
VOLUME INEQUALITIES OF CONVEX BODIES
FROM COSINE TRANSFORMS ON GRASSMANN MANIFOLDS

AI-JUN LI, DONGMENG XI, AND GAOYONG ZHANG

Abstract. The Lp cosine transform on Grassmann manifolds naturally induces finite di-
mensional Banach norms whose unit balls are origin-symmetric convex bodies in Rn. Reverse
isoperimetric type volume inequalities for these bodies are established, which extend results
from the sphere to Grassmann manifolds.

1. Introduction

The solution to the classical isoperimetric problem says that among all convex bodies of
given surface area in the Euclidean space Rn, only the ball has maximal volume. It is usually
written as the following isoperimetric inequality,

S(K) ≥ nω
1
n
n V (K)

n−1
n ,

with equality if and only if the convex body K is a ball, where S(K) and V (K) denote the
surface area and volume of K, respectively, and ωn is the volume of the Euclidean unit ball.
A convex body in Rn is a compact convex set with nonempty interior.

Note that the volume of a convex body can be arbitrarily small when its surface area is
fixed. Thus, the isoperimetric inequality can not be reversed with a different constant factor.
Establishing a reverse isoperimetric inequality that characterizes cubes, simplices, or other
non-spherical convex bodies is a highly interesting problem in convex geometry.

The celebrated work of Keith Ball [2, 3] is a landmark in the study of the reverse isoperi-
metric problem. He proved that for any symmetric convex body K in Rn there is a volume
preserving linear transformation ψ so that the surface area of ψK is no larger than that of a
cube of the same volume. If symmetry is not assumed, he proved the similar remarkable result
for simplices. In Ball’s work [2–4], the notion of isotropy of measures on the unit sphere (see
(2.8)) and the Brascamp-Lieb inequality played critical roles. By using the method of mass
transportation, Barthe [7] found a new proof of the Brascamp-Lieb inequality and established
the reverse Brascamp-Lieb inequality. He then used the inequalities to show new reverse
isoperimetric inequalities, and also showed the uniqueness of equality cases of his and Ball’s
reverse isoperimetric inequalities, see [5–8]. The remarkable work of Ball and Barthe has mo-
tivated a series of new studies, see for example, [1,9,11–13,18–21,24–26,31–33,41–45,56,57].
Some of Ball and Barthe’s results were generalized in [42, 44] from discrete to arbitrary
isotropic measures on the unit sphere and from polytopes to arbitrary convex bodies in
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Rn. Most recently, Schuster and Weberndorfer [60] proved important reverse isoperimetric
inequalities for Wulff shapes of arbitrary isotropic measures and L2 functions on the unit
sphere which further generalize and unify the results of Ball [2, 3], Barthe [7], and [44,45].

The purpose of this paper is to extend volume inequalities arising from measures on the
unit sphere to volume inequalities for measures on Grassmann manifolds. We study the Lp

cosine transforms on Grassmann manifolds which include the spherical cosine and sine trans-
forms as special cases. Reverse isoperimetric inequalities are established for convex bodies
that are naturally associated with cosine transforms on Grassmann manifolds, which gener-
alize and unify the results on the unit sphere. New concepts and techniques are introduced
for proving these results.

A tool in harmonic analysis that is useful for the reverse isoperimetric problem is the
spherical cosine transform. The Lp cosine transform Cp on the unit sphere Sn−1 gives a nat-
ural analytical operator in convex geometric analysis. It induces n-dimensional norms which
are the norms of n-dimensional subspaces of Lp spaces. The unit balls of these subspaces
constitute an important class of origin-symmetric convex bodies which are called Lp-balls.
They are among the main objects of study in both convex geometric analysis and asymptotic
functional analysis, see for example, [15, 22, 29, 34–37, 40, 46, 52, 58, 59]. For a nonnegative
finite Borel measure µ on Sn−1, the spherical cosine transform Cpµ of µ is a convex function
homogeneous of degree p, 1 ≤ p < ∞, in Rn defined by

(Cpµ)(x) =

∫

Sn−1

|x · u|p dµ(u), x ∈ Rn,

where x · u denotes the inner product of vectors in Rn. The cosine transform can also be
defined appropriately when p < 1, and the case p = −1 is closely related to the spherical
Radon transform. Connections of the spherical cosine transform with the Fourier transform
and important applications of these integral transforms in convex geometry were presented
in [10,16,17,28,30,38,53–55,64].

When µ is not concentrated on a great subsphere, the p-th root of Cpµ is an n-dimensional
norm, denoted by ‖·‖Z∗p with unit ball Z∗

p = Z∗
p(µ). Thus, Z∗

p is an Lp-ball (the unit ball of an
Lp-space), which is the polar of another origin-symmetric convex body Zp. In other words,
Zp is the unit ball of the dual norm of ‖ · ‖Z∗p . When µ is the Lebesgue measure on the unit
sphere, Z∗

p is a Euclidean ball. When µ is a cross measure, which is an even discrete measure
that concentrates equally on n orthogonal antipodal pairs of directions, Z∗

p is obtained by a
dilation and a rotation from Bn

p (the `n
p -ball), i.e., Bn

p = {x ∈ Rn : |x1|p + · · ·+ |xn|p ≤ 1}.
An important problem is to establish an isoperimetric characterization of the `n

p -ball among
all Lp balls. This was achieved by the following result by Ball [3], Barthe [7], and [42].

Theorem 1.1. If µ is an even isotropic measure on Sn−1 with fixed total mass and p ∈
[1,∞]\{2}, then the volume V (Z∗

p(µ)) is maximized and the volume V (Zp(µ)) is minimized
if and only if µ is a cross measure.

In [47], Maresch and Schuster applied the spherical sine transform successfully to isotropic
measures for proving reverse isoperimetric inequalities. For a finite Borel measure µ on Sn−1,
the sine transform of µ is defined by

(Sµ)(x) =

∫

Sn−1

(|x|2 − (x · u)2)
1
2 dµ(u), x ∈ Rn.
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When µ is not concentrated on a pair of antipodal points, the sine transform Sµ is a norm
whose unit ball Z∗

n−1,1 is an origin-symmetric convex body. As pointed out in [47], when the
measure µ is the surface area measure of a convex body in Rn, the sine transform and the
convex body Z∗

n−1,1 arise naturally in geometric tomography. When µ is isotropic, Maresch
and Schuster proved reverse isoperimetric inequalities for the convex body Z∗

n−1,1 and its
polar body Zn−1,1 that are asymptotically sharp when the dimension n is large.

Denote by Gn,m the Grassmann manifold of m-dimensional linear subspaces in Rn, 1 ≤
m ≤ n − 1. For ξ ∈ Gn,m, let Pξ : Rn → Rn be the orthogonal projection map with range
space ξ.

For p ∈ [1,∞), the Lp cosine transform Cm,pµ of a nonnegative finite Borel measure µ on
Gn,m is the continuous function defined by

(Cm,pµ)(x) =

∫

Gn,m

|Pξx|pdµ(ξ), x ∈ Rn.

Identify an even measure on the unit sphere Sn−1 with a measure on Gn,1, or Gn,n−1. Then
2C1,pµ is the usual spherical Lp cosine transform Cp and 2Cn−1,pµ is the spherical Lp sine
transform

(1.1) (Spµ)(x) =

∫

Sn−1

(|x|2 − (x · u)2
) p

2 dµ(u).

If the measure µ on Gn,m is not concentrated on a great sub-Grassmannian (the Grassmann
manifold Gn−1,m of m-dimensional subspaces in an (n− 1)-dimensional subspace of Rn), the

Lp cosine transform Cm,p induces an n-dimensional Banach norm,
(

n
m

(Cm,pµ)(·))1/p
, whose

unit ball, denoted by Z∗
m,p = Z∗

m,p(µ), is an origin-symmetric convex body in Rn given by

(1.2) Z∗
m,p =

{
x ∈ Rn :

( n

m

(
Cm,pµ

)
(x)

) 1
p ≤ 1

}
,

which is the polar body of the origin-symmetric convex body Zm,p = Zm,p(µ), whose support
function is given by

(1.3) hZm,p(x) =
( n

m

∫

Gn,m

|Pξx|pdµ(ξ)
) 1

p
, p ∈ [1,∞).

When p = ∞,

(1.4) hZm,∞(x) = lim
p→∞

hZm,p(x) = max
ξ∈suppµ

|Pξx|.
The body Z∗

m,∞ as the polar of Zm,∞ is thus also defined.
Let 1 ≤ m ≤ n− 1. A finite Borel measure µ on Gn,m is isotropic if it satisfies

(1.5)
1

|µ|
∫

Gn,m

Pξ dµ(ξ) =
m

n
In,

where In is the identity transformation of Rn and |µ| is the total mass of µ. Note that
an isotropic measure on the Grassmann manifold Gn,m is not concentrated on a great sub-
Grassmannian.

For q ≥ 0 and p ≥ 1, let

ωq =
π

q
2

Γ(1 + q
2
)
, αn(m, p) =

(
ωmΓ(1 + m

p
)
) n

m

Γ(1 + n
p
)

, γn(m, p) =

(
ωmωn+p−2

ωnωm+p−2

)n
p

.
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For p = ∞, let αn(m,∞) = ω
n
m
m and γn(m,∞) = 1. Denote by p′ the conjugate of p, that is,

p′ = p
p−1

.

The main result of the paper is the following theorem.

Theorem 1.2. Suppose p ∈ [1,∞]. If µ is an isotropic probability measure on Gn,m, then

αn(m, p) ≥ V (Z∗
m,p(µ)) ≥ ωn

γn(m, p)
,(1.6)

αn(m, p′) ≤ V (Zm,p(µ)) ≤ ωnγn(m, p).(1.7)

There is equality in the right side inequalities of (1.6) and (1.7) if µ is the normalized
Lebesgue measure. When n is divisible by m and p 6= 2, there is equality in the left side
inequalities of (1.6) and (1.7) if and only if µ is a cross measure on Gn,m.

When m = 1, Theorem 1.2 becomes Theorem 1.1, which was proved in [42], while the
discrete case was shown by Ball [3] and Barthe [7]. When m = n − 1 and p = 1, the right
side inequalities of (1.6) and (1.7) were shown by Maresch and Schuster [47], while they
obtained slightly different constants in the left side inequalities in this case. The right side
inequality of (1.6) or (1.7) is an isoperimetric inequality, which can be shown by classical
results. The left side inequality of (1.6) or (1.7) is a reverse isoperimetric inequality, which
requires new techniques to prove. When n is not divisible by m, it is an interesting open
problem to establish the sharp inequalities and to characterize the extremal bodies.

Extending geometric concepts and results associated with the unit sphere to Grassmann
manifolds not only is non-trivial, but also leads to new concepts and techniques. For the
reverse isoperimetric problem associated with the Lp cosine transform on a Grassmann man-
ifold other than the unit sphere, the `n

p -ball is no longer an extremal body. The extremal
bodies are a new class of convex bodies that are extensions of the `n

p -ball on Grassmann
manifolds. Defining these new convex bodies relies on defining cross measures on Grass-
mann manifolds. These cross measures are discrete and are in a certain sense the opposite
of the Haar measure. We give a definition of cross measures on Grassmann manifolds in
Section 4, and thus introduce a new class of convex bodies called `n,m

p -balls.
The spherical Ball-Barthe inequality of isotropic measures on the unit sphere is a key

tool for proving reverse isoperimetric inequalities on the unit sphere. A Grassmannian Ball-
Barthe inequality for isotropic measures on Grassmann manifolds is proved in Section 3. The
proof is not similar to that of the spherical case. The difficulty arises from the fact that the
unit sphere Sn−1 as a hypersurface of Rn has a globally defined continuous normal vector
field, while the Grassmann manifold Gn,m, 1 < m < n− 1, does not have a similar property.
Thus a more complicated new proof is needed. Without equality conditions, the spherical
Ball-Barthe inequality can be obtained by a simple approximation from the discrete case (see
Barthe [8]). For Grassmann manifolds, it is not clear yet how to do such an approximation
for either the Grassmannian Ball-Barthe inequality, or the reverse isoperimetric inequalities
in Theorem 1.2.

The spherical Ball-Barthe inequality was used by Barthe [8] to prove a continuous version
of the spherical Brascamp-Lieb inequality. The Grassmannian Ball-Barthe inequality may be
used to prove a continuous version of the Brascamp-Lieb inequality on Grassmann manifolds.

We remark that the mass transportation technique of Barthe [7] is used. However, since
known regularity properties of the Brenier map used by Barthe [7] is not sufficient for our
proofs and properties of eigenvalues of the Hessian associated with the Brenier map are
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needed, we give a direct and explicit construction which is a higher dimensional version of
the 1-dimensional case used in [42].

Finally, we note that reverse affine isoperimetric inequalities arising from spherical isotropic
measures depend on certain volume preserving affine transformations of a convex body (or
equivalently certain ellipsoids associated with a convex body). An integral geometric con-
cept of affine surface area in Rn that does not depend on affine transformations of a convex
body is obtained as the affine mean of shadow areas (that is, the integral of shadow area
with negative n-th power) of a convex body. The associated affine isoperimetric inequality is
called the Petty projection inequality is stronger than the Euclidean isoperimetric inequality,
see [58]. Its reverse affine isoperimetric inequality that characterizes simplices was proved
in [62]. New proofs and generalizations were given in [27, 63]. These results can be viewed
as spherical cases. Their Grassmannian analogs are important unsolved open problems, see
Lutwak [39].

2. Preliminaries

We collect some basic facts about convex bodies. Good general references for the theory
of convex bodies are provided by the books of Gardner [15], Gruber [23], Schneider [58], and
Thompson [61].

Denote the Euclidean norm in Rn by | · |. For x ∈ ξ ∈ Gn,m, write |x|ξ for the Euclidean
norm of x in ξ. When not causing confusion, we will also suppress the subscript in the norm.
Denote the Euclidean unit ball and unit sphere of Rn by Bn

2 and Sn−1, respectively.
A convex body K in Rn is a compact convex set with nonempty interior. If K is a convex

body that contains the origin in its interior, its polar body K∗ is defined by

(2.1) K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K},
where x · y denotes the standard inner product of x and y in Rn. It is easy to check that
(K∗)∗ = K and for real λ > 0

(2.2) (λK)∗ =
1

λ
K∗.

The support function of a convex body K, hK : Rn → R, is defined for x ∈ Rn by

(2.3) hK(x) = max{x · y : y ∈ K}.
The Minkowski functional ‖ ·‖K of a convex body K that contains the origin in its interior

is defined by

‖x‖K = min{t > 0 : x ∈ tK}, x ∈ Rn.

In this case

(2.4) ‖x‖K = hK∗(x).

When K is origin-symmetric, ‖ · ‖K is the norm with unit ball K. Obviously, for real λ > 0,
‖λx‖K = λ‖x‖K .

Recall that for each p ∈ (0,∞), the volume V (K) of K has the formula,

(2.5) V (K) =
1

Γ(1 + n
p
)

∫

Rn

e−‖x‖
p
K dx,
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where the integral is with respect to Lebesgue measure on Rn; in particular,

(2.6)

∫

Rn

e−|x|
p

dx = ωnΓ
(
1 +

n

p

)
.

Let K be a convex body containing the origin in its interior. The polar coordinate volume
formula of K will also be used later:

(2.7) V (K) =
1

n

∫

Sn−1

hK∗(u)−n du,

where du is the Lebesgue measure on Sn−1.
A nonnegative finite Borel measure µ on Sn−1 is said to be isotropic if

(2.8)
1

|µ|
∫

Sn−1

u⊗ u dµ(u) =
1

n
In,

where u⊗u denotes the rank one projection defined by u⊗u(x) = (u ·x)u for all x ∈ Rn and
In is the identity matrix. Note that an isotropic measure is not concentrated on a proper
subspace of Rn.

Let {e1, . . . , en} be an orthonormal basis of Rn. A measure on Sn−1 is said to be even
if it assumes the same value on antipodal sets. The two most important examples of even
isotropic measures on Sn−1 are the spherical Lebesgue measure and the cross measure. The
basic cross measure on Sn−1 is an even isotropic discrete measure concentrated equally on
±e1, . . . ,±en. A cross measure on Sn−1 is just a rotation of a basic cross measure; i.e., it is
concentrated equally on O{±e1, . . . ,±en}, where O ∈ O(n).

For a subspace ξ ⊂ Rn of dimension m, let {u1, . . . , um} be an orthonormal basis of ξ,
and let Q be the n × m matrix with column vectors u1, . . . , um. This is equivalent to the
condition

(2.9) QtQ = Im,

where Qt is the transpose of Q. Then

(2.10) Pξ = QQt,

or equivalently,

(2.11) Pξx =
m∑

i=1

(x · ui)ui, x ∈ Rn.

The matrix Qt gives the isometry ξ → Rm, x1u1 + · · ·+ xmum → (x1, . . . , xm), and vanishes
on ξ⊥. The matrix Q gives the isometry Rm → ξ, (x1, . . . , xm) → x1u1 + · · ·+ xmum.

We observe that (1.5) is equivalent to

(2.12)
1

|µ|
∫

Gn,m

|Pξx|2 dµ(ξ) =
m

n
|x|2, x ∈ Rn.

If we let dν = n
m|µ|dµ, then |ν| = n

m
and (1.5) becomes

(2.13)

∫

Gn,m

Pξ dν(ξ) = In,

or equivalently,

(2.14)

∫

Gn,m

|Pξx|2 dν(ξ) = |x|2, x ∈ Rn.
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Let Rn = Rn−m × Rm, and Sn−m−1 ⊂ Rn−m, Sm−1 ⊂ Rm be the unit spheres in the
subspaces. The generalized spherical coordinates (see [22], p. 99) are for 1 ≤ m ≤ n− 1,

u = (u1 sin ϕ, u2 cos ϕ) ∈ Sn−1,

where u1 ∈ Sn−m−1, u2 ∈ Sm−1 and 0 ≤ ϕ ≤ π
2
. The surface area elements du, du1, and du2

of Sn−1, Sn−m−1, and Sm−1 satisfy

(2.15) du = sinn−m−1 ϕ cosm−1 ϕdϕdu1du2.

Denote by Mn the set of n × n matrices of real numbers. The set Mn is a manifold of
dimension n2 when an element of Mn is identified with a point in Rn2

. Then the Euclidean
norm | · |2 in Rn2

becomes a norm inMn. Let Ln be the vector space of linear transformations
from Rn to Rn. When an orthonormal basis of Rn is chosen,Mn and Ln are identified. Denote
by Sn the subset of Mn that consists of symmetric matrices. For a subspace ξ ⊂ Rn, denote
by Lξ the vector space of linear transformations from ξ to ξ.

For A ∈Mn, let ‖A‖2 be the spectral norm of A which is the square root of the maximal
eigenvalue of AtA, that is

(2.16) ‖A‖2 = max
|x|6=0

|Ax|
|x| .

It is a basic fact that

(2.17) ‖ · ‖2 ≤ | · |2 ≤
√

n‖ · ‖2.

We also need the following basic facts about matrices. For completeness, we include simple
proofs.

Lemma 2.1. Let A ∈ Sn with null space ξ = {x ∈ Rn : Ax = 0} and non-zero eigenvalues
λ1, . . . , λk. If |λ1| ≥ · · · ≥ |λk| > 0, then

|Ax| ≤ |λ1||x|, x ∈ Rn,(2.18)

|Ax| ≥ |λk||x|, x ∈ ξ⊥.(2.19)

Proof. Choose an orthonormal basis e1, . . . , en of Rn so that e1, . . . , en are eigenvectors of A
and e1, . . . , ek span ξ⊥. Let x = x1e1 + · · ·+ xnen. Then

|Ax| = (λ2
1x

2
1 + · · ·+ λ2

kx
2
k)

1
2 .

This gives (2.18) and (2.19). ¤
We review basics regarding mixed discriminants. Let M1, . . . , Mm be positive semi-definite

n×n matrices, and s1, . . . , sm ≥ 0. The determinant of the linear combination s1M1 + · · ·+
smMm is a homogeneous polynomial of degree n in the si,

det(s1M1 + · · ·+ smMm) =
∑

1≤i1,...,in≤m

si1 · · · sinD(Mi1 , . . . , Min).

The coefficient D(Mi1 , . . . , Min), which depends only on Mi1 , . . . , Min , is defined to be sym-
metric in its arguments and is called the mixed discriminant of Mi1 , . . . , Min . We will denote

D(M, . . . , M︸ ︷︷ ︸
n−k

, In, . . . , In︸ ︷︷ ︸
k

)

by Dk(M). Obviously, D0(M) = det(M) while nDn−1(M) = tr(M) is the trace of M .
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Let Mj = (a
(j)
ik ), j = 1, . . . , n. Then the mixed discriminant of M1, . . . , Mn is given by

(2.20) D(M1, . . . , Mn) =
1

n!

∑

(j1,...,jn)

∣∣∣∣∣∣∣

a
(j1)
11 · · · a

(jn)
1n

...
. . .

...

a
(j1)
n1 · · · a

(jn)
nn

∣∣∣∣∣∣∣
,

where we sum over all permutations.
Note that the mixed discriminant D(M1, . . . , Mn) is linear for each Mj with respect to

matrix addition.
The following basic formula of the mixed discriminant is established by Petty [51]: Let

M1, . . . , Mn be the positive semi-definite n× n matrices defined by

Mj = x(j) ⊗ x(j) =




(
x

(j)
1

)2 · · · x
(j)
1 x

(j)
n

...
. . .

...

x
(j)
1 x

(j)
n · · · (

x
(j)
n

)2


 ,

where (x(j))t = (x
(j)
1 , . . . , x

(j)
n ), j = 1, . . . , n. Then

D(M1, . . . , Mn) =
1

n!

∑

(j1,...,jn)

∣∣∣∣∣∣∣

(
x

(j1)
1

)2 · · · x
(jn)
1 x

(jn)
n

...
. . .

...

x
(j1)
1 x

(j1)
n · · · (

x
(jn)
n

)2

∣∣∣∣∣∣∣

=
1

n!

∣∣∣∣∣∣∣

x
(1)
1 · · · x

(n)
1

...
. . .

...

x
(1)
n · · · x

(n)
n

∣∣∣∣∣∣∣

2

.(2.21)

Let r1, . . . , rn be column vectors in Rn. Denote the determinant of n×n matrix (r1, . . . , rn)
by |r1, . . . , rn|. For an integer j, 1 ≤ j ≤ n, let mj, 1 ≤ mj ≤ n, be an integer depending on
j. Define the n×mj matrices Qj by

Qj =
(
r
(j)
1 , . . . , r(j)

mj

)
.

Thus,

(2.22) Qj(Qj)t =

mj∑
i=1

r
(j)
i (r

(j)
i )t =




∑mj

i=1

(
r
(j)
i1

)2 · · · ∑mj

i=1 r
(j)
i1 r

(j)
in

...
. . .

...∑mj

i=1 r
(j)
i1 r

(j)
in · · · ∑mj

i=1

(
r
(j)
in

)2


 .

Obviously, the n× n matrix Mj = Qj(Qj)t is positive semi-definite.

Lemma 2.2. Let Mj be the positive semi-definite matrix defined by Mj = Qj(Qj)t, j =
1, . . . , n. Then

D(M1, . . . , Mn) =
1

n!

∑
k1∈{1,...,m1}···
kn∈{1,...,mn}

∣∣r(1)
k1

, . . . , r
(n)
kn

∣∣2.

Proof. From (2.22), linearity of mixed discriminant, and (2.21), we have

D(M1, . . . , Mn) = D
( m1∑

i=1

r
(1)
i ⊗ r

(1)
i , . . . ,

mn∑
i=1

r
(n)
i ⊗ r

(n)
i

)



VOLUME INEQUALITIES ON GRASSMANN MANIFOLDS 9

=
∑

k1∈{1,...,m1}···
kn∈{1,...,mn}

D(r
(1)
k1
⊗ r

(1)
k1

, . . . , r
(n)
kn
⊗ r

(n)
kn

)

=
1

n!

∑
k1∈{1,...,m1}···
kn∈{1,...,mn}

∣∣r(1)
k1

, . . . , r
(n)
kn

∣∣2.

¤
Let Xj be a compact Hausdorff space and νj a finite Borel measure in Xj, j = 1, . . . , n. If

Mj : Xj →Mn is νj-integrable, j = 1, . . . , n, then by (2.20) it is easily seen that

D
( ∫

X1

M1(v1) dν1(v1), . . . ,

∫

Xn

Mn(vn) dνn(vn)
)

(2.23)

=

∫

X1

· · ·
∫

Xn

D(M1(v1), . . . , Mn(vn)) dν1(v1) · · · dνn(vn).

3. The Grassmannian Ball-Barthe inequality

The spherical Ball-Barthe inequality (see [42]) is as follows:

The spherical Ball-Barthe inequality. If ν is an isotropic measure on Sn−1 with total
mass |ν| = n, then for each positive continuous function f on Sn−1,

(3.1) det

∫

Sn−1

f(u)u⊗ u dν(u) ≥ exp
( ∫

Sn−1

log f(u) dν(u)
)
,

with equality if and only if f(u1) · · · f(un) is constant for linearly independent unit vectors
u1, . . . , un ∈ suppν.

The spherical Ball-Barthe inequality is crucial for the proof of Theorem 1.1. For a short
proof of the discrete case, see Barthe [7]. In this section, we establish the Grassmannian
Ball-Barthe inequality.

For A ∈ Sn, denote by λ1(A), . . . , λn(A) the eigenvalues of A with corresponding eigenspaces
E1(A), . . . , En(A). We always assume that

(3.2) λ1(A) ≥ · · · ≥ λn(A).

For each 1 ≤ i ≤ n, we define a map Pi : Sn →Mn by

(3.3) Pi(A) = PEi(A), A ∈ Sn.

Unfortunately, the map Pi is not continuous. The following lemma about the piecewise
continuity of Pi is needed.

Lemma 3.1. The map Pi : Sn → Mn is piecewise continuous, and thus Borel measurable.
Moreover, Pi is continuous in any Borel subset of Sn whose matrices keep multiplicities of
their eigenvalues.

Proof. Let i be fixed. We will show that there are Borel sets Qj, j = 1, . . . , n, so that
Sn = Q1 ∪ · · · ∪Qn, and Pi is continuous in each Qj. Moreover, each Qj is a finite union of
Borel sets, and in each of the Borel sets eigenvalues of the matrices keep their multiplicities.

Define Qj, j = 1, . . . , n, by

Qj = {A ∈ Sn : λi(A) is of multiplicity j}.
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Then obviously, Sn = Q1∪ · · ·∪Qn. Note that λ1(A), . . . , λn(A) are continuous with respect
to A ∈ Sn when they are ordered as in (3.2). Thus for any positive integers m1, . . . , mk,
1 ≤ k ≤ n, satisfying m1 + · · ·+ mk = n, the set{

A ∈ Sn : λ1(A) = · · · = λm1(A) > λm1+1(A) = · · · = λm1+m2(A) > · · ·
> λm1+···+mk−1+1(A) = · · · = λm1+···+mk

(A)
}

is a Borel set, in which the multiplicities of eigenvalues do not change, and Qj as a finite
union of such Borel sets is a Borel set.

Fix an orthonormal basis of Rn and identify Mn with Ln. For 1 ≤ j ≤ n, define

Uj =
{
Pξ ∈Mn : ξ ∈ Gn,j

}
,

then Uj ∩ Ul = ∅ when j 6= l. It is easily seen that Pi(Qj) = Uj.
For any A ∈ Sn and x ∈ Rn, Pi(A)x ∈ Ei(A) is an eigenvector of A. Thus,

(3.4) (A− λi(A)In)Pi(A) = 0.

By the continuity of eigenvalues, for a fixed A0 ∈ Sn and any ε > 0, there is δ > 0 so that

(3.5) |(A− λi(A)In)− (A0 − λi(A0)In)|2 < ε,

when |A− A0|2 < δ and A ∈ Sn. By (3.4), (2.16), (2.17), and (3.5), for |x| = 1, we have

|(A0 − λi(A0)In)Pi(A)x| = |(A0 − λi(A0)In)Pi(A)x− (A− λi(A)In)Pi(A)x|(3.6)

≤ ‖(A0 − λi(A0)In)− (A− λi(A)In)‖2 |Pi(A)x|
≤ |(A0 − λi(A0)In)− (A− λi(A)In)|2
< ε.

For a fixed A0 ∈ Qj, let

η0 = min
l

{|λl(A0)− λi(A0)| : λl(A0) 6= λi(A0)
}
.

Then η0 > 0. For A ∈ Qj, again by the continuity of eigenvalues, when A is close to A0,
λl(A0) 6= λi(A0) implies λl(A) 6= λi(A), and also λl(A0) = λi(A0) implies λl(A) = λi(A)
because λi(A0) and λi(A) have the same multiplicity j. Thus, λl(A) 6= λi(A) if and only if
λl(A0) 6= λi(A0) when A is close to A0. By this fact and the continuity of eigenvalues, there
exists 0 < δ1 < δ so that

(3.7) min
l

{|λl(A)− λi(A)| : λl(A) 6= λi(A)
}

>
η0

2
,

when |A− A0|2 < δ1 and A ∈ Qj.
By (3.4), (3.7), and (2.19), we have

|(A− λi(A)In)x| = |(A− λi(A)In)(PEi(A)x + PE⊥i (A)x)|(3.8)

= |(A− λi(A)In)PE⊥i (A)x|
≥ η0

2
|PE⊥i (A)x|,

when |A− A0|2 < δ1, A ∈ Qj, and x ∈ Rn.
By (3.8) and (3.6), for |x| = 1, |A− A0|2 < δ1, and A ∈ Qj, we have

|Pi(A)x− Pi(A0)Pi(A)x| = |PE⊥i (A0)Pi(A)x|

≤ 2

η0

|(A0 − λi(A0)In)Pi(A)x|
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<
2ε

η0

,

and similarly,

|Pi(A0)x− Pi(A)Pi(A0)x| < 2ε

η0

.

Therefore, when |A− A0|2 < δ1 and A ∈ Qj, by (2.16) and (2.17), we have

|Pi(A)− Pi(A0)Pi(A)|2 ≤ 2
√

nε

η0

,(3.9)

|Pi(A0)− Pi(A)Pi(A0)|2 ≤ 2
√

nε

η0

.(3.10)

Applying transpose to the matrices in (3.10) gives

(3.11) |Pi(A0)− Pi(A0)Pi(A)|2 ≤ 2
√

nε

η0

,

when |A− A0|2 < δ1 and A ∈ Qj.
Finally, by (3.9) and (3.11), we conclude that

|Pi(A0)− Pi(A)|2 ≤ 4
√

nε

η0

,

for a fixed A0 ∈ Qj and any A ∈ Qj with |A−A0|2 < δ1. This shows the continuity of Pi in
Qj. It follows that Pi is piecewise continuous and thus Borel measurable. ¤

For ξ ∈ Gn,m, let Pξ : Rn → ξ be the projection map, and let Iξ : ξ → Rn be the inclusion
map, which is the identity map from ξ to ξ. For each ξ ∈ Gn,m, associate with it a positive
definite linear transformation Aξ ∈ Lξ. Then, we define a map A : Gn,m → Sn by

(3.12) A(ξ) = IξAξPξ.

The matrix A(ξ) can be written explicitly if an orthonormal basis of ξ is chosen. Let
{u1, . . . , um} be an orthonormal basis of ξ. Let Q = (u1, . . . , um) be the n × m matrix of
column vectors in Rn. Let S = (aij) be the symmetric matrix of Aξ under the basis of
{u1, . . . , um}. Then

(3.13) A(ξ) = QSQt.

This can be easily seen because for x ∈ Rn,

Aξui =
m∑

j=1

ajiuj, QSQtx =
m∑

i,j=1

aji(x · ui)uj,

therefore, by (2.11), we have

IξAξPξx = IξAξ

( m∑
i=1

(x · ui)ui

)
= Iξ

( m∑
i,j=1

(x · ui)ajiuj

)

=
m∑

i,j=1

aji(x · ui)uj = QSQtx.

Thus, A(ξ) is a positive semi-definitive matrix. Let λ1(A(ξ)), . . . , λn(A(ξ)) be the eigen-
values of A(ξ) so that λ1(A(ξ)) ≥ · · · ≥ λn(A(ξ)). Then λ1(A(ξ)) ≥ · · · ≥ λm(A(ξ)) > 0,
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and λm+1(A(ξ)) = · · · = λn(A(ξ)) = 0. Obviously, λ1(A(ξ)), . . . , λm(A(ξ)) are exactly the
eigenvalues of Aξ, denoted by λ1(Aξ), . . . , λm(Aξ). In particular,

(3.14) det Aξ = det S = λ1(Aξ) · · ·λm(Aξ).

It is also noted that the null space of A(ξ) is ξ⊥, that is,

(3.15) ξ⊥ = {x ∈ Rn : A(ξ)x = 0},
and ξ is the direct sum of the eigenspaces of nonzero eigenvalues of A(ξ). We denote by
E1(Aξ), . . . , Em(Aξ), the eigenspaces corresponding to the eigenvalues λ1(Aξ), . . . , λm(Aξ).
Let mi(Aξ) be the dimension of Ei(Aξ), which is also the multiplicity of λi(Aξ), k = 1, . . . , m.

The following lemma gives decomposition formulas for the projection map Pξ and the
matrix A(ξ), which are needed to establish the Grassmannian Ball-Barthe inequality.

Lemma 3.2. For ξ ∈ Gn,m, if Aξ is a positive definite linear transformation in ξ and A(ξ)
is the positive semi-definite matrix IξAξPξ, then

(3.16) Pξ =
1

m1(Aξ)
PE1(Aξ) + · · ·+ 1

mm(Aξ)
PEm(Aξ),

and

(3.17) A(ξ) =
λ1(Aξ)

m1(Aξ)
PE1(Aξ) + · · ·+ λm(Aξ)

mm(Aξ)
PEm(Aξ).

Proof. For an orthonormal basis {u1, ..., um} of ξ, let Q be the n ×m matrix with column
vectors u1, ..., um, then

(3.18) Pξ = QQt.

Choose u1, ..., um as eigenvectors of the positive definite linear transformation Aξ correspond-
ing to eigenvalues λ1(Aξ), . . . , λm(Aξ). Then the matrix of Aξ under the basis {u1, ..., um} is
a diagonal matrix diag{λ1(Aξ), . . . , λm(Aξ)}. By (3.13),

(3.19) A(ξ) = Q diag{λ1, . . . , λm}Qt.

Assume that Aξ has k distinct eigenvalues,

(3.20) λ1 = · · · = λl1 > λl1+1 = · · · = λl2 > · · · > λlk−1+1 = · · · = λlk = λm,

where li − li−1 = mli , i = 1, . . . , k, that is, λl1 , . . . , λlk are distinct eigenvalues with multi-
plicities m1, . . . , mk.

Let Eli be the eigenspace corresponding to λli , which is spanned by uli−1+1, . . . , uli , i =
1, . . . , k. Then

(3.21) E1 = · · · = El1 , El1+1 = · · · = El2 , . . . , Elk−1+1 = · · · = Elk = Em.

Let Qi = (uli−1+1, . . . , uli), i = 1, . . . , k. Then Q = (Q1, . . . , Qk). Thus, by (2.10),

(3.22) QQt = Q1Q
t
1 + · · ·+ QkQ

t
k = PEl1

+ · · ·+ PElk
.

By (3.18), (3.21), and (3.22), we get (3.16). We also have

Q diag{λ1, . . . , λm}Qt = λl1Q1Q
t
1 + · · ·+ λlkQkQ

t
k(3.23)

= λl1PEl1
+ · · ·+ λlkPElk

.

By (3.19), (3.20), (3.21), and (3.23), we get (3.17). ¤
We shall require the following elementary inequality.
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Lemma 3.3. Suppose that Y is a measure space with measure ν. For i = 1, . . . , l, let
ai : Y → (0,∞) be positive functions and let fi : Y → [0,∞) be nonnegative functions. If∫

Y

∑l
i=1 fi(v)dν(v) = 1 and

∑l
i=1 ai(v)fi(v) is integrable, then

∫

Y

( l∑
i=1

ai(v)fi(v)
)
dν(v) ≥ exp

[ ∫

Y

log
( l∏

i=1

ai(v)fi(v)
)
dν(v)

]
,

with equality if and only if ai(v) is constant whenever fi(v) > 0, i = 1, . . . , l, for ν-a.e.
v ∈ Y.

Proof. Let

E =
{

v ∈ Y :
l∑

i=1

fi(v) 6= 0
}

.

Then we have ∫

Y

l∑
i=1

fi(v)dν(v) =

∫

E

l∑
i=1

fi(v)dν(v) = 1.

By Jensen’s inequality and the geometric-arithmetic inequality, it follows that

∫

Y

l∑
i=1

ai(v)fi(v)dν(v) =

∫

E

∑l
i=1 ai(v)fi(v)∑l

i=1 fi(v)

l∑
i=1

fi(v)dν(v)

≥ exp

[ ∫

E

log
(∑l

i=1 ai(v)fi(v)∑l
i=1 fi(v)

) l∑
i=1

fi(v)dν(v)

]

≥ exp

[ ∫

E

log
( l∏

i=1

ai(v)
fi(v)∑l

i=1
fi(v)

) l∑
i=1

fi(v)dν(v)

]

= exp

[ ∫

E

log
( l∏

i=1

ai(v)fi(v)
)
dν(v)

]

= exp

[ ∫

Y

log
( l∏

i=1

ai(v)fi(v)
)
dν(v)

]
.

Equalities in the inequalities hold if and only if
∑l

i=1 ai(v)fi(v)∑l
i=1 fi(v)

is constant for ν-a.e. v ∈ E.

and ai(v) = c (constant) for those i so that fi(v) > 0 for ν-a.e. v ∈ E. This means that
ai(v) = c whenever fi(v) > 0, i = 1, . . . , l, for ν-a.e. v ∈ Y. ¤

The following is the Grassmannian Ball-Barthe inequality on Grassmann manifolds. For
the case of unit sphere, it becomes the spherical Ball-Barthe inequality (3.1).

Lemma 3.4 (Grassmannian Ball-Barthe inequality). Let ν be a finite Borel measure on
Gn,m. Associate with each ξ ∈ Gn,m a positive definite Aξ ∈ Lξ. Suppose that the map
A : Gn,m → Sn defined by A(ξ) = IξAξPξ is continuous and ν satisfies

∫

Gn,m

Pξ dν(ξ) = In.
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Then

(3.24) det

∫

Gn,m

A(ξ) dν(ξ) ≥ exp
( ∫

Gn,m

log(det Aξ) dν(ξ)
)
,

with equality if and only if λk1(A(ξ1)) · · ·λkn(A(ξn)) is constant for ξj ∈ suppν whenever there
exist n linearly independent eigenvectors belonging to positive eigenvalues λk1(A(ξ1)), . . . ,
λkn(A(ξn)) of A(ξ1), . . . , A(ξn), kj = 1, . . . , m, and j = 1, ..., n.

Proof. For simplicity, write Pi(ξ) = Pi(A(ξ)), mi(ξ) = mi(A(ξ)), and λi(ξ) = λi(A(ξ)),
where ξ ∈ Gn,m. Let

L =
{
(k1, ..., kn) : ki ∈ {1, ..., m}, i ∈ {1, 2, ..., n}},

Li =
{
(k1, ..., k̂i, ..., kn) : kj ∈ {1, ..., m}, j ∈ {1, ..., î, . . . , n}

,

where i ∈ {1, ..., n}, and k̂i and î mean that the i-th entry ki and i are missing.
Since mi(ξ) = dim Ei(A(ξ)), the function mi is piecewise continuous on Gn,m. The map

Pi(ξ) is obviously bounded on Gn,m. By these facts, the continuity of A(ξ), and Lemma
3.1, Pi(ξ) and mi(ξ) are ν-integrable. Therefore, for each (k1, . . . , kn), the discriminant

D
(

Pk1
(ξ1)

mk1
(ξ1)

, . . . ,
Pkn (ξn)

mkn (ξn)

)
is integrable with respect to ν ⊗ · · · ⊗ ν.

By the isotropy of ν, (3.16), and (2.23), we have

1 = det

∫

Gn,m

Pξ dν(ξ)(3.25)

= D
( ∫

Gn,m

Pξ dν(ξ), . . . ,

∫

Gn,m

Pξ dν(ξ)
)

=

∫

Gn,m

· · ·
∫

Gn,m

∑
L

D
( Pk1(ξ1)

mk1(ξ1)
, . . . ,

Pkn(ξn)

mkn(ξn)

)
dν(ξ1) · · · dν(ξn),

and

D
( Pk1(ξ1)

mk1(ξ1)
, In, . . . , In

)
(3.26)

= D
( Pk1(ξ1)

mk1(ξ1)
,

∫

Gn,m

Pξ dν(ξ), . . . ,

∫

Gn,m

Pξ dν(ξ)
)

=

∫

Gn,m

· · ·
∫

Gn,m

∑
L1

D
( Pk1(ξ1)

mk1(ξ1)
,
Pk2(ξ2)

mk2(ξ2)
, . . . ,

Pkn(ξn)

mkn(ξn)

)
dν(ξ2) · · · dν(ξn).

Since A(ξ) is continuous, the eigenvalue λi(ξ) is continuous. Therefore, by (3.17), (2.23),
and Lemma 3.3, we have

det
∫

Gn,m

A(ξ)dν(ξ)

(3.27)

= D
( ∫

Gn,m

A(ξ1)dν(ξ1), ..,
∫

Gn,m

A(ξn)dν(ξn)
)

=
∫

Gn,m

· · ·
∫

Gn,m

D
( m∑

k=1

λk(ξ1)
mk(ξ1)

Pk(ξ1), . . . ,
m∑

k=1

λk(ξn)
mk(ξn)

Pk(ξn)
)

dν(ξ1) · · · dν(ξn)
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=
∫

Gn,m

· · ·
∫

Gn,m

∑

L

λk1(ξ1) · · ·λkn(ξn)D
( Pk1(ξ1)

mk1(ξ1)
, . . . ,

Pkn(ξn)
mkn(ξn)

)
dν(ξ1) · · · dν(ξn)

≥ exp
{∫

Gn,m

· · ·
∫

Gn,m

log
( ∏

L

(λk1 · · ·λkn)
D
( Pk1

(ξ1)

mk1
(ξ1)

,...,
Pkn

(ξn)

mkn
(ξn)

))
dν(ξ1) · · · dν(ξn)

}

= exp
{∫

Gn,m

· · ·
∫

Gn,m

log
( n∏

i=1

m∏

ki=1

λki
(ξi)

∑
Li

D
( Pk1

(ξ1)

mk1
(ξ1)

,...,
Pkn

(ξn)

mkn
(ξn)

)
dν(ξ1) · · · dν(ξn)

)}

= exp
{∫

Gn,m

· · ·
∫

Gn,m

n∑

i=1

( m∑

ki=1

(
log λki

(ξi)
∑

Li

D
( Pk1(ξ1)

mk1(ξ1)
,
Pk2(ξ2)
mk2(ξ2)

, . . . ,
Pkn(ξn)
mkn(ξn)

)))

dν(ξ1) · · · dν(ξn)
}

= exp
{∫

Gn,m

· · ·
∫

Gn,m

n

m∑

k1=1

(
log λk1(ξ1)

∑

L1

D
( Pk1(ξ1)

mk1(ξ1)
,
Pk2(ξ2)
mk2(ξ2)

, . . . ,
Pkn(ξn)
mkn(ξn)

))

dν(ξ1) · · · dν(ξn)
}

.

The last equality used the following equation,

∫

Gn,m

· · ·
∫

Gn,m

m∑

k1=1

(
log λk1(ξ1)

∑
L1

D
( Pk1(ξ1)

mk1(ξ1)
,
Pk2(ξ2)

mk2(ξ2)
, . . . ,

Pkn(ξn)

mkn(ξn)

))
dν(ξ1) · · · dν(ξn)

=

∫

Gn,m

· · ·
∫

Gn,m

m∑

ki=1

(
log λki

(ξi)
∑
Li

D
( Pk1(ξ1)

mk1(ξ1)
,
Pk2(ξ2)

mk2(ξ2)
, . . . ,

Pkn(ξn)

mkn(ξn)

))
dν(ξ1) · · · dν(ξn).

Since nD
(

Pk1
(ξ1)

mk1
(ξ1)

, In, ..., In

)
= trace(

Pk1
(ξ1)

mk1
(ξ1)

) = 1, by (3.27) and (3.26), we have

det

∫

Gn,m

A(ξ) dν(ξ) ≥ exp
( ∫

Gn,m

m∑

k1=1

log λk1(ξ1) dν(ξ1)
)

= exp
( ∫

Gn,m

log(det Aξ) dν(ξ)
)
.

By the equality conditions in Lemma 3.3, the equality in the last inequality holds if and
only if λk1(ξ1) · · ·λkn(ξn) is constant when

(3.28) D
( Pk1(ξ1)

mk1(ξ1)
, . . . ,

Pkn(ξn)

mkn(ξn)

)
6= 0,

for almost all (ξ1, ..., ξn). Since λk1(ξ1) · · ·λkn(ξn) is continuous, the equality condition is
equivalent to λk1(ξ1) · · ·λkn(ξn) is constant whenever (3.28) holds for (ξ1, ..., ξn) ∈ supp(ν ×
· · · × ν).

By Lemma 2.2, (3.28) is equivalent to there exist linearly independent unit vectors rki
(ξi) ∈

Eki
(Aξi

), i = 1, . . . , n. This together with the identity, supp(ν×· · ·×ν) = suppν×· · ·×suppν,
imply that the equality in the inequality (3.24) holds if and only if λk1(ξ1) · · ·λkn(ξn) is
constant whenever there exist linearly independent unit vectors rki

∈ Eki
(Aξi

), for ξi ∈
suppν, i = 1, ..., n. ¤
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4. Cross measures on Grassmann manifolds

An `n
p -ball is the spherical Lp cosine transform of a cross measure on the unit sphere.

We extend the concept of cross measure to Grassmann manifolds. The Lp cosine transform
of cross measures on Grassmann manifolds defines a new class of convex bodies which are
generalizations of the `n

p -balls and are extremal bodies of our volume inequalities.
Let {e1, . . . , en} be an orthonormal basis of Rn. For 1 ≤ m ≤ n− 1, let [m,n] be the least

common multiple of m and n. For n ≤ j ≤ [m,n], define ej by

ej = ei, if j = i mod(n) and i = 1, 2, . . . , n.

Let

(4.1) ξ̃k = span{e(k−1)m+1, e(k−1)m+2, . . . , ekm}, 1 ≤ k ≤ l, l =
[m,n]

m
,

be the m-dimensional subspace spanned by the vectors.
A discrete measure on Gn,m that is concentrated on the subspaces ξ̃1, . . . , ξ̃l with equal

mass on each subspace is an isotropic measure on Gn,m. In fact, for 1 ≤ k ≤ l and x ∈ Rn,
we have

(4.2) |Pξ̃k
x|2 =

m∑
i=1

|x · e(k−1)m+i|2.

Thus,

l∑

k=1

|Pξ̃k
x|2 =

l∑

k=1

m∑
i=1

|x · e(k−1)m+i|2 =
[m,n]

n

n∑
i=1

|x · ei|2 =
[m,n]

n
|x|2.

This gives

1

l

l∑

k=1

|Pξ̃k
x|2 =

m

n
|x|2,

which can be written as

(4.3)
1

l

l∑

k=1

Pξ̃k
=

m

n
In.

Therefore, by (1.5), a discrete measure on Gn,m that is concentrated equally on ξ̃k, 1 ≤
k ≤ l, is isotropic. Moreover, a discrete measure on Gn,m that is concentrated equally on

Oξ̃k, 1 ≤ k ≤ l, where O ∈ O(n) is a rotation in Rn, is isotropic. Such a discrete measure
on Gn,m is called a cross measure on the Grassmann manifold Gn,m.

If m = 1, then [m,n]
m

= n. A cross measure on Gn,1 is concentrated equally on n orthogonal
1-dimensional subspaces of Rn. It is the same as a cross measure on Sn−1.

If n
m

is an integer, then [m,n] = n, and thus n
m

= [m,n]
m

= l. The l orthogonal m-dimensional

subspaces ξ̃k are the following,

ξ̃1 = span{e1, . . . , em}, ξ̃2 = span{em+1, . . . , e2m}, . . . , ξ̃l = span{en−m+1, . . . , en}.
In this case, by (4.3), a cross measure µ satisfies suppµ = {ξ̃1, . . . , ξ̃l} with

(4.4)
l∑

k=1

Pξ̃k
= In.



VOLUME INEQUALITIES ON GRASSMANN MANIFOLDS 17

Using the subspaces from (4.1), we define the convex body

(4.5) Bn,m
p =

{
x ∈ Rn :

1

l

l∑

k=1

|Pξ̃k
x|p ≤ m

n

}
.

This is the convex body Z∗
m,p(µ) when µ is a cross measure on the Grassmannian Gn,m. The

case m = 1 is the `n
p -ball, that is, Bn,1

p = Bn
p . We call the convex body Bn,m

p the `n,m
p -ball.

Let a be a positive real number. Denote by bac the largest integer such that bac ≤ a.

Lemma 4.1. Let l = b n
m
c. If µ is an isotropic probability measure on Gn,m, then there are

at least l elements ξ1, . . . , ξl ∈ suppµ, and suppµ contains exactly l elements if and only if
l = n

m
and µ is a cross measure.

Proof. Assume that {ξ1, . . . , ξk} = suppµ. Since µ is isotropic, span{ξ1, . . . , ξk} = Rn. This
implies that km ≥ n, and thus, k ≥ n

m
≥ l.

Suppose k = l. Then l = n
m

. Let δi = µ({ξi}). Since µ is an isotropic probability measure
on Gn,m, we have for all x ∈ Rn

(4.6)
l∑

i=1

δi|Pξi
x|2 =

m

n
|x|2.

Let u ∈ ξj be a unit vector. (4.6) gives

(4.7)
l∑

i=1

δi|Pξi
u|2 =

m

n
.

This implies that δj ≤ m
n

because |Pξj
u| = 1. Since µ is a probability measure,

∑l
j=1 δj = 1,

and hence, δj = m
n
. From this and (4.7) we see that |Pξi

u| = 0 for i 6= j. Therefore, ξ1, . . . , ξl

are mutually orthogonal, and thus µ is in fact a cross measure on Gn,m. ¤

5. Volume of Convex bodies associated with cross measures

For p ∈ [1,∞], let Z∗
m,p = Z∗

m,p(µ) and Zm,p = Zm,p(µ) be the convex bodies defined in
(1.2) - (1.4). Recall that the support function of Zm,p is given by

(5.1) hZm,p(x) =
( n

m

∫

Gn,m

|Pξx|p dµ(ξ)
) 1

p
, x ∈ Rn,

and for p = ∞,

(5.2) hZm,∞(x) = max
ξ∈suppµ

|Pξx|, x ∈ Rn.

Observe that a measure µ on Gn,m is isotropic if and only if Zm,2 is a ball. Our normal-
ization implies that a probability measure µ on Gn,m is isotropic if and only if Zm,2 is the
unit ball Bn

2 .
Suppose n

m
= l is an integer. If µ is a cross measure on Gn,m, the volumes of Z∗

m,p and
Zm,p can be explicitly calculated.

Lemma 5.1. Suppose that n
m

= l is an integer and p ∈ [1,∞]. If µ is a probability cross
measure on Gn,m, then we have V (Z∗

m,p) = αn(m, p).
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Proof. Note that when µ is a cross measure on Gn,m with |µ| = 1, the mass of µ at a point
is m

n
. Let p ∈ [1,∞). From (2.5), (2.4), (5.1), and (4.2), the volume of Z∗

m,p is given by

V
(
Z∗

m,p

)
=

1

Γ(1 + n
p
)

∫

Rn

e
−‖x‖p

Z∗m,pdx

=
1

Γ(1 + n
p
)

∫

Rn

exp

(
− n

m

l∑
i=1

m

n
|Pξ̃i

x|p
)

dx

=
1

Γ(1 + n
p
)

∫

Rn

exp

(
−

l∑
i=1

( m∑
j=1

|x · e(i−1)m+j|2
) p

2

)
dx

=
1

Γ(1 + n
p
)

(∫

ξ̃1

e−
(

x1
2+···+x2

m

) p
2

dx1 · · · dxm

)l

=
1

Γ(1 + n
p
)

( ∫

Rm

e−|z|
p

dz

) n
m

=

(
ωmΓ(1 + m

p
)
) n

m

Γ(1 + n
p
)

= αn(m, p).

When p = ∞, by (5.2), (2.1), and (2.4), we have

Z∗
m,∞ = {x ∈ Rn : max

ξ∈suppµ
|Pξx| ≤ 1}.

Thus, when µ is the cross measure on Gn,m with |µ| = 1, we get for each x ∈ Z∗
m,∞

exp

( l∑
i=1

log 1ξ̃i∩Bn
2
(Pξ̃i

x)

)
= 1.

Then we have

V (Z∗
m,∞) =

∫

Rn

exp

( l∑
i=1

log 1ξ̃i∩Bn
2
(Pξ̃i

x)

)
dx

=

∫

Rn

exp

( l∑
i=1

log 1ξ̃i∩Bn
2
(x(i−1)m+1, · · · , xim)

)
dx

=
( ∫

Rn∩ξ̃1

1ξ̃1∩Bn
2
(x1, · · · , xm) dx1 · · · dxm

)l

= ω
n
m
m .

¤

6. A dual definition for the norm ‖ · ‖Zm,p

The definition of the support function of convex body Zm,p is given by the Lp cosine
transform, which will be used to show the isoperimetric inequality in the volume inequalities
for Zm,p. To prove the reverse isoperimetric inequality in the volume inequalities for Zm,p,
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we give a definition for the norm ‖ · ‖Zm,p . The classical duality between the `n
p -ball and the

`n
p′-ball is generalized to `n,m

p -balls.
Let µ be a finite Borel measure on Gn,m, and let f : Gn,m → Rn be a continuous map so

that for each ξ ∈ Gn,m, f(ξ) ∈ ξ. Write f(ξ) as fξ. Define

‖f : µ‖p =
( n

m

∫

Gn,m

|fξ|pdµ(ξ)
) 1

p
, p ∈ [1,∞),

and
‖f : µ‖∞ = sup

ξ
|fξ|.

Define f̃ ∈ Rn by

(6.1) f̃ =
n

m

∫

Gn,m

fξ dµ(ξ) =
n

m

∫

Gn,m

Pξfξ dµ(ξ).

Obviously, for λ > 0, we have

(6.2) λ̃fξ = λf̃ .

For 1 ≤ p < ∞, define Mp as the closure,

(6.3) Mp = cl {f̃ ∈ Rn : ‖f : µ‖p′ ≤ 1},
while for p = ∞, define M∞ as the closure,

(6.4) M∞ = cl {f̃ ∈ Rn : ‖f : µ‖1 ≤ 1}.
It is easily shown that Mp is a convex body in Rn for all p ∈ [1,∞] and that Mp converges
to M∞ as p →∞ under the Hausdorff metric. We will show that Mp = Zm,p and give a dual
definition for the norm ‖ · ‖Zm,p .

Lemma 6.1. Suppose that p ∈ [1,∞] and µ is a finite Borel measure on Gn,m. Then

(6.5) Mp = Zm,p.

Proof. Since Zm,p and Mp converge to Zm,∞ and M∞, respectively, as p →∞, we only need
to show the case 1 ≤ p < ∞. For u ∈ Sn−1, from (2.3), (6.3), (6.1), the Hölder inequality,
and the definition (5.1), we have

hMp(u) = sup
‖f :µ‖p′≤1

u · f̃

= sup
‖f :µ‖p′≤1

n

m

∫

Gn,m

u · Pξfξ dµ(ξ)

= sup
‖f :µ‖p′≤1

n

m

∫

Gn,m

(Pξu) · fξ dµ(ξ)

≤ sup
‖f :µ‖p′≤1

n

m

∫

Gn,m

|Pξu||fξ| dµ(ξ)

≤ sup
‖f :µ‖p′≤1

‖f : µ‖p′

( n

m

∫

Gn,m

|Pξu|p dµ(ξ)
) 1

p

=
( n

m

∫

Gn,m

|Pξu|pdµ(ξ)
) 1

p
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= hZm,p(u).

Therefore, Mp ⊆ Zm,p.
On the other hand, for u ∈ Sn−1 and 1 ≤ p < ∞, let c = hZm,p(u), and let f1(ξ) =

c−p/p′|Pξu|p/p′−1Pξu. Then

( n

m

∫

Gn,m

|f1(ξ)|p′dµ(ξ)
) 1

p′
=

(c−pn

m

∫

Gn,m

|Pξu|pdµ(ξ)
) 1

p′
= 1,

and thus f̃1 ∈ Mp. Moreover,

hMp(u) ≥ u · f̃1

= u · n

m

∫

Gn,m

(Pξf1(ξ))dµ(ξ)

=
n

m

∫

Gn,m

u · (c−p/p′|Pξu|p/p′−1Pξu
)
dµ(ξ)

=
c−p/p′n

m

∫

Gn,m

|Pξu|p/p′−1|Pξu|2dµ(ξ)

=
c−p/p′n

m

∫

Gn,m

|Pξu|p/p′+1dµ(ξ)

= hZm,p(u).

Therefore, Mp ⊇ Zm,p. ¤

The following lemma gives a dual definition for the norm ‖ · ‖Zm,p .

Lemma 6.2. Suppose that p ∈ [1,∞] and µ is a finite Borel measure on Gn,m. Then, for
y ∈ Rn,

(6.6) ‖y‖Zm,p = inf
{( n

m

∫

Gn,m

|fξ|p′dµ(ξ)
) 1

p′
: y =

n

m

∫

Gn,m

fξ dµ(ξ)
}

.

Proof. By the definition of Minkowski functional and Lemma 6.1,

‖y‖Zm,p = inf
{

t > 0 :
y

t
∈ Zm,p

}

= inf
{

t > 0 :
y

t
=

n

m

∫

Gn,m

fξ dµ(ξ), ‖f : µ‖p′ ≤ 1
}

= inf
{

t > 0 : y =
n

m

∫

Gn,m

tfξ dµ(ξ),
( n

m

∫

Gn,m

|tfξ|p′dµ(ξ)
) 1

p′ ≤ t
}

≥ inf
{( n

m

∫

Gn,m

|fξ|p′dµ(ξ)
) 1

p′
: y =

n

m

∫

Gn,m

fξ dµ(ξ)
}

.

Let fi be a sequence such that

ti =
( n

m

∫

Gn,m

|fi(ξ)|p′dµ(ξ)
) 1

p′
, y =

n

m

∫

Gn,m

fi(ξ)dµ(ξ),
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and ti tends to the last infimum above. Then
( n

m

∫

Gn,m

∣∣∣fi(ξ)

ti

∣∣∣
p′

dµ(ξ)
) 1

p′
= 1,

y

ti
=

n

m

∫

Gn,m

fi(ξ)

ti
dµ(ξ).

It follows that y
ti
∈ Mp = Zm,p, and hence ti ≥ ‖y‖Zm,p . Therefore, the desired result is

proved. ¤

The following corollary extends the well-known duality of `n
p -balls,

(Bn
p )∗ = Bn

p′ , p ∈ [1,∞].

Corollary 6.3. Let p ∈ [1,∞]. If µ is an isotropic probability measure on Gn,m, then we
have

(6.7) Z∗
m,p ⊆ Zm,p′ .

The equality of the inclusion holds if µ is a cross measure on Gn,m and n is divisible by m.

Proof. Since µ is the isotropic probability measure on Gn,m, we have for x ∈ Rn

(6.8)
n

m

∫

Gn,m

Pξx dµ(ξ) = x.

By Lemma 6.2, we obtain that

hZ∗m,p
(x) = ‖x‖Zm,p ≤

( n

m

∫

Gn,m

|Pξx|p′dµ(ξ)
) 1

p′
= hZm,p′ (x),

which gives the desired inclusion.
By the continuity of Zm,p with respect to p, it is enough to show the equality condition

for p ∈ (1,∞). Let n/m = l. Notice that when µ is a cross measure on Gn,m, from (4.4), we
have for x ∈ Rn

l∑
i=1

Pξ̃i
x = x.

Define y ∈ Rn by

y =
l∑

i=1

|Pξ̃i
x|(p′−2)Pξ̃i

x, x ∈ Rn.

Since ξ̃i, i = 1, . . . , l, are orthogonal subspaces which are spanned by different coordinate
vectors, we have

Pξ̃i
y = |Pξ̃i

x|(p′−2)Pξ̃i
x.

Then for such x, y ∈ Rn

(6.9) x · y =
l∑

i=1

|Pξ̃i
x|(p′−2)x · Pξ̃i

x =
l∑

i=1

|Pξ̃i
x|p′

and from (p′ − 1)p = p′

(6.10) hZm,p(y) =

( l∑
i=1

|Pξ̃i
y|p

) 1
p

=

( l∑
i=1

|Pξ̃i
x|p′

) 1
p

.
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For x, y ∈ Rn, since x
hZ∗m,p

(x)
and y

hZm,p (y)
lie on the boundary of Zm,p and Z∗

m,p, respectively,

the definition of polar body (2.1) gives that

x

hZ∗m,p
(x)

· y

hZm,p(y)
≤ 1.

Thus, from (6.9), (5.1), and (6.10), we obtain for such x, y ∈ Rn

hZ∗m,p
(x)hZm,p(y) ≥ x · y

=
l∑

i=1

|Pξ̃i
x|p′

=

( l∑
i=1

|Pξ̃i
x|p′

) 1
p′

( l∑
i=1

|Pξ̃i
x|p′

) 1
p

= hZm,p′ (x)hZm,p(y),

which gives hZ∗m,p
(x) ≥ hZm,p′ (x) for all x ∈ Rn. This proves that Z∗

m,p = Zm,p′ for p ∈ (1,∞)
when µ is a cross measure on Gn,m and n is divisible by m. ¤

From Lemma 5.1 and Corollary 6.3, we obtain the following corollary.

Corollary 6.4. If µ is a probability cross measure on Gn,m and n is divisible by m, then for
p ∈ [1,∞],

(6.11) V (Zm,p) = αn(m, p′).

7. Volume inequalities for Zm,p and Z∗
m,p

The following lemma is needed to establish the volume inequalities of Zm,p and Z∗
m,p.

Denote by Bm
2 (r) the Euclidean open ball in Rm centered at the origin and with radius r.

We say that a function f is rotationally invariant in Rm if for O ∈ O(m) and x ∈ Rm,

f(x) = f(Ox).

Lemma 7.1. For a, b ∈ (0,∞], let f : Bm
2 (a) → (0,∞), g : Bm

2 (b) → (0,∞) be continuous
positive probability density functions. If f, g are rotationally invariant in Rm, then there
exists a rotationally invariant and strictly convex function ψ of class C2 on Bm

2 (a) such that
∇ψ : Bm

2 (a) → Bm
2 (b) and for x ∈ Bm

2 (a)

(7.1) f(x) = g(∇ψ(x)) det(∇2ψ(x)).

Proof. Let 0 ≤ t < a. Define a strictly increasing continuous function φ1 : [0, a) → [0, b) by

(7.2)

∫

Bm
2 (t)

f(x)dx =

∫

Bm
2 (φ1(t))

g(x)dx,

where we let Bm
2 (0) = {0}. Obviously, φ1(0) = 0. Since f, g are positive, continuous and

rotationally invariant, there exist continuous functions f1 : [0, a) → (0,∞), g1 : [0, b) →
(0,∞) such that f(x) = f1(|x|), g(x) = g1(|x|). Thus, by polar coordinates, we have

(7.3)

∫ t

0

f1(r)r
m−1dr =

∫ φ1(t)

0

g1(r)r
m−1dr,
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which implies that

(7.4) f1(t)t
m−1 = g1(φ1(t))φ

m−1
1 (t)φ′1(t).

Equation (7.3) and the mean value theorem show that there exist r1 and r2, 0 < r1 < t,
0 < r2 < φ1(t), so that (φ1(t)

t

)m

=
f1(r1)

g1(r2)
,

and

(7.5)
(φ1(t)

t

)m

→ f1(0)

g1(0)
, t → 0.

Since f1 > 0 is continuous on [0, a), g1 > 0 is continuous on [0, b) and φ1 : [0, a) → [0, b)
is strictly increasing and continuous, it follows that φ′1(t) > 0 is continuous on [0, a). Let
ψ1 : [0, a2) → [0,∞) be defined by

(7.6) φ1(t) = 2ψ′1(t
2)t, ψ1(0) = 0,

that is,

ψ1(t
2) =

∫ t

0

φ1(τ) dτ.

Then

(7.7) φ′1(t) = 4ψ′′1(t
2)t2 + 2ψ′1(t

2).

Equation (7.4) becomes

f1(t)t
m−1 = g1

(
2ψ′1(t

2)t
)(

2ψ′1(t
2)t

)m−1(
4ψ′′1(t

2)t2 + 2ψ′1(t
2)

)
,

that is,

(7.8) f1(t) = g1

(
2ψ′1(t

2)t
)(

2ψ′1(t
2)

)m−1(
4ψ′′1(t

2)t2 + 2ψ′1(t
2)

)
.

Define ψ(x) = ψ1(|x|2). Then we have

(7.9) ∇ψ(x) = 2ψ′1(|x|2)x,

where ∇ψ : Bm
2 (a) → Bm

2 (b), and

∇2ψ(x) = 4ψ′′1(|x|2)x⊗ x + 2ψ′1(|x|2)Im.

Thus

det(∇2ψ(x)) =
(
2ψ′1(|x|2)

)m−1(
4ψ′′1(|x|2)|x|2 + 2ψ′1(|x|2)

)
.

This together with (7.8) and (7.9) yields for x ∈ Bm
2 (a)

f(x) = g(∇ψ(x)) det(∇2ψ(x)).

Since f1 > 0, g1 > 0, it follows from (7.8) that det(∇2ψ(x)) > 0, and thus ψ ∈ C2 is convex
on Bm

2 (a). This completes the proof. ¤
The map∇ψ in Lemma 7.1 is a special case of the Brenier map, see [14], [48], and [49]. This

simple construction gives the regularity of the Brenier map for the rotationally invariant case,
which will be needed for the proof of the next theorem and later for uniqueness arguments.
See [50] for results and references on the regularity of the Brenier map of general domains.
We have not found an immediate reference to Lemma 7.1, and thus include a proof.
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Theorem 7.2. Suppose p ∈ [1,∞) and q ∈ [1,∞]. If µ is an isotropic probability measure
on Gn,m, then

(7.10) V (Z∗
m,p)/αn(m, p) ≤ V (Zm,q)/αn(m, q′).

Proof. First, assume q ∈ (1,∞]. Define probability densities in Rm, f(s), g(s) : Rm → (0,∞)
by

f(s) =
1

ωmΓ(1 + m
p
)
e−|s|

p

,

g(s) =
1

ωmΓ(1 + m
q′ )

e−|s|
q′
.

By Lemma 7.1, there exists a convex function ψ in Rm such that for s ∈ Rm

(7.11) e−|s|
p

= cm,p,qe
−|∇ψ(s)|q′ det(∇2ψ(s)),

where cm,p,q = Γ(1 + m
p
)/Γ(1 + m

q′ ).

For ξ ∈ Gn,m, choose an orthonormal basis {ε1, . . . , εm} of ξ. Then for s ∈ ξ, s =
s1ε1 + · · · + smεm, (s1, . . . , sm) ∈ Rm. Identify s ∈ ξ with (s1, . . . , sm) ∈ Rm when no
confusion is caused.

Let Ψξ : ξ → ξ be the map defined by

(7.12) Ψξ(s) =
∂ψ

∂s1

(s)ε1 + · · ·+ ∂ψ

∂sm

(s)εm,

which is the gradient of ψ in ξ. To see that Ψξ does not depend on the choice of orthonormal
basis of ξ, let

εi =
m∑

j=1

αijuj, s =
m∑

i=1

siεi =
m∑

j=1

tjuj,

where {u1, . . . , um} is another orthonormal basis and (αij) is an orthogonal matrix. Then

tj =
m∑

i=1

siαij,

∂ψ

∂si

=
m∑

j=1

∂ψ

∂tj

∂tj
∂si

=
m∑

j=1

∂ψ

∂tj
αij,

m∑
i=1

∂ψ

∂si

εi =
m∑

i=1

m∑
j=1

∂ψ

∂tj
αijεi =

m∑
j=1

∂ψ

∂tj
uj.

Thus, (7.12) is well-defined.
The differential of Ψξ at s is a linear transformation in ξ, defined by

dΨξ(s) : ξ → ξ,

dΨξ(s)(εi) =
m∑

j=1

∂2ψ(s)

∂si∂sj

εj.(7.13)

Since ψ is strictly convex, dΨξ(s) is a positive definite symmetric transformation.
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View ε1, . . . , εm as column vectors in Rn and let Q = (ε1, . . . , εm), then Q is an n × m
matrix. By (7.13),

IξdΨξ(s)Pξx =
m∑

j=1

∂2ψ(s)

∂si∂sj

(x · εi)εj, x ∈ Rn.

Thus,

(7.14) IξdΨξ(s)Pξ = Q∇2ψ(s)Qt.

Let

Aξ(x) = dΨξ(Pξx),

A(ξ, x) = IξAξ(x)Pξ = Q∇2ψ(QQtx)Qt.(7.15)

Since ψ is C2, (7.15) shows that A(ξ, x) is continuous with respect to (ξ, x).
Equation (7.11) gives for all s ∈ ξ

(7.16) |s|p = |Ψξ(s)|q′ − log cm,p,q − log det(dΨξ(s)).

Define the transformation T : Rn → Rn by,

(7.17) Tx =
n

m

∫

Gn,m

IξΨξ

(
Pξx

)
dµ(ξ), x ∈ Rn.

By (7.17) and (7.15), the differential of T is given by

(7.18) dT (x) =
n

m

∫

Gn,m

IξdΨξ

(
Pξx

)
Pξ dµ(ξ) =

n

m

∫

Gn,m

A(ξ, x) dµ(ξ),

for x ∈ Rn. Note that if µ is an isotropic probability measure on Gn,m, then

n

m

∫

Gn,m

Pξ dµ(ξ) = In.

Since A(ξ, x) is positive semi-definite and continuous with respect to ξ, the product of the
positive eigenvalues of A(ξ, x), det Aξ(x), has a positive minimum over Gn,m. Therefore, the
matrix dT (x) is positive definite since from the Grassmannian Ball-Barthe inequality (3.24),

det
( n

m

∫

Gn,m

A(ξ, x) dµ(ξ)
)
≥ exp

( n

m

∫

Gn,m

log
(
det Aξ(x)

)
dµ(ξ)

)
> 0.

In particular, for all y 6= 0 in Rn,

y · dT (x)y > 0,

so T is injective.
Moreover, (7.17) and Lemma 6.2 show that

(7.19) ‖Tx‖q′
Zm,q

≤ n

m

∫

Gn,m

∣∣Ψξ

(
Pξx

)∣∣q′ dµ(ξ),

for x ∈ Rn.
By (2.5), (2.4), (5.1), (7.16), the Grassmannian Ball-Barthe inequality (3.24), (7.18),

(7.19), the change of variables y = Tx, and (2.5) again, we have

Γ(1 +
n

p
)V (Z∗

m,p)
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=

∫

Rn

e
−‖x‖p

Z∗m,p dx

=

∫

Rn

exp
(
− n

m

∫

Gn,m

|Pξx|p dµ(ξ)
)

dx

=

∫

Rn

exp
(
− n

m

∫

Gn,m

(|Ψξ(Pξx)|q′ − log cm,p,q − log det(Aξ(x))
)
dµ(ξ)

)
dx

= (cm,p,q)
n
m

∫

Rn

exp
(
− n

m

∫

Gn,m

|Ψξ(Pξx)|q′ dµ(ξ)
)

× exp
( n

m

∫

Gn,m

log det(Aξ(x)) dµ(ξ)
)

dx

≤ (cm,p,q)
n
m

∫

Rn

exp
(
− n

m

∫

Gn,m

|Ψξ(Pξx)|q′ dµ(ξ)
)

det(dT (x)) dx

≤ (cm,p,q)
n
m

∫

Rn

exp
(− ‖Tx‖q′

Zm,q

)
det(dT (x)) dx

≤ (cm,p,q)
n
m

∫

Rn

e
−‖y‖q′

Zm,q dy

= (cm,p,q)
n
m Γ(1 +

n

q′
)V (Zm,q).

This is the desired inequality (7.10).
For q = 1, define probability densities

f(s) =
1

ωmΓ(1 + m
p
)
e−|s|

p

,

and

g(s) =
1

ωm

1Bm
2 (1)(s),

where Bm
2 (1) is the unit open ball in ξ.

Lemma 7.1 gives that there exists a convex function ψ in Rm such that for s ∈ Rm,
∇ψ : Rm → Bm

2 (1) and

(7.20) |s|p = − log cm,p − log det(∇2ψ(s)),

where cm,p = Γ(1 + m
p
). For this ψ, let Ψξ : ξ → ξ be the map defined by (7.12).

Define the transformation T : Rn → Rn by using (7.17). The differential dT is given by
(7.18). For all y 6= 0 in Rn, y · dT (x)y > 0, so T is injective.

Since |Ψξ| < 1, Lemma 6.2 and (7.17) show that ‖Tx‖Zm,1 ≤ 1, for all x ∈ Rn. This means
that Tx ∈ Zm,1, for all x ∈ Rn. Hence we have

(7.21) T (Rn) ⊆ Zm,1.

By (2.5), (2.4), (5.1), (7.20), the Grassmannian Ball-Barthe inequality (3.24), (7.18), the
change of variables y = Tx, and (7.21), we have

Γ
(
1 +

n

p

)
V (Z∗

m,p) =

∫

Rn

e
−‖x‖p

Z∗m,p dx

=

∫

Rn

exp
(
− n

m

∫

Gn,m

|Pξx|pdµ(ξ)
)

dx
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=

∫

Rn

exp
( n

m

∫

Gn,m

[
log cm,p + log det(Aξ(x))

]
dµ(ξ)

)
dx

= (cm,p)
n
m

∫

Rn

exp
( n

m

∫

Gn,m

log det(Aξ(x)) dµ(ξ)
)

dx

≤ (cm,p)
n
m

∫

Rn

det(dT (x)) dx

≤ (cm,p)
n
m

∫

Zm,1

dy

= (cm,p)
n
m V (Zm,1).

Therefore, (7.10) holds when q = 1. ¤

The case p 6= ∞ in the following theorem follows from Theorem 7.2 immediately by setting
q = 2.

Theorem 7.3. Suppose p ∈ [1,∞]. If µ is an isotropic probability measure on Gn,m, then

(7.22) αn(m, p) ≥ V (Z∗
m,p).

Proof. We only need to show the case p = ∞. Define probability densities

f(s) =
1

ωm

1Bm
2 (1)(s),

and

g(s) =
1

ωmΓ(1 + m
2
)
e−|s|

2

.

By Lemma 7.1, there exists a convex function ψ such that ∇ψ : Bm
2 (1) → Rm and

(7.23) Γ(1 + m/2) = e−|∇ψ(s)|2 det(∇2ψ(s)), s ∈ Bm
2 (1).

By (5.2) and (2.1), we have

(7.24) intZ∗
m,∞ = {x ∈ Rn : max

ξ∈suppµ
|Pξx| < 1}.

By (7.24), we have for each x ∈ intZ∗
m,∞

(7.25) exp
{ n

m

∫

suppµ

log 1Bm
2 (1)(Pξx) dµ(ξ)

}
= 1.

For ξ ∈ Gn,m, choose an orthonormal basis {ε1, . . . , εm} of ξ. Then we have for s ∈ ξ,
s = s1ε1 + · · ·+ smεm. Identify s with (s1, . . . , sm) ∈ Rm.

For ξ ∈ Gn,m, define Ψξ : Bm
2 (1) → ξ by (7.12), where we consider Bm

2 (1) as the open
unit ball in ξ. Define the map T : intZ∗

m,∞ → Rn by (7.17). The differential dT is given by
(7.18). Since dT (x) is positive definite for each x ∈ intZ∗

m,∞, the map T is injective.
Equation (7.24) shows that, for x ∈ intZ∗

m,∞ and ξ ∈ suppµ, Pξx is in the domain of Aξ.
It follows from (7.17) and Lemma 6.2 that

(7.26) ‖Tx‖2
Zm,2

≤ n

m

∫

Gn,m

|Ψξ(Pξx)|2dµ(ξ).
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By (7.25), (7.23), (7.18), the Grassmannian Ball-Barthe inequality (3.24), (7.26), the
change of variables y = Tx, (2.5), and the identity Zm,2 = Bn

2 , we have

V (Z∗
m,∞)

=

∫

intZ∗m,∞

exp
( n

m

∫

suppµ

log 1Bm
2 (1)(Pξx) dµ(ξ)

)
dx

=

∫

intZ∗m,∞

exp
( n

m

∫

suppµ

log
[
Γ
(
1 +

m

2

)−1
e−|Ψξ(Pξx)|2 det(Aξ(x))

]
dµ(ξ)

)
dx

= Γ
(
1 +

m

2

)− n
m

∫

intZ∗m,∞

exp
( n

m

∫

suppµ

−|Ψξ(Pξx)|2 dµ(ξ)
)

× exp
( n

m

∫

suppµ

log det(Aξ(x)) dµ(ξ)
)

dx

≤ Γ
(
1 +

m

2

)− n
m

∫

intZ∗m,∞

exp
( n

m

∫

suppµ

−|Ψξ(Pξx)|2dµ(ξ)
)

det(dT (x)) dx

≤ Γ
(
1 +

m

2

)− n
m

∫

intZ∗m,∞

e
−‖Tx‖2Zm,2 det(dT (x)) dx

≤ Γ
(
1 +

m

2

)− n
m

∫

Rn

e
−‖y‖2Zm,2 dy

= Γ
(
1 +

m

2

)− n
m Γ(1 +

n

2
)V (Zm,2)

= Γ
(
1 +

m

2

)− n
m Γ(1 +

n

2
)V (Bn

2 )

= αn(m,∞).

¤
The next theorem follows immediately from Theorem 7.2.

Theorem 7.4. Suppose p ∈ [1,∞]. If µ is an isotropic probability measure on Gn,m, then

(7.27) αn(m, p′) ≤ V (Zm,p).

Note that αn(m, 2) = ωn and Zm,2 = Bn
2 . Setting (p, q) = (p, 2) and (p, q) = (2, q) in

(7.10) gives

(7.28) V (Z∗
m,p)/αn(m, p) ≤ 1 ≤ V (Zm,q)/αn(m, q′).

Lemma 7.5. For any ξ ∈ Gn,m, there is the formula,
∫

Sn−1

|Pξu|p du =
mωmωn+p−2

ωm+p−2

.

Proof. By the rotation invariance of the integral, we can assume that ξ = Rm. The general
spherical coordinates and the formula (2.15) give that

∫

Sn−1

|Pξu|p du =

∫

Sm−1

∫

Sn−m−1

∫ π
2

0

(sin ϕ)n−m−1(cos ϕ)m+p−1 dϕdu1du2

= mωm(n−m)ωn−m
1

2
B

(n−m

2
,
m + p

2

)
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=
mωmωn+p−2

ωm+p−2

.

¤
In order to finish the proof of the inequalities in Theorem 1.2, we only need:

Theorem 7.6. Suppose p ∈ [1,∞]. If µ is an isotropic probability measure on Gn,m, then

ωn

γn(m, p)
≤ V (Z∗

m,p) and V (Zm,p) ≤ ωnγn(m, p)

where γn(m, p) =
(

ωmωn+p−2

ωnωm+p−2

)n
p
. There is equality in either of the inequalities if µ is the

normalized Lebesgue measure.

Proof. By the polar coordinate formula (2.7), the Hölder inequality, (5.1), Fubini’s theorem,
and Lemma 7.5, we have

(
V (Z∗

m,p)

ωn

)− 1
n

=

(
1

nωn

∫

Sn−1

hZm,p(u)−ndu

)− 1
n

≤
(

1

nωn

∫

Sn−1

hZm,p(u)pdu

) 1
p

=

(
1

nωn

∫

Sn−1

∫

Gn,m

n

m
|Pξu|p dµ(ξ)du

) 1
p

=

(
1

mωn

∫

Gn,m

∫

Sn−1

|Pξu|p dudµ(ξ)

) 1
p

=

(
ωmωn+p−2

ωnωm+p−2

) 1
p

,

with equality if and only if Zm,p is a ball. When µ is the normalized Lebesgue measure, Zm,p

is a ball.
To establish the second inequality, recall the classical Urysohn inequality (see, e.g., Schnei-

der [58], p. 318). By the Urysohn inequality, the Hölder inequality, (5.1), Fubini’s theorem,
and Lemma 7.5, we obtain

(
V (Zm,p)

ωn

) 1
n

≤ 1

nωn

∫

Sn−1

hZm,p(u)du

≤
(

1

nωn

∫

Sn−1

hZm,p(u)pdu

) 1
p

=

(
1

mωn

∫

Sn−1

∫

Gn,m

|Pξu|p dµ(ξ)du

) 1
p

=

(
1

mωn

∫

Gn,m

∫

Sn−1

|Pξu|p dudµ(ξ)

) 1
p

=

(
ωmωn+p−2

ωnωm+p−2

) 1
p

,
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with equality if and only if Zm,p is a ball. ¤

8. Equality conditions for the volume inequalities

In this section, we will focus on the case n
m

= l, an integer, and obtain the necessary
condition of equality for the left inequalities in (1.6) and (1.7).

Let f(s) and g(s) be the rotational invariant functions in the proof of Theorem 7.2 when
1 ≤ p < ∞ and Theorem 7.3 when p = ∞. By Lemma 7.1, there exists a convex function
ψ ∈ C2 in Bm

2 (a) such that

(8.1) f(s) = g(∇ψ(s)) det(∇2ψ(s)).

By the proof of Lemma 7.1, we can define ψ1 : [0, a2) → R by ψ(s) = ψ1(s · s) such that

(8.2) ∇ψ(s) = 2ψ′1(s · s)s
and

(8.3) ∇2ψ(s) = 4ψ′′1(s · s)s⊗ s + 2ψ′1(s · s)Im.

Thus, the eigenvectors of det(∇2ψ(s)) are the vector cs, c 6= 0, and all vectors in Rm which
are orthogonal to s. Their corresponding eigenvalues are

(8.4) λ(s) := 4ψ′′1(s · s)|s|2 + 2ψ′1(s · s),
and 2ψ′1(s · s). Since ψ is of class C2, we get that the eigenvalue functions ak(s) > 0,
k = 1, . . . , m, are continuous in Rm, and a1(s) = λ(s), a2(s) = · · · = am(s) = 2ψ′1(s · s).
Lemma 8.1. The eigenvalue functions ak(s), k = 1, . . . , m, of ∇2ψ, are continuous. If
p 6= q′, then for any fixed u ∈ Sn−1 and k ∈ {1, . . . , m}, ak(tu), as a function of t, is not
constant in any non-empty open sub-interval of (0, a).

Proof. Continuity has already been explained above. Only the second statement needs to be
proved. First, we consider the case when f, g are defined by

f(s) =
1

ωmΓ(1 + m
p
)
e−|s|

p

, g(s) =
1

ωmΓ(1 + m
q′ )

e−|s|
q′
.

Function ψ′1(t) is obviously not constant in a non-empty open interval. Otherwise, by
(8.1), (8.2), and (8.3), f(s) = cmg(cs) for certain constant c when |s| is in a non-empty open
interval. This is impossible when p 6= q′. Thus, the statement is true for ak(s), k = 2, . . . , m.
Then it is sufficient to prove that λ(tu) defined in (8.4), as a function of t, is not constant
in a non-empty open interval.

We argue by contradiction. Assume that λ(tu), as a function of t > 0, is constant in a
non-empty open interval. Then from (7.7) we have

φ′1(t) = c0 > 0 (constant),

in a non-empty open interval. It follows that

φ1(t) = c0t + c1,

in a non-empty open interval. Therefore, by (7.4),

e−tp = c2e
−(c0t+c1)q′

(c0t + c1

t

)m−1

,

in a non-empty open interval, where c2 = c0Γ(1 + m
p
)/Γ(1 + m

q′ ). By analytic continuation,

this equation is true for all t > 0. It is impossible when p 6= q′.
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Next, consider the case when f, g are defined by

f(s) =
1

ωm

1Bm
2 (a)(s), g(s) =

1

ωmΓ(1 + m
2
)
e−|s|

2
ξ .

Similar to the arguments above, if ψ′1(t) is constant in a non-empty open sub-interval of
(0, a), then

1

ωm

=
cm

π
m
2

e−(ct)2 ,

for certain constant c when t is in a non-empty open sub-interval of (0, a). This is impossible.
If φ′1(t) is constant in a non-empty open sub-interval of (0, a), then

1

ωm

= c2e
−(c0t+c1)2

(c0t + c1

t

)m−1

,

for some constants c0 > 0, c1, c2 in a non-empty open sub-interval. This is again impossible.
¤

Theorem 8.2. Suppose that n
m

= l is an integer. For p ∈ [1,∞] and p 6= 2, the equality on
the left of (1.6) or (1.7) holds if and only if µ is a cross measure on Gn,m.

Proof. It is sufficient to consider the inequalities (7.10) and (7.22) and assume equality holds
in (7.10) when 1 ≤ p < ∞ or in (7.22) when p = ∞. The equality conditions of the
Grassmannian Ball-Barthe inequality (Lemma 3.4) for Gn,m show that this implies that for
fixed x ∈ Rn when p ∈ [1,∞), or x ∈ intZ∗

m,∞ when p = 1, the product ak1(ξ1) · · · akn(ξn) as
a function of ξ1, ..., ξn ∈ Gn,m is constant if there are linearly independent n vectors

wi ∈ Eki
(Pξi

x), ξ1, ..., ξn ∈ suppµ,

where aki
(ξi) are the eigenvalues of Aξi

(x) with eigen-spaces Eki
(Pξi

x).
Since µ is an isotropic measure on Gn,m, by Lemma 4.1, there exist l′ elements ξ1, ..., ξl′ ∈

suppµ such that

(8.5) Rn = ξ1 + · · ·+ ξl′ , and l′ ≥ l.

We will show that l′ = l. Suppose l′ > l.
Let

Ξ = ξ⊥1 ∪ · · · ∪ ξ⊥l′ .
From Lemma 8.1 we know that for each x ∈ Rn, a1(tPξi

x) = λ(tPξi
x) (defined by (8.4)),

as a function of t, cannot be of multiplicity n in any sub-interval of (0, a). Otherwise, φ′′ = 0.
Then a1(tu) is constant, where u = Pξi

x/|Pξi
x|. Therefore, there is x /∈ Ξ, such that

a1(Pξi
x) 6= a2(Pξi

x) = · · · = am(Pξi
x) = 2ψ′1(s · s),

for i = 1, ..., l′. By the continuity of eigenvalues, there is an open set containing x, say
Ox ⊂ Rn\Ξ, so that

(8.6) a1(Pξi
y) 6= a2(Pξi

y) = · · · = am(Pξi
y)

holds for i = 1, ..., l′, and y ∈ Ox.
For this fixed x, by (8.5), there are n eigenspaces Ek1(Pξl1

x), ..., Ekn(Pξln
x), such that

there exist linearly independent n eigenvectors

wj ∈ Ekj
(Pξlj

x),

where kj ∈ {1, ..., m}, lj ∈ {1, ..., l′}, and j = 1, ..., n.
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There are two cases: either {ξ1, ..., ξl′} 6= {ξl1 , ..., ξln} or {ξ1, ..., ξl′} = {ξl1 , ..., ξln}. For
the first case, there is ξ′ ∈ {ξ1, ..., ξl′}\{ξl1 , ..., ξln} and an eigenvector w′ of Aξ′(x). For the
second case, by l′ > l = n

m
, there is ξ′ ∈ {ξl1 , ..., ξln}, so that the set

ξ′ ∩ {w1, ..., wn}
has no more than m− 1 wj’s. Then, we can find an eigenvector w′ of Aξ′(x), such that

w′ /∈ span
(
ξ′ ∩ {w1, ..., wn}

)
.

Since w1, . . . , wn are linearly independent, we always have

w′ = c1w1 + · · ·+ cnwn.

If the wj’s with non-zero coefficients belong to only one subspace, say ξlk , then ξlk 6= ξ′,
otherwise, w′ ∈ ξlk = span

(
ξ′∩{w1, ..., wn}

)
, a contradiction. Therefore, we can assume that

c1 6= 0, ξ′ 6= ξl1 , and hence w′, w2, . . . , wn are linearly independent.
Let ak′(Pξ′x) be the eigenvalue corresponding to w′. By the equality conditions of Lemma

3.4,

ak1(Pξl1
x)ak2(Pξl2

x) · · · akn(Pξln
x) = ak′(Pξ′x)ak2(Pξl2

x) · · · akn(Pξln
x).

It follows that

ak1(Pξl1
x) = ak′(Pξ′x).

Recall that (8.6) holds for all y ∈ Ox. This means that the multiplicity of ah(Pξj
y) will

not change for h ∈ {1, ..., m}, j ∈ {1, ..., l′}, and y ∈ Ox. Since Aξlj
(x) is continuous of

x, and Lemma 3.1 says that Pi(A) is continuous in the set that the eigenvalues of A keep
multiplicities. Thus

Pkj
(A(ξlj , y)), Pk′(A(ξ′, y))

are continuous for y ∈ Ox, for all j ∈ {1, ..., n}. Then, there is an open set O′
x ⊂ Ox

containing x, such that for all y ∈ O′
x, we have

Pk1(A(ξl1 , y))w1, Pk2(A(ξl2 , y))w2, ..., Pkn(A(ξln , y))wn

are linearly independent, and

Pk′(A(ξ′, y))w′, Pk2(A(ξl2 , y))w2, ..., Pkn(A(ξln , y))wn

are linearly independent, too. Since 0 6= Pk′(Pξli
y)wi ∈ Ek′(Pξli

y) and 0 6= Pki
(Pξli

y)wi ∈
Eki

(Pξli
y), by the equality conditions of Lemma 3.4, we conclude that

ak1(Pξl1
y)ak2(Pξl2

y) · · · akn(Pξln
y) = ak′(Pξ′y)ak2(Pξl2

y) · · · akn(Pξln
y),

and hence

(8.7) ak1(Pξl1
y) = ak′(Pξ′y)

for all y ∈ O′
x.

Since ξl1 6= ξ′ are two m-dimensional linear subspaces, there is v ∈ ξ⊥l1 but v /∈ ξ′⊥. Consider
x + tv for t ∈ I, where I is a small open interval containing 0 so that x + tv ∈ O′

x for all
t ∈ I. We see that

Pξl1
(x + tv) = Pξl1

x.

Denote

u(t) = Pξ′(x + tv),
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for t ∈ I. By the cosine formula,

|u(t)|2 = |u(0)|2 + t2|Pξ′v|2 + 2t|u(0)||Pξl′v|
(
u(0) · Pξ′v

)
.

The condition v /∈ ξ′⊥ implies |Pξ′v| 6= 0. Then |u(t)| is continuous for t ∈ I. Moreover, either
for all t > 0 or for all t < 0, there is

|u(t)| > |u(0)|.
Without loss of generality, we assume

(8.8) |u(t)| > |u(0)| for t ∈ I, and t > 0.

By (8.7), we get

(8.9) ak′(u(t)) = ak1(Pξl1
(x + tv)) = ak1(Pξl1

x) = ak′(u(0)),

for all t ∈ I.
By the rotation invariance of eigenvalues, the eigenvalue ak′(Pξ′y) depends only on |Pξ′y|.

Then for any v0 ∈ Sn−1, (8.9) implies that

(8.10) ak′(|u(t)|v0) = ak′(|u(0)|v0),

for all t ∈ I. But (8.8) says |u(t)| > |u(0)| when t > 0. By this, the continuity of |u(t)|, and
(8.10), we conclude that ak′(rv0) is constant when r is in some open sub-interval of (0, +∞).
By Lemma 8.1, this is a contradiction, and hence suppν has exactly l elements. ¤
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[6] F. Barthe, An extremal property of the mean width of the simplex, Math. Ann. 310 (1998), 685-693.
[7] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361.
[8] F. Barthe, A continuous version of the Brascamp-Lieb inequalities, Geometric Aspects of Functional

Analysis, Lecture Notes in Math. 1850, Springer, Berlin, 2004, 53-63.
[9] F. Barthe and N. Huet, On Gaussian Brunn-Minkowski inequalities, Studia Math. 191 (2009) 283-304.

[10] F. Barthe, M. Fradelizi, and B. Maurey, A short solution to the Busemann-Petty problem, Positivity
3 (1999), 95-100.

[11] J. Bastero and M. Romance, John’s decomposition of the identity in the non-convex case, Positivity 6
(2002), 1-161.

[12] J. Bastero, J. Bernués and M. Romance, From John to Gauss-John positions via dual mixed volumes,
J. Math. Anal. Appl. 328 (2007), 550-566.
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