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ON BONNESEN-TYPE INEQUALITIES

FOR A SURFACE OF CONSTANT CURVATURE

WENXUE XU, JIAZU ZHOU, AND BAOCHENG ZHU

(Communicated by Lei Ni)

Abstract. New Bonnesen-type inequalities for simply connected domains on
surfaces of constant curvature are proved by using integral formulas. These
inequalities are generalizations of known inequalities of convex domains.

1. Introduction and preliminaries

The classical isoperimetric inequality says that for a compact set K bounded by
a rectifiable simple closed curve in the Euclidean plane R

2, denote by AK and PK

the area and perimeter of K, respectively. Then

(1.1) P 2
K − 4πAK ≥ 0,

with equality if and only if K is a Euclidean disc.
A Bonnesen-type inequality is a sharp isoperimetric inequality that includes an

error estimate in terms of inscribed and circumscribed regions. That is, there is a
non-negative invariant BK of geometric significance such that

(1.2) P 2
K − 4πAK ≥ BK ,

where BK vanishes if and only if K is a Euclidean disc.
The typical example is the following Bonnesen isoperimetric inequality (see [3,4]):

(1.3) P 2
K − 4πAK ≥ π2(R

K
− rK)

2

,

where RK and rK , respectively, denote the circumradius and inradius of K, with
equality if and only if K is a Euclidean disc.

In the 1920’s, Bonnesen first gave the inequality (1.3). Then many Bonnesen-
type inequalities were found along with variations and generalizations (see [2–6, 8,
15, 20, 21, 24, 30–43]).
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Let Xκ be the surface of constant curvature κ, specifically:

Xκ =

⎧⎪⎨
⎪⎩
Sκ, Euclidean 2-sphere of radius 1/

√
κ, if κ > 0;

R
2, Euclidean plane, if κ = 0;

Hκ, Hyperbolic plane of constant curvature κ, if κ < 0.

The isoperimetric inequality in Xκ has been established. For a compact set K
bounded by a rectifiable simple closed curve with the area AK and perimeter PK

in Xκ, then (see [1, 7, 10, 13, 14, 17–23,25–30,32, 33, 35–37,39]):

(1.4) P 2
K − (4π − κAK)AK ≥ 0,

with equality if and only if K is a geodesic disc.
The isoperimetric deficit of K is defined as

(1.5) Δκ(K) = P 2
K − (4π − κAK)AK .

The quantity Δκ(K) measures the deficit between K and a geodesic disc in Xκ.
Then the Bonnesen-type inequality of K takes the form

(1.6) Δκ(K) ≥ BK ,

where the quantity BK is a non-negative invariant of geometric significance and
vanishes if and only if K is a geodesic disc (see [19, 20, 32, 42]).

Many Bonnesen-type inequalities in Xκ have been found (see [3, 4, 9, 14, 20, 21]).
Santaló and Hadwiger obtain the isoperimetric inequality and Bonnesen-type in-
equalities by Blaschke and Poincaré’s fundamental kinematic formulas in integral
geometry (see [11, 12, 14, 22, 23]). Some new Bonnesen-type inequalities in Xκ are
works of Klain and Zhou by kinematic methods (see [9, 14, 16, 32, 39, 42]).

A set K is said to be convex if for points x, y ∈ K, the shortest geodesic curve
connecting x, y belongs to K. It should be noted that for a compact set K in Sκ,
we always assume that K lies in an open hemisphere of Sκ; then 2π − κAK > 0
follows.

In [14], Klain proved the following Bonnesen-type inequality:

(1.7) Δκ(K) ≥

(
(2π − κAK)

2
+ κP 2

K

)2

4(2π − κAK)2
(snκ(RK)− snκ(rK))2 ,

for compact convex set K satisfying the condition (2π − κAK)2 + κP 2
K ≥ 0 if

κ < 0, where RK and rK are, respectively, the radius of the minimum circumscribed
geodesic disc and the maximum inscribed geodesic disc of K.

Let K be a compact convex set in Sκ. Klain showed the following inequality:

(1.8) Δκ(K) ≥ 1

4
(2π − κAK)

2
(snκ(RK)− snκ(rK))

2
,

with equality if and only if K is a geodesic disc.
The function snκ(t) in (1.7) is defined as:

(1.9) snκ(t) =

⎧⎪⎨
⎪⎩

1√
−κ

sinh(
√
−κt), κ < 0,

t, κ = 0,
1√
κ
sin(

√
κt), κ > 0.
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Similarly, one defines

(1.10) cnκ(t) =

⎧⎪⎨
⎪⎩
cosh(

√
−κt), κ < 0,

1, κ = 0,

cos(
√
κt), κ > 0.

It is natural to define functions

(1.11) tnκ(t) =
snκ(t)

cnκ(t)
, ctκ(t) =

cnκ(t)

snκ(t)
.

Hence

(1.12) κ · sn2κ(t) + cn2κ(t) = 1.

Zhou and Chen obtained the following Bonnesen-type inequality (see [39]):

Δκ(K) ≥
(
2π − κ

2
AK

)2
(
tnκ

RK

2
− tnκ

rK
2

)2

,(1.13)

with equality if K is a geodesic disc.
Later, a strengthened version of (1.13) was given in [32] as follows:

Δκ(K) ≥
(
2π − κ

2 AK

)2 (
tnκ

RK

2 − tnκ
rK
2

)2
+
(
2π − κ

2 AK

)2 (
tnκ

RK

2 + tnκ
rK
2 − 2PK

4π−κAK

)2

,
(1.14)

with equality if K is a geodesic disc.
If κ = 0, inequality (1.14) immediately leads to a strengthened Bonnesen isoperi-

metric inequality:

P 2
K − 4πAK ≥ π2 (RK − rK)

2
+ (PK − πRK − πrK)

2
,

with equality if K is a Euclidean disc.
The geodesic disc of radius r with center x is defined as

Bκ(x, r) = {y ∈ Xκ : d(x, y) ≤ r},

where d is the geodesic distance function in Xκ. The area, perimeter of Bκ(x, r) in
Xκ are, respectively (see [14]),

(1.15) A(Bκ(x, r)) =
2π

κ
(1− cnκ(r)), P (Bκ(x, r)) = 2π snκ(r).

The limiting cases of κ → 0 yield to the Euclidean formulas A(B(x, r)) = πr2 and
P (B(x, r)) = 2πr.

In this paper, we always consider a compact setK bounded by a rectifiable simple
closed curve in Xκ without the convexity condition. Denote by AK the area and
PK the perimeter of K. Let rK and RK be the radius of the maximum inscribed
disc and the radius of the minimum circumscribed disc of K, respectively. Let C
be the set of all compact sets bounded by a rectifiable simple closed curve with
PK ≤ 2π√

κ
if κ > 0 in Xκ. For simplicity, denote Bκ(r) as a geodesic disc of radius

r instead of Bκ(x, r) in Xκ. Denote by χ(K) the Euler-Poincaré characteristic of
K. If K is a compact convex set, then χ(K) = 1, while χ(∅) = 0.
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By estimating the containment measure, we obtain a Bonnesen-type isoperimet-
ric inequality with a quantity BK larger than Klain’s Bonnesen-type isoperimetric
inequality (1.7), that is:

Theorem 1.1. Suppose K ∈ C. If (2π − κAK)2 + κP 2
K ≥ 0 for κ < 0, then

Δκ(K) ≥ ((2π−κAK)2+κP 2
K)

2

4(2π−κAK)2 (snκ(RK)− snκ(rK))2

+ 1
4(2π−κAK)2

[
4πPK −

(
(2π − κAK)2 + κP 2

K

)
(snκ(RK) + snκ(rK))

]2
,

(1.16)

with equality if K is a geodesic disc.

Also, we obtain a new Bonnesen-type isoperimetric inequality for K ∈ C, which
is always true for any rectifiable simple closed curves in the hyperbolic plane.

Theorem 1.2. Suppose K ∈ C. Then

(1.17)
Δκ(K) ≥ A2

K(4π−κAK)2

4(2π−κAK)2

(
1

snκ(rK) −
1

snκ(RK)

)2

+
A2

K(4π−κAK)2

4(2π−κAK)2

(
1

snκ(RK) +
1

snκ(rK) −
4πPK

AK(4π−κAK)

)2

,

with equality if K is a geodesic disc.

2. The Bonnesen-type inequalities in Xκ

Let K, L be compact sets of areas AK , AL bounded by rectifiable simple closed
curves of perimeters PK , PL in Xκ, respectively. Let Gκ be the group of isometries
in Xκ and let dg be the Harr measure on Gκ. In the content of integral geometry,
dg is called the kinematic density of Gκ. As is common in integral geometry we
let K be fixed and gL moving via the isometry g ∈ Gκ. We have the fundamental
kinematic formula of Blaschke (see [21]):

(2.1)

∫
{g: K∩gL�=∅}

χ(K ∩ gL) dg = 2π(AK +AL) + PKPL − κAKAL.

As the limiting case, when K, L degenerate to curves ∂K, ∂L, respectively, then
AK = AL = 0 and the perimeters are 2PK , 2PL. Then we have the kinematic
formula of Poincaré (see [21]):

(2.2)

∫
{g: ∂K∩∂(gL) �=∅}

�(∂K ∩ ∂(gL)) dg = 4PKPL.

Here �(∂K∩∂(gL)) is the number of points of the intersection ∂K∩∂(gL). Since the
compact sets are assumed to be simply connected and enclosed by simple curves, we
have χ(K ∩ gL) = n(g) ≡ the number of connected components of the intersection
K ∩ gL. Let μ = {g ∈ Gκ : K ⊂ gL or K ⊃ gL}; then the fundamental kinematic
formula of Blaschke (2.1) can be rewritten as (see [30, 39]):

(2.3)

∫
μ

dg +

∫
{g: ∂K∩∂(gL) �=∅}

n(g) dg = 2π(AK +AL) + PKPL − κAKAL.

When ∂K ∩ ∂(gL) �= ∅, each component of K ∩ gL is bounded by at least an arc
of ∂K and an arc of ∂(gL), and n(g) ≤ �(∂K ∩ ∂(gL))/2. Then the following
containment measure inequality is an immediate consequence of Poincaré’s formula
(2.2) and Blaschke’s formula (2.3) (see [9, 14, 21, 30]).
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Proposition 2.1. Let K,L be two compact sets in Xκ, each set bounded by a
rectifiable simple closed curve; then

(2.4)

∫
μ

dg ≥ 2π(AK + AL)− PKPL − κAKAL.

If we let K ≡ L, then there is no g ∈ Gκ such that gK ⊃ K nor gK ⊂ K.
Hence

∫
μ
dg = 0 and the inequality (2.4) immediately results in the isoperimetric

inequality (1.2).
Let L be a geodesic disc of radius r. Then there is no g ∈ Gκ such that gBκ(r) ⊂

K nor gBκ(r) ⊃ K for rK ≤ r ≤ RK . Then by (2.4), a Bonnesen-type inequality
follows:

Lemma 2.2. Suppose K ∈ C. If rK ≤ r ≤ RK , then

(2.5)
[
(2π − κAK)2 + κP 2

K

]
sn2κ(r)− 4πPK snκ(r)−AK(κAK − 4π) ≤ 0.

Proof. Let L be a geodesic disc Bκ(r) of radius r between the maximum inscribed
disc of radius rK and the minimum circumscribed disc of radius RK of K. We have
neither gBκ(r) ⊂ K nor gBκ(r) ⊃ K for any g ∈ Gκ. Then the measure

∫
μ
dg = 0.

Then by (1.15) and (2.4) we have

(2.6) PK snκ(r)−
(
2π

κ
−AK

)
(1− cnκ(r))−AK ≥ 0.

Identity (1.12) shows 1 − κ · sn2κ(r) = cn2κ(r) > 0, and the inequality (2.6) can
be rewritten as

(2.7) PK snκ(r)−
2π

κ
≥

(
AK − 2π

κ

)√
1− κ · sn2κ(r).

For κ ≥ 0, we have

PK snκ(r)−
2π

κ
≤ 0.

Squaring both sides of (2.7) we have(
PK snκ(r)−

2π

κ

)2

≤
(
AK − 2π

κ

)2 (
1− κ · sn2κ(r)

)
,

that is,(
(2π − κAK)2 + κP 2

K

)
sn2κ(r)− 4πPK snκ(r)−AK(κAK − 4π) ≤ 0.

If κ < 0, then AK − 2π
κ > 0 and we have the following inequality by squaring

both sides of (2.7):(
PK snκ(r)−

2π

κ

)2

≥
(
AK − 2π

κ

)2 (
1− κ · sn2κ(r)

)
.

Hence, we have(
(2π − κAK)2 + κP 2

K

)
sn2κ(r)− 4πPK snκ(r)−AK(κAK − 4π) ≤ 0.

�

We are now in the position to establish Theorem 1.1.
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Proof of Theorem 1.1. Since (2π − κAK)2+κP 2
K ≥ 0 for arbitrary κ, by inequality

(2.5) the quantity(
(2π − κAK)

2
+ κP 2

K

){(
(2π − κAK)

2
+ κP 2

K

)
sn2κ(r)− 4πPK snκ(r)

−AK(κAK − 4π)
}

is non-positive for rK ≤ r ≤ RK , that is,

(2π − κAK)2Δκ(K) ≥
(
2πPK −

(
2π − κAK)2 + κP 2

K

)
snκ(r)

)2
.

Especially, for r = rK , r = RK , respectively,

(2π − κAK)2Δκ(K) ≥
(
2πPK −

(
(2π − κAK)

2
+ κP 2

K

)
snκ(rK)

)2

,(2.8)

(2π − κAK)2Δκ(K) ≥
((

(2π − κAK)
2
+ κP 2

K

)
snκ(RK)− 2πPK

)2

.(2.9)

Adding the two inequalities in (2.8) and (2.9) side by side, we have

2(2π − κAK)2Δκ(K) ≥
(
2πPK −

(
(2π − κAK)

2
+ κP 2

K

)
snκ(rK)

)2

+
((

(2π − κAK)
2
+ κP 2

K

)
snκ(RK)− 2πPK

)2

=
1

2

(
(2π − κAK)

2
+ κP 2

K

)2

(snκ(RK)− snκ(rK))
2

+ 2

(
2πPK − 1

2

(
(2π − κAK)

2
+ κP 2

K

)
(snκ(RK) + snκ(rK))

)2

.

Let K be a geodesic disc, that is, RK = rK ; then both sides of (1.16) are 0. Indeed,
since RK = rK , then Δκ(K) = 0 by (1.15). And (1.15) together with (1.12) shows
that

4πPK

(2π − κAK)
2
+ κP 2

K

−snκ(RK)−snκ(rK) =
2snκ(rK)

κ sn2κ(rK) + cn2κ(rK)
−2snκ(rK) = 0.

Thus we complete the proof. �
A compact non-convex set bounded by a rectifiable simple closed curve in a

hemisphere of Sκ may satisfy the condition PK ≤ 2π√
κ

in Sκ. For example, let

κ = 1
R2 ; then

2π√
κ
= 2πR is the perimeter of a great circle. There are compact non-

convex sets in a half hemisphere such that their perimeters PK ≤ 2πR = 2π√
κ
. All

compact convex sets in Sκ satisfy PK ≤ 2π√
κ
. On the other hand, there are compact

non-convex sets such that (2π − κAK)2 + κP 2
K ≥ 0 in Hκ; a line segment gives an

explicit counterexample to this condition (see [14]). The following Bonnesen-type
inequality that strengthens the inequality (1.7) is an immediate consequence of the
inequality (1.16) in Theorem 1.1.

Corollary 2.3. Let K be a compact convex set bounded by a rectifiable simple
closed curve in Xκ. If (2π − κAK)2 + κP 2

K ≥ 0 for κ < 0, then

Δκ(K) ≥ ((2π−κAK)2+κP 2
K)

2

4(2π−κAK)2 (snκ(RK)− snκ(rK))2

+
((2π−κAK)2+κP 2

K)
2

4(2π−κAK)2

(
4πPK

(2π−κAK)2+κP 2
K

− snκ(RK)− snκ(rK)
)2

,

with equality if K is a geodesic disc.
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Proof of Theorem 1.2. For rK ≤ r ≤ RK , via (2.5) we have

AK(4π − κAK)

sn2κ(r)
− 4πPK

snκ(r)
+ 4π2 + κΔκ(K) ≤ 0.

That is,

Δκ(K) ≥ AK(4π − κAK)

(2π − κAK)
2

(√
AK(4π − κAK)

snκ(r)
− 2πPK√

AK(4π − κAK)

)2

.

Especially, for r = rK and r = RK , respectively, we have

Δκ(K) ≥ AK(4π − κAK)

(2π − κAK)2

(√
AK(4π − κAK)

snκ(rK)
− 2πPK√

AK(4π − κAK)

)2

,

Δκ(K) ≥ AK(4π − κAK)

(2π − κAK)2

(√
AK(4π − κAK)

snκ(RK)
− 2πPK√

AK(4π − κAK)

)2

.

Adding the two inequalities side by side, we have

Δκ(K) ≥ AK(4π − κAK)

2 (2π − κAK)
2

⎧⎨
⎩
(√

AK(4π − κAK)

snκ(rK)
− 2πPK√

AK(4π − κAK)

)2

+

(√
AK(4π − κAK)

snκ(RK)
− 2πPK√

AK(4π − κAK)

)2
⎫⎬
⎭

=
A2

K(4π − κAK)2

4 (2π − κAK)2

(
1

snκ(rK)
− 1

snκ(RK)

)2

+
A2

K(4π − κAK)2

4 (2π − κAK)
2

(
1

snκ(RK)
+

1

snκ(rK)
− 4πPK

AK(4π − κAK)

)2

.

Let K be a geodesic disc, that is, RK = rK ; then both sides of (1.17) are 0. Indeed,
since RK = rK , then Δκ(K) = 0 by (1.15). And (1.15) together with (1.12) shows
that

1

snκ(RK)
+

1

snκ(rK)
− 4πPK

AK(4π − κAK)
=

2

snκ(rK)
− 2κ snκ(rK)

1− cn2κ(rK)
= 0.

We complete the proof of Theorem 1.2. �
The following Bonnesen-type inequality is an immediate consequence of the in-

equality (1.17) in Theorem 1.2 with equality condition.

Corollary 2.4. Suppose K ∈ C. Then

(2.10) Δκ(K) ≥ A2
K(4π−κAK)2

4(2π−κAK)2

(
1

snκ(RK) +
1

snκ(rK) −
4πPK

AK(4π−κAK)

)2

,

with equality if and only if K is a geodesic disc.

Proof. The inequality (2.10) follows from (1.17) and

(2.11)
A2

K(4π − κAK)2

4 (2π − κAK)2

(
1

snκ(rK)
− 1

snκ(RK)

)2

≥ 0.

Equality holds in (2.10) if and only if equalities hold in (1.17) and (2.11) at the
same time. That is, RK = rK and K must be a geodesic disc. �
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3. The limiting cases of the Euclidean plane R
2

In this section, we consider the limiting cases of these Bonnesen-type inequalities
obtained.

For κ > 0, let κ = 1
R2 . Then the inequality (1.16) becomes

P 2
K − 4πAK +

A2
K

R2

≥

((
2π − AK

R2

)2
+

P 2
K

R2

)2

4
(
AK

R2 − 2π
)2 R2

(
sin

RK

R
− sin

rK
R

)2

+
1

4
(
AK

R2 − 2π
)2

[
4πPK −

((
2π − AK

R2

)2

+
P 2
K

R2

)(
R sin

RK

R
+R sin

rK
R

)]
.

As R → ∞, by L’Hôpital’s rule we have

P 2
K − 4πAK

≥ lim
R→∞

{
π2R2

(
sin

RK

R
− sin

rK
R

)2

+ π2

(
PK

π
−R sin

RK

R
−R sin

rK
R

)2
}

= π2 (RK − rK)2 + (PK − πRK − πrK))2 ,

a strengthened Bonnesen isoperimetric inequality (see [32, 33]).
Let κ = − 1

R2 < 0; then (1.16) can be rewritten as

P 2
K − 4πAK − A2

K

R2

≥

((
2π − AK

R2

)2
+

P 2
K

R2

)2

4
(
AK

R2 − 2π
)2 R2

(
sinh

RK

R
− sinh

rK
R

)2

+
1

4
(
AK

R2 − 2π
)2

[
4πPK−

((
2π − AK

R2

)2

+
P 2
K

R2

)(
R sinh

RK

R
+R sinh

rK
R

)]
.

As R → ∞, it also leads to

P 2
K − 4πAK ≥ π2 (RK − rK)

2
+ (PK − πRK − πrK))

2
.

For κ = 1
R2 , inequality (1.17) can be rewritten as:

P 2
K − 4πAK +

A2
K

R2
≥

A2
K

(
4π − AK

R2

)2
4
(
2π − AK

R2

)2 1

R2

(
1

sin RK

R

− 1

sin rK
R

)2

+
A2

K

(
4π − AK

R2

)2
4
(
2π − AK

R2

)2
(

1

R sin RK

R

+
1

R sin rK
R

− 4πPK

AK(4π − AK

R2 )

)2

.

As R → ∞, we have the following Bonnesen-type inequality in R
2 (see [32]) that

strengthens a Bonnesen-type inequality

P 2
K − 4πAK ≥ A2

K

(
1

rK
− 1

RK

)2

in [38].
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Corollary 3.1. Let K be a compact set bounded by a rectifiable simple closed curve
in R

2. Then we have

P 2
K − 4πAK ≥ A2

K

(
1

rK
− 1

RK

)2

+A2
K

(
1

RK
+

1

rK
− PK

AK

)2

,

with equality if K is a Euclidean disc.
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