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Abstract. Using M -addition, an asymmetric Orlicz centroid in-

equality for absolutely continuous probability measures is estab-

lished corresponding to Paouris and Pivovarov’s recent result on

the symmetric case. As an application, we extend Haberl and

Schuster’s asymmetric Lp centroid inequality from star bodies to

compact sets.

1. Introduction

Recently, some elements of the Orlicz Brunn-Minkowski theory have

been emerged, namely Orlicz projection and centroid bodies as well

as the Orlicz Minkowski problem (see, e.g., [2, 7, 11, 12, 14, 15, 17,

18, 21, 26, 27, 28]). This extension is motivated by asymmetric con-

cepts within the Lp Brunn-Minkowski theory developed by Ludwig [13],

Haberl and Schuster [8, 9], and Haberl, Schuster and Xiao [10]. In this

paper, we show asymmetric elements in the Orlicz centroid inequality

for absolutely continuous probability measures.

In order to state the results regarding to the Orlicz centroid bod-

ies, several notations are needed. Let Conv(R) be the class of convex

functions φ : R → [0,∞) such that φ(0) = 0 and such that φ is ei-

ther strictly decreasing on (−∞, 0] or φ is strictly increasing on [0,∞).
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Let Conv[0,∞) be the class of convex, strictly increasing functions φ :

[0,∞) → [0,∞) such that φ(0) = 0. We denote Bn
2 for the Eu-

clidean ball of radius one and Dn for the Euclidean ball of volume

one. Lebesgue measure restricted to Dn is λDn . Let P[n] be the class of

probability measures on Rn that are absolutely continuous with respect

to Lebesgue measure. For a convex body K (i.e., a compact convex set

in Rn with non-empty interior) denote by h(K, y) = max{x·y : x ∈ K},
for y ∈ Rn, the support function of K.

In [18], Lutwak, Yang, and Zhang prove the following Orlicz centroid

inequality (see also Li and Leng in [12]). Later, Zhu [28] extends this

inequality from the body that contains the origin in its interior to the

star bodies (see section 2 for precise definition) with respect to the

origin.

Orlicz centroid inequality for convex bodies. If φ ∈ Conv(R) and

K is a convex body in Rn that contains the origin in its interior with

voln(K) = 1. Define the Orlicz centroid body ΓφK to be the convex

body whose support function at y ∈ Rn is given by

h(ΓφK, y) = inf
{

λ > 0 :

∫
K

φ
(x · y

λ

)
dx ≤ 1

}
,

then

voln(Γφ(K)) ≥ voln(Γφ(Dn))

with equality holds if and only if K is an ellipsoid centered at the origin.

When φ(t) = |t|, the inequality is the volume-normalized classical

centroid inequality. When φ(t) = |t|p, and p > 1, the inequality is

the Lp centroid inequality [1, 16]. Haberl and Schuster’s asymmet-

ric Lp centroid inequality [9] is the case φ(t) = (|t| + αt)p, for −1 ≤
α ≤ 1 of the inequality.

By using probability arguments, Paouris and Pivovarov [21] recently

obtain the following result.

Symmetric Orlicz centroid inequality for probability measures

Let φ ∈ Conv[0,∞) and µ ∈ P[n]. Define the symmetric Orlicz centroid
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body Γφ(µ) of µ corresponding to φ by its support function

h(Γφ(µ), y) = inf
{

λ > 0 :

∫
Rn

φ
( |x · y|

λ

)
dµ ≤ 1

}
.

If f denotes the density of µ and if ‖f‖∞ ≤ 1, then

voln(Γφ(µ)) ≥ voln(Γφ(λDn)).

The main purpose of this paper is to exhibit the asymmetric version

of the above theorem. Our starting point is that observing Paouris and

Pivovarov’s recent work [21, 22, 23] are closely related to the concept

of M -addition, which is first introduced by Protasov [24] and general-

ized by Gardner, Hug and Weil [6]. As it has been shown in [6], M is 1-

unconditional and M ⊂ [0,∞)m play an important role in M -addition.

Indeed, the above theorem had been proved by M is 1-unconditional

under some Orlicz assumptions in [21]. By letting M ⊂ [0,∞)m, we

obtain the following theorem.

Theorem (Asymmetric Orlicz centroid inequality for proba-

bility measures) Let φ ∈ Conv[0,∞) and µ ∈ P[n]. Define the asym-

metric Orlicz centroid body Γ+
φ (µ) of µ corresponding to φ by its support

function

h(Γ+
φ (µ), y) = inf

{
λ > 0 :

∫
Rn

φ
((x · y)+

λ

)
dµ ≤ 1

}
,

where (x · y)+ = max{x · y, 0}. If f denotes the density of µ and

if ‖f‖∞ ≤ 1, then

voln(Γ+
φ (µ)) ≥ voln(Γ+

φ (λDn)).

From this theorem, Haberl and Schuster’s asymmetric Lp centroid

inequality [9] can be extended from star bodies (about the origin) to

compact sets (see Corollary 4.1). The ideas and techniques of Paouris

and Pivovarov play a critical role throughout this paper. It would be

impossible to overstate our reliance on their work.

The rest of this paper is organized as follows: In Section 2, some basic

notations and preliminaries are provided. In Section 3, we complete the
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proof of the asymmetric Orlicz centroid inequality for probability mea-

sures. In Section 4, we establish the asymmetric Lp centroid inequality

for compact sets, which extends a result of Haberl and Schuster.

2. Notations and preliminaries

In this section we present some terminologies and notations we shall

use throughout. For general reference the reader may wish to consult

the books of Gardner [5], Schneider [25].

The setting for this article is n-dimensional Euclidean space Rn.

We write Rn
+ = [0,∞)n. The standard basis in Rn will be denoted

by e1, e2, · · · , en. We say the vector x ∈ Rn is a positive combination

of the vectors x1, · · · , xk ∈ Rn if

x =
k∑

i=1

λixi with λi ≥ 0 (i = 1, · · · , k).

For A ⊂ Rn, the set of all positive combinations of any finitely many

elements of A is denoted by pos{A}.
Let Kn be the class of compact convex sets in Rn with non-empty

interior, let Kn
o be the class of members of Kn containing the origin in

their interiors.

A compact set K ⊂ Rn is called a star body, if every straight line

that passes through the origin crosses the boundary of the set at exactly

two points and the boundary of K is continuous in the sense that the

Minkowski functional of K, defined by

‖x‖K = inf{λ ≥ 0 : x ∈ λK} (2.1)

is a continuous function on Rn.

The polar set Ko of K ∈ Kn
o is the convex body defined by

Ko = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}. (2.2)

If K ∈ Kn
o is a convex body, then it follows from the definitions of sup-

port functions and Minkowski functionals, and the definition of polar
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body, that

h(Ko, ·) = ‖ · ‖K . (2.3)

The Hausdorff metric δH(K, L) between sets K, L ∈ Kn can be de-

fined by

δH(K, L) = sup
y∈Sn−1

|h(K, y)− h(L, y)|. (2.4)

For p ≥ 1, K, L ∈ Kn
o , and α, β ≥ 0 (not both zero), the Lp Minkowski

combination α ·K +p β · L is the convex body defined by

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p. (2.5)

Introduced by Firey [4] in the 1960’s, this notion is the basis of what

has become known as the Lp Brunn-Minkowski theory.

We shall call a convex body K in Rn 1-unconditional if it is sym-

metric with respect to each coordinate hyperplane. In other words,

if x = (x1, · · · , xn) ∈ K then the whole rectangle [−|x1|, |x1|] × · · · ×
[−|xn|, |xn|] is contained in K.

The concept of M -addition is introduced by Protasov [24] in 1997:

Let M be an arbitrary subset of R2 and define the M -sum K ⊕M L of

arbitrary sets K and L in Rn by

K ⊕M L = {ax + by : x ∈ K, y ∈ L, (a, b) ∈ M}. (2.6)

Recently, Gardner, Hug and Weil [6] generalize this concept as follows:

Let M be an arbitrary subset of Rm and define the M -combination

⊕M(K1, K2, · · · , Km) of arbitrary sets K1, K2, · · · , Km in Rn by

⊕M(K1, K2, · · · , Km) =
{ m∑

i=1

aixi : xi ∈ Ki, (a1, a2, · · · , am) ∈ M
}

.

Note that a special set M of (2.6) is treated by Lutwak, Yang and

Zhang [19], which aims to extend Lp-addition from convex bodies to

compact sets.
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Unlike general cases, we consider the case that K1, · · · , Km ∈ Rn are

replaced by x1, · · · , xm ∈ Rn; i.e.,

⊕M (x1, x2, · · · , xm) =
{ m∑

i=1

aixi : (a1, a2, · · · , am) ∈ M
}

. (2.7)

To make clear that M ⊂ Rm, we denote Mm for M . Note that for Mm ∈
Km, ⊕Mm(x1, · · · , xm) belongs to Kn. Indeed, for points (a1, · · · , am),

(b1, · · · , bm) ∈ Mm, let

s =
m∑

i=1

aixi, t =
m∑

i=1

bixi,

if s, t ∈ ⊕M(x1, x2, · · · , xm), then the convexity of Mm implies that (1−
λ)s+λt ∈ ⊕Mm(x1, · · · , xm) for 0 < λ < 1. Moreover, by the definition

of support functions, we have

h(⊕Mm(x1, · · · , xm), y) = max
(a1,··· ,am)∈Mm

(∑m

i=1
aixi

)
· y

= max
(a1,··· ,am)∈Mm

∑m

i=1
ai(xi · y)

= hMm(x1 · y, · · · , xm · y).

(2.8)

3. Asymmetric Orlicz centroid inequality

In order to state the following Lemma 3.1, we have to take the

probabilistic setting. Assume that µ1, µ2, · · · are probability measures

in P[n] and fi denotes the density of µi (for i = 1, 2, · · · ). Suppose that

we have the following sequences of independent random vectors:

(1) X1, X2, · · · with Xi distributed according to fi;

(2) Z1, Z2, · · · with Zi distributed according to 1Dn .

If we adopt the common convention that all random vectors are de-

fined on a common underlying probability space (Ω, Σ, P) and E denotes

expectation with respect to P, then the random vector Xi with n real

components defined on the probability space (Ω, Σ, PXi
) is a vector val-

ued function Xi : Ω → Rn with the property that {ω ∈ Ω : Xi(ω) ≤
xi} ∈ Σ for all xi ∈ Rn. Here, the notation Xi ≤ xi is shorthand

for X1i ≤ x1i, · · · , Xni ≤ xni, where Xi = (X1i, · · · , Xni) and xi =
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(x1i, x2i, · · · , xni) ∈ Rn. The probability space (Ω, Σ, PZi
) is analogous

with (Ω, Σ, PXi
).

For given the convex body MN ⊂ RN(N ≥ n), from (2.7), the ran-

dom vectors X1, X2, · · · , XN and Z1, Z2, · · · , ZN produce respectively

the random convex bodies in Rn, i.e.,

⊕MN
(X1, · · · , XN), ⊕MN

(Z1, · · · , ZN) ∈ Kn.

They can be regarded as from Ω to Kn (Kn is a metric space in the

Hausdorff metric δH , see e.g., [25]) measurable maps.

We say that an event happens almost surely (a.s.) if it happens

with probability one. In addition, we say the sequence of random

convex bodies {KN}∞N=n converge to a convex body K almost surely

as N →∞ if

P( lim
N→∞

δH(KN , K) = 0) = 1, (3.1)

where δH is the Hausdorff metric defined in (2.4).

Lemma 3.1. Suppose that (MN)∞N=n is a sequence of convex bodies

with MN ⊂ RN . Suppose CX , CZ are (random) convex bodies in Rn de-

fined by the following

CX := lim
N→∞

⊕MN
(X1, · · · , XN) (a.s.), (3.2)

CZ := lim
N→∞

⊕MN
(Z1, · · · , ZN) (a.s.), (3.3)

where the meaning of almost surely convergence of random convex bod-

ies is in (3.1). If there is constants R1, R2 > 0 such that for any N ≥ n

⊕MN
(X1, · · · , XN)) ⊆ R1B

n
2 (a.s.), (3.4)

⊕MN
(Z1, · · · , ZN)) ⊆ R2B

n
2 (a.s.), (3.5)

and suppose further that ‖fi‖∞ ≤ 1 for each i = 1, 2, · · · . Then

Evoln(CX) ≥ Evoln(CZ).
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Proof. Let TN = [X1 · · ·XN ] be an n×N matrix with columns X1 · · ·XN ,

and MN ⊂ RN a convex body. To prove this lemma, according to

Paouris and Pivovarov’s result in [21, Corollary 5.1], we only need to

prove that

TNMN = ⊕MN
(X1, · · · , XN).

In fact, from the definition of MN -addition (2.7) and the operation of

matrixes, we obtain immediately that

TNMN =
{ N∑

i=1

aiXi : (a1, a2, · · · , aN) ∈ MN

}
= ⊕MN

(X1, · · · , XN).

�

Recall for φ ∈ Conv[0,∞) the asymmetric Orlicz centroid body Γ+
φ (µ)

of µ corresponding to φ is defined by its support function

h(Γ+
φ (µ), y) = inf

{
λ > 0 :

∫
Rn

φ
((x · y)+

λ

)
dµ(x) ≤ 1

}
. (3.6)

Together with that (·)+ is subadditive and that φ is a convex, strictly

increasing function, similar to the proof of [18, Lemma 2.2], we obtain

that h(Γ+
φ (µ), y) is the support function of a convex body. We assume

that h(Γ+
φ (µ), y) is finite for each y ∈ Sn−1. (If h(Γ+

φ (µ), y) = ∞ for

some y ∈ Sn−1, then voln(Γ+
φ (µ)) = ∞ and Theorem in the introduc-

tion is trivially true.) Set

Bφ/N =
{

z = (z1, · · · , zN) ∈ RN :
1

N

N∑
i=1

φ(|zi|) ≤ 1
}

.

One can check that Bφ/N is convex, 1-unconditional, bounded and the

origin is an interior point. By (2.1), we have

‖z‖Bφ/N
:= inf{λ > 0 : z ∈ λBφ/N}.

Combining with (2.3), we have

hBo
φ/N

(z1, · · · , zN) = ‖(z1, · · · , zN)‖Bφ/N

= inf
{

λ > 0 :
1

N

N∑
i=1

φ
( |zi|

λ

)
≤ 1

}
.

(3.7)
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Now, we consider the following M+
N -addition:

M+
N = B+

φ/N = Bo
φ/N ∩ RN

+ ,

comparing with Paouris and Pivovarov’s MN -addition [21]:

MN = Bo
φ/N .

From (2.2), we obtain that if K is 1-unconditional, then Ko is 1-

unconditional. As Bφ/N is 1-unconditional, it follows that Bo
φ/N is 1-

unconditional.

Lemma 3.2. With the above notations, we have

hB+
φ/N

(z1, · · · , zN) = inf
{

λ > 0 :
1

N

N∑
i=1

φ
((zi)+

λ

)
≤ 1

}
.

Proof. We will consider the following two cases.

(i) For the case that z1, · · · , zN > 0. Since Bo
φ/N is 1-unconditional,

it follows that hB+
φ/N

(z1, · · · , zN) = hBo
φ/N

(z1, · · · , zN).

(ii) For the case that some components of (z1, · · · , zN) are nonposi-

tive. Without loss of generality, we may assume that z = (z1, · · · , zN)

such that z1, · · · , zk > 0 and zk+1, · · · , zN ≤ 0. Suppose a(z) =

(a1(z), · · · , aN(z)) ∈ B+
φ/N such that hB+

φ/N
(z1, · · · , zN) = a(z) · z.

We claim that there exits a′(z) = (a1(z), · · · , ak(z), 0, · · · , 0) such

that hB+
φ/N

(z1, · · · , zN) = a′(z)·z. Indeed, observe Bo
φ/N is 1-unconditional

and a(z) ∈ B+
φ/N , we have a′(z) ∈ B+

φ/N . Note that for a(z) ∈ B+
φ/N ,

we get ai(z) · zi ≤ 0 for i = k + 1 · · · , N . The claim follows from the

definition of the support function. So,

hB+
φ/N

(z1, · · · , zN) = hB+
φ/N

(z1, · · · , zk, 0, · · · , 0),

where z1, · · · , zk > 0 and zk+1, · · · , zN ≤ 0.

Together with (3.7) in both cases, the lemma follows. �
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From (2.8) and Lemma 3.2, we can get

h(⊕B+
φ/N

(x1, · · · , xN), y) = hB+
φ/N

(x1 · y, · · · , xN · y)

= inf
{

λ > 0 :
1

N

N∑
i=1

φ
((xi · y)+

λ

)
≤ 1

}
.

(3.8)

The following lemma is basically similar to Paouris and Pivovarov’s

symmetric version [21, Lemma 5.4]. For the sake of completeness, we

give a proof of the following lemma.

Lemma 3.3. Let µ ∈ P[n]. Let x1, x2, · · · be a sequence of vectors

in Rn and suppose that

pos{x1, · · · , xn+1} = Rn. (3.9)

Let φ ∈ Conv[0,∞). Assume that for each y ∈ Sn−1 and each λ > 0

such that

lim
N→∞

∣∣∣ 1

N

N∑
i=1

φ
((xi · y)+

λ

)
−

∫
Rn

φ
((x · y)+

λ

)
dµ(x)

∣∣∣ = 0. (3.10)

Then

Γ+
φ (µ) = lim

N→∞
⊕B+

φ/N
(x1, · · · , xN). (3.11)

Proof. Since pointwise convergence of support functions implies uni-

form convergence (see e.g. [25, Theorem 1.8.12]), it is sufficient to

show for each y ∈ Sn−1

lim
N→∞

h(⊕B+
φ/N

(x1, · · · , xN), y) = h(Γ+
φ (µ), y). (3.12)

Fix y ∈ Sn−1. By (3.9), there exists i ∈ {1, · · · , n + 1} such that xi ·
y > 0. Together with φ is strictly increasing and φ(0) = 0, we have

1

N

N∑
i=1

φ
((xi · y)+

λ

)
> 0
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for N ≥ n + 1 and λ > 0. Since φ is convex and strictly increasing, it

follows that both of the functions PN , P : (0,∞) → (0,∞) defined by

PN(λ) :=
1

N

N∑
i=1

φ
((xi · y)+

λ

)
and

P (λ) :=

∫
Rn

φ
((x · y)+

λ

)
dµ(x)

are continuous and strictly decreasing.

Hence, from (3.8) and the definition of h(Γ+
φ (µ), y), we have

λ(N) := h(⊕B+
φ/N

(x1, · · · , xN), y) = inf{λ > 0 : PN(λ) ≤ 1} (3.13)

and

λ0 := h(Γ+
φ (µ), y) = inf{λ > 0 : P (λ) ≤ 1}. (3.14)

Now, we argue by contradiction, assume that (3.12) is false; i.e.,

there exists ε0 > 0 and a subsequence (Nj)
∞
j=1 ⊂ N such that either

(i) λ(Nj) ≥ λ0 + ε0 for j = 1, 2, · · · , or

(ii) λ(Nj) ≤ λ0 − ε0 for j = 1, 2, · · · .
For the case (i). Let

λ∗ := inf
j

λ(Nj). (3.15)

By the assumption (i), we have

λ∗ ≥ λ0 + ε0. (3.16)

Let η > 0. From (3.13), (3.15) and the fact that PNj
is decreasing, it

follows that

1 < PNj
(λ(Nj)− η) ≤ PNj

(λ∗ − η).

Moreover, by (3.10), we have

1 ≤ lim
j→∞

PNj
(λ∗ − η) = P (λ∗ − η).

Since η > 0 is arbitrary, and P is continuous, we have 1 ≤ P (λ∗).

On the other hand, from (3.16), (3.14) and P is a strictly decreasing

continuous function, we have P (λ∗) ≤ P (λ0 + ε0) < 1. This leads to a

contradiction.
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For the case (ii). Let

λ∗ := sup
j

λ(Nj). (3.17)

By the assumption (ii), we have

λ∗ ≤ λ0 − ε0. (3.18)

Let η > 0. From (3.13), (3.17) and the fact that PNj
is decreasing, it

follows that

PNj
(λ∗ + η) ≤ PNj

(λ(Nj) + η) ≤ 1.

Moreover, by (3.10), we have

P (λ∗ + η) = lim
j→∞

PNj
(λ∗ + η) ≤ 1.

Together with (3.14), we get λ0 ≤ λ∗ + η. Since η > 0 is arbitrary, we

have λ0 ≤ λ∗, contradicting (3.18).

�

Now, using above three lemmas, we prove the asymmetric Orlicz

centroid inequality for probability measures.

Theorem. Let φ ∈ Conv[0,∞) and µ ∈ P[n]. If f denotes the density

of µ and if ‖f‖∞ ≤ 1, then

voln(Γ+
φ (µ)) ≥ voln(Γ+

φ (λDn)),

where λDn is the Lebesgue measure restricted to Dn.

Proof. We can assume that there exist x1, · · · , xn+1 ∈ supp(µ) such

that

pos{x1, · · · , xn+1} = Rn. (3.19)

Otherwise, it follows that pos{supp(µ)} 6= Rn. Then from (3.6) and φ(0) =

0, we can let h(Γ+
φ (µ), y) = ∞ for y /∈ pos{supp(µ)}. Thus, voln(Γ+

φ (µ)) =

∞ and the theorem is trivially true.

First, we prove that the assumptions of Theorem satisfy that (3.2)

and (3.4) in Lemma 3.1.

Let X1, X2, · · · be independent and identically distributed according

to f (the density of µ). By standard approximation arguments, we can



AN ASYMMETRIC ORLICZ CENTROID INEQUALITY 13

assume that µ is compactly supported, namely there exists RX > 0 such

that

supp(µ) ⊂ RXBn
2 . (3.20)

It follows that

(Xi · y)+ ≤ RX (3.21)

for all i ∈ N and y ∈ Sn−1.

Fixed y ∈ Sn−1 and λ > 0. Let X̃i = φ((Xi, y)+/λ) for i ∈ N,

together with φ is strictly increasing, µ(Rn) = 1 and (3.21), we have

E|X̃1| = Eφ
((X1, y)+

λ

)
=

∫
Rn

φ
((x · y)+

λ

)
dµ(x) ≤ φ

(RX

λ

)
< ∞.

Thus, by the strong law of large numbers (e.g. [3, Theorem 8.3.5]), we

obtain that

X̃1 + · · ·+ X̃N

N
=

1

N

N∑
i=1

φ
((Xi · y)+

λ

)
→ EX̃1 =

∫
Rn

φ
((x · y)+

λ

)
dµ(x) (a.s.),

this is, Xi’s satisfy (3.10) almost surely. Moreover (3.9) is satisfied by

(3.19). Then, by applying Lemma 3.3, in the Hausdorff metric, we

obtain that

Γ+
φ (µ) = lim

N→∞
⊕B+

φ/N
(X1, · · · , XN) (a.s.).

This shows that (3.2) in Lemma 3.1 is satisfied (where Γ+
φ (µ) and B+

φ/N

correspond to CX and MN in Lemma 3.1, respectively).

For convenience, let

λX :=
RX

φ−1(1)
.

Note that φ is strictly increasing, therefore, for any N and any y ∈
Sn−1, by (3.21), we have

1

N

N∑
i=1

φ
((Xi · y)+

λX

)
≤ 1

N

N∑
i=1

φ
(RX

λX

)
=

1

N

N∑
i=1

φ(φ−1(1)) = 1,

together with (3.8), it follows that

h(⊕B+
φ/N

(X1, · · · , XN), y) ≤ λX .
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Hence, for any N ,

⊕B+
φ/N

(X1, · · · , XN) ⊆ λXBn
2 . (3.22)

This shows that (3.4) in Lemma 3.1 is satisfied.

Next, we prove that the assumptions of Theorem satisfy that (3.3)

and (3.5) in Lemma 3.1.

Let Z1, Z2, · · · be the sequence that Zi distributed according to 1Dn .

Note that (3.20), we can set RZ = (1/voln(Bn
2 ))1/n, it follows that

(Zi · y)+ ≤ RZ (3.23)

for all i ∈ N and y ∈ Sn−1.

Fixed y ∈ Sn−1 and λ > 0. Let Z̃i = φ((Zi, y)+/λ) for i ∈ N,

together with φ is strictly increasing, λDn(Rn) = 1 and (3.23), we have

E|Z̃1| = Eφ
((Z1, y)+

λ

)
=

∫
Dn

φ
((z · y)+

λ

)
dz ≤ φ

(RZ

λ

)
< ∞.

Thus, by the strong law of large numbers, we obtain that

Z̃1 + · · ·+ Z̃N

N
=

1

N

N∑
i=1

φ
((Zi · y)+

λ

)
→ EZ̃1 =

∫
Dn

φ
((z · y)+

λ

)
dz (a.s.).

This is, Zi’s satisfy (3.10) almost surely. Moreover, (3.19) is obviously

true when µ = λDn , thus (3.9) is satisfied. Then, applying Lemma 3.3,

in the Hausdorff metric,

Γ+
φ (λDn) = lim

N→∞
⊕B+

φ/N
(Z1, · · · , ZN) (a.s.).

This shows that (3.3) in Lemma 3.1 is satisfied (where Γ+
φ (λDn) corre-

sponds to CZ in Lemma 3.1).

Let

λZ :=
RZ

φ−1(1)
,

recall that φ is strictly increasing, therefore, for any N and any y ∈
Sn−1, by the inequality (3.23), we obtain that

1

N

N∑
i=1

φ
((Zi · y)+

λZ

)
≤ 1

N

N∑
i=1

φ
(RZ

λZ

)
=

1

N

N∑
i=1

φ(φ−1(1)) = 1.
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By (3.8), it follows that

h(⊕B+
φ/N

(Z1, · · · , ZN), y) ≤ λZ ,

hence, for any N ,

⊕B+
φ/N

(Z1, · · · , ZN) ⊆ λZBn
2 . (3.24)

This shows that (3.5) in Lemma 3.1 is satisfied.

Finally, by Lemma 3.1, we obtain that

Evoln(Γ+
φ (µ) ≥ Evoln(Γ+

φ (λDn).

Note that for given µ, from the definition (3.6) of Γ+
φ (µ), Γ+

φ (µ) is an

non-random set, and it is obvious that Γ+
φ (λDn) is an non-random set.

Thus,

Evoln(Γ+
φ (µ) = voln(Γ+

φ (µ), and Evoln(Γ+
φ (λDn) = voln(Γ+

φ (λDn).

This completes the proof of theorem. �

4. Asymmetric Lp centroid inequality

Let K ⊂ Rn be a compact set with voln(K) = 1. For p ≥ 1,

let Γ+
p (K) denote the asymmetric Lp centroid body of K; i.e., the

body with support function

h(Γ+
p (K), y) =

( ∫
K

(x · y)p
+dx

)1/p

.

Using the notation in [9], we define

Γ−p (K) = Γ+
p (−K),

and denote the convex body Γα
p (K), for −1 ≤ α ≤ 1, by

Γα
p (K) =

(1 + α)p

(1 + α)p + (1− α)p
· Γ+

p (K) +p
(1− α)p

(1 + α)p + (1− α)p
· Γ−p (K).

Note that the origin may be on the boundary of Γ+
p (K) or Γ−p (K).

As shown in [4], the Lp Minkowski combination (2.5) also applies

to K, L contains the origin as its boundary point.
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Now, we apply our theorem by setting φ = tp and the density f of µ by

f =
(1 + α)p

(1 + α)p + (1− α)p
1K +

(1− α)p

(1 + α)p + (1− α)p
1−K

with voln(K) = 1. Then, we have

Corollary 4.1. Let K ⊂ Rn be a compact set with voln(K) = 1. Then

voln(Γα
p (K)) ≥ voln(Γα

p (Dn)),

where Dn is the Euclidean ball of volume one.

For star bodies K ∈ Rn this inequality, together with the equality

conditions, is previously proved by Haberl and Schuster [9, Theorem

6.4]. Note that their result can also be deduced by Zhu’s Orlicz centroid

inequality for star bodies [28]. Moreover, let α = 1 in Corollary 4.1,

we have

Corollary 4.2. Let K ⊂ Rn be a compact set with voln(K) = 1. Then

voln(Γ+
p (K)) ≥ voln(Γ+

p (Dn)),

where Dn is the Euclidean ball of volume one.

The following Lp centroid inequality can be proved by Paouris and

Pivovarov’s theorem [21] (see also [20]). On the other hand, let α = 0 in

Corollary 4.1, we also have this inequality.

Corollary 4.3. Let K ⊂ Rn be a compact set with voln(K) = 1. Then

voln(Γp(K)) ≥ voln(Γp(Dn)),

where Dn is the Euclidean ball of volume one.

For star bodies K ∈ Rn this inequality, together with the equality

conditions, is proved in [16]; see [1] for an alternate proof.
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