THE L, LOOMIS-WHITNEY INEQUALITY
AI-JUN LI AND QINGZHONG HUANG

ABSTRACT. In this paper, we establish the L, Loomis-Whitney inequality for even
isotropic measures in terms of the support function of L, projection bodies with
complete equality conditions. This generalizes Ball’s Loomis-Whitney inequality
to the L, setting. In addition, the sharp upper bound of the minimal p-mean

width of L, zonoids is obtained.

1. INTRODUCTION

Throughout this paper all Borel measures are understood to be nonnegative and
finite. A convex body is a compact convex set in R"™ which is assumed to contain
the origin in its interior. We use | - | to denote the volume of a convex body or
its (n — 1)-dimensional projection. Denote by K7 the space of convex bodies in R™
equipped with the Hausdorff metric. Each convex body K is uniquely determined
by its support function hk(-), defined by hx(z) = max{z -y :y € K}, for x € R™,
where z - y denotes the usual inner product of x and y in R"™.

The classical Loomis-Whitney inequality [21] states that for a convex body K in
R™,

(K" < T 1P K, (1.1)

i=1
with equality if and only if K is a coordinate box (a rectangular parallelepiped
whose facets are parallel to the coordinate hyperplanes), where PC’L_LK denotes the
orthogonal projection of K onto the 1-codimensional space e perpendicular to e;
and {ey,...,e,} is the standard orthonormal basis of R”. Note that the Loomis-

Whitney inequality is of isoperimetric type. Indeed, denoting by S(K) the surface
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area of K, then S(K) > 2|P,. K| for all i = 1,...,n. Together with (1.1), we get
|K|n71 S ans(K)n7

an isoperimetric inequality without the best constant. The Loomis-Whitney in-
equality is one of the fundamental inequalities in convex geometry and has been
studied intensively; see e.g., [3,6-11,19,38].

In particular, Ball [3] showed that the Loomis-Whitney inequality still holds along
a sequence of directions satisfying John’s condition [17]. Specifically, for a convex
body K in R™, if there are unit vectors (u;)™,; and positive numbers (¢;); satisfying

John’s condition
i=1

then

(K" < T 1P K (1.3)

i=1
where u; ® u; is the rank-one orthogonal projection onto the space spanned by the
unit vector u; and I,, is the identity map on R™. Obviously, the inequality (1.3)
reduces to (1.1) when m = n and taking u; = e; with ¢; =1 for alli =1,... n.

A Borel measure v on the unit sphere S"~! of R is said to be isotropic if

/ u @ udv(u) = I,. (1.4)
Sn—1

Note that it is impossible for an isotropic measure to be concentrated on a proper
subspace of R™. The measure v is said to be even if it assumes the same value on an-
tipodal sets. In particular, when choosing the isotropic measure v = % S (€iy, +
¢i0_y,) on S"1 (4, stands for the Dirac mass at z), the condition (1.4) reduces to
(1.2).

The L, Brunn-Minkowski theory had its origins in the early 1960s when Firey [12]
introduced his concept of L, combinations of convex bodies. In [22] and [23] these
L, Minkowski-Firey combinations were further investigated by Lutwak which lead
to an embryonic L, Brunn-Minkowski theory. This theory has expanded rapidly
thereafte; for further details, as well as detailed bibliography on the topic we refer
the reader to [32, Chapter 9] and the references therein. An important notion in the
L, Brunn-Minkowski theory is the L, projection body 11,K introduced by Lutwak,
Yang, and Zhang [24]. In this paper, the L, projection body I, K (p > 1) of K € KV
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is the origin-symmetric convex body defined by
1 7
) = (e [ oeaPas, ()’ ves™ ()
ERLNES

where dS, (K, -) is the L, surface area measure of K and By is the unit ball of the

space (.. Here p* is the Holder conjugate of p; ie., 1/p + 1/p* = 1. The case
p = 1 is the classical projection body II/K. The normalization above is chosen so
that for p = 1 we have
1
hnk(v) =P K| = 5/ v+ u|dSk(u), veS" (1.6)
Sn—1
where dSk(-) is the surface area measure of K.

The main purpose of this paper is to generalize Ball’s Loomis-Whitney inequality
(1.3) to the L, setting (corresponding to the L, Brunn-Minkowski theory); i.e., the
L,, version of the Loomis-Whitney inequality in terms of the support function of L,
projection bodies with complete equality conditions is established. This inequality

may be called as the L, Loomis-Whitney inequality.

Theorem 1.1. Suppose p > 1 and K € K. If v is an even isotropic measure on
S™=1 then

K17 < exp { /S o e (w)v(w) }. (1.7)

For 1 < p # 2, equality in (1.7) holds if and only if v is a cross measure on S™~* and

K is the generalized €. -ball formed by v; i.e., there are positive numbers (i), such

that
n 1
K = {:c eR": (Z|x-ui\p*ai>p < 1},
i=1
where supp v = {Fuq, ..., tu,} and (u;)} is an orthonormal basis of R™. Forp =1,

equality in (1.7) holds if and only if v is a cross measure on S™™' and K is a
box formed by v (up to translations); i.e., there is a vector vy € R™ and positive

numbers (o), such that

K=Y oil—uiui] + vo,
=1

where suppv = {£uq, ..., Tu,} and (w;)} is an orthonormal basis of R™.

Notice that when p =1, by (1.6), the inequality (1.7) can be written as

K" < exp {/ log [P« K[dv(u) }. (1.8)
Sn—l



4 A.-J. LI AND Q. HUANG

with equality if and only if K is a box formed by the cross measure v (up to
translations). When taking v = £ > | (¢;0,, + ¢;0_y,) on S™7!, the inequality (1.8)
is actually the inequality (1.3). When v is replaced by the isotropic surface area
measure of K, the inequality (1.8) (without equality conditions) was proved by
Giannopoulos and Papadimitrakis [14].

By Theorem 1.1 we immediately get the solution of the dual L, version of Vaaler’s

conjecture, extending Ball’s result [3] (p = 1).

Theorem 1.2. Suppose 1 < p #n and K € K. Then there exists a nondegenerate
affine transformation T of R™ such that the affine image K = TK of K satisfies
that for every v € S™ 1,

K| < by g (v). (1.9)

The notion of L, zonoids introduced by Schneider and Weil [33] is an important
ingredient in the L, Brunn-Minkowski theory. Suppose p > 1 and v is an even Borel
measure on S™ ! such that its support, suppv, is not contained in a subsphere

of S"~1. The L, zonoid Z, := Z,(v) is the origin-symmetric convex body defined by

hz,(v) = </Sn1 v - u]’%lu(u))ll], ve S (1.10)

Furthermore, the Z; body is the classical zonoid, which is the limit of Minkowski
sums of line segments.
For K € K2, let w,(K,u) = h%(u) + h%(—u) denote the p-width of K in the
direction of u € S"~!. Then the p-mean width of K defined in [37] is
wp(K) = / wp(K,u)do(u) = 2/ hE-(uw)do(u), (1.11)
Sn—1 Sn—1
where do is the rotationally invariant probability measure on S"~!. We say that K
has minimal p-mean width if w,(K) < w,(AK) for every A € SL(n).
Another purpose of this paper is to obtain the following sharp upper bound of

the minimal p-mean width of Z,.

Theorem 1.3. Suppose p > 1. If the L, zonoid Z, has minimal p-mean width
and | Z,| = |B.|, then

wp(Zp) < wy(Bye), (1.12)
with equality if v is a cross measure on S™1. Moreover, if p is not an even integer,

the equality holds only if v is a cross measure on S™*.
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The case p = 1 without the “only if ” part was due to Giannopoulos, Milman,
and Rudelson [15].

The rest of this paper is organized as follows: In Section 2 the background mate-
rials are provided. In Section 3, to prove Theorem 1.1, a crucial inequality (Lemma
3.2) is established. The proofs of Theorem 1.1 and Theorem 1.2 are given in Section

4. Section 5 is dedicated to proving Theorem 1.3.

2. BACKGROUND MATERIALS

For quick later reference we recall some background materials from the L, Brunn-
Minkowski theory of convex bodies. Good general references are Gardner [13] and
Schneider [32].

Let K € K. For A € GL(n) , write AK = {Az : © € K} for the image
of K under A. If A > 0, then A\K = {Az : x € K} is the dilation of K by a factor
of A. The polar body K* of K is defined by

K'={zeR":z-y<lforalye K}
It follows from the definition of the polar K* of K that for A € GL(n),
(AK)* = AT'K*, (2.1)

where A~ is the inverse and transpose of A.
The Minkowski functional || - || of K € K is defined by

|z||x = min{t > 0:2 € tK}, (2.2)
for x € R". It is easy to verify that
Il = P (). (2.3)
Forp>1, K,L € K}, and € > 0, the L, Minkowski-Firey combination K +,¢- L
is the convex body whose support function is given by
WK +,e-L,-)P =h(K, )’ +eh(L,-)P.

The L, mixed volume V,(K, L) of K, L € K, was defined in [22] by

K+4yc I - |K
Vi, L) = 2 i e H= 1K

N e—0+ £

(2.4)

In particular, V,(K, K) = |K|. The L, Minkowski inequality [22] states that for
K,Le K7,
VoI, L) = | K|"PILPP, (2.5)
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with equality if and only if K and L are dilates when p > 1 and if and only if K
and L are homothetic (i.e. they coincide up to translations and dilatations) when
p=1.

It was shown in [22] that there is a positive Borel measure, S,(K, ), on S"~! so

that
1

Vo(K,L) = ﬁ/ ) RY (w)dS, (K, u) (2.6)

for K, L € K", where dS,(K,-) = h;c *(-)dSk(-) is the L, surface area measure of K

and dSk is the classical surface area measure of K. It is easy to verify that
dSy(cK,-) = ""PdS,(K,-), ¢>0. (2.7)
When L = BY, the L, surface area S,(K) of K is given by
S,(K) = nV,(K, BY) = /S 5, (K, u).

The case p = 1 is the classical surface area S(K) on S"! of K.
Let || - || denote the standard Euclidean norm in R™. It is evident that (1.4) is

equivalent to
Jolf? = [l uPdvta), 2.5)
Sn—1
for all x € R"™. Taking the trace in (1.4) gives
v(S™ ) = n. (2.9)

The two most important examples of even isotropic measures on S"! are (suit-
ably normalized) spherical Lebesgue measure and the cross measure, i.e., measures
concentrated uniformly on {£uy, ..., +u,}, where uy, ..., u, is an orthonormal basis
of R™.

Using the polar coordinate formula for volume, it is easy to see that for each
p € (0,00), the volume of a convex body K € R" is given by

. a1l
|K| = i+ D) /Rn e "k dg, (2.10)
where integration is with respect to Lebesgue measure on R". Let B} denote the

unit ball of £]-space, understood as

n 1
B;L:{xE]R”: (Z\x-€¢|p>p§1}, 1 <p<oo,

=1
and
Bl ={zeR":|v-¢| <1, foralli=1,...,n}, p=oo.
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From (2.10), we get

@ +4)"

d |BL|=2". 2.11
ez (211)

1By | =

As mentioned in Theorem 1.1, the notion of the generalized £;-ball B}, := B} (V)

formed by v is defined as

n 1
Bga:{xeR": (Z\muma(ui))p §1}, 1< p< oo, (2.12)
i=1
and
B, = {x eER": |z wla(u;) <lforali=1,... ,n}, p = 00, (2.13)

where (a(u;))"; > 0 and v is a cross measure on S"~! such that
suppv = {tuq,...,Tu,} = O{+xey,..., +e,},

for some O € O(n). We shall mention that Bf, , can be called as the box formed
by v. Thus,

n 1
By, = {x eR": (Z |z - Oei|pa(ui)>p < 1}
i=1
n 1
— {x eR": (Z |AO x el|p)p < 1}
i=1
=07 Al e R : (Z |z - ez|p>; < 1}
i=1
=0A'By, (2.14)
where A = diag{a(u1)'/?, ..., a(u,)"?} is a diagonal matrix. Then we immediately
get
B | = [0A™'BY| = \Bg\(Ha(ui)> ’ (2.15)
i=1

It follows from (2.3) and (2.12) that for p > 1

n

hpr (@) = (Y lo-wila(u))”.

=1

Moreover, by (2.14) and (2.1), for p > 1, we have

D=

(2.16)

(By,)* = (OA™'Br)* = OA'B).
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_ {;g cR": <i AP0 - ei|p*>pl* < 1}
=1

= {a: eR": (Z |z - ui]p*(x(ui)’p*/p>? < 1}

i=1
- B;L*yoé*p*/P‘ (217)
For p = 1, by the same way, we have
(Bra)" = BX1/a- (2.18)

Then from (2.15) we have

|(B;7)L,a)*| - |B;*7a*p*/p| — |B;;L*

(Ha(ui)f’. (2.19)

For each p > 1 and each even Borel measure v on S" ', let C,v denote the
spherical L, cosine transform of v, which is a continuous function on S™~* defined
by

1

) = ([ b)),

for each u € S™"!'. A basic fact is that for p not an even integer the L, cosine
transform (see e.g., Alexandrov [1], Lonke [20] and Neyman [30]) is injective; i.e., if
p > 1 is not an even integer and the measures v and v are even Borel measure on
S~ such that C,(v) = C,(7), then v = .

The following continuous version of the Ball-Barthe inequality was given by Lut-
wak, Yang, and Zhang [26], extending the discrete case due to Ball and Barthe [5,
Proposition 9].

Lemma 2.1. If f : S" ' — (0,00) is continuous and v is an isotropic measure
on S™ L, then

det (u)u ® udv(u) > exp { / log f(u)dy(u)}, (2.20)

Sn—1 Sn—1

with equality if and only if f(uq)--- f(uy,) is constant for linearly independent unit

vectors uy, ..., Uy, € SUpp v.
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3. A VOLUME INEQUALITY

Suppose v is an even isotropic measure on S ! and o : S"! — (0, 400) is an
even positive continuous function. In this paper, for p > 1, we define the “general”
L, zonoid Z,, = Z,.(v) to be the origin-symmetric convex body whose support

function is given by

hz,.(v) = (/Snl v - u\p&(u)dl/(u)>;, ve S (3.1)

Without the isotropic assumption of v, the definition (3.1) coincides with the defi-
nition of the L, zonoid (1.10) introduced by Schneider and Weil [33].

In particular, if v is a cross measure such that suppr = {£u,...,+u,}. By
(3.1), (2.16), (2.17) and (2.18), we have

3=

Mpe@) = (3 lowilPa(w))” = by e (0) =hon (@), (3.2)

: p*,a—P*/P
=1

for each x € R™. From (2.19), we obtain
Zpal = 1B ool = 1Bl ([T ) (3.3)
i=1

The following lemma was proved by Lutwak, Yang, and Zhang [26, Lemma 3.1].

Lemma 3.1. Suppose p > 1 and « is an even continuous positive function on S™ 1.

Let v be an even Borel measure on S"'. If t € Ly(v), then

|[ e, < ([ werewaw)”. @

The proof of Theorem 1.1 relies on the following sharp volume estimates of the

Zp,a

“general” L, zonoids Z, ,. When «(-) = 1, Lemma 3.2 is the well-known L, volume
ratio inequality due to Ball [2], Barthe [4,5], and Lutwak, Yang, and Zhang [26]. The
proof of Lemma 3.2 is based on a refinement of the approach by Lutwak, Yang, and
Zhang [26], which uses the Ball-Barthe inequality (2.20) and the technique of mass
transportation. For more applications about this approach, see e.g., [16,18,28,29,34].

Lemma 3.2. Suppose p > 1 and « is an even continuous positive function on S™ 1.

If v is an even isotropic measure on S™1, then

il (o [ %
— > [ exp log a(u)dv(u) ). (3.5)
|Bp* | ( Sn—l )

For p # 2, there is equality if and only if v is a cross measure on S™ 1.
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Proof. Case p > 1: Define the strictly increasing function ) : R — R by

S L 1 v
—3/ e %ds = —1/ e 1" ds.
I'(5) Jo P+ ) Jow

Differentiating both sides with respect to ¢ gives

[‘(é) «
-t _ 2 =l @F
= e t).
I(1+.5%) Vi)
Taking the log of both sides, we get
3 1 .
—t? = logF<§> —logT'(1 + E) — @) +log ' (t). (3.6)

Define T': R* — R" by
T(z) = /S (e u)afu)tdv(u).
for each x € R™. The differential of T is given by
AT (z) = /S u®uy(c- wa(u)r du(u). (3.7)

Since ¢ > 0 and « > 0, the matrix dT'(z) is positive definite for each x € R™.
Hence, the transformation 7: R™ — R" is injective. Moreover, by Lemma 3.1
with t(u) = ¥(z - u)oz(u)_%*, we obtain

7@ < / (e - uya(u)~*

Sn—1
= / [(2 - w)|P du(u). (3.8)
Sn—1

From (2.10), (2.8), (3.6) with ¢t = x - u, (2.9), the Ball-Barthe inequality (2.20)
with f(u) = ¢'(x - u)oz(u)%, (3.7), (3.8), making the change of variable y = T'(x),

and again (2.10), we have

pG)” _ / ool g

= /Rn exp{ - /5n—1 |z - u|2du(u)}dx

= /Rn exp { /Snl [logF(g) — logF(l + ]%) — (- w)|P" 4 log Y (x - u)] du(u)}daz’
= (%)n/n exp { /Sn_1 —|(x - u)|p*d]/(u)}

P a(u)dv(u)
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L) \n» 1
< <i> exp {/ —= loga(u)du(u)}
F(l + ) Sn—l p

xénexp{én_l—|w<x-u>

" 1 ~|IT=ll%,
exp —log a(u)dv(u / e Zpo | dT' () |dx

p*du(u)}|dT(x)|dx

IA
VS
}1
== =
+ G

+ [Ci

S— N— N—
S sk

1 e
exp/ loga(u)du(u)) p/ e 1¥lzp,0 gy
Sn—1 n

IN
VR
=

exp /s*n— loga(u)du(u)>;|Zp7a|F<1 + ﬁ)

1 p*

|
N
=
S
—|
—I_ N
|-
N—
N————
3

Thus, from (2.11) we have

Z,ol T+ 25|20l / :
= = > | exp log a(u)dv(u) ). (3.9)
1Byl (20(1+ 5)" ( gn-1 )

Assume that equality holds in (3.9). Since v is isotropic on S"~!, the measure v is

not concentrated on any subsphere of S"~!. Then there exist linearly independent

Ui, ..., U, €suppr. Since y is even, we have
{tuq,...,+u,} Csuppvr.
Assume that there exists a vector v € supp v such that
v {xu,...,Lu,}.

Let v = A\ju; +- - -+ A\,u, such that at least one coefficient, say A1, is not zero. Then

the equality condition of the Ball-Barthe inequality implies that

U/ (o w7 (o up)a(ua)? -0 (- ) (un,)

— /(- v)a(0) 7 (2 - up)a(ug) 7 - - (- wy)a(uy)7, (3.10)
for all € R™. However, ¢/’ > 0 and « > 0 yield that

= ¢z - v)a(v)

D=
hSA

3=
S =

(- up)o(uy)

for all z € R".
If p # 2, then the function ¢’ is not constant. Differentiating both sides with
respect to x gives that

V(@ un)a(uy)ruy = (- v)a(v)r,
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for all z € R™. Since a > 0 and there exists © € R™ such that ¢"(z - uy) # 0, this is

the desired contradiction. So we must have v = 4u;, and hence
{xuy,...,£u,} = suppr.

Therefore, we have for x € R",

n

2 = v({Fu)w -l (3.11)

i=1
Substituting © = u;, we see that v({£u;}) < 1. From the fact that > v({+w;}) =
n, we get v({xu;}) = 1. By (3.11), we can see that u; - u; = 0 for j # ¢, and hence
v is a cross measure on S"1.

Conversely, if v is a cross measure on S™~! such that suppv = {Fuy,...,+u,},
the equality of (3.5) immediately follows from (3.3).

Case p = 1: Define the strictly increasing function ¢ : R — (—1,1) by

1 /t ) B(t) ( )
—_— e % ds :/ 11 11(s)ds.
(3) ) B

Note that |¢(t)| < 1. Differentiating both sides with respect to ¢ and taking the log
give
3
—t* = logF<§> + log ¢/ (¢). (3.12)
Define T': R* — R" by
7) = [ uole- walwiv(w),
Sn—1
for each € R". In fact, T : R" — Z; ,; i.e.,
T(R") C Z,.. (3.13)
To see this, by Lemma 3.1 with ¢(u) = ¢(z - u) and the fact that |¢| < 1, we obtain
IT(@2)) 21 < max [d(z-u)| < 1.
ueSn—1

The definition of the Minkowski functional (2.2) shows that Tx € Z; , for all z € R™.
The differential of T" gives that

dT(z) = /Sn_l u @ ud' (y - u)a(u)dv(u). (3.14)

Since ¢ > 0 and « > 0, the matrix d7T'(y) is positive definite for each x € H. Hence,

the transformation 7: R™ — R" is injective.
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From (2.10), (2.8), (3.12) with t = 2 - u, (2.9), (3.14), the Ball-Barthe inequality
(2.20) with f(u) = ¢'(x - v)a(u), (3.14), making the change of variable y = T'(x)
and (3.13), we have

F(%)n = /n eI gy

_ /neXp{ _/S o uPdv(u) by
= /n exp { /Sn1 (logF(g) +log ¢'(z - u))du(u)}dx

= F(g)nexp{ — /Sn1 log a(u)dv(u)} /n exp { /Snl log (¢/(x - u)a(u))dl/(u)}dx
() (0 [ vmotats)” [
F<g>n<exp/sn_llogoz > 1/Zla
:F<;>n<exp/sn1 log a(u ) -

‘Z 1 a|
Therefore, we obtain

IN

|dT'(z)|dx

IN

| Z1.0] > 2" ( exp/ log a(u)du(u)).
Sn—1
The equality conditions are basically the same as the case of p > 1. 0

4. THE L, LOOMIS-WHITNEY INEQUALITY

Recall that the L, projection body IL,K of K € K7, for p > 1, is the origin-

symmetric convex body defined by

() = (—

5 /s B lu - v|PdS,(K, v))i, ue S (4.1)

The following intertwmlng properties of II, and IT} with linear transformations
were established by Lutwak, Yang, and Zhang [24] for p > 1, and by Petty [31] for

p=1.
Lemma 4.1. Suppose p > 1 and K € K. Then for A € GL(n),
,AK = |det A|'PATL,K and I AK = |det A|"V/PAITK. (4.2)

In particular,
IL,(cK)=c7 IL,K, ¢>0. (4.3)
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Inspired by the method of Ball [3], we establish Theorem 1.1; i.e., the L, Loomis-
Whitney inequality.

Theorem 4.2. Suppose p > 1 and K € KI'. If v is an even isotropic measure on
S"=1 then

K7 < exp | /S loghae(w)dv(w) ). (4.4)

For1 < p # 2, equality in (4.4) holds if and only if v is a cross measure on S™! and
K is the generalized (}.-ball formed by v. For p = 1, equality in (4.4) holds if and

only if v is a cross measure on S"1 and K is a box formed by v (up to translations).

Proof. Let
a(u) = hi?x (u) (45)
for uw € S"~1. From (2.5), (2.6), the definitions of Z,,, (3.1) and II,K (4.1), Fubini’s

theorem and (2.9), we have

n— - n - 1 "
K" < Zyal PV )" = |20l 7 (5 [ 1, (0045, ,0)
Sn—1

1zl (5 [ [ e ePataviuds,(.0))”
| Zpal //\u olPdS, (K. v)a(u)du(w))”

- |z ar(ﬁ/sn BB e (w)a(u)dv(u) )

= Zyal *IBL I

7L

Combining with Lemma 3.2 and (4.5), we have

(eXp /Sn_l log a(u)du(u))

= <exp /Sn_1 log a(u)dv(u)) -
= (exp /S g hk(wdv(w) (4.6)

which is the desired inequality.
For the equality conditions of (4.6), by the L, Minkowski inequality (2.5), the

=

(K" < | Zp.0l 7| By

< I8

X

equality of the first inequality in (4.6) holds if and only if K and Z,, are dilates
when p > 1 (K and Z,, are homothetic when p = 1). Lemma 3.2 implies that

equality of the second inequality in (4.6) holds if and only if v is a cross measure
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on S™ " when p # 2, and thus by (3.2), Z,, is the generalized £}.-ball B v
formed by v. Hence K is a dilation of the generalized (7.-ball formed by the CToss
measure v, which is still the generalized (}.-ball formed by v when 2 # p > 1 (K
coincides with the box formed by v up to translations when p = 1).

Conversely, when 1 < p # 2, we will show that equality in (4.6) holds if K is the
generalized £).-ball formed by v; i.e., there are positive numbers (a;)iL; such that

K:{xER”: <Z|x-ui|p*ai>pl* §1}, (4.7)
i=1

where suppr = {4uy,...,+u,} and (u;)} is an orthonormal basis of R". From

(4.6), it is sufficient to verify that K and Z,, are dilates. From (2.14), we have
— RN — -1 pn
K =B, =0A B,

where O is an orthogonal matrix such that Oe; = u; for ¢ = 1,...,n and A =

diag{ai/p*, . ,0471/])*} is a diagonal matrix. From (4.5) and (4.2), we get

a(ug) = hl g (ug) = hﬁf(OA—lB;*)(uk)

_ p
h\detA| 1/p(OA—1)—tII (Bn )(Ulc)

= |det Al (AO™ )

= |det Ah” Aek)

= ]detA|h g a ex)

REIAL
(0
)

= [det Ay 50 (ex)a, ™"

for every k = 1,...,n. Notice that hﬁ:(B" )(ek) is a constant for all k = 1,...,n.
p*

Thus, there exists a constant ¢ > 0 such that a(uy) = cay”/?"

Now, it follows from (3.2) and (4.7) that

forevery k =1,...,n.

Z _B’VL */p

p*,o”P

n 1
= {x eR": (Z |z - ui\p*&(ui)’p*/p>p < 1}
i=1

1
3

n
= {:c eR": (Z |z - ui\p*cfp*/paiy < 1} = oK.

i=1
That is, K and Z,, are dilates when 1 < p # 2. When p = 1, the proof is the
same, together with the observation that II(K + vy) = IIK for every vy € R™.
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O

In [35], Vaaler conjectured that for every origin-symmetric convex body K, there
is an affine image K of K so that for every 1-codimensional space v perpendicular
to v,

K| < |Knot.
It is natural to ask whether there is a dual version of Vaaler’s conjecture. Ball [3]
answered this question and obtained that there is an affine image K of K such that
for every v € S" 1,

K[ <[P K].

Now, we extend Ball’s result to the L, setting (Theorem 1.2).

Theorem 4.3. Suppose 1 < p #n and K € KI'. Then there exists a nondegenerate
affine image K of K such that for every v € S* 1,

K| < by g (v). (4.8)

Proof. By Lemma 4.1, for 1 < p # n, there is an affine image K of K so that the
ellipsoid of maximal volume contained in II,K is the Euclidean ball By. Thus, for
every v € S,

hi, & (V) = hpy(v) = 1.
Since pr( is origin-symmetric, it follows from John’s theorem [17] that the contact

points form an even discrete isotropic measure v such that for all © € supprv we

have
i i (u) = 1.

Therefore, from Theorem 4.2, we have for every v € S" 1,

K52 < exp {/ log hnpf((u)dy(u)} = 1< (hy

supp v

()" (4.9)

O

P

5. MINIMAL p-MEAN WIDTH

Recall that a convex body K has minimal p-mean width if w,(K) < w,(A4;K) for
every A; € SL(n), where w,(K) is the p-mean width of K defined in (1.11). We
say that the body K has minimal L, surface area if S,(K) < S,(A2K) for every
Ay € SL(n). The following two lemmas will be needed.
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Lemma 5.1. [27,36] Suppose p > 1 and K € K. Then K has minimal L, surface
area if and only if the measure nS,(K,-)/S,(K) is isotropic on S™*.

Lemma 5.2. [37] Suppose p > 1 and K € K. Then II,K has minimal p-mean

width if and only if K has minimal L, surface area.

We also need the following remarkable result due to Lutwak, Yang, and Zhang [25].

The solution of normalized even L, Minkowski problem. Let p > 1. If v
is an even Borel measure on S"~! whose support is not contained in a subsphere of
S™1 then there exists an unique origin-symmetric convex body K € K" such that
Sy )K= .

Applying Lemma 3.2 to the L, projection body with minimal L, surface area, we

have

Lemma 5.3. Suppose p > 1 and K is an origin-symmetric convex body. If K has

minimal L, surface area, then
S,(K) < n|IL,K|~. (5.1)
For p # 2, there is equality if and only if K is a centred cube.

Proof. By the homogeneity of the desired inequality, we may assume S,(K) = n. It
is sufficient to prove that |IL,K| > 1. Let dv(-) = dS,(K, ). It follows from Lemma
5.1 that v is an even isotropic measure on S™ !, Comparing the definition of
Zpo (3.1) with a = |BJ. ~u to that of TI,K (4.1), we get Z,, = II,K. By Lemma
3.2 and (2.9), we obtain

AR
|HpK| Z |Bp* <|BT> — 1 (52)
p 1"

The equality condition of Lemma 3.2 gives that for p # 2, there is equality in
(5.2) if and only if ndS,(K,-)/S(K) is a cross measure on S"'. On the other
hand, it is easy to verify that n.S,(OCy,-)/S,(OC)) is a cross measure on S™ ! for

some O € O(n), where Cy = [—1,1]™ is the unit cube in R™. Moreover, from (2.7),
we have S,(0Co. ) S,(AOCo,") 1Col \ -
noyp 0" I 0y" . niCol \7»
= with A = .
Sp(OCY) IAOCy| (SP(C'O)>

Thus, the equality condition follows from the uniqueness of the solution of the
normalized even L, Minkowski problem and the fact that

(Sﬁftff?))_pm - <$1'f§<'>>‘”f<
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for all ¢t > 0.

Recall that the L, zonoid Z, is defined by, for v € S"1,

e, 0) = ([ o updvt)” 6.3

where v is an even Borel measure on S"~! such that supp v is not contained in a
subsphere of S"~!. We finally establish Theorem 1.3.

Theorem 5.4. Suppose p > 1. If the L, zonoid Z, has minimal p-mean width
and | Z,| = |By.|, then
wp(Zp) < wp(By-), (5.4)

p

with equality if v is a cross measure on S™~1. Moreover, if p is not an even integer,

the equality holds only if v is a cross measure on S™ 1.

Proof. From (1.11), the definition of the L, projection body (4.1) and Fubini’s the-

orem, we have

MK =2 [ o)

2
_ . p
- /S /S (- v|PdS, (K, v)do(u)

p

- [ [ ebdtuas, s
p* n—1 n—1

where
I(1+2)r(42)

Cy, = 2 .
TOTO I

Assume that p > 1 and p # 2. By the solution of the normalized even L,
Minkowski problem, for the measure dv(-) in Z,, there exists a unique origin-
symmetric convex body L such that dS,(L,-)/|L| = dv(-). So from (5.3) and (4.1),
we have

1 n‘ﬂ 1
n

hz, (o) = /S \x.u|pdy(u))’l’ _ (% /S JrltdS,(Lw)” = ('ﬁﬂ )" iy (2)

for x € R™. That is,
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b2

ALY,
7, = (p—) I,L. (5.6)

p |L| p
It follows from Lemma 5.2 that Z, has minimal p-mean width if and only if L
has minimal L, surface area. From the assumption [Z,| = [B}.| and (5.6), we

have |L| = |TL,L|P/™. Then, (5.6) becomes

Zy=(1=2) L. 5.7
p ’HPL‘ P ( )

Using the inequality (5.1) for L, (5.5) and (5.7), we have

o> (%) _ (\B;*Ir’iwpmpm)z _ (M) 58)

2¢, 2¢,
That is,
wy(Z,) < 2c¢p. (5.9)
Let Cy = [—1,1]™. It is easy to verify that
| B |\ 1/p | Bp.| \1/n
M,Co = () ,Co = By 5.10
Clar) ™= (eg) meo=5 10

Thus, by the equality condition of (5.1), together with (5.10) and (5.9), we imme-
diately get
wp(Zp) < wp(By). (5.11)
Suppose v is a cross measure in (5.3), then there exists an orthogonal trans-
form O such that dv(-) = dS,(0Cy,-)/|Co|. From (4.1), (4.2) and (5.10), we have

ha (x) = ( /S e u\pdu(u))’l’ - (ﬁ e uypdsp(oco,u))

P
n

3=

B,
- (Fa)

for z € R". In other words, Z, = OB,.. By (1.11), the equality of (5.11) follows.
Conversely, suppose the equality of (5.11) holds. By Lemma 5.3, the equality of

1
),, 1,(0c0) (%) = hopn, (2),

(5.8) implies that L is a centred cube in R™. Hence we can write L = aOC| for
some a > 0 and O € O(n). From (5.6), (4.3), and (5.10), we have

. | Bp. |\ 1/p
Byl =121 = |(loo)  TelaOCh)

Thus we have ¢ = 1 and

P
n

= a/in

=a "B}

y
n

1 oc
P |CO‘ ) p( 0)
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for some O € O(n). That is,

1 ’
Y . p
hz,(x) = <\Co’ - |z - ul dSp(OC’O,u)>

Observe that dS,(OCy,-)/|Cy| is a cross measure on S™~!. Note that the spherical

L, cosine transform is injective if 1 < p < oo is not an even integer (see Section 2).

Hence the measure v in Z, is exactly a cross measure on S"!. 0
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