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Abstract. In this paper, we establish the Lp Loomis-Whitney inequality for even

isotropic measures in terms of the support function of Lp projection bodies with

complete equality conditions. This generalizes Ball’s Loomis-Whitney inequality

to the Lp setting. In addition, the sharp upper bound of the minimal p-mean

width of Lp zonoids is obtained.

1. Introduction

Throughout this paper all Borel measures are understood to be nonnegative and

finite. A convex body is a compact convex set in Rn which is assumed to contain

the origin in its interior. We use | · | to denote the volume of a convex body or

its (n− 1)-dimensional projection. Denote by Kn
o the space of convex bodies in Rn

equipped with the Hausdorff metric. Each convex body K is uniquely determined

by its support function hK(·), defined by hK(x) = max{x · y : y ∈ K}, for x ∈ Rn,

where x · y denotes the usual inner product of x and y in Rn.

The classical Loomis-Whitney inequality [21] states that for a convex body K in

Rn,

|K|n−1 ≤
n∏

i=1

|Pe⊥i
K|, (1.1)

with equality if and only if K is a coordinate box (a rectangular parallelepiped

whose facets are parallel to the coordinate hyperplanes), where Pe⊥i
K denotes the

orthogonal projection of K onto the 1-codimensional space e⊥i perpendicular to ei

and {e1, . . . , en} is the standard orthonormal basis of Rn. Note that the Loomis-

Whitney inequality is of isoperimetric type. Indeed, denoting by S(K) the surface
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area of K, then S(K) ≥ 2|Pe⊥i
K| for all i = 1, . . . , n. Together with (1.1), we get

|K|n−1 ≤ 2−nS(K)n,

an isoperimetric inequality without the best constant. The Loomis-Whitney in-

equality is one of the fundamental inequalities in convex geometry and has been

studied intensively; see e.g., [3, 6–11,19,38].

In particular, Ball [3] showed that the Loomis-Whitney inequality still holds along

a sequence of directions satisfying John’s condition [17]. Specifically, for a convex

body K in Rn, if there are unit vectors (ui)
m
i=1 and positive numbers (ci)

m
i=1 satisfying

John’s condition
m∑

i=1

ciui ⊗ ui = In, (1.2)

then

|K|n−1 ≤
m∏

i=1

|Pu⊥i
K|ci , (1.3)

where ui ⊗ ui is the rank-one orthogonal projection onto the space spanned by the

unit vector ui and In is the identity map on Rn. Obviously, the inequality (1.3)

reduces to (1.1) when m = n and taking ui = ei with ci = 1 for all i = 1, . . . , n.

A Borel measure ν on the unit sphere Sn−1 of Rn is said to be isotropic if
∫

Sn−1

u⊗ udν(u) = In. (1.4)

Note that it is impossible for an isotropic measure to be concentrated on a proper

subspace of Rn. The measure ν is said to be even if it assumes the same value on an-

tipodal sets. In particular, when choosing the isotropic measure ν = 1
2

∑m
i=1(ciδui

+

ciδ−ui
) on Sn−1 (δx stands for the Dirac mass at x), the condition (1.4) reduces to

(1.2).

The Lp Brunn-Minkowski theory had its origins in the early 1960s when Firey [12]

introduced his concept of Lp combinations of convex bodies. In [22] and [23] these

Lp Minkowski-Firey combinations were further investigated by Lutwak which lead

to an embryonic Lp Brunn-Minkowski theory. This theory has expanded rapidly

thereafte; for further details, as well as detailed bibliography on the topic we refer

the reader to [32, Chapter 9] and the references therein. An important notion in the

Lp Brunn-Minkowski theory is the Lp projection body ΠpK introduced by Lutwak,

Yang, and Zhang [24]. In this paper, the Lp projection body ΠpK (p ≥ 1) of K ∈ Kn
o
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is the origin-symmetric convex body defined by

hΠpK(v) =
( 1

|Bn
p∗|

p
n

∫

Sn−1

|v · u|pdSp(K, u)
) 1

p
, v ∈ Sn−1, (1.5)

where dSp(K, ·) is the Lp surface area measure of K and Bn
p∗ is the unit ball of the

space `n
p∗ . Here p∗ is the Hölder conjugate of p; i.e., 1/p + 1/p∗ = 1. The case

p = 1 is the classical projection body ΠK. The normalization above is chosen so

that for p = 1 we have

hΠK(v) = |Pv⊥K| = 1

2

∫

Sn−1

|v · u|dSK(u), v ∈ Sn−1, (1.6)

where dSK(·) is the surface area measure of K.

The main purpose of this paper is to generalize Ball’s Loomis-Whitney inequality

(1.3) to the Lp setting (corresponding to the Lp Brunn-Minkowski theory); i.e., the

Lp version of the Loomis-Whitney inequality in terms of the support function of Lp

projection bodies with complete equality conditions is established. This inequality

may be called as the Lp Loomis-Whitney inequality.

Theorem 1.1. Suppose p ≥ 1 and K ∈ Kn
o . If ν is an even isotropic measure on

Sn−1, then

|K|n−p
p ≤ exp

{∫

Sn−1

log hΠpK(u)dν(u)
}

. (1.7)

For 1 < p 6= 2, equality in (1.7) holds if and only if ν is a cross measure on Sn−1 and

K is the generalized `n
p∗-ball formed by ν; i.e., there are positive numbers (αi)

n
i=1 such

that

K =
{

x ∈ Rn :
( n∑

i=1

|x · ui|p∗αi

) 1
p∗ ≤ 1

}
,

where supp ν = {±u1, . . . ,±un} and (ui)
n
1 is an orthonormal basis of Rn. For p = 1,

equality in (1.7) holds if and only if ν is a cross measure on Sn−1 and K is a

box formed by ν (up to translations); i.e., there is a vector v0 ∈ Rn and positive

numbers (αi)
n
i=1 such that

K =
n∑

i=1

αi[−ui, ui] + v0,

where supp ν = {±u1, . . . ,±un} and (ui)
n
1 is an orthonormal basis of Rn.

Notice that when p = 1 , by (1.6), the inequality (1.7) can be written as

|K|n−1 ≤ exp
{∫

Sn−1

log |Pu⊥K|dν(u)
}

, (1.8)
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with equality if and only if K is a box formed by the cross measure ν (up to

translations). When taking ν = 1
2

∑m
i=1(ciδui

+ ciδ−ui
) on Sn−1, the inequality (1.8)

is actually the inequality (1.3). When ν is replaced by the isotropic surface area

measure of K, the inequality (1.8) (without equality conditions) was proved by

Giannopoulos and Papadimitrakis [14].

By Theorem 1.1 we immediately get the solution of the dual Lp version of Vaaler’s

conjecture, extending Ball’s result [3] (p = 1).

Theorem 1.2. Suppose 1 ≤ p 6= n and K ∈ Kn
o . Then there exists a nondegenerate

affine transformation T of Rn such that the affine image K̃ = TK of K satisfies

that for every v ∈ Sn−1,

|K̃|n−p
pn ≤ hΠpK̃(v). (1.9)

The notion of Lp zonoids introduced by Schneider and Weil [33] is an important

ingredient in the Lp Brunn-Minkowski theory. Suppose p ≥ 1 and ν is an even Borel

measure on Sn−1 such that its support, supp ν, is not contained in a subsphere

of Sn−1. The Lp zonoid Zp := Zp(ν) is the origin-symmetric convex body defined by

hZp(v) =
( ∫

Sn−1

|v · u|pdν(u)
) 1

p
, v ∈ Sn−1. (1.10)

Furthermore, the Z1 body is the classical zonoid, which is the limit of Minkowski

sums of line segments.

For K ∈ Kn
o , let ωp(K, u) = hp

K(u) + hp
K(−u) denote the p-width of K in the

direction of u ∈ Sn−1. Then the p-mean width of K defined in [37] is

ωp(K) =

∫

Sn−1

ωp(K, u)dσ(u) = 2

∫

Sn−1

hp
K(u)dσ(u), (1.11)

where dσ is the rotationally invariant probability measure on Sn−1. We say that K

has minimal p-mean width if ωp(K) ≤ ωp(AK) for every A ∈ SL(n).

Another purpose of this paper is to obtain the following sharp upper bound of

the minimal p-mean width of Zp.

Theorem 1.3. Suppose p ≥ 1. If the Lp zonoid Zp has minimal p-mean width

and |Zp| = |Bn
p∗|, then

ωp(Zp) ≤ ωp(B
n
p∗), (1.12)

with equality if ν is a cross measure on Sn−1. Moreover, if p is not an even integer,

the equality holds only if ν is a cross measure on Sn−1.
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The case p = 1 without the “only if ” part was due to Giannopoulos, Milman,

and Rudelson [15].

The rest of this paper is organized as follows: In Section 2 the background mate-

rials are provided. In Section 3, to prove Theorem 1.1, a crucial inequality (Lemma

3.2) is established. The proofs of Theorem 1.1 and Theorem 1.2 are given in Section

4. Section 5 is dedicated to proving Theorem 1.3.

2. Background materials

For quick later reference we recall some background materials from the Lp Brunn-

Minkowski theory of convex bodies. Good general references are Gardner [13] and

Schneider [32].

Let K ∈ Kn
o . For A ∈ GL(n) , write AK = {Ax : x ∈ K} for the image

of K under A. If λ > 0, then λK = {λx : x ∈ K} is the dilation of K by a factor

of λ. The polar body K∗ of K is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.
It follows from the definition of the polar K∗ of K that for A ∈ GL(n),

(AK)∗ = A−tK∗, (2.1)

where A−t is the inverse and transpose of A.

The Minkowski functional ‖ · ‖K of K ∈ Kn
o is defined by

‖x‖K = min{t > 0 : x ∈ tK}, (2.2)

for x ∈ Rn. It is easy to verify that

‖ · ‖K = hK∗(·). (2.3)

For p ≥ 1, K, L ∈ Kn
o , and ε > 0, the Lp Minkowski-Firey combination K +p ε ·L

is the convex body whose support function is given by

h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p.

The Lp mixed volume Vp(K, L) of K, L ∈ Kn
o , was defined in [22] by

Vp(K, L) =
p

n
lim

ε→0+

|K +p ε · L| − |K|
ε

. (2.4)

In particular, Vp(K, K) = |K|. The Lp Minkowski inequality [22] states that for

K, L ∈ Kn
o ,

Vp(K, L)n ≥ |K|n−p|L|p, (2.5)
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with equality if and only if K and L are dilates when p > 1 and if and only if K

and L are homothetic (i.e. they coincide up to translations and dilatations) when

p = 1.

It was shown in [22] that there is a positive Borel measure, Sp(K, ·), on Sn−1 so

that

Vp(K, L) =
1

n

∫

Sn−1

hp
L(u)dSp(K, u) (2.6)

for K, L ∈ Kn
o , where dSp(K, ·) = h1−p

K (·)dSK(·) is the Lp surface area measure of K

and dSK is the classical surface area measure of K. It is easy to verify that

dSp(cK, ·) = cn−pdSp(K, ·), c > 0. (2.7)

When L = Bn
2 , the Lp surface area Sp(K) of K is given by

Sp(K) = nVp(K, Bn
2 ) =

∫

Sn−1

dSp(K, u).

The case p = 1 is the classical surface area S(K) on Sn−1 of K.

Let ‖ · ‖ denote the standard Euclidean norm in Rn. It is evident that (1.4) is

equivalent to

‖x‖2 =

∫

Sn−1

|x · u|2dν(u), (2.8)

for all x ∈ Rn. Taking the trace in (1.4) gives

ν(Sn−1) = n. (2.9)

The two most important examples of even isotropic measures on Sn−1 are (suit-

ably normalized) spherical Lebesgue measure and the cross measure, i.e., measures

concentrated uniformly on {±u1, . . . ,±un}, where u1, . . . , un is an orthonormal basis

of Rn.

Using the polar coordinate formula for volume, it is easy to see that for each

p ∈ (0,∞), the volume of a convex body K ∈ Rn is given by

|K| = 1

Γ(1 + n
p
)

∫

Rn

e−‖x‖
p
Kdx, (2.10)

where integration is with respect to Lebesgue measure on Rn. Let Bn
p denote the

unit ball of `n
p -space, understood as

Bn
p =

{
x ∈ Rn :

( n∑
i=1

|x · ei|p
) 1

p ≤ 1
}

, 1 ≤ p < ∞,

and

Bn
∞ = {x ∈ Rn : |x · ei| ≤ 1, for all i = 1, . . . , n}, p = ∞.
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From (2.10), we get

|Bn
p | =

(2Γ(1 + 1
p
))n

Γ(1 + n
p
)

and |Bn
∞| = 2n. (2.11)

As mentioned in Theorem 1.1, the notion of the generalized `n
p -ball Bn

p,α := Bn
p,α(ν)

formed by ν is defined as

Bn
p,α =

{
x ∈ Rn :

( n∑
i=1

|x · ui|pα(ui)
) 1

p ≤ 1
}

, 1 ≤ p < ∞, (2.12)

and

Bn
∞,α =

{
x ∈ Rn : |x · ui|α(ui) ≤ 1 for all i = 1, . . . , n

}
, p = ∞, (2.13)

where (α(ui))
n
i=1 > 0 and ν is a cross measure on Sn−1 such that

supp ν = {±u1, . . . ,±un} = O{±e1, . . . ,±en},

for some O ∈ O(n). We shall mention that Bn
∞,α can be called as the box formed

by ν. Thus,

Bn
p,α =

{
x ∈ Rn :

( n∑
i=1

|x ·Oei|pα(ui)
) 1

p ≤ 1
}

=
{

x ∈ Rn :
( n∑

i=1

|AOtx · ei|p
) 1

p ≤ 1
}

=
{

O−tA−1x ∈ Rn :
( n∑

i=1

|x · ei|p
) 1

p ≤ 1
}

= OA−1Bn
p , (2.14)

where A = diag{α(u1)
1/p, . . . , α(un)1/p} is a diagonal matrix. Then we immediately

get

|Bn
p,α| = |OA−1Bn

p | = |Bn
p |

( n∏
i=1

α(ui)
)− 1

p
. (2.15)

It follows from (2.3) and (2.12) that for p ≥ 1

h(Bn
p,α)∗(x) =

( n∑
i=1

|x · ui|pα(ui)
) 1

p
. (2.16)

Moreover, by (2.14) and (2.1), for p > 1, we have

(Bn
p,α)∗ = (OA−1Bn

p )∗ = OAtBn
p∗
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=
{

x ∈ Rn :
( n∑

i=1

|A−tO−1x · ei|p∗
) 1

p∗ ≤ 1
}

=
{

x ∈ Rn :
( n∑

i=1

|x · ui|p∗α(ui)
−p∗/p

) 1
p∗ ≤ 1

}

= Bn
p∗,α−p∗/p . (2.17)

For p = 1, by the same way, we have

(Bn
1,α)∗ = Bn

∞,1/α. (2.18)

Then from (2.15) we have

|(Bn
p,α)∗| = |Bn

p∗,α−p∗/p | = |Bn
p∗|

( n∏
i=1

α(ui)
) 1

p
. (2.19)

For each p ≥ 1 and each even Borel measure ν on Sn−1, let Cpν denote the

spherical Lp cosine transform of ν, which is a continuous function on Sn−1 defined

by

(Cpν)(u) =
( ∫

Sn−1

|u · v|pdν(v)
) 1

p
,

for each u ∈ Sn−1. A basic fact is that for p not an even integer the Lp cosine

transform (see e.g., Alexandrov [1], Lonke [20] and Neyman [30]) is injective; i.e., if

p ≥ 1 is not an even integer and the measures ν and ν̄ are even Borel measure on

Sn−1 such that Cp(ν) = Cp(ν̄), then ν = ν̄.

The following continuous version of the Ball-Barthe inequality was given by Lut-

wak, Yang, and Zhang [26], extending the discrete case due to Ball and Barthe [5,

Proposition 9].

Lemma 2.1. If f : Sn−1 → (0,∞) is continuous and ν is an isotropic measure

on Sn−1, then

det

∫

Sn−1

f(u)u⊗ udν(u) ≥ exp
{∫

Sn−1

log f(u)dν(u)
}

, (2.20)

with equality if and only if f(u1) · · · f(un) is constant for linearly independent unit

vectors u1, . . . , un ∈ supp ν.
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3. A volume inequality

Suppose ν is an even isotropic measure on Sn−1 and α : Sn−1 → (0, +∞) is an

even positive continuous function. In this paper, for p ≥ 1, we define the “general”

Lp zonoid Zp,α := Zp,α(ν) to be the origin-symmetric convex body whose support

function is given by

hZp,α(v) =
( ∫

Sn−1

|v · u|pα(u)dν(u)
) 1

p
, v ∈ Sn−1. (3.1)

Without the isotropic assumption of ν, the definition (3.1) coincides with the defi-

nition of the Lp zonoid (1.10) introduced by Schneider and Weil [33].

In particular, if ν is a cross measure such that supp ν = {±u1, . . . ,±un}. By

(3.1), (2.16), (2.17) and (2.18), we have

hZp,α(x) =
( n∑

i=1

|x · ui|pα(ui)
) 1

p
= h(Bn

p,α)∗(x) = hBn

p∗,α−p∗/p
(x), (3.2)

for each x ∈ Rn. From (2.19), we obtain

|Zp,α| = |Bn
p∗,α−p∗/p | = |Bn

p∗|
( n∏

i=1

α(ui)
) 1

p
. (3.3)

The following lemma was proved by Lutwak, Yang, and Zhang [26, Lemma 3.1].

Lemma 3.1. Suppose p ≥ 1 and α is an even continuous positive function on Sn−1.

Let ν be an even Borel measure on Sn−1. If t ∈ Lp∗(ν), then

∥∥∥
∫

Sn−1

ut(u)α(u)dν(u)
∥∥∥

Zp,α

≤
( ∫

Sn−1

|t(u)|p∗α(u)dν(u)
) 1

p∗
. (3.4)

The proof of Theorem 1.1 relies on the following sharp volume estimates of the

“general” Lp zonoids Zp,α. When α(·) ≡ 1, Lemma 3.2 is the well-known Lp volume

ratio inequality due to Ball [2], Barthe [4,5], and Lutwak, Yang, and Zhang [26]. The

proof of Lemma 3.2 is based on a refinement of the approach by Lutwak, Yang, and

Zhang [26], which uses the Ball-Barthe inequality (2.20) and the technique of mass

transportation. For more applications about this approach, see e.g., [16,18,28,29,34].

Lemma 3.2. Suppose p ≥ 1 and α is an even continuous positive function on Sn−1.

If ν is an even isotropic measure on Sn−1, then

|Zp,α|
|Bn

p∗|
≥

(
exp

∫

Sn−1

log α(u)dν(u)
) 1

p
. (3.5)

For p 6= 2, there is equality if and only if ν is a cross measure on Sn−1.
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Proof. Case p > 1: Define the strictly increasing function ψ : R→ R by

1

Γ(3
2
)

∫ t

−∞
e−s2

ds =
1

Γ(1 + 1
p∗ )

∫ ψ(t)

−∞
e−|s|

p∗
ds.

Differentiating both sides with respect to t gives

e−t2 =
Γ(3

2
)

Γ(1 + 1
p∗ )

e−|ψ(t)|p∗ψ′(t).

Taking the log of both sides, we get

− t2 = log Γ
(3

2

)
− log Γ(1 +

1

p∗
)− |ψ(t)|p∗ + log ψ′(t). (3.6)

Define T : Rn → Rn by

T (x) =

∫

Sn−1

uψ(x · u)α(u)
1
p dν(u),

for each x ∈ Rn. The differential of T is given by

dT (x) =

∫

Sn−1

u⊗ uψ′(x · u)α(u)
1
p dν(u). (3.7)

Since ψ′ > 0 and α > 0, the matrix dT (x) is positive definite for each x ∈ Rn.

Hence, the transformation T : Rn → Rn is injective. Moreover, by Lemma 3.1

with t(u) = ψ(x · u)α(u)−
1

p∗ , we obtain

‖T (x)‖p∗
Zp,α

≤
∫

Sn−1

|ψ(x · u)α(u)−
1

p∗ |p∗α(u)dν(u)

=

∫

Sn−1

|ψ(x · u)|p∗dν(u). (3.8)

From (2.10), (2.8), (3.6) with t = x · u, (2.9), the Ball-Barthe inequality (2.20)

with f(u) = ψ′(x · u)α(u)
1
p , (3.7), (3.8), making the change of variable y = T (x),

and again (2.10), we have

Γ
(1

2

)n

=

∫

Rn

e−‖x‖
2

dx

=

∫

Rn

exp
{
−

∫

Sn−1

|x · u|2dν(u)
}

dx

=

∫

Rn

exp
{∫

Sn−1

[
log Γ

(3

2

)
− log Γ

(
1 +

1

p∗

)
− |ψ(x · u)|p∗ + log ψ′(x · u)

]
dν(u)

}
dx

=
( Γ

(
3
2

)

Γ(1 + 1
p∗ )

)n
∫

Rn

exp
{∫

Sn−1

−|ψ(x · u)|p∗dν(u)
}

× exp
{∫

Sn−1

−1

p
log α(u)dν(u)

}
exp

{∫

Sn−1

log
(
ψ′(x · u)α(u)

1
p
)
dν(u)

}
dx
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≤
( Γ

(
3
2

)

Γ(1 + 1
p∗ )

)n

exp
{∫

Sn−1

−1

p
log α(u)dν(u)

}

×
∫

Rn

exp
{∫

Sn−1

−|ψ(x · u)|p∗dν(u)
}
|dT (x)|dx

≤
( Γ

(
3
2

)

Γ(1 + 1
p∗ )

)n

exp
{∫

Sn−1

−1

p
log α(u)dν(u)

}∫

Rn

e
−‖Tx‖p∗

Zp,α |dT (x)|dx

≤
( Γ

(
3
2

)

Γ(1 + 1
p∗ )

)n(
exp

∫

Sn−1

log α(u)dν(u)
)− 1

p

∫

Rn

e
−‖y‖p∗

Zp,αdy

=
( Γ

(
3
2

)

Γ(1 + 1
p∗ )

)n(
exp

∫

Sn−1

log α(u)dν(u)
)− 1

p |Zp,α|Γ
(
1 +

n

p∗

)
.

Thus, from (2.11) we have

|Zp,α|
|Bn

p∗|
=

Γ(1 + n
p∗ )|Zp,α|

(2Γ(1 + 1
p∗ ))

n
≥

(
exp

∫

Sn−1

log α(u)dν(u)
) 1

p
. (3.9)

Assume that equality holds in (3.9). Since ν is isotropic on Sn−1, the measure ν is

not concentrated on any subsphere of Sn−1. Then there exist linearly independent

u1, . . . , un ∈ supp ν. Since µ is even, we have

{±u1, . . . ,±un} ⊆ supp ν.

Assume that there exists a vector v ∈ supp ν such that

v /∈ {±u1, . . . ,±un}.

Let v = λ1u1 + · · ·+λnun such that at least one coefficient, say λ1, is not zero. Then

the equality condition of the Ball-Barthe inequality implies that

ψ′(x · u1)α(u1)
1
p ψ′(x · u2)α(u2)

1
p · · ·ψ′(x · un)α(un)

1
p

= ψ′(x · v)α(v)
1
p ψ′(x · u2)α(u2)

1
p · · ·ψ′(x · un)α(un)

1
p , (3.10)

for all x ∈ Rn. However, ψ′ > 0 and α > 0 yield that

ψ′(x · u1)α(u1)
1
p = ψ′(x · v)α(v)

1
p

for all x ∈ Rn.

If p 6= 2, then the function ψ′ is not constant. Differentiating both sides with

respect to x gives that

ψ′′(x · u1)α(u1)
1
p u1 = ψ′′(x · v)α(v)

1
p v,
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for all x ∈ Rn. Since α > 0 and there exists x ∈ Rn such that ψ′′(x · u1) 6= 0, this is

the desired contradiction. So we must have v = ±u1, and hence

{±u1, . . . ,±un} = supp ν.

Therefore, we have for x ∈ Rn,

|x|2 =
n∑

i=1

ν({±ui})|x · ui|2. (3.11)

Substituting x = uj, we see that ν({±uj}) ≤ 1. From the fact that
∑n

i=1 ν({±ui}) =

n, we get ν({±uj}) = 1. By (3.11), we can see that uj · ui = 0 for j 6= i, and hence

ν is a cross measure on Sn−1.

Conversely, if ν is a cross measure on Sn−1 such that supp ν = {±u1, . . . ,±un},
the equality of (3.5) immediately follows from (3.3).

Case p = 1: Define the strictly increasing function φ : R→ (−1, 1) by

1

Γ(3
2
)

∫ t

−∞
e−s2

ds =

∫ φ(t)

−∞
1[−1,1](s)ds.

Note that |φ(t)| < 1. Differentiating both sides with respect to t and taking the log

give

− t2 = log Γ
(3

2

)
+ log φ′(t). (3.12)

Define T : Rn → Rn by

T (x) =

∫

Sn−1

uφ(x · u)α(u)dν(u),

for each x ∈ Rn. In fact, T : Rn → Z1,α; i.e.,

T (Rn) ⊆ Z1,α. (3.13)

To see this, by Lemma 3.1 with t(u) = φ(x · u) and the fact that |φ| < 1, we obtain

‖T (x)‖Z1,α ≤ max
u∈Sn−1

|φ(x · u)| < 1.

The definition of the Minkowski functional (2.2) shows that Tx ∈ Z1,α for all x ∈ Rn.

The differential of T gives that

dT (x) =

∫

Sn−1

u⊗ uφ′(y · u)α(u)dν(u). (3.14)

Since φ′ > 0 and α > 0, the matrix dT (y) is positive definite for each x ∈ H. Hence,

the transformation T : Rn → Rn is injective.
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From (2.10), (2.8), (3.12) with t = x · u, (2.9), (3.14), the Ball-Barthe inequality

(2.20) with f(u) = φ′(x · u)α(u), (3.14), making the change of variable y = T (x)

and (3.13), we have

Γ
(1

2

)n

=

∫

Rn

e−‖x‖
2

dx

=

∫

Rn

exp
{
−

∫

Sn−1

|x · u|2dν(u)
}

dy

=

∫

Rn

exp
{∫

Sn−1

(
log Γ

(3

2

)
+ log φ′(x · u)

)
dν(u)

}
dx

= Γ
(3

2

)n

exp
{
−

∫

Sn−1

log α(u)dν(u)
}∫

Rn

exp
{∫

Sn−1

log
(
φ′(x · u)α(u)

)
dν(u)

}
dx

≤ Γ
(3

2

)n(
exp

∫

Sn−1

log α(u)dν(u)
)−1

∫

Rn

|dT (x)|dx

≤ Γ
(3

2

)n(
exp

∫

Sn−1

log α(u)dν(u)
)−1

∫

Z1,α

dy

= Γ
(3

2

)n(
exp

∫

Sn−1

log α(u)dν(u)
)−1

|Z1,α|.

Therefore, we obtain

|Z1,α| ≥ 2n
(

exp

∫

Sn−1

log α(u)dν(u)
)
.

The equality conditions are basically the same as the case of p > 1. ¤

4. The Lp Loomis-Whitney inequality

Recall that the Lp projection body ΠpK of K ∈ Kn
o , for p ≥ 1, is the origin-

symmetric convex body defined by

hΠpK(u) =
( 1

|Bn
p∗|

p
n

∫

Sn−1

|u · v|pdSp(K, v)
) 1

p
, u ∈ Sn−1. (4.1)

The following intertwining properties of Πp and Π∗
p with linear transformations

were established by Lutwak, Yang, and Zhang [24] for p > 1, and by Petty [31] for

p = 1.

Lemma 4.1. Suppose p ≥ 1 and K ∈ Kn
o . Then for A ∈ GL(n),

ΠpAK = |det A|1/pA−tΠpK and Π∗
pAK = |det A|−1/pAΠ∗

pK. (4.2)

In particular,

Πp(cK) = c
n−p

p ΠpK, c > 0. (4.3)
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Inspired by the method of Ball [3], we establish Theorem 1.1; i.e., the Lp Loomis-

Whitney inequality.

Theorem 4.2. Suppose p ≥ 1 and K ∈ Kn
o . If ν is an even isotropic measure on

Sn−1, then

|K|n−p
p ≤ exp

{∫

Sn−1

log hΠpK(u)dν(u)
}

. (4.4)

For 1 < p 6= 2, equality in (4.4) holds if and only if ν is a cross measure on Sn−1 and

K is the generalized `n
p∗-ball formed by ν. For p = 1, equality in (4.4) holds if and

only if ν is a cross measure on Sn−1 and K is a box formed by ν (up to translations).

Proof. Let

α(u) = h−p
ΠpK(u) (4.5)

for u ∈ Sn−1. From (2.5), (2.6), the definitions of Zp,α (3.1) and ΠpK (4.1), Fubini’s

theorem and (2.9), we have

|K|n−p ≤ |Zp,α|−pVp(K, Zp,α)n = |Zp,α|−p
( 1

n

∫

Sn−1

hp
Zp,α

(v)dSp(K, v)
)n

= |Zp,α|−p
( 1

n

∫

Sn−1

∫

Sn−1

|u · v|pα(u)dν(u)dSp(K, v)
)n

= |Zp,α|−p
( 1

n

∫

Sn−1

∫

Sn−1

|u · v|pdSp(K, v)α(u)dν(u)
)n

= |Zp,α|−p
( 1

n

∫

Sn−1

|Bn
p∗|

p
n hp

ΠpK(u)α(u)dν(u)
)n

= |Zp,α|−p|Bn
p∗|p.

Combining with Lemma 3.2 and (4.5), we have

|K|n−p ≤ |Zp,α|−p|Bn
p∗|p ≤

[
|Bn

p∗|
(

exp

∫

Sn−1

log α(u)dν(u)
) 1

p
]−p

|Bn
p∗|p

=
(

exp

∫

Sn−1

log α(u)dν(u)
)−1

=
(

exp

∫

Sn−1

log hΠpK(u)dν(u)
)p

, (4.6)

which is the desired inequality.

For the equality conditions of (4.6), by the Lp Minkowski inequality (2.5), the

equality of the first inequality in (4.6) holds if and only if K and Zp,α are dilates

when p > 1 (K and Zp,α are homothetic when p = 1). Lemma 3.2 implies that

equality of the second inequality in (4.6) holds if and only if ν is a cross measure
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on Sn−1 when p 6= 2, and thus by (3.2), Zp,α is the generalized `n
p∗-ball Bn

p∗,α−p∗/p

formed by ν. Hence K is a dilation of the generalized `n
p∗-ball formed by the cross

measure ν, which is still the generalized `n
p∗-ball formed by ν when 2 6= p > 1 (K

coincides with the box formed by ν up to translations when p = 1).

Conversely, when 1 < p 6= 2, we will show that equality in (4.6) holds if K is the

generalized `n
p∗-ball formed by ν; i.e., there are positive numbers (αi)

n
i=1 such that

K =
{

x ∈ Rn :
( n∑

i=1

|x · ui|p∗αi

) 1
p∗ ≤ 1

}
, (4.7)

where supp ν = {±u1, . . . ,±un} and (ui)
n
1 is an orthonormal basis of Rn. From

(4.6), it is sufficient to verify that K and Zp,α are dilates. From (2.14), we have

K = Bn
p∗,αi

= OA−1Bn
p∗ ,

where O is an orthogonal matrix such that Oei = ui for i = 1, . . . , n and A =

diag{α1/p∗
1 , . . . , α

1/p∗
n } is a diagonal matrix. From (4.5) and (4.2), we get

α(uk) = h−p
ΠpK(uk) = h−p

Πp(OA−1Bn
p∗ )

(uk)

= h−p

|detA|−1/p(OA−1)−tΠp(Bn
p∗ )

(uk)

= |det A|h−p
Πp(Bn

p∗ )
(AO−1uk)

= |det A|h−p
Πp(Bn

p∗ )
(Aek)

= |det A|h−p
Πp(Bn

p∗ )
(α

1/p∗
k ek)

= |det A|h−p
Πp(Bn

p∗ )
(ek)α

−p/p∗
k

for every k = 1, . . . , n. Notice that h−p
Πp(Bn

p∗ )
(ek) is a constant for all k = 1, . . . , n.

Thus, there exists a constant c > 0 such that α(uk) = cα
−p/p∗
k for every k = 1, . . . , n.

Now, it follows from (3.2) and (4.7) that

Zp,α = Bn
p∗,α−p∗/p

=
{

x ∈ Rn :
( n∑

i=1

|x · ui|p∗α(ui)
−p∗/p

) 1
p∗ ≤ 1

}

=
{

x ∈ Rn :
( n∑

i=1

|x · ui|p∗c−p∗/pαi

) 1
p∗ ≤ 1

}
= c

1
p K.

That is, K and Zp,α are dilates when 1 < p 6= 2. When p = 1, the proof is the

same, together with the observation that Π(K + v0) = ΠK for every v0 ∈ Rn.
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¤

In [35], Vaaler conjectured that for every origin-symmetric convex body K, there

is an affine image K̃ of K so that for every 1-codimensional space v⊥ perpendicular

to v,

|K̃|n−1
n ≤ |K̃ ∩ v⊥|.

It is natural to ask whether there is a dual version of Vaaler’s conjecture. Ball [3]

answered this question and obtained that there is an affine image K̃ of K such that

for every v ∈ Sn−1,

|K̃|n−1
n ≤ |Pv⊥K̃|.

Now, we extend Ball’s result to the Lp setting (Theorem 1.2).

Theorem 4.3. Suppose 1 ≤ p 6= n and K ∈ Kn
o . Then there exists a nondegenerate

affine image K̃ of K such that for every v ∈ Sn−1,

|K̃|n−p
pn ≤ hΠpK̃(v). (4.8)

Proof. By Lemma 4.1, for 1 ≤ p 6= n, there is an affine image K̃ of K so that the

ellipsoid of maximal volume contained in ΠpK̃ is the Euclidean ball Bn
2 . Thus, for

every v ∈ Sn−1,

hΠpK̃(v) ≥ hBn
2
(v) = 1.

Since ΠpK̃ is origin-symmetric, it follows from John’s theorem [17] that the contact

points form an even discrete isotropic measure ν such that for all u ∈ supp ν we

have

hΠpK̃(u) = 1.

Therefore, from Theorem 4.2, we have for every v ∈ Sn−1,

|K̃|n−p
p ≤ exp

{∫

supp ν

log hΠpK̃(u)dν(u)
}

= 1 ≤ (hΠpK̃(v))n. (4.9)

¤

5. Minimal p-mean width

Recall that a convex body K has minimal p-mean width if ωp(K) ≤ ωp(A1K) for

every A1 ∈ SL(n), where ωp(K) is the p-mean width of K defined in (1.11). We

say that the body K has minimal Lp surface area if Sp(K) ≤ Sp(A2K) for every

A2 ∈ SL(n). The following two lemmas will be needed.
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Lemma 5.1. [27,36] Suppose p ≥ 1 and K ∈ Kn
o . Then K has minimal Lp surface

area if and only if the measure nSp(K, ·)/Sp(K) is isotropic on Sn−1.

Lemma 5.2. [37] Suppose p ≥ 1 and K ∈ Kn
o . Then ΠpK has minimal p-mean

width if and only if K has minimal Lp surface area.

We also need the following remarkable result due to Lutwak, Yang, and Zhang [25].

The solution of normalized even Lp Minkowski problem. Let p ≥ 1. If ν

is an even Borel measure on Sn−1 whose support is not contained in a subsphere of

Sn−1, then there exists an unique origin-symmetric convex body K ∈ Kn
o such that

Sp(K, ·)/|K| = ν.

Applying Lemma 3.2 to the Lp projection body with minimal Lp surface area, we

have

Lemma 5.3. Suppose p ≥ 1 and K is an origin-symmetric convex body. If K has

minimal Lp surface area, then

Sp(K) ≤ n|ΠpK|
p
n . (5.1)

For p 6= 2, there is equality if and only if K is a centred cube.

Proof. By the homogeneity of the desired inequality, we may assume Sp(K) = n. It

is sufficient to prove that |ΠpK| ≥ 1. Let dν(·) = dSp(K, ·). It follows from Lemma

5.1 that ν is an even isotropic measure on Sn−1. Comparing the definition of

Zp,α (3.1) with α = |Bn
p∗|−

p
n to that of ΠpK (4.1), we get Zp,α = ΠpK. By Lemma

3.2 and (2.9), we obtain

|ΠpK| ≥ |Bn
p∗|

( 1

|Bn
p∗|

p
n

)n
p

= 1. (5.2)

The equality condition of Lemma 3.2 gives that for p 6= 2, there is equality in

(5.2) if and only if ndSp(K, ·)/S(K) is a cross measure on Sn−1. On the other

hand, it is easy to verify that nSp(OC0, ·)/Sp(OC0) is a cross measure on Sn−1 for

some O ∈ O(n), where C0 = [−1, 1]n is the unit cube in Rn. Moreover, from (2.7),

we have
nSp(OC0, ·)
Sp(OC0)

=
Sp(λOC0, ·)
|λOC0| with λ =

( n|C0|
Sp(C0)

)− 1
p
.

Thus, the equality condition follows from the uniqueness of the solution of the

normalized even Lp Minkowski problem and the fact that

( n|tK|
Sp(tK)

)− 1
p
tK =

( n|K|
Sp(K)

)− 1
p
K
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for all t > 0.

¤

Recall that the Lp zonoid Zp is defined by, for v ∈ Sn−1,

hZp(v) =
( ∫

Sn−1

|v · u|pdν(u)
) 1

p
, (5.3)

where ν is an even Borel measure on Sn−1 such that supp ν is not contained in a

subsphere of Sn−1. We finally establish Theorem 1.3.

Theorem 5.4. Suppose p ≥ 1. If the Lp zonoid Zp has minimal p-mean width

and |Zp| = |Bn
p∗|, then

ωp(Zp) ≤ ωp(B
n
p∗), (5.4)

with equality if ν is a cross measure on Sn−1. Moreover, if p is not an even integer,

the equality holds only if ν is a cross measure on Sn−1.

Proof. From (1.11), the definition of the Lp projection body (4.1) and Fubini’s the-

orem, we have

ωp(ΠpK) = 2

∫

Sn−1

hp
ΠpK(u)dσ(u)

=
2

|Bn
p∗|

p
n

∫

Sn−1

∫

Sn−1

|u · v|pdSp(K, v)dσ(u)

=
2

|Bn
p∗|

p
n

∫

Sn−1

∫

Sn−1

|u · v|pdσ(u)dSp(K, v)

=
2cp

n|Bn
p∗|

p
n

Sp(K), (5.5)

where

cp =
Γ(1 + n

2
)Γ(1+p

2
)

Γ(1 + 1
2
)Γ(n+p

2
)
.

Assume that p ≥ 1 and p 6= 2. By the solution of the normalized even Lp

Minkowski problem, for the measure dν(·) in Zp, there exists a unique origin-

symmetric convex body L such that dSp(L, ·)/|L| = dν(·). So from (5.3) and (4.1),

we have

hZp(x) =
( ∫

Sn−1

|x·u|pdν(u)
) 1

p
=

( 1

|L|
∫

Sn−1

|x·u|pdSp(L, u)
) 1

p
=

( |Bn
p∗|

p
n

|L|
) 1

p
hΠpL(x)

for x ∈ Rn. That is,
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Zp =
( |Bn

p∗|
p
n

|L|
) 1

p
ΠpL. (5.6)

It follows from Lemma 5.2 that Zp has minimal p-mean width if and only if L

has minimal Lp surface area. From the assumption |Zp| = |Bn
p∗| and (5.6), we

have |L| = |ΠpL|p/n. Then, (5.6) becomes

Zp =
( |Bn

p∗|
|ΠpL|

)1/n

ΠpL. (5.7)

Using the inequality (5.1) for L, (5.5) and (5.7), we have

|ΠpL| ≥
(Sp(L)

n

)n
p

=
( |Bn

p∗|
p
n ωp(ΠpL)

2cp

)n
p

=
( |ΠpL| p

n ωp(Zp)

2cp

)n
p
. (5.8)

That is,

ωp(Zp) ≤ 2cp. (5.9)

Let C0 = [−1, 1]n. It is easy to verify that

( |Bn
p∗|

p
n

|C0|
)1/p

ΠpC0 =
( |Bn

p∗|
|ΠpC0|

)1/n

ΠpC0 = Bn
p∗ . (5.10)

Thus, by the equality condition of (5.1), together with (5.10) and (5.9), we imme-

diately get

ωp(Zp) ≤ ωp(B
n
p∗). (5.11)

Suppose ν is a cross measure in (5.3), then there exists an orthogonal trans-

form O such that dν(·) = dSp(OC0, ·)/|C0|. From (4.1), (4.2) and (5.10), we have

hZp(x) =
( ∫

Sn−1

|x · u|pdν(u)
) 1

p
=

( 1

|C0|
∫

Sn−1

|x · u|pdSp(OC0, u)
) 1

p

=
( |Bn

p∗|
p
n

|C0|
) 1

p
hΠp(OC0)(x) = hOBn

p∗ (x),

for x ∈ Rn. In other words, Zp = OBn
p∗ . By (1.11), the equality of (5.11) follows.

Conversely, suppose the equality of (5.11) holds. By Lemma 5.3, the equality of

(5.8) implies that L is a centred cube in Rn. Hence we can write L = aOC0 for

some a > 0 and O ∈ O(n). From (5.6), (4.3), and (5.10), we have

|Bn
p∗| = |Zp| =

∣∣∣
( |Bn

p∗|
p
n

|aOC0|
)1/p

Πp(aOC0)
∣∣∣ = a−n

∣∣∣
( |Bn

p∗|
p
n

|C0|
)1/p

ΠpC0

∣∣∣ = a−n|Bn
p∗|.

Thus we have a = 1 and

Zp =
( |Bn

p∗|
p
n

|C0|
)1/p

Πp(OC0)
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for some O ∈ O(n). That is,

hZp(x) =
( 1

|C0|
∫

Sn−1

|x · u|pdSp(OC0, u)
) 1

p
.

Observe that dSp(OC0, ·)/|C0| is a cross measure on Sn−1. Note that the spherical

Lp cosine transform is injective if 1 ≤ p < ∞ is not an even integer (see Section 2).

Hence the measure ν in Zp is exactly a cross measure on Sn−1. ¤
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