Cc
p(µ)∗ = Bp(Cn).

If µ is a complex cross measure, then we may assume that supp µ = {span{v1, v
†
1} ∩

S2n−1, · · · , span{vn, v
†
n} ∩ S2n−1}, where v1, v

†
1 · · · , vn, v

†
n denotes some orthonormal basis

vectors of R2n. From Lemma 4.1, it follows that µ(span{vi, v
†
i }∩S2n−1) = 1 for 1 ≤ i ≤ n.

Since {v1, v
†
1, · · · , vn, v

†
n} is an orthonormal basis of R2n, there exists U ∈ SO(R2n), such

that vi = Ue2i−1, v
†
i = Ue2i for i = 1, · · · , m. By (8) and (32), we have for x ∈ R2n,

‖x‖p
Cc

p(µ)∗ = hCc
p(µ)(x)p =

∫
S2n−1

[〈x, v〉2 + 〈x, v†〉2]
p
2 dµ(v)

=
m∑

i=1

µ(span{vi, v
†
i } ∩ S2n−1)(〈x, vi〉2 + 〈x, v†i 〉2)p/2

=
m∑

i=1

(〈x, Ue2i−1〉2 + 〈x, Ue2i〉2)p/2

=
m∑

i=1

(〈U−1x, e2i−1〉2 + 〈U−1x, e2i〉2)p/2

= ‖U−1x‖p
Bp(Cn) = ‖x‖p

UBp(Cn)

Therefore, the convex body Cc
p(µ)∗ is a rotation of Bp(Cn), which concludes the proof

by Proposition 6.1. �
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Corollary 6.3 Suppose p ∈ [1,∞] and µ is a complex cross measure. Then

|Cc
p(µ)| = κ2n(p∗).

The proofs of Theorem 6.4 and Theorem 6.5 are similar to their real counterparts by

Ball [8] and Barthe [9, 11].

Theorem 6.4 Suppose p ∈ [1,∞]. If µ is a complex isotropic measure on S2n−1, then

|Cc
p(µ)∗| ≤ κ2n(p).

There is equality if µ is a complex cross measure.

Proof. Suppose that supp µ = {v1, · · · , vm} and let µ({vi}) = ci > 0. Then condition

(39) is satisfied since the measure µ is a discrete complex isotropic measure on S2n−1. By

(8) and (35), we have for x ∈ R2n,

‖x‖p
Cc

p(µ)∗ = hCc
p(µ)(x)p =

m∑
i=1

ci‖x| span{vi, v
†
i }‖p, (41)

if 1 ≤ p < ∞, and

‖x‖Cc
∞(µ)∗ = hCc

∞(µ)(x) = sup
v∈{v1,··· ,vm}

‖x| span{v, v†}‖. (42)

Case p = ∞: From (42), we obtain

Cc
∞(µ)∗ =

{
x ∈ R2n : ‖x| span{vi, v

†
i }‖ ≤ 1 for all vi, 1 ≤ i ≤ m

}
. (43)

Define functions fi : span{vi, v
†
i } → [0,∞), 1 ≤ i ≤ m, by

fi(y) = X[0,1](‖y‖),

where X[0,1] is the characteristic function of [0, 1].

From (43), Theorem 5.2 and (28), we obtain

|Cc
∞(µ)∗| =

∫
R2n

m∏
i=1

X[0,1](‖x| span{vi, v
†
i }‖)dx

=

∫
R2n

m∏
i=1

f ci
i (x| span{vi, v

†
i })dx ≤

m∏
i=1

( ∫
span{vi,v

†
i }

fi

)ci

=
m∏

i=1

( ∫
span{vi,v

†
i }
X[0,1](‖x‖)dx

)ci

= πn.
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Case 1 ≤ p < ∞: Define functions fi : span{vi, v
†
i } → [0,∞), 1 ≤ i ≤ m, by

fi(y) = exp(−‖y‖p).

Combining (11), (41), Theorem 5.2 and (28), yields

Γ
(
1 +

2n

p

)
|Cc

p(µ)∗| =

∫
R2n

exp(−‖x‖p
Cc

p(µ))∗)dx =

∫
R2n

exp(−ci‖x| span{vi, v
†
i }‖p)dx

=

∫
R2n

m∏
i=1

f ci
i (x| span{vi, v

†
i })dx ≤

m∏
i=1

( ∫
span{vi,v

†
i }

fi

)ci

=
m∏

i=1

( ∫
span{vi,v

†
i }

e−‖x‖
p

dx
)ci

=
(
πΓ

(
1 +

2

p

))n

.

Therefore, |Cc
p(µ)∗| ≤ κ2n(p).

Now let µ be an arbitrary complex isotropic measure on S2n−1. Theorem 3.2 im-

plies that there exists a sequence µk, k ∈ N, of discrete complex isotropic measures such

that µk converges weakly to µ as k →∞. Thus,

lim
k→∞

h(Cc
p(µk), v) = h(Cc

p(µ), v) for every v ∈ S2n−1.

Since pointwise convergence of support functions implies the convergence of the respective

convex bodies in the Hausdorff metric (see e.g., [35]), the continuity of volume and polarity

on convex bodies completes the proof.

The equality case follows from Corollary 6.2. �

Theorem 6.5 Suppose p ∈ [1,∞]. If µ is a complex isotropic measure on S2n−1, then

|Cc
p(µ)| ≥ κ2n(p∗).

There is equality if µ is a complex cross measure.

Proof. By the concluding arguments of the proof of Theorem 6.4, we only need to

consider the case that µ is a discrete complex isotropic measure on S2n−1. Suppose

that supp µ = {v1, · · · , vm} and µ({vi}) = ci > 0. Recall that for x ∈ R2n,

‖x‖p
Cc

p(µ)∗ = hCc
p(µ)(x)p =

m∑
i=1

ci‖x| span{vi, v
†
i }‖p, (44)

if 1 ≤ p < ∞, and

‖x‖Cc
∞(µ)∗ = hCc

∞(µ)(x) = sup
v∈{v1,··· ,vm}

‖x| span{v, v†}‖. (45)
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Case p = 1: From (44) and ‖x| [span{vi, v
†
i }]‖ = h(B2(R2n)| [span{vi, v

†
i }], x), we

have

hCc
1(µ)(x) =

m∑
i=1

ci‖x| span{vi, v
†
i }‖

=
m∑

i=1

cih(B2(R2n)| [span{vi, v
†
i }], x)

= h
( m∑

i=1

ciB2(R2n)| [span{vi, v
†
i }], x

)
,

where the addition in last equality is Minkowski addition of convex sets. Hence, it follows

that

Cc
1(µ) = {x ∈ R2n : x =

m∑
i=1

ciyi, yi ∈ B2(R2n)| span{vi, v
†
i }}. (46)

Define functions fi : span{vi, v
†
i } → [0,∞), 1 ≤ i ≤ m, by

fi(y) = X[0,1](‖y‖).

From (46), Theorem 5.2 and (28), we obtain

|Cc
1(µ)| =

∫
R2n

sup
{ m∏

i=1

X[0,1](‖yi‖)ci : x =
m∑

i=1

ciyi, yi ∈ span{vi, v
†
i }

}
dx

=

∫
R2n

sup
{ m∏

i=1

fi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ span{vi, v
†
i }

}
dx

≥
m∏

i=1

( ∫
span{vi,v

†
i }

fi

)ci

=
m∏

i=1

( ∫
span{vi,v

†
i }
X[0,1](‖x‖)dx

)ci

= πn.

Case 1 < p ≤ ∞: We claim that

‖x‖p∗

Cc
p(µ) ≤ inf

{ m∑
i=1

ci(r
2
i1 + r2

i1)
p∗/2 :

m∑
i=1

ci(ri1vi + ri2v
†
i ) = x

}
. (47)

For 1 < p < ∞, and x =
m∑

i=1

ci(ri1vi + ri2v
†
i ), Hölder’s inequality applied twice and (44)
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yield

〈x, y〉 =
m∑

i=1

ci(ri1〈y, vi〉+ ri2〈y, v†i 〉)

≤
m∑

i=1

ci(r
2
i1 + r2

i2)
1
2 (〈y, vi〉2 + 〈y, v†i 〉2)

1
2

≤
( m∑

i=1

ci(r
2
i1 + r2

i2)
p∗
2

) 1
p∗

( m∑
i=1

ci(〈y, vi〉2 + 〈y, v†i 〉2)
p
2

) 1
p

=
( m∑

i=1

ci(r
2
i1 + r2

i2)
p∗
2

) 1
p∗ ‖y‖Cc

p(µ)∗ ,

and for p = ∞, x =
m∑

i=1

ci(ri1vi + ri2v
†
i ), we have, by (45),

〈x, y〉 =
m∑

i=1

ci(ri1〈y, vi〉+ ri2〈y, v†i 〉)

≤
m∑

i=1

ci(r
2
i1 + r2

i2)
1
2 (〈y, vi〉2 + 〈y, v†i 〉2)

1
2

≤
[ m∑

i=1

ci(r
2
i1 + r2

i2)
1
2

]
· sup

v∈{v1,··· ,vm}
(〈y, v〉2 + 〈y, v†〉2)

1
2

=
[ m∑

i=1

ci(r
2
i1 + r2

i2)
1
2

]
· ‖y‖Cc

∞(µ)∗ .

Let mx = (
m∑

i=1

ci(r
2
i1 + r2

i2)
p∗/2)1/p∗ . From the above two inequalities, (9) and the fact

that y/‖y‖Cc
p(µ)∗ lies on the boundary of the convex body Cc

p(µ)∗, we have

x

mx

∈ Cc
p(µ).

Thus, ∥∥∥ x

mx

∥∥∥
Cc

p(µ)
≤ 1.

That is,

‖x‖Cc
p(µ) ≤ (

m∑
i=1

ci(r
2
i1 + r2

i2)
p∗/2)1/p∗ ,

for all x =
m∑

i=1

ci(ri1vi + ri2v
†
i ). Taking the infimum concludes the proof of the claim.

Define functions fi : span(vi, v
†
i ) → [0,∞), 1 ≤ i ≤ m, by

fi(y) = exp(−(‖y‖p∗).
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Combining (11), (47), Theorem 5.2 and (28), yields

Γ
(
1 +

2n

p∗

)
|Cc

p(µ)|

=

∫
R2n

exp(−‖x‖p∗

Cc
p(µ))dx

≥
∫

R2n

sup
{ m∏

i=1

exp(−ci(r
2
i1 + r2

i2)
p∗
2 ) :

m∑
i=1

ci(ri1vi + ri2v
†
i ) = x

}
dx

=

∫
R2n

sup
{ m∏

i=1

fi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ span{vi, v
†
i }

}
dx ≥

m∏
i=1

( ∫
span{vi,v

†
i }

fi

)ci

=
m∏

i=1

( ∫
span{vi,v

†
i }

e−‖x‖
p∗

dx
)ci

=
(
πΓ(1 +

2

p∗
)
)n

.

Therefore, |Cc
p(µ)| ≥ κ2n(p∗).

The equality case follows from Corollary 6.3. �

Next, we establish the lower bound for the volume of Cc
p(µ)∗ and the upper bound for

the volume of Cc
p(µ). The following lemma is needed.

Lemma 6.6 Suppose p ∈ [1,∞). Then∫
S2n−1

(〈u, v〉2 + 〈u, v†〉2)p/2du =
2πnΓ(p

2
+ 1)

Γ(n + p
2
)

for each v ∈ S2n−1.

Proof. Note that v, v† are mutually orthogonal unit vectors, thus there exists U ∈
SO(R2n), such that v = Ue1, v

† = Ue2. Thus, by the rotation invariance of the spherical

Lebesgue measure, it suffices to consider v = e1. Using polar coordinates, we obtain∫
S2n−1

(u2
1 + u2

2)
p
2 du

=

∫
B2(R2)

( ∫
√

1−u2
1−u2

2S2n−3

(u2
1 + u2

2)
p
2 du3 · · · du2n

)
(1− u2

1 − u2
2)
− 1

2 du1du2

= (2n− 2)κ2n−2

∫
B2(R2)

(u2
1 + u2

2)
p
2 (1− u2

1 − u2
2)

n−2du1du2

= (2n− 2)κ2n−2 · 2π
∫ 1

0

rp+1(1− r2)n−2dr

=
2πnΓ(p

2
+ 1)

Γ(n + p
2
)

.

�
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Theorem 6.7 Suppose p ∈ [1,∞]. If µ is a complex isotropic measure on S2n−1, then

κ2n/α2n,p ≤ |Cc
p(µ)∗| and |Cc

p(µ)| ≤ κ2nα2n,p,

with equality in either inequality if µ is suitably normalized Lebesgue measure.

Proof. To establish the first inequality, observe that for p ∈ [1,∞), the polar coordinate

formula for volume and (8), together with the Hölder inequality, definition (32), Fubini’s

theorem, Lemma 6.6 and (28), implies( |Cc
p(µ)∗|
κ2n

)− p
2n

=
( 1

2nκ2n

∫
S2n−1

hCc
p(µ)(u)−2ndu

)− p
2n

≤ 1

2nκ2n

∫
S2n−1

hCc
p(µ)(u)pdu

=
1

2nκ2n

∫
S2n−1

( ∫
S2n−1

(〈u, v〉2 + 〈u, v†〉2)
p
2 dµ(v)

)
du

=
1

2nκ2n

∫
S2n−1

( ∫
S2n−1

(〈u, v〉2 + 〈u, v†〉2)
p
2 du

)
dµ(v)

=
Γ(n)Γ(p

2
+ 1)

Γ(n + p
2
)

∫
S2n−1

dµ(v) = α
p
2n
2n,p

with equality if and only if Cc
p(µ) is a ball. Using Lemma 6.6 with p = 2, and (27), we

have

dµ(u) =
1

2κ2n

du

is complex isotropic. Thus, Lemma 6.6 shows that Cc
p(µ) (p ∈ [1,∞)) is a ball for this

measure µ.

The second inequality is proved by using the classical Urysohn inequality (12) for p ∈
[1,∞). By Hölder’s inequality, definition (32), Fubini’s theorem, Lemma 6.6 and (28), we

have

( |Cc
p(µ)|
κ2n

) 1
2n ≤ 1

2nκ2n

∫
S2n−1

hCc
p(µ)(u)du

≤
[ 1

2nκ2n

∫
S2n−1

hCc
p(µ)(u)pdu

] 1
p

=
[ 1

2nκ2n

∫
S2n−1

( ∫
S2n−1

(〈u, v〉2 + 〈u, v†〉2)
p
2 dµ(v)

)
du

] 1
p

=
[ 1

2nκ2n

∫
S2n−1

( ∫
S2n−1

(〈u, v〉2 + 〈u, v†〉2)
p
2 du

)
dµ(v)

] 1
p

=
[Γ(n)Γ(p

2
+ 1)

Γ(n + p
2
)

∫
S2n−1

dµ(v)
] 1

p
= α

1
2n
2n,p
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with equality if and only if Cc
p(µ) is a ball. As before, there exists a suitably normalized

Lebesgue measure such that this measure is complex isotropic and Cc
p(µ) (p ∈ [1,∞)) is

a ball.

For p = ∞, we obtain

hCc
∞(µ)(ξ) = sup

v∈suppµ
‖ξ| span{v, v†}‖

≤ sup
v∈S2n−1

‖ξ| span{v, v†}‖

= sup
v∈S2n−1

h((B2(R2n)| span{v, v†}), ξ)

≤h((B2(R2n), ξ),

(48)

for each ξ ∈ S2n−1. Note that the last inequality is actually an equality since we can

set v = ξ. Therefore, we have Cc
∞(µ) ⊆ B2(R2n) and, thus, B2(R2n) ⊆ Cc

∞(µ)∗. When

the measure µ is a suitably normalized Lebesgue measure, then supp µ = S2n−1. Equality

holds in (48), that is, Cc
∞(µ) = B2(R2n). Together with α2n,∞ = 1, this concludes the

case p = ∞. �

Theorem 6.4, Theorem 6.5, and Theorem 6.7, together yield Theorem 1 and Theorem

2.

7. The sine transform of complex isotropic measures

In the following we adapt ideas of Maresch and Schuster [32].

Theorem 7.1 If µ is a complex isotropic measure on S2n−1, then

|Sc(µ)∗| ≤ |Sc(µ)|/β2n.

Proof. Suppose that supp µ = {v1, · · · , vm} and let µ({vi}) = c̄i > 0. Since µ is complex

isotropic, it follows that µ(S2n−1) =
∑m

i=1 c̄i = n by (28). Therefore, using P[span{vi,v
†
i }]⊥

=

I2n − vi ⊗ vi − v†i ⊗ v†i , we have

1

n− 1

m∑
i=1

c̄iP[span{vi,v
†
i }]⊥

= I2n. (49)

We define ci by

ci =
c̄i

n− 1
, for i = 1, · · · , m.

From (8), (36) and the fact that ‖x| [span{vi, v
†
i }]⊥‖ = h(B2(R2n)| [span{vi, v

†
i }]⊥, x),
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we obtain

‖x‖(Sc(µ))∗ = hSc(µ)(x) =
m∑

i=1

c̄i‖x| [span{vi, v
†
i }]⊥‖

=
m∑

i=1

c̄ih(B2(R2n)| [span{vi, v
†
i }]⊥, x)

= h
( m∑

i=1

c̄iB2(R2n)| [span{vi, v
†
i }]⊥, x

)
,

where the addition in the last equality is Minkowski addition of convex sets. Hence, it

follows that

Sc(µ) = {x ∈ R2n : x =
m∑

i=1

c̄iyi, yi ∈ B2(R2n)| [span{vi, v
†
i }]⊥}.

Consequently,

|Sc(µ)| =
∫

R2n

sup
{ m∏

i=1

X[0,n−1](‖yi‖)ci : x =
m∑

i=1

ciyi, yi ∈ [span{vi, v
†
i }]⊥

}
dx, (50)

where X[0,n−1] is the characteristic function of [0, n− 1].

From (11) with p = 1 and (36), we obtain

|Sc(µ)∗| =
1

(2n)!

∫
R2n

exp(−‖x‖Sc(µ)∗)dx

=
1

(2n)!

∫
R2n

exp(−
m∑

i=1

c̄i‖x| [span{vi, v
†
i }]⊥‖)dx

=
1

(2n)!

∫
R2n

m∏
i=1

exp(−(n− 1)‖x| [span{vi, v
†
i }]⊥‖)cidx.

(51)

Define functions fi, gi : [span{vi, v
†
i }]⊥ → [0,∞), 1 ≤ i ≤ m, by

fi(y) =
(n− 1)2n−2

Γ(2n− 1)κ2n−2

exp(−(n− 1)‖y‖) (52)

and

gi(y) =
1

(n− 1)2n−2κ2n−2

X[0,n−1](‖y‖). (53)

Note that the normalizations are chosen such that∫
[span{vi,v

†
i }]⊥

fi =

∫
[span{vi,v

†
i }]⊥

gi = 1.
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Since
∑m

i=1 ci = n/(n− 1), by (49)-(53) and Theorem 5.3, it follows that

|Sc(µ)∗| =
(Γ(2n− 1)κ2n−2)

n
n−1

(2n)!(n− 1)2n

∫
R2n

m∏
i=1

fi(x| [span{vi, v
†
i }]⊥)cidx

≤ (Γ(2n− 1)κ2n−2)
n

n−1

(2n)!(n− 1)2n

∫
R2n

sup
{ m∏

i=1

gi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ [span{vi, v
†
i }]⊥

}
dx

=
Γ(2n− 1)1/(n−1)

(2n)(2n− 1)(n− 1)4n
|Sc(µ)| = |Sc(µ)|/β2n.

Now let µ be an arbitrary complex isotropic measure on S2n−1. Theorem 3.2 implies that

there exists a sequence µk, k ∈ N, of discrete complex isotropic measures such that µk con-

verges weakly to µ as k →∞. Thus,

lim
k→∞

h(Sc(µk), v) = h(Sc(µ), v) for every v ∈ S2n−1.

Since pointwise convergence of support functions implies the convergence of the respective

convex bodies in the Hausdorff metric (see e.g., [35]), the continuity of volume and polarity

on convex bodies completes the proof. �

Next, we establish the lower bound for the volume of Sc(µ)∗ and the upper bound for

the volume of Sc(µ). The following lemma is needed.

Lemma 7.2 For each v ∈ S2n−1,∫
S2n−1

√
1− 〈u, v〉2 − 〈u, v†〉2du =

4πn

(2n− 1)Γ(n− 1)
.

Proof. Note that v, v† are mutually orthogonal unit vectors, thus there exists U ∈
SO(R2n), such that v = Ue1, v

† = Ue2. Thus, by the rotation invariance of the spherical

Lebesgue measure, it is sufficient to consider v = e1. Using polar coordinates, we obtain∫
S2n−1

√
1− u2

1 − u2
2du

=

∫
B2(R2)

( ∫
√

1−u2
1−u2

2S2n−3

√
1− u2

1 − u2
2du3 · · · du2n

)
(1− u2

1 − u2
2)
− 1

2 du1du2

= (2n− 2)κ2n−2

∫
B2(R2)

(1− u2
1 − u2

2)
n− 3

2 du1du2

= (2n− 2)κ2n−2 · 2π
∫ 1

0

r(1− r2)n− 3
2 dr

=
4πn

(2n− 1)Γ(n− 1)
.

�
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Theorem 7.3 If µ is a complex isotropic measure on S2n−1, then

κ2n

( 2n− 1

2n(n− 1)

)2n

≤ |Sc(µ)∗| and |Sc(µ)| ≤ κ2n

(2n(n− 1)

2n− 1

)2n

,

with equality in either inequality if µ is suitably normalized Lebesgue measure.

Proof. By the polar coordinate formula for volume, (8), the Hölder inequality, defini-

tion (34), Fubini’s theorem, Lemma 7.2 and (28), we have( |Sc(µ)∗|
κ2n

)−1/(2n)

=
( 1

2nκ2n

∫
S2n−1

h(Sc(µ), u)−2ndu
)−1/(2n)

≤ 1

2nκ2n

∫
S2n−1

h(Sc(µ), u)du

=
1

2nκ2n

∫
S2n−1

( ∫
S2n−1

√
1− 〈u, v〉2 − 〈u, v†〉2dµ(v)

)
du

=
1

2nκ2n

∫
S2n−1

( ∫
S2n−1

√
1− 〈u, v〉2 − 〈u, v†〉2du

)
dµ(v)

=
2n− 2

2n− 1

∫
S2n−1

dµ(v) =
2n(n− 1)

2n− 1
.

with equality if and only if Sc(µ) is a ball. Using Lemma 6.6 with p = 2, and (27), we see

that

dµ(u) =
1

2κ2n

du

is complex isotropic. Thus, Lemma 7.2 yields that Sc(µ) is a ball for this measure µ.

The second inequality is proved by using the classical Urysohn inequality (12). By

definition (34), Fubini’s theorem, Lemma 7.2 and (28), we have

( |Sc(µ)|
κ2n

)1/(2n)

≤ 1

2nκ2n

∫
S2n−1

h(Sc(µ), u)du

=
1

2nκ2n

∫
S2n−1

( ∫
S2n−1

√
1− 〈u, v〉2 − 〈u, v†〉2dµ(v)

)
du

=
1

2nκ2n

∫
S2n−1

( ∫
S2n−1

√
1− 〈u, v〉2 − 〈u, v†〉2du

)
dµ(v)

=
2n− 2

2n− 1

∫
S2n−1

dµ(v) =
2n(n− 1)

2n− 1
.

with equality if and only if Sc(µ) is a ball. As before, a suitably normalized Lebesgue

measure is complex isotropic and Sc(µ) is a ball. �

Theorem 3 and Theorem 4 now follow from Theorem 7.1 and Theorem 7.3.

Finally, we show that the left inequality in (3) and the left inequality in (4) are

asymptotically optimal.
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Theorem 7.4 If νn for n ≥ 3, are complex cross measures on S2n−1 then

lim
n→∞

1

κ2nβ2n

(2n(n− 1)

2n− 1

)2n

|Sc(νn)| = lim
n→∞

β2n

κ2n

( 2n− 1

2n(n− 1)

)2n

|Sc(νn)∗| = 1

Proof. As in the proof of Corollary 6.2, we only need to consider the basic com-

plex cross measures. Thus, supp νn = {span{e1, e
†
1} ∩ S2n−1, · · · , span{e2n−1, e

†
2n−1} ∩

S2n−1} and νn(span{e2i−1, e
†
2i−1} ∩ S2n−1) = 1 for 1 ≤ i ≤ n.

By (36), we obtain

h(Sc(νn), ξ) =
n∑

i=1

µ(span{e2i−1, e
†
2i−1} ∩ S2n−1)‖ξ| [span(ei, e

†
i )]

⊥‖

=
n∑

i=1

‖ξ| [span{ei, e
†
i}]⊥‖ =

n∑
i=1

√
1− ξ2

i1 − ξ2
i2,

subject to

‖ξ‖ = ‖(ξ11, ξ12, · · · , ξn1, ξn2)‖ =
n∑

i=1

(ξ2
i1 + ξ2

i2) = 1.

Using the Lagrange multiplier rule, it is easy to see that

max
ξ∈S2n−1

h(Sc(νn), ξ) = n

√
1− 1

n
,

and the maximum is attained at the points
n⋂

i=1

{ξ| ξ2
i1 + ξ2

i2 = 1
n
}. Therefore, we have the

inclusion

Sc(νn) ⊆ n

√
1− 1

n
B2(R2n).

Using Theorem 3 and Theorem 4, we immediately obtain the following volume bounds

for Sc(νn) and (Sc(νn))∗:

κ2nβ2n

( 2n− 1

2n(n− 1)

)2n

≤ |Sc(νn)| ≤ κ2nn
2n(1− 1

n
)n, (54)

and
κ2n

n2n
(1− 1

n
)−n ≤ |Sc(νn)∗| ≤ κ2n

β2n

(2n(n− 1)

2n− 1

)2n

. (55)

Using Stirling’s formula and the definition of the constant β2n, we have

lim
n→∞

1

β2n

(2n(n− 1)

2n− 1

)2n

n2n(1− 1

n
)n = 1.

Combining (54) and (55), concludes the proof.
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