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a b s t r a c t

A new proof of the Mahler conjecture in R2 is given. In order to prove the result, we
introduce a new method — the vertex removal method; i.e., for any origin-symmetric
polygon P , there exists a linear image φP contained in the unit disk B2, and there exist
three contiguous vertices of φP lying on the boundary of B2. We can show that the volume-
product of P decreases when we remove the middle vertex of the three vertices.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

If K ⊂ Rn is an origin-symmetric convex body, let K ∗ denote its polar body which is defined by

K ∗ = {x ∈ Rn : x · y ≤ 1,∀y ∈ K}.

Define the volume-product P (K) of K as

P (K) = Vol(K)Vol(K ∗).

The famous Mahler conjecture [6] is to find a lower bound of P (K). Is it true that we always have

P (K) ≥ P (Bn
∞
), (1.1)

where Bn
∞
= {x ∈ Rn : |xi| ≤ 1, 1 ≤ i ≤ n}?

For n = 2, Mahler [5] proved that the answer is affirmative, and in 1986 Reisner [9] showed that equality holds only
for parallelograms. For n = 2, a new proof of inequality (1.1) was obtained by Campi and Gronchi [2]. In the n-dimensional
case, the conjecture has been verified for some special classes of bodies, namely, for 1-unconditional bodies, [7,10,11], and
for zonoids, [3,9].
In 1987, Bourgain and Milman [1] proved that there exists a universal constant c > 0 such that P (K) ≥ cnP (Bn

∞
),

which is now known as the Bourgain–Milman inequality. Very recently, Kuperberg [4] found a beautiful new approach to
the Bourgain–Milman inequality. What’s especially remarkable about Kuperberg’s inequality is that it provides an explicit
value for c .
For n = 2, Mahler [5] proved that the volume-product of a polygon is concave down as a pair of opposite sides are

pivoted and the volume-product can bemaximized as all pairs of sides are repeatedly pivoted, at the same time the polygon
converges to a regular polygon. In this paper, to prove theMahler conjecture forn = 2,weprovide a newmethod— the vertex
removal method, which is illustrated as follows: Firstly, we prove that any origin-symmetric polygon P can be transformed
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into a new polygon contained in the unit disk B2, in which there are three contiguous vertices lying on the boundary of B2
(see Theorem 3.1). Next, we prove that the volume-product of the new polygon decreases as the middle vertex of the three
contiguous vertices moves toward its adjacent vertices on the boundary of B2 (see Theorem 3.3). Therefore, we obtain that
the volume-product of P decreases when we remove the middle vertex of the three vertices. Compared with Mahler’ proof,
the vertex removal method provides a specific downward path to a square from any origin-symmetric polygon. For n = 3,
the conjecture could probably be solved following the same idea.
It is worth mentioning that Meyer [8] proved the Mahler conjecture for the general convex bodies in R2. He showed that

the volume-product of a convex body is always bigger than that of a triangle and established the case of equality.

2. Definition, notation and preliminaries

As usual, Sn−1 denotes the unit sphere, Bn the unit ball centered at the origin, o the origin and ‖ · ‖ the norm in Euclidean
n-space Rn. If x, y ∈ Rn, then x · y is the inner product of x and y.
If K is a set, ∂K is its boundary, int K is its interior, and conv K denotes its convex hull. LetRn \K denote the complement

of K ; i.e.,

Rn \ K = {x ∈ Rn : x 6∈ K}. (2.1)

If K is an n-dimensional convex subset of Rn, then V (K) denotes Voln(K).
Let Kn denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Rn. Let Kn

o denote the
subset ofKn that contains the origin in its interior. Let h(K , ·) : Sn−1 → R, denote the support function of K ∈ Kn

o ; i.e.,

h(K , u) = max{u · x | x ∈ K}, u ∈ Sn−1. (2.2)

Let ρ(K , ·) : Sn−1 → R, denote the radial function of K ∈ Kn
o ; i.e.,

ρ(K , u) = max{λ ≥ 0 | λu ∈ K}, u ∈ Sn−1. (2.3)

A linear transformation (or affine transformation) of Rn is a map φ from Rn to itself such that φx = Ax (or φx = Ax+ t ,
respectively), where A is an n × n matrix and t ∈ Rn. For a convex body P and a linear transformation φ, we define φP as
the linear image of P about φ.
Geometrically, an affine transformation in Euclidean space is one that preserves:

(i) The collinearity relation between points; i.e., three points which lie on a line continue to be collinear after the
transformation.

(ii) Ratios of distances along a line; i.e., for distinct collinear points P1, P2, P3, the ratio |P2 − P1|/|P3 − P2| is preserved.

If K ∈ Kn
o , it is easy to verify that (see p. 44 in [12])

h(K ∗, u) =
1

ρ(K , u)
and ρ(K ∗, u) =

1
h(K , u)

. (2.4)

If P is a polygon; i.e., P = conv{A1, . . . , Am}, where Ai (i = 1, . . . ,m) are vertices of P . Let ai denote the vector of Ai. By
the definition of the polar body, we have

P∗ =
m⋂
i=1

{x ∈ R2 : x · ai ≤ 1}, (2.5)

which implies that P∗ is the intersection ofm closed half-planes with exterior normal vector ai. The distance of the straight
line {x ∈ R2 : x · ai = 1} from the origin is 1/‖ai‖. Thus, if P is an inscribed polygon in a unit circle, then P∗ is a polygon
circumscribed around the unit circle. In the proof of Theorem 3.3, we shall use these properties.
For K , L ∈ Kn, the Hausdorff distance is defined by

d(K , L) = min{λ ≥ 0 : K ⊂ L+ λBn, L ⊂ K + λBn}, (2.6)

which can be conveniently defined by (see p. 53 in [12])

d(K , L) = max
u∈Sn−1

|h(K , u)− h(L, u)|. (2.7)

Therefore, a sequence of convex bodies Ki converges to K if and only if the sequence of support functions h(Ki, ·) converges
uniformly to h(K , ·).
The following lemmas are well-known and important for our proof:

Lemma 2.1. For any origin-symmetric convex body K ⊂ Rn,P (K) is linear invariant, that is, for every linear transformation
φ : Rn → Rn, we have P (φK) = P (K).

Lemma 2.2. The volume-product P (K) is continuous under the Hausdorff metric.
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Fig. 3.1. Linear transformation φ such that A′ = φA.

3. Main result and its proof

Theorem 3.1. In R2, for any origin-symmetric polygon P, there exists a linear image P ′ = φP which satisfies that P ′ ⊂ B2 and
there exist three contiguous vertices of P ′ contained in ∂B2.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. In Fig. 3.1, A(x1, y1) and A′(x2, y2) are on ∂B2. φ is a linear transformation from R2 to itself such that A′ = φA. If
B(x, y) ∈ B2 and 0 < x2 < x1 < x, then φB ∈ B2.

Proof. Let B′ = φB and B′ = (x′, y′). Since φ is a linear transformation, we get

x
x1
=
x′

x2
and

y
y1
=
y′

y2
.

Therefore,

x′ =
xx2
x1

and y′ =
yy2
y1
.

Noting that x21 + y
2
1 = 1, x

2
2 + y

2
2 = 1 and x

2
+ y2 ≤ 1, we have

x′2 + y′2 =
x2x22
x21
+
y2y22
y21

≤
x2x22
x21
+
(1− x2)(1− x22)

1− x21

= 1−
(x21 − x

2
2)(x

2
− x21)

x21(1− x
2
1)

≤ 1. (3.1)

Hence, φB ∈ B2. �

Now we prove Theorem 3.1.

Proof. Since P is an origin-symmetric polygon, the number of sides of P is even and the opposite sides of P are parallel. Let
A1, . . . , An, B1, . . . , Bn denote all vertices of P , where Bi is the symmetric point of Ai about the origin. Our proof is in three
steps.
The first step, transform the parallelogram A1A2B1B2 into the rectangular A′1A

′

2B
′

1B
′

2 inscribed in B
2. Now P is transformed

into P1 (see (2) or (2)′ in Figs. 3.2.1 and 3.2.2).
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Fig. 3.2.1. Transforms (1) into (2) or (2)′ .

Fig. 3.2.2. Transforms (2) or (2)′ into (3).

The second step, transform P1 into P2 (see (3) in Fig. 3.2.2). Consider the following two cases for the polygon P1,
(i) If there exist some vertices of P1 satisfying

{A′i : i ∈ I ⊂ {3, . . . , n}} ⊂ R2 \ B2,

then we transform P1 into P2 ⊂ B2. The transformation shortens the segment A′1A
′

2 into A
′′

1A
′′

2 and satisfies that some
vertices {A′′i : i ∈ I1 ⊂ {3, . . . , n}} lie on ∂B

2.
(ii) If vertices A′i and B

′

i (i = 3, . . . , n) of P1 satisfy

{A′3, . . . , A
′

n, B
′

3, . . . , B
′

n} ⊂ int B
2,

then we transform P1 into P2 ⊂ B2. The transformation lengthens the segment A′1A
′

2 into A
′′

1A
′′

2 and satisfies that some
vertices {A′′i : i ∈ I1 ⊂ {3, . . . , n}} lie on ∂B

2.

The third step, transform P2 into P ′ (see Fig. 3.3). If A′′1, A
′′

2, A
′′

i (i ∈ I1) are three contiguous vertices on ∂B
2, then this

theorem has already been proved; otherwise we rotate P2 about the origin, we can get a new polygon P ′3 such that A
′′

2A
′′

i

parallels the X-axis (see (4) in Fig. 3.3). Then lengthen segments A′′2B
′′

i and A
′′

i B
′′

2 into A
(3)
2 B

(3)
i and A(3)i B

(3)
2 , respectively,

satisfying that some vertices {A(3)j : j ∈ I2 ⊂ {3, . . . , i − 1}} lie on ∂B
2 and {A(3)j : j ∈ {3, . . . , i − 1} \ I2} ⊂ B

2. By
Lemma 3.2, vertices {A(3)i+1, . . . , A

(3)
n , B

(3)
1 } are still in the internal of B

2 (see (5) in Fig. 3.3). Let P3 denote the new polygon. We
get P3 ⊂ B2.
There are i−3 vertices between the vertex A(3)2 and vertex A

(3)
i . If i−3 = 1, then P3 is the polygon satisfying the theorem.

If i− 3 ≥ 2, consider the following two cases:

(i) If j− 2 ≥ i− j (where j ∈ I2), rotate P3 about the origin such that A
(3)
2 A

(3)
j parallels the X-axis.

(ii) If j− 2 ≤ i− j (where j ∈ I2), rotate P3 about the origin such that A
(3)
j A

(3)
i parallels the X-axis.
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Fig. 3.3. Transforms (4) into (5).

Fig. 3.4. Polygon P ′ and its polar body.

We denote the new polygon as P4. It is clear that there are less than i − 3 vertices between A
(3)
2 and A

(3)
j (or between

A(3)j and A
(3)
i ). By induction, we can get a new polygon P

′
⊂ B2 with three contiguous vertices contained in ∂B2 after finite

transformations. �

By the above theorem, we consider the volume-product of the polygon with three contiguous vertices contained in ∂B2.

Theorem 3.3. Suppose that P ′ ⊂ B2 is an origin-symmetric polygon and A, C, B are three contiguous vertices of P ′ contained in
∂B2, then P (P ′′) ≤ P (P ′), where P ′′ is a new polygon obtained from P ′ by removing vertices C and C ′.

Proof. Suppose that the side AB parallels the X-axis (see Fig. 3.4.) and straight lines l, l1 and l2 are three tangent lines to the
unit circle B2 passing through points C, A and B, respectively. Let A = (−x0, y0), then B = (x0, y0), where x02 + y02 = 1. Let
θ = 6 XOC . It is clear that π/2 ≤ θ ≤ π − arctan(y0/x0)when the point C is in the second quadrant. We have the following
equations of straight lines:

l1 : y− y0 =
x0
y0
(x+ x0),

l2 : y− y0 = −
x0
y0
(x− x0),
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l : y− sin θ = −
cos θ
sin θ

(x− cos θ).

Let the point N denote the intersection of l and the Y -axis and the point M denote the intersection of l1 and the Y -axis.
We can easily get N(0, 1/ sin θ) and M(0, 1/y0). Let H and L denote the intersections of l and l1, l2, respectively. Solve the
following systems of equations:

y− sin θ = −
cos θ
sin θ

(x− cos θ)

y− y0 =
x0
y0
(x+ x0)

(3.2)

and 
y− sin θ = −

cos θ
sin θ

(x− cos θ)

y− y0 = −
x0
y0
(x− x0).

(3.3)

We get the abscissas of points H and L:

x1 =
y0 − sin θ

y0 cos θ + x0 sin θ

and

x2 =
y0 − sin θ

y0 cos θ − x0 sin θ
.

Let S4MHL denote the area of4MHL, it follows that

S4MHL =
x0
y0
·
sin θ − y0
sin θ + y0

.

Let V = V (P ′′) and V 0 = V (P ′′∗), where P ′′ denotes the new polygon obtained from P ′ by removing vertices C and C ′,
then P (P ′) is a function f (θ), where

f (θ) = (V + 2x0(sin θ − y0))
(
V 0 −

2x0
y0
·
sin θ − y0
sin θ + y0

)
(3.4)

and
π

2
≤ θ ≤ π − arctan

(
y0
x0

)
.

We have

f ′(θ) = 2x0 cos θ ·
(V 0y0 − 2x0)(sin θ + y0)2 + 2y0(4x0y0 − V )

y0(sin θ + y0)2
. (3.5)

In (3.4), since cos θ ≤ 0 and y0(sin θ + y0)2 ≥ 0, to prove f ′(θ) ≤ 0, let t = sin θ , we need only to show that g(t) ≥ 0,
where

g(t) = (V 0y0 − 2x0)(t + y0)2 + 2y0(4x0y0 − V ), t ∈ [y0, 1]. (3.6)

Let S�ABA′B′ and S4ABM denote the area of a rectangle ABA′B′ and triangle ABM , respectively. Since

V (P ′′∗) ≥ V (conv{A,M, B, A′,M ′, B′}),

we get

V 0 ≥ S�ABA′B′ + 2S4ABM = 4x0y0 + 2x0

(
1
y0
− y0

)
,

therefore,

V 0y0 − 2x0 ≥
(
4x0y0 + 2x0

(
1
y0
− y0

))
y0 − 2x0

= 2x0y20
> 0. (3.7)
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Thus, the graph of g(t) is a parabola opening upward. Since the axis of symmetry of the parabola is t = −y0, g(t) is increasing
for t ∈ [y0, 1]. To prove g(t) ≥ 0, it suffices to prove

g(y0) = 2y0(2V 0y20 − V ) ≥ 0. (3.8)

LetD denote the area of a circular segment enclosed by the arc BA′ and the chord BA′, then

V 0 ≥ S�ABA′B′ + 2S4ABM + 2D

= 4x0y0 + 2x0

(
1
y0
− y0

)
+ 2D (3.9)

and

V ≤ S�ABA′B′ + 2D
= 4x0y0 + 2D. (3.10)

To prove (3.8), it suffices to prove

2
(
4x0y0 + 2x0

(
1
y0
− y0

)
+ 2D

)
y20 ≥ 4x0y0 + 2D, (3.11)

which is equivalent to

2x0y30 ≥ D(1− 2y20). (3.12)

And since

D ≤ (1− x0) · 2y0, (3.13)

hence, it suffices to prove

x0y30 ≥ y0(1− x0)(1− 2y
2
0), (3.14)

which is equivalent to

x30 − 2x
2
0 + 1 ≥ 0, (3.15)

which is clearly correct when 0 < x0 < 1.
We get that f (θ) is decreasing when θ ∈ [π/2, π − arctan(y0/x0)], hence the function f (θ) has a minimum value at

θ = π − arctan(y0/x0). The point C coincides with the point Awhen θ = π − arctan(y0/x0). ThereforeP (P ′′) ≤ P (P ′). �

By Theorem 3.3, we can get the following Corollaries 3.4 and 3.5.

Corollary 3.4. If P ⊂ R2 is an origin-symmetric polygon, then P (P) ≥ P (S), where S is a square.

Proof. By Theorems 3.1 and 3.3 and the linear invariance ofP (P), if the number of sides of the polygon P is 2n, there exists a
polygon P1 with 2(n−1) sides satisfyingP (P1) ≤ P (P). Repeating this process n−2 times, we can get a square S satisfying
P (P) ≥ P (S). �

Corollary 3.5. If K ⊂ R2 is an origin-symmetric convex body and S ⊂ R2 is an origin-symmetric square, then P (K) ≥ P (S).

Proof. For any origin-symmetric convex body K ⊂ R2, there exists a sequence of origin-symmetric polytopes {Pi}
converging to K under the Hausdorff metric (see p. 54 in [12]). By Corollary 3.4 and Lemma 2.2., we have

P (K) = lim
n→∞

P (Pi) ≥ P (S). � (3.16)
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