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Abstract. Corresponding to the Legendre ellipsoid and the LYZ ellipsoid, two

new sine ellipsoids are introduced in this paper. These four ellipsoids are closely

related in the Pythagorean relation and duality. Several volume inequalities and

the valuation properties are obtained for two new ellipsoids.

1. Introduction

It is well acknowledged that ellipsoids play an important role in convex geometric

analysis. As extremals, they often appear in (affine) isoperimetric type problems and

other extremal problems (see, e.g., [1,2,20,41,42,46,51,53,54,73]). For instance, the

celebrated John ellipsoid (or Löwner ellipsoid) associated with each convex body is

the unique ellipsoid of maximal volume contained in the body (or minimal volume

containing the body), which is extremely useful in convex geometric analysis and

Banach space geometry. In particular, the isotropic characterization of the John

ellipsoid was perfectly combined with the Brascamp-Lieb inequality by Ball to solve

reverse isoperimetric problems that usually have simplices or, in the symmetric case,

cubes and their polars, as extremals (see, e.g., [1–3,45,47,50,63]).

Among these ellipsoids there are some relationships, such as polarity or duality.

In this paper, we shall search for a new relationship among ellipsoids. The duality is

an important relation between convex bodies. In modern convex geometric analysis,
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the Lp Brunn-Minkowski theory and the dual Brunn-Minkowski theory are two fun-

damental ingredients, which generalize and dualize the classical Brunn-Minkowski

theory. The Lp Brunn-Minkowski theory began from Lp Minkowski-Firey combina-

tions [11] in the 1960’s and came to life when Lutwak [40,41] introduced the concept

of Lp surface area measure in the 1990’s. The dual Brunn-Minkowski theory initiated

by Lutwak [38] in the 1970’s as the dual theory to the classical Brunn-Minkowski

theory is based on a conceptual duality in convex geometric analysis. Since then,

the Lp Brunn-Minkowski theory and its dual theory have expanded rapidly over the

last three decades; see, e.g., [6, 8, 9, 14, 18, 20, 22–24, 31–33, 36, 39, 42, 45–49, 64–72].

For more details about both theories, we refer the reader to [57, Chapter 9] and the

references therein.

Associated with each star body K in n-dimensional Euclidean space Rn, there is

a unique ellipsoid Γ2K which has the same moment of inertia of K with respect to

every 1-dimensional subspace of Rn. This ellipsoid is called the Legendre ellipsoid,

whose support function is defined by, for x ∈ Rn,

h2
Γ2K

(x) =
n+ 2

V (K)

∫
K

|x · y|2dy, (1.1)

where V (K) denotes the n-dimensional volume of K and x · y denotes the standard

inner product of x and y in Rn. The Legendre ellipsoid and its polar body (the Binet

ellipsoid) are well-known concepts from classical mechanics and are closely related

to the long-standing unsolved maximal slicing problem; see, e.g., [28, 30, 51] for

more information. Recall that a convex body L in Rn is a compact convex set with

nonempty interiors. Its support function hL is defined as hL(x) = max{x·y : y ∈ L}.
Let Kn

o denote the set of convex bodies in Rn that contain the origin in their interiors.

The polar body L∗ of L ∈ Kn
o is defined by

L∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ L}. (1.2)

A star body Q in Rn is a compact star-shaped set about the origin whose radial

function ρQ(x) = max{λ ≥ 0 : λx ∈ Q} is positive and continuous. Denote the set

of star bodies in Rn by Sno . Obviously, Kn
o ⊂ Sno .

Note that the Legendre ellipsoid is an object in the dual Brunn-Minkowski theory.

By this observation, Lutwak, Yang, and Zhang [43] introduced a new dual analog
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of the Legendre ellipsoid by using the notion of L2 surface area measure within the

Lp Brunn-Minkowski theory. This ellipsoid is now called the LYZ ellipsoid Γ−2K

whose radial function at x ∈ Rn\{o} is given by

ρ−2
Γ−2K

(x) =
1

V (K)

∫
Sn−1

|x · v|2dS2(K, v), (1.3)

where S2(K, ·) is the L2 surface area measure of K ∈ Kn
o on the unit sphere Sn−1.

The L2 surface area measure of K, also called the quadratic surface area measure,

was further investigated by Lutwak, Yang, and Zhang [47] to establish a sharp

reverse affine isoperimetric inequality which states that the reciprocal of the volume

of Γ−2K provides a greatest lower bound for the volume of K∗. Moreover, the

domain of the operator Γ−2 can be extended to star-shaped sets, which leads to an

elegant inclusion [44]: if K is a star-shaped set in Rn, then

Γ−2K ⊂ Γ2K,

with equality if and only if K is an origin-centered ellipsoid. This inclusion is the

geometric analog of one of the basic inequalities in information theory—the Cramér-

Rao inequality (see, e.g., [10]).

It is well-known that the notion of valuation played a critical role in Dehn’s

solution of Hilbert’s Third Problem. A systematic study of valuations was initiated

by Hadwiger [21] who obtained his famous classification of continuous, rigid motion

invariant valuations and characterization of mixed volumes. Over the past two

decades the theory of valuations has become an ever more important part of convex

geometric analysis (see, e.g., [7, 17–19, 31–37, 52, 58–62]). In particular, Ludwig

[32] showed that the matrices corresponding to the Legendre ellipsoid and the LYZ

ellipsoid are the only matrix-valued valuations on convex polytopes that are GL(n)

covariant.

It is worth mentioning that the LYZ ellipsoid as well as the John ellipsoid belongs

to a family of ellipsoids introduced by Lutwak, Yang and Zhang [46]. These ellip-

soids are called the Lp John ellipsoids which provide a unified treatment for several

fundamental objects in convex geometric analysis, for instance, the John ellipsoid

(p = ∞), the LYZ ellipsoid (p = 2), and the Petty ellipsoid (p = 1). Recently, the

Orlicz extension of the Lp John ellipsoids was established in [73].
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The classical Pythagorean theorem states that for x, y ∈ Rn

|x · y|2 + [x, y]2 = |x|2|Pxy|2 + |x|2|Px⊥y|2 = |x|2|y|2, (1.4)

where |x| denotes the Euclidean norm of x and [x, y] denotes the 2-dimensional

volume of the parallelepiped spanned by x, y. Here Pxy, Px⊥y are the images of

orthogonal projection of y onto the 1-dimensional subspace containing x and the

1-codimensional subspace x⊥ perpendicular to x, respectively. This fundamental

theorem enlightens us to introduce two new ellipsoids Λ2K and Λ−2K by replac-

ing |x · y| by [x, y] in (1.1) and (1.3).

For each K ∈ Sno , we define the ellipsoid Λ2K whose support function at x ∈ Rn

is given by

h2
Λ2K

(x) =
n+ 2

V (K)

∫
K

[x, y]2dy. (1.5)

For each K ∈ Kn
o , we define the ellipsoid Λ−2K whose radial function at x ∈ Rn\{o}

is given by

ρ−2
Λ−2K

(x) =
1

V (K)

∫
Sn−1

[x, v]2dS2(K, v). (1.6)

The ellipsoids Λ2K and Λ−2K are well defined because h2
Λ2K

(x) and ρ−2
Λ−2K

(x) are

positive definite quadratic forms in the variable x (see (2.19) and (2.21)). Notice

that the operation |x · y| of x, y ∈ Rn is related to the cosine transform, but [x, y]

is related to the sine transform. It is reasonable to call Λ2K and Λ−2K the sine

ellipsoid of the Legendre ellipsoid and the LYZ ellipsoid, respectively. The cosine

transform (a spherical variant of the Fourier transform) of a finite Borel measure

on Sn−1 turns out to yield a finite dimensional Banach norm, which gives a natural

analytical operator in convex geometric analysis. Important applications of these

integral transforms were presented in, e.g., [5,12,15,16,26,27,29,42,55,67]. The sine

transform, appearing in different forms in geometric tomography, was applied suc-

cessfully by Maresch and Schuster [50] to establish reverse isoperimetric inequalities

with asymptotically optimal forms. Furthermore, both transforms were generalized

and unified to the Lp cosine transform on Grassmann manifolds in [29].

These four ellipsoids, as well as their polars, have the following “Pythagorean”

relations in terms of the L2 Minkowski-Firey combination +2 and the L2 harmonic
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radial combination +̃−2:

Γ2K +2 Λ2K = c1B
n and Γ∗2K+̃−2Λ

∗
2K = 1

c1
Bn; (1.7)

Γ−2K+̃−2Λ−2K =
1

c2
Bn and Γ∗−2K +2 Λ∗

−2K = c2B
n. (1.8)

Here Bn denotes the unit ball of Rn, and c21 = (n + 2)
∫
K
|y|2dy/V (K), c22 =

S2(K)/V (K). Thus, we can illustrate the relationships of these four ellipsoids in

the following diagram.

Λ−2K
Pythagorean relation−−−−−−−−−−−−→ Γ−2K

Duality

x Duality

x
Λ2K

Pythagorean relation−−−−−−−−−−−−→ Γ2K

The relations between the volumes of the ellipsoids Γ2K, Γ−2K and the body K

are demonstrated in the following inequalities:

V (Γ2K) ≥ V (K) (1.9)

for each K ∈ Sno ;

V (Γ−2K) ≤ V (K) (1.10)

for each K ∈ Kn
o . Equality holds in both inequalities if and only if K is an origin-

centered ellipsoid. Inequality (1.9) goes back to Blaschke [4], John [25], Petty [53],

and Milman, Pajor [51]. Both inequalities were also obtained by Lutwak, Yang, and

Zhang in [43].

In this paper we shall establish the following analogs of inequalities (1.9) and

(1.10) for the sine ellipsoids Λ2K and Λ−2K.

Theorem 1.1. If K ∈ Sno , then

V (Λ2K) ≥ (n− 1)
n
2 V (K). (1.11)

If K ∈ Kn
o , then

V (Λ−2K) ≤ (n− 1)−
n
2 V (K). (1.12)

Equality holds in both inequalities if and only if K is an origin-centered ball when

n ≥ 3 and is an origin-centered ellipsoid when n = 2.
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To prove Theorem 1.1, we introduce two new operators Tp and T−p with affine

natures in Sections 4 and 5 where the operators Λ2 and Λ−2 are their Euclidean

specializations (see (4.7) and (5.5)). Such specialization that parts of entries are

replaced by Euclidean balls is an important technique in convex geometric analysis,

and a good example is the relation between mixed volumes and quermassintegrals

(see, e.g., [57]). Using the affine natures of T2 and T−2, two affine invariants are

constructed to establish the expected sharp inequalities.

Note that when n = 2, inequalities (1.11) and (1.12) are affine invariant. More-

over, in plane, our new ellipsoids are just rotations of the Legendre ellipsoid and

the LYZ ellipsoid by an angle π/2, respectively. See Remarks 4.6 and 5.6 below for

details.

Moreover, our new ellipsoids have the following valuation properties.

Theorem 1.2. The operator Λ̃2 is an L2 Minkowski valuation over Sno and the

operator Λ̃−2 is an L−2 radial valuation over Kn
o , where Λ̃2K = V (K)1/2Λ2K and

Λ̃−2K = V (K)−1/2Λ−2K.

This paper is organized as follows: In Section 2 some background materials are

provided. Section 3 contains several volume inequalities and auxiliary lemmas. The

proof of Theorem 1.1 is presented in Sections 4 and 5. In Section 6, the valuation

properties of two sine ellipsoids are given. Finally, two open problems will be posed

in the last section.

2. Background materials

For quick later reference we collect some background materials from the Lp Brunn-

Minkowski theory and its dual theory. Good general references are Gardner [13] and

Schneider [57].

Throughout Rn denotes n-dimensional Euclidean space (n ≥ 2). For x ∈ Rn, let

|x| be the Euclidean norm of x. The unit ball of Rn is denoted by Bn, and the

unit sphere by Sn−1. Write ωn for the volume of Bn. A convex body K in Rn is a

compact convex set with nonempty interiors. Its support function hK : Rn → R is

defined, for x ∈ Rn, by

hK(x) = max{x · y : y ∈ K}. (2.1)
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It is easy to see that for x ∈ Rn and φ ∈ GL(n)

hφK(x) = hK(φtx), (2.2)

where φK = {φx : x ∈ K} is the image of K under φ and φt denotes the transpose

of φ. In particular, for c > 0 and x ∈ Rn,

hcK(x) = chK(x), (2.3)

where cK = {cx : x ∈ K}.
A set K ⊂ Rn is star-shaped about the origin if the line segment joining each point

of K and the origin is completely contained in K. If K is compact and star-shaped,

then the radial function ρK : Rn \ {o} → [0,∞) of K is defined for x ∈ Rn\{o} by

ρK(x) = max{λ ≥ 0 : λx ∈ K}. (2.4)

A star body is a compact star-shaped set about the origin whose radial function is

positive and continuous. It is easy to see that for x ∈ Rn\{o} and φ ∈ GL(n),

ρφK(x) = ρK(φ−1x), (2.5)

where φ−1 denotes the inverse of φ. In particular, for c > 0 and x ∈ Rn\{o},

ρcK(x) = cρK(x). (2.6)

If K ∈ Kn
o , then it follows from (2.1), (1.2), and (2.4) that

hK∗ = 1/ρK and ρK∗ = 1/hK . (2.7)

It is easy to verify that for φ ∈ GL(n),

(φK)∗ = φ−tK∗, (2.8)

and in particular for c > 0,

(cK)∗ =
1

c
K∗. (2.9)

Elements of the Lp Brunn-Minkowski theory. For p ≥ 1 and ε > 0, the Lp

Minkowski-Firey combination K +p ε · L of K,L ∈ Kn
o is the convex body whose

support function is given by

hpK+pε·L(·) = hpK(·) + εhpL(·). (2.10)
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The Lp mixed volume Vp(K,L) of K,L is defined by

Vp(K,L) =
p

n
lim
ε→0+

V (K +p ε · L)− V (K)

ε
.

In particular,

Vp(K,K) = V (K).

It was shown in [40] that corresponding to each K ∈ Kn
o , there is a positive Borel

measure, Sp(K, ·), on Sn−1, such that for each L ∈ Kn
o ,

Vp(K,L) =
1

n

∫
Sn−1

hpL(v)dSp(K, v),

where dSp(K, ·) = hK(·)1−pdS(K, ·) is the Lp surface area measure of K. The

measure S(K, ·) is the classical surface area measure of K; i.e., for a Borel set ω ⊂
Sn−1, S(K,ω) is the (n−1)-dimensional Hausdorff measure of the set of all boundary

points of K for which there exists a normal vector of K belonging to ω. Thus, for

c > 0,

Sp(cK, ·) = cn−pSp(K, ·). (2.11)

and the Lp surface area Sp(K) is

Sp(K) =

∫
Sn−1

dSp(K, v) =

∫
Sn−1

hK(v)1−pdS(K, v). (2.12)

The Lp Brunn-Minkowski inequality [40] states that if K,L ∈ Kn
o , then for p ≥ 1,

V (K +p L)p/n ≥ V (K)p/n + V (L)p/n, (2.13)

with equality if and only if K and L are dilates when p > 1 and are homothetic

when p = 1.

Elements of the dual Brunn-Minkowski theory. For p ∈ R\{0} and ε > 0,

the Lp harmonic radial combination K+̃−p ε ·L of K,L ∈ Sno is the star body whose

radial function is given by

ρ−p
K+̃−p ε·L(·) = ρ−pK (·) + ερ−pL (·). (2.14)

The dual Lp mixed volume Ṽ−p(K,L) of K,L ∈ Sno was defined in [41] by

−n
p
Ṽ−p(K,L) = lim

ε→0+

V (K+̃−p ε · L)− V (K)

ε
.
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In particular,

Ṽ−p(K,K) = V (K).

The polar coordinate formula for volume yields the following integral representation

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρn+p
K (v)ρ−pL (v)dv,

where the integration is with respect to the spherical Lebesgue measure.

The dual Lp Brunn-Minkowski inequality [41] states that if K,L ∈ Sno , then for

p > 0,

V (K+̃−pL)−p/n ≥ V (K)−p/n + V (L)−p/n, (2.15)

with equality if and only if K and L are dilates.

The operators Γ2 and Γ−2 have the following affine natures (see [43]): for each

φ ∈ GL(n),

Γ2(φK) = φΓ2K, (2.16)

and

Γ−2(φK) = φΓ−2K. (2.17)

Let A be a positive definite n × n symmetric matrix. It is well-known that the

radial function and support function of the ellipsoid E(A) = {y ∈ Rn : y · Ay ≤ 1}
at x ∈ Rn are given by

h2
E(A)(x) = x · A−1x and ρ−2

E(A)(x) = x · Ax. (2.18)

By (1.5) and (1.4), it follows that

Λ2K =

√
n+ 2

V (K)
E(D2(K)−1), (2.19)

with the matrix D2(K) having entries∫
K

(|y|2δij − yiyj)dy, (2.20)

where we use coordinates y = (y1, . . . , yn) for Rn and δij for the Kronecker delta.

By (1.6) and (1.4), we also have

Λ−2K =
√
V (K)E(D−2(K)), (2.21)
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where the matrix D−2(K) has entries∫
Sn−1

(δij − vivj)dS2(K, v). (2.22)

3. Several volume inequalities and auxiliary lemmas

First, we shall prove identities (1.7) and (1.8). By (2.10), (1.1), (1.5), (1.4), and

(2.3), we have, for u ∈ Sn−1,

h2
Γ2K+2Λ2K

(u) = h2
Γ2K

(u) + h2
Λ2K

(u) =
n+ 2

V (K)

∫
K

|y|2dy = h2
c1Bn(u),

and by (2.14), (2.7), and (2.9),

ρ−2
Γ∗2K+̃−2Λ∗2K

(u) = ρ−2
Γ∗2K

(u) + ρ−2
Λ∗2K

(u) = h2
Γ2K

(u) + h2
Λ2K

(u) = h2
c1Bn(u) = ρ−2

c−1
1 Bn(u),

where c21 = (n+ 2)
∫
K
|y|2dy/V (K). Thus, (1.7) follows. Similarly, by (2.14), (1.3),

(1.6), (1.4), (2.12), and (2.6), we have, for u ∈ Sn−1,

ρ−2
Γ−2K+̃−2Λ−2K

(u) = ρ−2
Γ−2K

(u) + ρ−2
Λ−2K

(u) =
S2(K)

V (K)
= ρ−2

c−1
2 Bn(u),

and by (2.10), (2.7), and (2.9),

h2
Γ∗−2K+2Λ∗−2K

(u) = h2
Γ∗−2K

(u)+h2
Λ∗−2K

(u) = ρ−2
Γ−2K

(u)+ρ−2
Λ−2K

(u) = ρ−2

c−1
2 Bn(u) = h2

c2Bn(u),

where c22 = S2(K)/V (K). Hence, we obtain (1.8).

A star body K is said to be in isotropic position if Γ2K is a ball with V (K) = 1

(see, e.g., [51]), and a convex body K is said to be in dual isotropic position [43]

if Γ−2K is a ball with V (K) = 1.

Identities (1.7) and (1.8), together with the L2 Brunn-Minkowski inequality (2.13)

(p = 2) and the dual L2 Brunn-Minkowski inequality (2.15) (p = 2), immediately

yield the following volume inequalities.

Theorem 3.1. If K ∈ Sno , then

V (Γ2K)2/n + V (Λ2K)2/n ≤ c21ω
2/n
n , (3.1)

and

V (Γ∗2K)−2/n + V (Λ∗
2K)−2/n ≤ c21ω

−2/n
n , (3.2)
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with equalities if and only if the star body K/V (K)1/n is in isotropic position. If

K ∈ Kn
o , then

V (Γ−2K)−2/n + V (Λ−2K)−2/n ≤ c22ω
−2/n
n , (3.3)

and

V (Γ∗−2K)2/n + V (Λ∗
−2K)2/n ≤ c22ω

2/n
n , (3.4)

with equalities if and only if the convex body K/V (K)1/n is in dual isotropic position.

Proof. Only the equality conditions need to be verified. The equality conditions of

the L2 Brunn-Minkowski inequality (2.13) show that equality in (3.1) holds if and

only if Γ2K and Λ2K are dilates. But the relation (1.7) implies that the ellipsoids

Γ2K and Λ2K must be balls. Thus, the star bodyK/V (K)1/n is in isotropic position.

The equality conditions of the dual L2 Brunn-Minkowski inequality (2.15) show

that equality in (3.3) holds if and only if Γ−2K and Λ−2K are dilates. But the

relation (1.8) implies that the ellipsoids Γ−2K and Λ−2K must be balls. Thus, the

convex body K/V (K)1/n is in dual isotropic position.

The proofs of equality conditions of (3.2) and (3.4) are similar. �

Denote by [x, y, v3 . . . , vk] the k-dimensional volume of the parallelotope spanned

by the vectors x, y, v3, . . . , vk whenever k ≥ 3. The following lemma is critical for

the proof of Theorem 1.1.

Lemma 3.2. If n ≥ 3 and p > 0, then for any x, y ∈ Rn satisfying [x, y] 6= 0,∫
Sn−1

· · ·
∫
Sn−1

[x, y, v3, . . . , vn]
p

[x, y]p
dv3 · · · dvn (3.5)

is a constant depending on n and p. In particular,∫
Sn−1

· · ·
∫
Sn−1

[x, y, v3, . . . , vn]
2

[x, y]2
dv3 · · · dvn = (n− 2)!ωn−2

n . (3.6)

Proof. For x, y ∈ Rn with [x, y] 6= 0 and vk ∈ Sn−1, k = 3, · · · , n− 1, let

V2 := span{x, y}, and Vk := span{x, y, v3, . . . , vk}.

If x, y, v3, . . . , vn are linearly independent, then

[x, y, v3, . . . , vn] = |x||Px⊥y||PV ⊥2
v3| · · · |PV ⊥n−1

vn|,
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where PV ⊥i
is the orthogonal projection onto V ⊥

i (the orthogonal complement of Vi).

Define the set Ωk, k = 3, . . . , n− 1, by

Ωk = {(x, y, v3, . . . , vk) ∈ (Sn−1)k : [x, y, v3, . . . , vk] 6= 0}.

Note that if vk ∈ span{x, y, v3, . . . , vk−1}, then we have

|PV ⊥k−1
vk| = 0.

Hence, we obtain∫
(Sn−1)n−2

[x, y, v3, . . . , vn]
p

[x, y]p
dv3 · · · dvn

=

∫
Ωn

(|x||Px⊥y||PV ⊥2
v3| · · · |PV ⊥n−1

vn|)p

(|x||Px⊥y|)p
dv3 · · · dvn

=

∫
Ωn−1

(∫
Sn−1

|PV ⊥n−1
vn|pdvn

)
|PV ⊥n−2

vn−1|p · · · |PV ⊥2
v3|pdvn−1 · · · dv3

· · ·

=

∫
Sn−1

|PV ⊥n−1
vn|pdvn

∫
Sn−1

|PV ⊥n−2
vn−1|pdvn−1 · · ·

∫
Sn−1

|PV ⊥2
v3|pdv3. (3.7)

Note that in the last step V ⊥
i can be seen as a subspace of Rn with dimV ⊥

i =

n − i for i = 2, . . . , n. Thus, by the rotation invariance of the spherical Lebesgue

measure, we have∫
Sn−1

|PV ⊥i
vi+1|pdvi+1 =

∫
Sn−1

(v2
i+1,1 + · · ·+ v2

i+1,n−i)
p/2dvi+1,

which is a constant only depending on n and p. Here we use coordinates vi+1 =

(vi+1,1, · · · , vi+1,n−i, . . . , vi+1,n) for Rn.

In particular, for p = 2, we further have∫
Sn−1

|PV ⊥i
vi+1|2dvi+1 =

∫
Sn−1

v2
i+1,1dvi+1 + · · ·+

∫
Sn−1

v2
i+1,n−idvi+1

= (n− i)ωn.

Combining (3.7), we immediately get (3.6). �

Applying inequality (5.133) in [57] to the determinants of real symmetric n ×
n matrices yields the following Aleksandrov inequality for mixed discriminants:
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let Q1, . . . , Qn be positive definite n× n matrices. Then

D(Q1, Q2, . . . , Qn) ≥ (detQ1)
1
n (detQ2)

1
n · · · (detQn)

1
n , (3.8)

with equality if and only if Qi = λiQ1 with a real number λi for i = 2, . . . , n.

A Borel measure µ on Sn−1 generates a positive semi-definite n×n matrix [µ] de-

fined by

[µ] =

∫
Sn−1

v ⊗ vdµ(v), (3.9)

where v ⊗ v is the rank 1 linear operator on Rn that takes x to (x · v)v. It was

proved in [45] that for Borel measures µ1, . . . , µn on Sn−1, the mixed discriminant

of [µ1], . . . , [µn] is given by

D([µ1], . . . , [µn]) =
1

n!

∫
Sn−1

· · ·
∫
Sn−1

[v1, . . . , vn]
2dµ1(v1) · · · dµn(vn). (3.10)

Combining with (3.8), we immediately obtain

D([µ1], . . . , [µn]) ≥ (det[µ1])
1
n · · · (det[µn])

1
n , (3.11)

with equality if and only if [µi] = λi[µ1] with a real number λi for i = 2, . . . , n.

4. Inequalities for the ellipsoid Λ2K

The classical Blaschke-Santaló inequality is one of the essential affine isoperimetric

inequalities in convex geometric analysis (see, e.g., [13, 57]), which states that if K

is an origin-symmetric convex body in Rn, then

V (K)V (K∗) ≤ ω2
n, (4.1)

with equality if and only ifK is an origin-centered ellipsoid. (A non origin-symmetric

version also holds true, for which one needs to choose the Santaló point to define

polarity; see, e.g., [57, p. 548]). In [49], the Blaschke-Santaló inequality (4.1) was

extended to the Lp setting by Lutwak and Zhang such that the inequality (4.1) is a

special case (p = ∞). In particular, they showed that if K ∈ Sno , then

V (K)V (Γ∗2K) ≤ ω2
n, (4.2)

with equality if and only if K is an origin-centered ellipsoid. In this section, we shall

establish an analog of inequality (4.2) for the sine ellipsoid Λ∗
2K.



14 A.-J. LI, Q. HUANG, AND D. XI

Theorem 4.1. If K ∈ Sno , then

V (K)V (Λ∗
2K) ≤ ω2

n

(n− 1)
n
2

, (4.3)

with equality if and only if K is an origin-centered ball when n ≥ 3 and is an

origin-centered ellipsoid when n = 2.

For p ≥ 1 and K2, . . . , Kn ∈ Sno , we define the convex body Tp(K2, . . . , Kn) whose

support function at x ∈ Rn is given by

hpTp(K2,...,Kn)(x) =
(n+ p)n−1

V (K2) · · ·V (Kn)

∫
K2

· · ·
∫
Kn

[x, x2, . . . , xn]
pdx2 · · · dxn. (4.4)

By the polar coordinate, we further have

hpTp(K2,...,Kn)(x)

=
(n+ p)n−1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

∫ ρK2
(v2)

0

· · ·
∫ ρKn (vn)

0

[x, r2v2, . . . , rnvn]
p

× rn−1
2 · · · rn−1

n dr2 · · · drndv2 · · · dvn

=
1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, . . . , vn]
pρn+p
K2

(v2) · · · ρn+p
Kn

(vn)dv2 · · · dvn.

(4.5)

Note that T2(K2, . . . , Kn) is an ellipsoid since h2
T2(K2,...,Kn)(x) is a positive definite

quadratic form in the variable x.

The affine nature of the operator Tp is as follows.

Theorem 4.2. If p ≥ 1 and K2, . . . , Kn ∈ Sno , then for φ ∈ GL(n),

Tp(φK2, . . . , φKn) = | detφ|φ−tTp(K2, . . . , Kn). (4.6)

Proof. By (4.4), (2.2), and (2.3), we have, for φ ∈ GL(n) and x ∈ Rn,

hpTp(φK2,...,φKn)(x)

=
(n+ p)n−1

V (φK2) · · ·V (φKn)

∫
φK2

· · ·
∫
φKn

[x, x2, . . . , xn]
pdx2 · · · dxn

=
(n+ p)n−1

| detφ|n−1V (K2) · · ·V (Kn)

∫
K2

· · ·
∫
Kn

[x, φx2, . . . , φxn]
p| detφ|n−1dx2 · · · dxn
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=
(n+ p)n−1

V (K2) · · ·V (Kn)

∫
K2

· · ·
∫
Kn

| detφ|p[φ−1x, x2, . . . , xn]
pdx2 · · · dxn

=| detφ|phpTp(K2,...,Kn)(φ
−1x) = hp| detφ|φ−tTp(K2,...,Kn)(x),

which gives the desired result. �

For p ≥ 1 and K ∈ Sno , define the convex body ΛpK whose support function

at x ∈ Rn is given by

hpΛpK
(x) =

n+ p

V (K)

∫
K

[x, y]pdy.

When p = 2, the body Λ2K is exactly the ellipsoid defined in (1.5).

The following theorem shows the connection between Tp and Λp.

Theorem 4.3. If p ≥ 1 and K ∈ Sno , then there exists a constant cn,p > 0 depending

on n, p such that

Tp(K,B
n, . . . , Bn) = cn,pΛpK.

In particular,

T2(K,B
n, . . . , Bn) = ((n− 2)!)

1
2 Λ2K. (4.7)

Proof. For n ≥ 3, taking K2 = K and K3 = · · · = Kn = Bn in (4.5) and by Lemma

3.2, we have, for x ∈ Rn\{o},

hpTp(K,Bn,...,Bn)(x)

=
1

V (K)ωn−2
n

∫
Sn−1

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, v3, . . . , vn]
pρn+p
K (v2)dv2dv3 · · · dvn

=
1

V (K)ωn−2
n

∫
{v2∈Sn−1:[x,v2] 6=0}

(∫
Sn−1

· · ·
∫
Sn−1

[x, v2, v3, . . . , vn]
p

[x, v2]p
dv3 · · · dvn

)
× [x, v2]

pρn+p
K (v2)dv2

=cpn,p
1

V (K)

∫
Sn−1

[x, v2]
pρn+p
K (v2)dv2

=cpn,p
n+ p

V (K)

∫
K

[x, y]pdy

=cpn,ph
p
ΛpK

(x) = hpcn,pΛpK
(x),

where the constant

cn,p =
( 1

ωn−2
n

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, v3, . . . , vn]
p

[x, v2]p
dv3 · · · dvn

)1/p

.
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In particular, cn,2 = ((n− 2)!)
1
2 by (3.6), thus (4.7) follows.

For n = 2, the definitions of ΛpK and Tp(K) are coincident. So the assertion still

follows. �

Theorem 4.4. If K2, . . . , Kn ∈ Sno , then

V (Γ2K2) · · ·V (Γ2Kn)V (T∗
2(K2, . . . , Kn)) ≤

ωnn
((n− 1)!)

n
2

, (4.8)

with equality if and only if there exists a transform φ ∈ GL(n) such that all star

bodies φKi/V (φKi)
1/n are in isotropic position for i = 2, . . . , n.

Proof. It follows from (4.6), (2.16), and (2.8) that the left hand-side of inequality

(4.8) is GL(n) invariant. Thus, we may assume that

T2(K2, . . . , Kn) = Bn. (4.9)

Then, by (4.5), for v ∈ Sn−1,

1 =
1

V (K2) · · ·V (Kn)

∫
(Sn−1)n−1

[v, v2, . . . , vn]
2ρn+2
K2

(v2) · · · ρn+2
Kn

(vn)dv2 · · · dvn.

Integrating both sides with respect to the spherical Lebesgue measure gives

nωn =
1

V (K2) · · ·V (Kn)

∫
(Sn−1)n

[v, v2, . . . , vn]
2ρn+2
K2

(v2) · · · ρn+2
Kn

(vn)dvdv2 · · · dvn.

(4.10)

By (3.9) and (3.10), equation (4.10) means that

D([Bn], [K2], . . . , [Kn]) =
1

(n− 1)!
, (4.11)

where D([Bn], [K2], . . . , [Kn]) is the mixed discriminant of the positive definite n×n
matrices [Bn], [K2], . . . , [Kn] defined by

[Bn] =
1

ωn

∫
Sn−1

v ⊗ vdv = In, (4.12)

and

[Ki] =
1

V (Ki)

∫
Sn−1

v ⊗ vρn+2
Ki

(v)dv =
n+ 2

V (Ki)

∫
Ki

y ⊗ ydy, i = 2, · · · , n. (4.13)

By (1.1) and (2.18), we have

Γ2Ki = {x ∈ Rn : x · [Ki]
−1x ≤ 1},
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and therefore,

V (Γ2Ki) = (det[Ki])
1
2ωn, i = 2, . . . , n. (4.14)

Moreover, from (4.11), (4.12), (3.11) with [µ1] = In, [µi] = [Ki] for i = 2, . . . , n,

(4.14), and (4.9), we obtain

1

(n− 1)!
= D(In, [K2], . . . , [Kn])

≥ (det[K2])
1
n · · · (det[Kn])

1
n

= (V (Γ2K2)ω
−1
n )

2
n · · · (V (Γ2Kn)ω

−1
n )

2
n

= V (Γ2K2)
2
n · · ·V (Γ2Kn)

2
nω

2(1−n)
n

n

= V (Γ2K2)
2
n · · ·V (Γ2Kn)

2
nω−2

n V (T∗
2(K2, . . . , Kn))

2
n ,

which is the desired inequality (4.8).

By inequality (3.11), equality in (4.8) holds if and only if [Ki] = λiIn with a real

number λi for i = 2, . . . , n. Thus, it follows from (4.13) and (1.1) that Γ2Ki are all

balls; i.e., star bodies Ki/V (Ki)
1/n are in isotropic position for i = 2, . . . , n. �

Combining with (4.8) and (1.9), we immediately obtain

Corollary 4.5. If K2, . . . , Kn ∈ Sno , then

V (K2) · · ·V (Kn)V (T∗
2(K2, . . . , Kn)) ≤

ωnn
((n− 1)!)

n
2

, (4.15)

with equality if and only if Ki are origin-centered ellipsoids that are dilates for i =

2, . . . , n.

Proof. We only need to verify the equality conditions of (4.15). By the equality

conditions of (4.8) and (1.9), equality in (4.15) holds if and only if there exists a

transform φ ∈ GL(n) such that all star bodies φKi/V (φKi)
1/n, i = 2, . . . , n, are all

origin-centered ellipsoids and in isotropic position. It is well-known that for a star

body K with V (K) = 1 there exists a unique transform φ ∈ SL(n) (if we ignore

orthogonal transformations) such that φK is in isotropic position. This further

implies that among all origin-centered ellipsoids only the ball Bn/V (Bn)1/n is in

isotropic position. Thus, the desired equality conditions follow. �
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When n ≥ 3, Theorem 4.1 now follows from Corollary 4.5, (4.7), and (2.9) by

taking K2 = K and K3 = · · · = Kn = Bn. When n = 2, Theorem 4.1 follows from

Corollary 4.5 with K2 = K and (4.7).

Finally, Theorem 4.1, together with the equality conditions of inequality (4.1) and

the fact that Λ2K is an origin-centered ellipsoid, immediately yields inequality (1.11)

and its equality conditions.

Remark 4.6. When n = 2, the ellipsoids T2(K) are Λ2K are coincident by their

definitions. Thus, it follows from (4.6) that for φ ∈ GL(n),

Λ2(φK) = | detφ|φ−tΛ2K. (4.16)

So inequalities (1.11) and (4.3) are affine invariant when n = 2. In fact, for any

K ∈ S2
o , the sine ellipsoid Λ2K is just a rotation of the Legendre ellipsoid Γ2K

by an angle π/2. To see this, denote by ψπ/2 =

(
0 −1

1 0

)
the rotation by an

angle π/2 in R2. Then we have x ⊥ ψπ/2x for any x ∈ R2. Thus, it follows from

(1.5), (1.1), and (2.2) that

h2
Λ2K

(x) =
4

V (K)

∫
K

[x, y]2dy =
4

V (K)

∫
K

|x|2|Px⊥y|2dy

=
4

V (K)

∫
K

|ψπ/2x|2|Pψπ/2xy|
2dy =

4

V (K)

∫
K

|ψπ/2x · y|2dy

= h2
Γ2K

(ψπ/2x) = h2
ψt

π/2
Γ2K

(x), (4.17)

which means

Λ2K = ψtπ/2Γ2K.

This also implies the affine property (4.16) by using (2.16) and the fact Λ2K is

origin-symmetric:

Λ2(φK) = ψtπ/2Γ2(φK) = ψtπ/2φψπ/2(ψ
t
π/2Γ2K) = | detφ|φ−tΛ2K.

5. Inequalities for the ellipsoid Λ−2K

Recall that the projection body ΠK of a convex body K in Rn is the origin-

symmetric convex body whose support function at x ∈ Rn is given by

hΠK(x) =
1

V (K)

∫
Sn−1

|x · v|dS(K, v).



NEW SINE ELLIPSOIDS AND RELATED VOLUME INEQUALITIES 19

Associated with the projection body there is an important affine invariant

V (ΠK)/V (K)n−1.

Its least upper bound and greatest lower bound were conjectured by Schneider [56]

and Petty [54], named Schneider’s projection problem and Petty’s conjecture, re-

spectively. As far as we know, both conjectures remain open. Petty [54] conjectured

that the greatest lower bound of the ratio is attained if and only if K is an el-

lipsoid. Petty’s conjecture, once established, would imply a number of important

isoperimetric inequalities, including the classical isoperimetric inequality and Petty’s

projection inequality.

Since the operator Γ∗−2 is actually the L2 projection body operator, the L2 analog

of Petty’s conjecture can be formulated as follows: if K ∈ Kn
o , then

V (K)V (Γ∗−2K) ≥ ω2
n, (5.1)

with equality if and only if K is an origin-centered ellipsoid. This inequality follows

directly from (4.1), the fact that Γ−2K is an origin-centered ellipsoid and inequality

(1.10). In this section, we shall establish an analog of inequality (5.1) for the sine

ellipsoid Λ∗
−2K.

Theorem 5.1. If K ∈ Kn
o , then

V (K)V (Λ∗
−2K) ≥ (n− 1)

n
2ω2

n, (5.2)

with equality if and only if K is an origin-centered ball when n ≥ 3 and is an

origin-centered ellipsoid when n = 2.

If K ∈ Kn
o , then for p > 0, one can define the Lp surface area measure dSp(K, ·)

of K (see, e.g. [46]) by

dSp(K, ·) = hK(·)1−pdS(K, ·).

Thus, for p > 0 and K2, . . . , Kn ∈ Kn
o , we define the star body T−p(K2, . . . , Kn)

whose radial function at x ∈ Rn\{o} is given by

ρ−pT−p(K2,...,Kn)(x)

=
1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, . . . , vn]
pdSp(K2, v2) · · · dSp(Kn, vn). (5.3)
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Note that T−2(K2, . . . , Kn) is an ellipsoid because ρ−2
T−2(K2,...,Kn)(x) is a positive def-

inite quadratic form in the variable x.

The affine nature of the operator T−p is given below.

Theorem 5.2. If p > 0 and K2, . . . , Kn ∈ Kn
o , then for φ ∈ GL(n),

T−p(φK2, . . . , φKn) = | detφ|φ−tT−p(K2, . . . , Kn). (5.4)

Proof. For any φ ∈ SL(n), it follows from definition (5.3), [46, Proposition 1.2], and

(2.5) that, for x ∈ Rn\{o},

ρ−pT−p(φK2,...,φKn)(x)

=
1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, . . . , vn]
pdSp(φK2, v2) · · · dSp(φKn, vn)

=
1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

|φ−tv2|p · · · |φ−tvn|p

×
[
x,

φ−tv2

|φ−tv2|
, . . . ,

φ−tvn
|φ−tvn|

]p
dSp(K2, v2) · · · dSp(Kn, vn)

=
1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

[x, φ−tv2, . . . , φ
−tvn]

pdSp(K2, v2) · · · dSp(Kn, vn)

=
1

V (K2) · · ·V (Kn)

∫
Sn−1

· · ·
∫
Sn−1

[φtx, v2, . . . , vn]
pdSp(K2, v2) · · · dSp(Kn, vn)

=ρ−pT−p(K2,...,Kn)(φ
tx) = ρ−pφ−tT−p(K2,...,Kn)(x).

Hence, T−p(φK2, . . . , φKn) = φ−tT−p(K2, . . . , Kn) for any φ ∈ SL(n).

For c > 0, it follows from (5.3), (2.11), and (2.6) that

T−p(cK2, . . . , cKn) = cn−1T−p(K2, . . . , Kn).

Consequently, we obtain (5.4). �

For p > 0 and K ∈ Kn
o , define the star body Λ−pK whose radial function at x ∈

Rn\{o} is given by

ρ−pΛ−pK
(x) =

1

V (K)

∫
Sn−1

[x, v]pdSp(K, v).

When p = 2, the body Λ−2K is exactly the ellipsoid defined in (1.6).

We have the following connection between T−p and Λ−p.
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Theorem 5.3. If p > 0 and K ∈ Kn
o , then there exists a constant cn,p > 0 such that

T−p(K,B
n, . . . , Bn) = c−1

n,pΛ−pK.

In particular,

T−2(K,B
n, . . . , Bn) = ((n− 2)!)−

1
2 Λ−2K. (5.5)

Proof. For n ≥ 3, taking K2 = K and K3 = · · · = Kn = Bn in (5.3) and by Lemma

3.2, we have, for x ∈ Rn\{o},

ρ−pT−p(K,Bn,...,Bn)(x)

=
1

V (K)ωn−2
n

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, v3, . . . , vn]
pdSp(K, v2)dv3 · · · dvn

=
1

V (K)ωn−2
n

∫
{v2∈Sn−1:[x,v2] 6=0}

(∫
Sn−1

· · ·
∫
Sn−1

[x, v2, v3, . . . , vn]
p

[x, v2]p
dv3 · · · dvn

)
× [x, v2]

pdSp(K, v2)

=cpn,p
1

V (K)

∫
Sn−1

[x, v2]
pdSp(K, v2)

=cpn,p
1

V (K)

∫
Sn−1

[x, v2]
pdSp(K, v2)

=cpn,pρ
−p
Λ−pK

(x) = ρ−p
c−1
n,pΛ−pK

(x),

where the constant

cn,p =
( 1

ωn−2
n

∫
Sn−1

· · ·
∫
Sn−1

[x, v2, v3, . . . , vn]
p

[x, v2]p
dv3 · · · dvn

)1/p

.

In particular, (5.5) follows since cn,2 = ((n− 2)!)
1
2 by (3.6).

For n = 2, the definitions of Λ−pK and T−p(K) are coincident. So the assertion

still follows. �

Theorem 5.4. If K2, . . . , Kn ∈ Kn
o , then

V (Γ−2K2) · · ·V (Γ−2Kn)V (T∗
−2(K2, . . . , Kn)) ≥ ((n− 1)!)

n
2ωnn, (5.6)

with equality if and only if there exists a transform φ ∈ GL(n) such that all convex

bodies φKi/V (φKi)
1/n are in dual isotropic position for i = 2, . . . , n.
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Proof. It follows from (5.4), (2.17), and (2.8) that the left hand-side of inequality

(5.6) is GL(n) invariant. Since T−2(K2, . . . , Kn) is an ellipsoid, we may assume that

T−2(K2, . . . , Kn) = Bn. (5.7)

Thus, by (5.3), we have, for v ∈ Sn−1,

1 =
1

V (K2) · · ·V (Kn)

∫
(Sn−1)n−1

[v, v2, . . . , vn]
2dS2(K2, v2) · · · dS2(Kn, vn).

Integrating both sides with respect to the spherical Lebesgue measure gives

nωn =
1

V (K2) · · ·V (Kn)

∫
(Sn−1)n

[v, v2, . . . , vn]
2dvdS2(K2, v2) · · · dS2(Kn, vn). (5.8)

By (3.9) and (3.10), equation (5.8) means that

D([Bn], [K2], . . . , [Kn]) =
1

(n− 1)!
, (5.9)

where D([Bn], [K2], . . . , [Kn]) is the mixed discriminant of the positive definite n×n
matrices [Bn], [K2], . . . , [Kn] defined by

[Bn] =
1

ωn

∫
Sn−1

v ⊗ vdv = In, (5.10)

and

[Ki] =
1

V (Ki)

∫
Sn−1

v ⊗ vdS2(Ki, v), i = 2, · · · , n. (5.11)

By (1.3) and (2.18), we have

Γ−2Ki = {x ∈ Rn : x · [Ki]x ≤ 1},

and therefore,

V (Γ−2Ki) = (det[Ki])
− 1

2ωn, i = 2, . . . , n. (5.12)

Moreover, from (5.9), (5.10), (3.11) with [µ1] = In, [µi] = [Ki] for i = 2, . . . , n,

(5.12), and (5.7), we obtain

1

(n− 1)!
= D(In, [K2], . . . , [Kn])

≥ (det[K2])
1
n · · · (det[Kn])

1
n

= (V (Γ−2K2)
−1ωn)

2
n · · · (V (Γ−2Kn)

−1ωn)
2
n

= V (Γ−2K2)
− 2

n · · ·V (Γ−2Kn)
− 2

nω
2(n−1)

n
n
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= V (Γ−2K2)
− 2

n · · ·V (Γ−2Kn)
− 2

nω2
nV (T∗

−2(K2, . . . , Kn))
− 2

n ,

which is the desired inequality (5.6).

By inequality (3.11), equality in (5.6) holds if and only if [Ki] = λiIn with a real

number λi for i = 2, . . . , n. Thus, it follows from (5.11) and (1.3) that Γ−2Ki are

all balls; i.e., convex bodies Ki/V (Ki)
1/n are in dual isotropic position for i =

2, . . . , n. �

Combining with (5.6) and (1.10), we immediately obtain

Corollary 5.5. If K2, . . . , Kn ∈ Kn
o , then

V (K2) · · ·V (Kn)V (T∗
−2(K2, . . . , Kn)) ≥ ((n− 1)!)

n
2ωnn, (5.13)

with equality if and only if Ki are origin-centered ellipsoids that are dilates for i =

2, . . . , n.

Proof. We only need to verify the equality conditions of (5.13). By the equality

conditions of (5.6) and (1.10), equality in (5.13) holds if and only if there exists

a transform φ ∈ GL(n) such that φKi/V (φKi)
1/n, i = 2, . . . , n, are all origin-

centered ellipsoids and in dual isotropic position. In [46], Lutwak, Yang, and Zhang

proved that for a convex body K with V (K) = 1 there exists a unique transform

φ ∈ SL(n) (if we ignore orthogonal transformations) such that φK is in dual isotropic

position. This further implies that among all origin-centered ellipsoids only the

ball Bn/V (Bn)1/n is in dual isotropic position. Thus, the desired equality conditions

follow. �

When n ≥ 3, Theorem 5.1 now follows from Corollary 5.5, (5.5), and (2.9) by

taking K2 = K and K3 = · · · = Kn = Bn . When n = 2, Theorem 5.1 follows from

Corollary 5.5 with K2 = K and (5.5).

Finally, Theorem 5.1, together with the equality conditions of inequality (4.1) and

the fact that Λ−2K is an origin-centered ellipsoid, immediately yields inequality

(1.12) and its equality conditions.

Remark 5.6. When n = 2, the ellipsoids T−2(K) are Λ−2K are coincident by their

definitions. Thus, it follows from (5.4) that, for φ ∈ GL(n) and K ∈ K2
o,

Λ−2(φK) = | detφ|φ−tΛ−2K. (5.14)
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So inequalities (1.12) and (5.2) are affine invariant when n = 2. The same argument

in Remark 4.6 shows that for any K ∈ K2
o the sine ellipsoid Λ−2K is just a rotation

of the LYZ ellipsoid Γ−2K by an angle π/2; i.e.,

Λ−2K = ψtπ/2Γ−2K.

Moreover, the above identity also implies (5.14) by using (2.17) and the fact Λ−2K is

origin-symmetric.

6. Valuation properties of two sine ellipsoids

An operator Z : Sno → Kn
o is called an Lp Minkowski valuation [33] if

Z(K ∪ L) +p Z(K ∩ L) = ZK +p ZL,

whenever K,L,K ∪L,K ∩L ∈ Sno . An operator Z : Kn
o → Sno is called an L−p radial

valuation [18] if

Z(K ∪ L)+̃−pZ(K ∩ L) = ZK+̃−pZL,

whenever K,L,K ∪ L,K ∩ L ∈ Kn
o .

For p ≥ 1 and K ∈ Sno , we define the convex body Λ̃pK whose support function

at x ∈ Rn is given by

hp
Λ̃pK

(x) = hp
V (K)1/pΛpK

(x) = (n+ p)

∫
K

[x, y]pdy.

For p > 0 and K ∈ Kn
o , we define the star body Λ̃−pK whose radial function

at x ∈ Rn\{o} is given by

ρ−p
Λ̃−pK

(x) = ρ−p
V (K)−1/pΛ−pK

(x) =

∫
Sn−1

[x, v]pdSp(K, v).

Theorem 6.1. For p ≥ 1, the operator Λ̃p : Sno → Kn
o is an Lp Minkowski valuation.

Proof. For any K,L ∈ Sno and u ∈ Sn−1, by the polar coordinate, we have

hp
Λ̃pK

(u) = (n+ p)

∫
K

[u, y]pdy = (n+ p)

∫
Sn−1

∫ ρK(v)

0

[u, rv]prn−1drdv

=

∫
Sn−1

[u, v]pρn+p
K (v)dv =

∫
S1∪S2∪S3

[u, v]pρn+p
K (v)dv

=

∫
S1

[u, v]pρn+p
K (v)dv +

∫
S2

[u, v]pρn+p
K (v)dv +

∫
S3

[u, v]pρn+p
K (v)dv,
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where

S1 = {v ∈ Sn−1 : ρK(v) > ρL(v)}, S2 = {v ∈ Sn−1 : ρK(v) < ρL(v)},

and

S3 = {v ∈ Sn−1 : ρK(v) = ρL(v)}.

Then, we have ∫
S1

[u, v]pρn+p
K∪L(v)dv =

∫
S1

[u, v]pρn+p
K (v)dv,

∫
S2

[u, v]pρn+p
K∪L(v)dv =

∫
S2

[u, v]pρn+p
L (v)dv,

∫
S3

[u, v]pρn+p
K∪L(v)dv =

∫
S3

[u, v]pρn+p
K (v)dv,

and ∫
S1

[u, v]pρn+p
K∩L(v)dv =

∫
S1

[u, v]pρn+p
L (v)dv,

∫
S2

[u, v]pρn+p
K∩L(v)dv =

∫
S2

[u, v]pρn+p
K (v)dv,

∫
S3

[u, v]pρn+p
K∩L(v)dv =

∫
S3

[u, v]pρn+p
L (v)dv.

Summing up both sides of the integrals above gives∫
Sn−1

[u, v]pρn+p
K∪L(v)dv +

∫
Sn−1

[u, v]pρn+p
K∩L(v)dv

=

∫
Sn−1

[u, v]pρn+p
K (v)dv +

∫
Sn−1

[u, v]pρn+p
L (v).

Since this holds for any u ∈ Sn−1, it follows that

Λ̃p(K ∪ L) +p Λ̃p(K ∩ L) = Λ̃pK +p Λ̃pL,

which is the desired valuation. �

Theorem 6.2. For p > 0, the operator Λ̃−p : Kn
o → Sno is an L−p radial valuation.
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Proof. We shall make use of the fact that if K,L,K ∪ L ∈ Kn
o , then hK∪L =

max{hK , hL} and hK∩L = min{hK , hL}.
First, we assume that K and L are both strictly convex; i.e., the boundary

of K and L contains no segment. For u ∈ Sn−1,

ρ−p
Λ̃−pK

(u) =

∫
Sn−1

[u, v]pdSp(K, v) =

∫
S1∪S2∪S3

[u, v]ph1−p
K (v)dS(K, v)

=

∫
S1

[u, v]ph1−p
K (v)dS(K, v) +

∫
S2

[u, v]ph1−p
K (v)dS(K, v) +

∫
S3

[u, v]ph1−p
K (v)dS(K, v),

where

S1 = {v ∈ Sn−1 : hK(v) > hL(v)}, S2 = {v ∈ Sn−1 : hK(v) < hL(v)},

and

S3 = {v ∈ Sn−1 : hK(v) = hL(v)}.

Then, we have∫
S1

[u, v]ph1−p
K∪L(v)dS(K ∪ L, v) =

∫
S1

[u, v]ph1−p
K (v)dS(K, v),

∫
S2

[u, v]ph1−p
K∪L(v)dS(K ∪ L, v) =

∫
S2

[u, v]ph1−p
L (v)dS(L, v),

∫
S3

[u, v]ph1−p
K∪L(v)dS(K ∪ L, v) =

∫
S3

[u, v]ph1−p
K (v)dS(K, v),

and ∫
S1

[u, v]ph1−p
K∩L(v)dS(K ∩ L, v) =

∫
S1

[u, v]ph1−p
L (v)dS(L, v),

∫
S2

[u, v]ph1−p
K∩L(v)dS(K ∩ L, v) =

∫
S2

[u, v]ph1−p
K (v)dS(K, v),

∫
S3

[u, v]ph1−p
K∩L(v)dS(K ∩ L, v) =

∫
S3

[u, v]ph1−p
L (v)dS(L, v).

Summing up both sides of the integrals above gives∫
Sn−1

[u, v]ph1−p
K∪L(v)dS(K ∪ L, v) +

∫
Sn−1

[u, v]ph1−p
K∩L(v)dS(K ∩ L, v)
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=

∫
Sn−1

[u, v]ph1−p
K (v)dS(K, v) +

∫
Sn−1

[u, v]ph1−p
L (v)dS(L, v).

Since this holds for any u ∈ Sn−1, it follows that

Λ̃−p(K ∪ L)+̃−pΛ̃−p(K ∩ L) = Λ̃−pK+̃−pΛ̃−pL.

For the general case, we shall use Weil’s Approximation Lemma (see, e.g., [48]):

if K,L,K ∪ L ∈ Kn
o , then K and L can be approximated by sequences of Ki, Li ∈

Kn
o that are both strictly convex and smooth and such that Ki ∪Li ∈ Kn

o . Together

with the weak continuity of Sp(K, ·) (see, e.g., [41]), the desired result follows. �

Theorems 6.1 and 6.2 immediately yield Theorem 1.2.

7. Open problems

Recall that a positive definite n × n symmetric matrix A generates an ellipsoid

E(A) in Rn defined by

E(A) = {y ∈ Rn : y · Ay ≤ 1}.

Together with (1.1) and (2.18), the Legendre ellipsoid for K ∈ Sno can be defined by

Γ2K =

√
n+ 2

V (K)
E(M2(K)−1),

where M2(K) is the moment matrix of K with entries∫
K

yiyjdy.

Together with (1.3) and (2.18), the LYZ ellipsoid for K ∈ Kn
o can be defined by

Γ−2K =
√
V (K)E(M−2(K)),

where the matrix M−2(K) has entries∫
Sn−1

vivjdS2(K, v).

In [32], Ludwig showed that only M2(K) and M−2(K) are Borel measurable, GL(n)

covariant matrix valued valuations on the space of n-dimensional convex polytopes.
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As in the proofs of Theorems 6.1 and 6.2, the corresponding matrices of our new

sine ellipsoids defined in (2.20) and (2.22) are actually matrix valuations. Moreover,

it is easy to verify that for any O ∈ O(n) and K ∈ Kn
o ,

D2(OK) = OD2(K)Ot and D−2(OK) = OD−2(K)Ot.

In particular, when n = 2, it follows from (4.17) that∫
K

[x, y]2dy =

∫
K

|ψπ/2x · y|2dy =

∫
K

|x · ψtπ/2y|2dy,

which gives

D2(K) = ψtπ/2M2(K)ψπ/2.

Note that the operators ψtπ/2M2ψπ/2 for convex polytopes in R2 was already char-

acterized by Ludwig [32]. So we may ask the following question.

Question 1. How to characterize the matrix-valued valuations of the new ellipsoids

Λ2K and Λ−2K for n ≥ 3?

The Cramér-Rao inequality (see, e.g., [10]) is a fundamental inequality in infor-

mation theory, which states that, for a random vector x ∈ Rn with the probability

density f ,

v · Cv ≥ v · F−1v

holds for all v ∈ Rn, where C is the covariance matrix with entries∫
Rn

xixjf(x)dx,

and F is the Fisher information matrices with entries∫
Rn

∂ log f

∂xi

∂ log f

∂xj
f(x)dx.

Equality holds if and only if the distribution f is Gaussian. The Cramér-Rao in-

equality gives a lower bound on the variance of any unbiased estimator, which is very

helpful in extracting useful information from noisy signals in information theory.

Lutwak, Yang, and Zhang [44] observed that there exists in fact a “dictionary”

connecting the subject of information theory and the L2 Brunn-Minkowski theory.

In this dictionary a probability distribution corresponds to a convex body and the

entropy power of the distribution to the volume of the body. Thus, the ellipsoid
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E(C−1) corresponds to the Legendre ellipsoid Γ2K and the ellipsoid E(F ) corre-

sponds to the ellipsoid Γ−2K. The Cramér-Rao inequality can be read as

E(F ) ⊂ E(C−1). (7.1)

Corresponding to (7.1), Lutwak, Yang, and Zhang extended the domain of Γ2 to

star-shaped sets and established the remarkable geometric inclusion: if K is a star-

shaped set in Rn, then

Γ−2K ⊂ Γ2K, (7.2)

with equality if and only if K is an origin-centered ellipsoid.

Remark 4.6 and Remark 5.6 show that, for n = 2,

Λ2K = ψtπ/2Γ2K and Λ−2K = ψtπ/2Γ−2K.

Thus, it follows from (7.2) that when n = 2,

Λ−2K ⊂ Λ2K,

with equality if and only if K is an origin-centered ellipsoid. So, the following

question is of significant interest.

Question 2. Is there a Cramér-Rao inclusion for the new ellipsoids Λ2K and Λ−2K

for n ≥ 3?
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