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Abstract. The dual Loomis-Whitney inequality provides the sharp lower bound

for the volume of a convex body in terms of its (n − 1)-dimensional coordinate

sections. In this paper, some reverse forms of the dual Loomis-Whitney inequality

are obtained. In particular, we show that the best universal DLW-constant for

origin-symmetric planar convex bodies is 1.

1. Introduction

Throughout this paper, we shall use volk to denote k-dimensional volume (Lebesgue

measure on the corresponding subspace) in Euclidean n-space Rn, 1 ≤ k ≤ n. We

denote by conv A the convex hull of the set A and lin A the linear hull of the set A.

The Euclidean norm x ∈ Rn is denoted by ‖x‖ and the unit sphere of Rn is denoted

by Sn−1.

The celebrated Loomis-Whitney inequality compares the volume of a Lebesgue

measurable set with the geometric mean of the volumes of its (n − 1)-dimensional

coordinate projections. To be specific, let A be a Lebesgue measurable set in Rn

and let {e1, . . . , en} be the standard orthogonal basis of Rn. Then

voln(A)n−1 ≤
n∏

i=1

voln−1(A|e⊥i ), (1.1)

with equality if and only if A is a coordinate box (a rectangular parallelepiped

whose facets are parallel to the coordinate hyperplanes), where A|e⊥i is the orthog-

onal projection of A onto the hyperplane e⊥i perpendicular to ei. This inequality,
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established by Loomis and Whitney [20] in 1949, is one of the fundamental in-

equalities in convex geometric analysis and has been widely used in many math-

ematical areas (see e.g., [8, 13–15, 24]). In recent years, the study of various ex-

tensions of the Loomis-Whitney inequality has received considerable attention (see,

e.g., [1, 2, 4–6,9–11,16–19,21]).

However, a direct way to reverse the Loomis-Whitney inequality (1.1) is not true,

since we can take the volume of A arbitrarily small without changing its (n − 1)-

dimensional coordinate projections. A typical example can be found in the work of

Campi, Gritzmann, and Gronchi [10]. Therefore, they [10] considered rotations of

the standard orthogonal basis of Rn and defined the following LW-constant Λ(K)

of a convex body K (i.e., a compact convex set in Rn with nonempty interior) as

Λ(K) = max
F∈Fn

voln(K)n−1

∏n
i=1 voln−1(K|u⊥i )

, (1.2)

where the frame F = {u1, . . . , un} is an orthogonal basis of Rn, and the set of all

frames is denoted by Fn. Thus, to reverse the Loomis-Whitney inequality means to

find the greatest lower bound of the LW-constant. In [10], Campi, Gritzmann, and

Gronchi showed that if K is a planar convex body, then

Λ(K) ≥ 1

2
, (1.3)

with equality if and only if K is a triangle. Some lower bounds of the LW-constant

for special convex bodies in Rn were also provided in [10].

On the other hand, a dual version of the Loomis-Whitney inequality, in which the

sharp lower bound of the volume of a convex body is given in terms of its (n− 1)-

dimensional coordinate sections, was obtained by Meyer [21]. He showed that, for a

convex body K in Rn,

voln(K)n−1 ≥ n!

nn

n∏
i=1

voln−1(K ∩ e⊥i ), (1.4)

with equality if and only if K is a generalized cross-polytope (i.e., K is the convex

hull of segments [−biei, aiei] with ai, bi ≥ 0 and ai + bi 6= 0, i = 1, . . . , n). Here

K ∩ e⊥i is the intersection of K with the hyperplane e⊥i . Notice that there is duality

between the extremal bodies in the Loomis-Whitney inequality (1.1) and Meyer’s

inequality (1.4); i.e., the polar body of a coordinate box that contains the origin in

its interior is a generalized coordinate cross-polytope. More extensions of the dual

Loomis-Whitney inequality can be found in, e.g., [9, 18,19].
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We say a set is unconditional if it is symmetric with respect to the coordinate

hyperplanes. Note that a reverse form of the dual Loomis-Whitney inequality (1.4)

for unconditional convex bodies can be obtained by the Loomis-Whitney inequality

(1.1) since K|e⊥i = K ∩ e⊥i for any unconditional convex body K. In general, a

direct way to reverse the dual Loomis-Whitney inequality (1.4) is also not true,

since we can take the volume of K arbitrarily large without changing its (n − 1)-

dimensional coordinate sections. In fact, let a = (τ, τ, , . . . , τ) ∈ Rn with τ > 1
n
, and

let K = conv{±e1, . . . ,±en,±a}. Then we have voln−1(K ∩ e⊥i ) = 2n−1

(n−1)!
, while the

volume of K could be arbitrarily large since we can take the value of τ large enough.

So we may wonder whether Campi, Gritzmann, and Gronchi’s approach can be

applied to this problem. To establish this, unlike (n − 1)-dimensional coordinate

projections, we may choose a suitable point as the center of hyperplane sections. In

this paper, we let this point be the centroid of a convex body. In analogy to (1.2),

we define the DLW-constant of a convex body K in Rn by

Λ̃(K) = min
F∈Fn

voln(K)n−1

∏n
i=1 voln−1((K − c(K)) ∩ u⊥i )

, (1.5)

where the centroid c(K) = 1
voln(K)

∫
K

xdx. The compactness of Sn−1 yields that the

minimum is indeed attained. The frame that attains the minimum will be called a

best frame for K.

Thus, to reverse the dual Loomis-Whitney inequality, we need to find the least

upper bound of the DLW-constant; i.e., the infimum of all γ such that for each

convex body K in Rn, there exists an orthogonal basis {u1, . . . , un} satisfying

voln(K)n−1 ≤ γ

n∏
i=1

voln−1((K − c(K)) ∩ u⊥i )).

Any inequality of this type will be called a reverse dual Loomis-Whitney inequality.

Notice that the proof of inequality (1.3) is equivalent to finding a minimal area

rectangle that contains the planar convex body K. Thus, in this paper, by searching

a maximal area rhombus inscribed in K, we obtain the least upper bound of the

DLW-constant for origin-symmetric planar convex bodies.

Theorem 1.1. If K is an origin-symmetric planar convex body, then

Λ̃(K) ≤ 1, (1.6)

with equality if and only if K is a parallelogram with one of its diagonals perpendic-

ular to its edges.
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If we define the best universal DLW-constant Λ̃e(n) for origin-symmetric convex

bodies in Rn by

Λ̃e(n) = sup
K∈Kn

e

Λ̃(K),

where Kn
e denotes the class of origin-symmetric convex bodies in Rn, then Theorem

1.1 immediately yields

Λ̃e(2) = 1.

Furthermore, a weaker upper bound of the DLW-constant for origin-symmetric

convex bodies in Rn is given below.

Theorem 1.2. If K is an origin-symmetric convex body in Rn, then

Λ̃(K) ≤ ((n− 1)!)n. (1.7)

Obviously, when n = 2, inequality (1.7) reduces to (1.6) but without the equality

conditions.

Finally, we consider some special convex bodies in Rn, for example, the unit cube

Qn = [−1
2
, 1

2
]n in Rn.

Theorem 1.3. If n is even, then

Λ̃(Qn) = 2−
n
2 .

If n is odd, then

2−
n
2 < Λ̃(Qn) ≤ 2−

n−1
2 .

The rest of this paper is organized as follows. In Section 2 we characterize all

maximal area rhombuses inscribed in origin-symmetric polygons. By this, the re-

verse dual Loomis-Whitney inequality for origin-symmetric planar convex bodies

is obtained. In Section 3 two types of upper bounds of the DLW-constant in Rn

are given. Section 4 is devoted to estimating the DLW-constant for special convex

bodies (i.e., unit cubes and regular simplexes).

2. Proof of Theorem 1.1

We list some basic notations about convex bodies. Good general references are

Gardner [13] and Schneider [25]. A polytope is the convex hull of finitely many

points. The 1-dimensional faces of a polytope are its edges, and the (n − 1)-

dimensional faces are its facets. A planar polytope is usually called a polygon.

A cross-polytope in Rn is the convex hull of segments [−αiui, αiui] with αi > 0, i =
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1, . . . , n, and {u1, . . . , un} is a frame. A planar cross-polytope is also called a rhom-

bus. We say that a set A is origin-symmetric if x ∈ A implies that −x ∈ A. For a

set A ⊂ Rn, the relative interior of A is the interior relative to its affine hull.

Observe that the best frame for an origin-symmetric polygon is related to maximal

area rhombuses inscribed in it. So we first establish the following characteristic

theorem.

Theorem 2.1. Let P be an origin-symmetric polygon. Then every maximal area

rhombus inscribed in P has at least one pair of opposite vertices coinciding with that

of P .

In general, the rhombus of maximal area inscribed in a planar convex body may

be not unique. Trivially, among all rhombuses inscribed in a disk every square

has maximal area. Note that a dual version of Theorem 2.1 which characterizes

all minimum area rectangles containing a polygon was proved by Fremann and

Shapira [12]. To prove Theorem 2.1, we shall make use of the following lemma.

However, it seems that Lemma 2.2 does not follow from Fremann and Shapira’s

result by polarity, so we give a direct and explicit construction.

Lemma 2.2. Let P be an origin-symmetric polygon. If a rhombus C inscribed in

P has all its four vertices in the relative interiors of edges of P , then there exists

another rhombus C ′ inscribed in P such that the area of C ′ is larger than that of C.

Proof. Since the vertices of C are all in the relative interiors of edges of P , we let

α and β be two angles between the diagonals of C and the edges of P , respectively

(illustrated in Figure 1 and 2).

The desired rhombus C ′ can be constructed by rotating C with an angle θ in the

following two cases.

The first case is 0 < α+β ≤ π. We will show that there exists a counterclockwise

rotation θ such that vol2(C) − vol2(C
′) is negative (see Figure 1). In fact, denote

the half length of the diagonals of C and C ′ by a, b and a′, b′, respectively. Then,

vol2(C)− vol2(C
′) = 2ab− 2a′b′.

By the sine rule, we have

a′ =
a sin α

sin(α− θ)
, b′ =

b sin β

sin(β − θ)
,
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Figure 1: Formation of rhombus C ′ by a counterclockwise rotation.

which gives

vol2(C)− vol2(C
′) = 2ab

(
1− sin α sin β

sin(α− θ) sin(β − θ)

)
. (2.1)

Let

f(θ) = sin α sin β − sin(α− θ) sin(β − θ).

Clearly,

f(0) = 0,

and

f ′(θ) = cos(α− θ) sin(β − θ) + sin(α− θ) cos(β − θ) = sin(α + β − 2θ).

Since 0 < α + β ≤ π, then there exists a sufficient small ε > 0 such that sin(α +

β− 2ε) > 0, which implies that f(θ) is a strictly increasing function on [0, ε]. Thus,

there exists θ ∈ (0, ε) such that

f(θ) > f(0) = 0,

which yields vol2(C)− vol2(C
′) < 0.

The second case is π < α + β < 2π. We will show that there exists a clockwise

rotation θ such that vol2(C) − vol2(C
′) is negative (see Figure 2). By a similar
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Figure 2: Formation of rhombus C ′ by a clockwise rotation.

computation of (2.1), we have

vol2(C)− vol2(C
′) = 2ab− 2a′b′ = 2ab

(
1− sin α sin β

sin(α + θ) sin(β + θ)

)
.

Let

g(θ) = sin α sin β − sin(α + θ) sin(β + θ).

Clearly

g(0) = 0,

and

g′(θ) = − sin(α + β + 2θ).

Since π < α + β < 2π, then there exists a sufficient small ε > 0 such that sin(α +

β + 2ε) < 0, which implies that g(θ) is a strictly increasing function on [0, ε]. Thus,

there exists θ ∈ (0, ε) such that

g(θ) > g(0) = 0,

which gives vol2(C)− vol2(C
′) < 0.

Therefore, we can construct another rhombus C ′ inscribed in P by rotating C

such that the area of C ′ is larger than that of C. ¤
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Proof of Theorem 2.1. Suppose the theorem is false; i.e., there is a maximal area

rhombus inscribed in P has all its four vertices in the relative interiors of edges of

P . But, it follows from Lemma 2.2 that there exists another rhombus inscribed in

P with a larger area. That is a contradiction. ¤

We are now in a position to prove Theorem 1.1 by using Theorem 2.1.

Proof of Theorem 1.1. Since K is origin-symmetric, there exist two points A1, A2 ∈
K such that ‖A1−A2‖ is the diameter of K and the the origin O is the midpoint of

the segment A1A2. Let v1 = (A1−A2)/‖A1−A2‖ and let v2 ∈ S1 be perpendicular

to v1. Draw a line along v2 intersecting K at points B1, B2. Note that the lines A1 +

lin{v2} and A2 + lin{v2} support K. Through B1, B2 there are also two parallel

supporting lines to K. Thus, we can construct a parallelogram Q with vertices

E1, F1, E2, F2 such that K ⊆ Q, as illustrated in Figure 3.

Figure 3:

Denote the length of OA1 and OB1 by a, b, respectively. Then we have

vol1(K ∩ v⊥1 )vol1(K ∩ v⊥2 ) = vol2(Q) = 4ab.

Thus, it follows from (1.5) that

Λ̃(K) ≤ vol2(K)

vol1(K ∩ v⊥1 )vol1(K ∩ v⊥2 )
≤ vol2(Q)

4ab
= 1.

Equality of the second inequality yields that K = Q. Let C be the rhombus with

vertices A1, B1, A2, B2. Then, equality of the first inequality yields that C is a

maximal area rhombus inscribed in K. By Theorem 2.1, there is at least one pair
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Figure 4: The equality case 1. Figure 5: The equality case 2.

of opposite vertices of C coinciding with that of Q. Thus, one diagonal of C is

perpendicular to a pair of opposite edges of Q, as illustrated in Figures 4 and 5.

¤

As a byproduct of Theorem 2.1, we are able to characterize all maximal volume

cross-polytopes inscribed in an origin-symmetric polytope in Rn.

Theorem 2.3. Let P be an origin-symmetric polytope in Rn. If C is a maximal

volume cross-polytope inscribed in P , then C has at least n − 1 diagonals passing

through the edges (possible the vertices) of P .

Proof. Let C be a cross-polytope of maximal volume inscribed in P , and let±v1, . . . ,±vn

be the diagonal unit vectors of C. Arguing by contradiction, we assume that

there are two diagonals of C which do not pass through the edges of P ; i.e.,

they pass through the relative interiors of two pairs of opposite k-dimensional faces

(2 ≤ k ≤ n − 1) of P . Without loss of generality, let ±v1,±v2 be these diagonal

vectors and let ξ = lin{v1, v2}. By Theorem 2.1, we see that C ∩ ξ is not a maximal

area rhombus inscribed in the polygon P ∩ξ. Thus, there exists another rhombus C ′

inscribed in P∩ξ such that vol2(C
′) > vol2(C∩ξ). Note that C̃ = conv{C ′, C∩ξ⊥} is

still a cross-polytope in Rn and voln(C̃) > voln(C), which leads a contradiction to

the assumption of C. ¤

The dual version of Theorem 2.3 which characterizes all minimum volume rect-

angular boxes containing a polytope was proved by Fremann and Shapira [12] for

n = 2, by O’Rourke [22] for n = 3, and by Campi, Gritzmann, and Gronchi [10] for

arbitrary dimensions.
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3. Proof of Theorem 1.2

The following lemma is due to Campi, Gritzmann, and Gronchi [10, Lemma 5.5].

Lemma 3.1. If K is an origin-symmetric convex body in Rn, then there exists a

cross-polytope C contained in K with

voln(K) ≤ n!voln(C).

By Busemann’s theorem (see, e.g., [13, Theorem 8.1.10]), the intersection body

IK of an origin-symmetric convex body K is the origin symmetric convex body

whose radial function at u ∈ Sn−1 is given by

ρIK(u) = max{λ : λu ∈ IK} = voln−1(K ∩ u⊥).

Suppose K is an origin-symmetric convex body in Rn and C is the maximal volume

cross-polytope inscribed in IK whose diagonal unit vectors are ±u1, . . . ,±un. Then

voln(C) =
2n

n!

n∏
i=1

ρIK(ui) =
2n

n!

n∏
i=1

voln−1(K ∩ u⊥i ).

Thus, it follows from (1.5) that

Λ̃(K) =
2n

n!
min
F∈Fn

voln(K)n−1

voln(C(IK; F ))
, (3.1)

where C(IK; F ) is the maximal volume cross-polytope inscribed in IK with the

diagonal unit vectors in F . Using this relation, we can give upper bounds of Λ̃(K)

for an origin-symmetric convex body K in Rn in terms of its intersection body IK.

Theorem 3.2. If K is an origin-symmetric convex body in Rn, then

Λ̃(K) ≤ 2nvoln(K)n−1

voln(IK)
.

Proof. Using Lemma 3.1, we have

voln(IK) ≤ n!voln(C(IK; F )),

and thus,
voln(K)n−1

voln(C(IK; F ))
≤ n!voln(K)n−1

voln(IK)
.

Hence, by (3.1), we have

Λ̃(K) =
2n

n!
min
F∈Fn

voln(K)n−1

voln(C(IK; F ))
≤ 2nvoln(K)n−1

voln(IK)
.

¤
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Here the quantity

Θ̃(K) =
voln(K)n−1

voln(IK)

is an important functional in convex geometric analysis, which is dual to the Petty

functional [23]. The sharp upper bound of Θ̃ is still unknown, but a sharp lower

bound comes from the classical Busemann intersection inequality [25, p. 581], which

states that for a convex body K in Rn,

Θ̃(K) ≥ ωn−1
n

ωn
n−1

,

with equality for n = 2 if and only if K is origin-symmetric, and for n ≥ 3 if and

only if K is an origin-symmetric ellipsoid. Here ωn is the volume of the Euclidean

unit ball in Rn.

In [10], Campi, Gritzmann, and Gronchi defined the functional Φ(K) of a convex

body K as

Φ(K) = max
F∈Fn

voln(K)

voln(B(K; F ))
,

where B(K; F ) is the minimal volume rectangular box containing K with edges

parallel to the vectors in F . They [10, Lemma 7.2] showed that

Φ(K) ≥ 1

n!
. (3.2)

Similarly, we define the functional Φ̃(K) of a convex body K as

Φ̃(K) = min
F∈Fn

voln(K)

voln(C(K; F ))
, (3.3)

where C(K; F ) is the maximal volume cross-polytope inscribed in K with the diag-

onal unit vectors in F . Thus, by Lemma 3.1, we have the following dual inequality

of (3.2): for an origin-symmetric convex body in Rn,

Φ̃(K) ≤ n!. (3.4)

It was also proved in [10, Lemma 7.1] that for a convex body K in Rn,

Λ(K) ≥ Φ(K)n−1.

Similarly, we obtain the following dual inequality. Obviously, by (1.5) and (3.3),

Λ̃(K) = Φ̃(K)/2 holds for the origin-symmetric planar convex body K.

Theorem 3.3. If K is an origin-symmetric convex body in Rn, then

Λ̃(K) ≤ n!

nn
Φ̃(K)n−1.
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Proof. Let F = {u1, . . . , un} be a frame such that Φ̃(K) = voln(K)/voln(C(K; F )).

Then it follows from (1.5) and the equality conditions of Meyer’s inequality (1.4)

that

Λ̃(K) ≤ voln(K)n−1

∏n
i=1 voln−1(K ∩ u⊥i )

≤ voln(K)n−1

∏n
i=1 voln−1(C(K; F ) ∩ u⊥i )

=
n!voln(K)n−1

nnvoln(C(K; F ))n−1
=

n!

nn
Φ̃(K)n−1,

which yields the desired inequality. ¤

Now, Theorem 1.2 immediately follows from Theorem 3.3 and inequality (3.4).

4. Upper bounds of Λ̃(K) for special convex bodies

Obviously, it follows from Meyer’s inequality (1.4) that the DLW-constant of a

cross-polytope is n!/nn. Now let us estimate the bounds of Λ̃(Qn) for the unit cube

Qn = [−1
2
, 1

2
]n in Rn.

Theorem 4.1. If n is even, then

Λ̃(Qn) = 2−
n
2 .

If n is odd, then

2−
n
2 < Λ̃(Qn) ≤ 2−

n−1
2 .

Proof. In [3], Ball proved that for every u ∈ Sn−1,

voln−1(Qn ∩ u⊥) ≤
√

2, (4.1)

with equality if and only if the hyperplane u⊥ contains an (n− 2)-dimensional face

of Qn.

If n is even, then, for i ∈ {1, . . . , n/2}, the vectors

v2i−1 =
1√
2
(0, . . . , 0, 1, 1, 0, . . . , 0)T , v2i =

1√
2
(0, . . . , 0, 1,−1, 0, . . . , 0)T

form a frame F , where the first nonzero entry is in the (2i− 1)th position. Then by

(4.1), we have

voln−1(Qn ∩ v⊥2i−1) = voln−1(Qn ∩ v⊥2i) =
√

2.

and Qn ∩ v⊥2i−1, Qn ∩ v⊥2i are the largest (n− 1)-dimensional sections of Qn. Thus, it

follows from (1.5) that

Λ̃(Qn) = min
F∈Fn

voln(Qn)n−1

∏n
i=1 voln−1(Qn ∩ u⊥i )
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=
voln(Qn)n−1

∏n/2
i=1 voln−1(Qn ∩ v⊥2i−1)voln−1(Qn ∩ v⊥2i)

= 2−
n
2 .

If n is odd, then, for i ∈ {1, . . . , (n− 1)/2}, the vectors

v2i−1 =
1√
2
(0, . . . , 0, 1, 1, 0, . . . , 0)T , v2i =

1√
2
(0, . . . , 0, 1,−1, 0, . . . , 0)T

and the vector vn = en = (0, . . . , 0, 1)T form a frame F . Thus, it follows from (1.5)

and (4.1) that

2−
n
2 < Λ̃(Qn) = min

F∈Fn

voln(Qn)n−1

∏n
i=1 voln−1(Qn ∩ u⊥i )

≤ voln(Qn)n−1

voln−1(Qn ∩ v⊥n )
∏(n−1)/2

i=1 voln−1(Qn ∩ v⊥2i−1)voln−1(Qn ∩ v⊥2i)
= 2−

n−1
2 .

¤

Searching the best frame for general convex bodies is a difficult problem even in

the planar case. The following rough bounds for regular simplexes are given below.

Theorem 4.2. Let Tn be a regular simplex in Rn with edges of length
√

2 whose

centroid is at origin. Then

(
√

2)nn!

nn
√

n + 1
< Λ̃(Tn) <

(2
√

3)nn!

nn
√

n + 1
.

Proof. In [26], Webb established the following inequality

voln−1(Tn ∩ u⊥) ≤
√

n + 1√
2(n− 1)!

, u ∈ Sn−1, (4.2)

with equality if and only if the section contains n − 1 vertices of Tn. On the other

hand, Brzezinski [7] showed that, for u ∈ Sn−1,

voln−1(Tn ∩ u⊥) ≥
√

n + 1

(n− 1)!

1

2
√

3
.

Observe that

voln(Tn) =

√
n + 1

n!
.

Thus, it follows from (1.5) that

(
√

2)nn!

nn
√

n + 1
< Λ̃(Tn) = min

F∈Fn

voln(Tn)n−1

∏n
i=1 voln−1(Tn ∩ u⊥i )

<
(2
√

3)nn!

nn
√

n + 1
.

¤
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