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Abstract In this paper, we develop and analyze a fast solver for the system of algebraic
equations arising from the local discontinuous Galerkin (LDG) discretization and implicit
time marching methods to the Cahn–Hilliard (CH) equations with constant and degenerate
mobility. Explicit time marching methods for the CH equation will require severe time step
restriction (Δt ∼ O(Δx4)), so implicit methods are used to remove time step restriction.
Implicit methods will result in large system of algebraic equations and a fast solver is essen-
tial. The multigrid (MG) method is used to solve the algebraic equations efficiently. The
Local Mode Analysis method is used to analyze the convergence behavior of the linear MG
method. The discrete energy stability for the CH equations with a special homogeneous free
energy density �(u) = 1

4 (1 − u2)2 is proved based on the convex splitting method. We
show that the number of iterations is independent of the problem size. Numerical results
for one-dimensional, two-dimensional and three-dimensional cases are given to illustrate the
efficiency of the methods. We numerically show the optimal complexity of the MG solver
for P1 element. For P2 approximation, the optimal or sub-optimal complexity of the MG
solver are numerically shown.
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1 Introduction

The Cahn–Hilliard (CH) equation in Ω ∈ R
d(d ≤ 3) is{

ut = ∇ · (b(u)∇w),
w = −γΔu + Ψ ′(u), (1.1)

with the boundary condition

∂u

∂ν
= b(u)

∂w

∂ν
= 0, on ∂Ω, (1.2)

where γ is a positive constant. The mobility b(u) is non-negative and the function Ψ (u)
represents the homogeneous free energy in the energy functional

ε(u) =
∫
Ω

(
γ

2
|∇u|2 + Ψ (u))dx .

For the fourth order nonlinear CH equation, explicit time discretization methods will require
severe time step restriction (Δt ∼ O(Δx4)), so we explore implicit methods. Being implicit
in time, it requires to solve the system of algebraic equations at each time step, arising by the
local discontinuous Galerkin (LDG) spatial discretization and high order time discretization
methods. The efficiency of the implicit methods highly depends on the efficiency of the solver.

Our main interest is to explore an efficient high order implicit time discretization method
for the CH equation coupled with the LDG spatial discretization. In this paper, we will apply
the implicit additive Runge–Kutta (ARK) method to the CH equation and the numerical
results show that it is an efficient time discretization method for the CH equation coupled
with the LDG method. The third order ARK method requires to solve three linear systems
of equations at each time step. Traditionally iterative methods such as Gauss–Seidel method
suffer from slow convergence rates. We will apply the MG method to accelerate the con-
vergence rates when solving the system of equations, which derived by the LDG spatial
discretization and high order time marching method for the CH equation. In order to predict
the MG behavior, a two-level Local Mode Analysis is used to study the convergence of the
MG method.

The mobility b(u) in the CH equation can be constant or degenerate. For the degenerate
mobility, the ARK method with the linear MG solver is not efficient. We will apply the diag-
onally implicit Runge–Kutta (DIRK) [1] time discretization method to treat the nonlinear
CH equation. Then it requires to solve nonlinear systems of algebraic equations at each time
step. The nonlinear Gauss–Seidel method and the Newton method can be used to solve the
nonlinear equations, but they are not effective for large system. We will apply the nonlinear
Full Approximation Scheme (FAS) MG method coupled with the LDG spatial discretization
for the CH equation and the numerical results show that the convergence rates of the method
is O(N ). We also prove the unconditional energy stability for the first order scheme in time
based on the convex splitting method. We numerically show the optimal complexity of the
MG solver for P1 element. For P2 approximation, the optimal or sub-optimal complexity of
the MG solver are numerically shown.

The discontinuous Galerkin (DG) method is a class of finite element methods using com-
pletely discontinuous piecewise polynomials as the solution and the test spaces. Reed and Hill
[26] first introduced the DG method in 1973, in the framework of neutron linear transport. For
partial differential equations (PDEs) containing higher than first order spatial derivatives, the
DG method can not be applied directly, so the LDG method was introduced. The first LDG
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method was introduced by Cockburn and Shu [12] for time-dependent convection-diffusion
systems. The idea of the LDG method is to rewrite the equations with higher order derivatives
as a first order system, then apply the DG method to the system. In [35], the ARK method
was explored to solve the stiff ordinary differential equations (ODEs) resulting from a LDG
spatial discretization to PDEs with higher order spatial derivatives. For a detailed description
about the LDG methods for high-order time-dependent PDEs, we refer the readers to [36].
Recently, the MG method coupled with the DG spatial discretization for the compressible
Naiver–Stokes equation [25,27] and the Euler equation [5,6] have been studied. In [30,31],
the MG method was introduced to solve the system of algebraic equations arising from the
higher order DG discretization of advection dominated flows.

Many numerical methods have been developed to treat the CH equation, using finite
elements [2–4,7,8,13–15,17], discontinuous Galerkin methods [11,18,32], multigrid method
[22–24] and finite difference methods [16,19,28]. Xia et al. [34] developed the LDG methods
for the CH equation, which was high order accurate, nonlinear stable and flexible for arbitrary
h and p adaptivity. The explicit time discretization method was used in this paper and it lead
to strict restrict on time step, so implicit methods should be used to improve computational
efficiency.

The rest of the paper is organized as following. In Sect. 2, we describe a full-discrete
LDG scheme for CH equation and prove the unconditional energy stability based on the
convex splitting method. In Sect. 3, we introduce two different high order time discretization
methods, the ARK method and the DIRK method. In Sect. 4, we study the convergence of the
linear bi-grid algorithm numerically. Section 5 contains numerical results for the nonlinear
problems which include the CH equation for one-dimensional, two-dimensional and three-
dimensional cases. We give some concluding remarks in Sect. 6. In the “Appendices 1 and 2”,
we give a detailed description of the linear MG method and the nonlinear FAS MG method.
A fairly complete description of the Local Mode Analysis for the bi-grid algorithm is given
in “Appendix 3”.

2 The Convex Splitting LDG Method

2.1 Notations

Let Th denote a tessellation of Ω with shape-regular element K . Let 
 denote the union of
the boundary faces of elements K ∈ Th , i.e. 
 = ⋃

K∈Th
∂K , and 
0 = 
\∂Ω .

In order to describe the flux functions, we need to introduce some notations. Let e be a
face shared by the “left” and “right” elements KL and K R (we refer to [36] for more details
of the definition). Define the normal vectors νL and νR on e pointing exterior to KL and K R ,
respectively. If ψ is a function on KL and K R , but possibly discontinuous across e, let ψL

denote (ψ |KL )|e and ψR denote (ψ |K R )|e, the left and right trace, respectively.
Let Pk(K ) be the space of polynomials of degree at most k ≥ 0 on K . The finite element

spaces associated with the mesh are of the form

V k
h = {v ∈ L2(Ω) : v|K ∈ Pk(K ),∀K ∈ Th},

Σk
h = {w = (w1, . . . , wd)

T ∈ L2(Ω)d : wl |K ∈ Pk(K ), l = 1, . . . , d,∀K ∈ Th}
Further, we define the inner product notations as

(w, v)K =
∫
K

wvd K , (w, v)∂K =
∫
∂K

wvds, (2.1)
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(q,p)K =
∫
K

q · pd K , (q,p)∂K =
∫
∂K

q · pds, (2.2)

for the scalar variables w, v and vector variables q,p respectively. The inner products on Ω
are defined as

(w, v)Ω =
∑

K

(w, v)K , (q,p)Ω =
∑

K

(q,p)K . (2.3)

2.2 Full-Discrete LDG Scheme

Wise [33] introduced a convex splitting finite difference scheme for the Cahn–Hilliard–Hele–
Shaw (CHHS) equation and proved the unconditional energy stability. In this subsection, we
apply the convex splitting method to CH equation coupled with the LDG spatial discretization
for a special choice of Ψ (u). We refer the readers to [34] for the general LDG scheme. The
homogeneous free energy density Ψ (u) is taken as 1

4 (1 − u2)2 and the full-discrete convex
splitting scheme is

un+1 − un

Δt
= ∇ · (b(un)∇(−γΔun+1 + (un+1)3 − un)). (2.4)

In order to define the LDG method to the equation (2.4), we first rewrite it as a first order
system:

un+1 − un

Δt
= ∇ · sn+1, (2.5a)

sn+1 = b(un)pn+1, (2.5b)

pn+1 = ∇(rn+1 − qn+1), (2.5c)

qn+1 = γ∇ · wn+1, (2.5d)

wn+1 = ∇un+1, (2.5e)

rn+1 = (un+1)3 − un . (2.5f)

To simplify the notation, we still use un+1, sn+1,pn+1, qn+1,wn+1 and rn+1 to denote
the numerical solutions. The LDG scheme to solve the system (2.5) is as follows: Find
(un+1, sn+1,pn+1, qn+1,wn+1, rn+1) ∈ V k

h × Σk
h × Σk

h × V k
h × Σk

h × V k
h such that,

∀ρ, θ , η, ϕ,φ, ξ ∈ V k
h ×Σk

h ×Σk
h × V k

h ×Σk
h × V k

h

(
un+1 − un

Δt
, ρ)K = −(sn+1,∇ρ)K + ( ̂sn+1 · ν, ρ)∂K , (2.6a)

(sn+1, θ)K = (b(un)pn+1, θ)K , (2.6b)

(pn+1, η)K = −(rn+1 − qn+1,∇ · η)K + (̂rn+1 − q̂n+1, ν · η)∂K , (2.6c)

(qn+1, ϕ)K = −γ (wn+1,∇ϕ)K + γ ( ̂wn+1 · ν, ϕ)∂K , (2.6d)

(wn+1,φ)K = −(un+1,∇ · φ)K + (̂un+1,φ · ν)∂K , (2.6e)

(rn+1, ξ)K = ((un+1)3 − un, ξ)K . (2.6f)

The “hat” terms in (2.6) at the cell boundary from integration by parts are the so-called
“numerical fluxes”, which are functions defined on the edges and should be designed based
on different guiding principles for different PDEs to ensure stability. It turns out that we can
take the simple choices such that
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ŝn+1|e = ŝn+1
L , q̂n+1|e = q̂n+1

R , r̂ n+1|e = r̂ n+1
R , ŵn+1|e = ŵn+1

L , ûn+1|e = ûn+1
R . (2.7)

According to the boundary condition (1.2), we take

ŝn+1 = 0, ŵn+1 = 0, ûn+1 = (un+1)in, q̂n+1 = (qn+1)in, r̂ n+1 = (rn+1)in, (2.8)

at the domain boundary, where (un+1)in means the value taking from the inside of the bound-
ary element.

We choose a local basis in cell K , then sn+1,pn+1,wn+1 and rn+1 can be eliminated from
equations (2.6b), (2.6c), (2.6e) and (2.6a), respectively, by simply inverting a small mass
matrix in each case. Then we obtain a system of two coupled equations for [un+1, qn+1]

GU = F, (2.9)

where U = [un+1, qn+1]T and F is the corresponding right hand side vector consisting of
un and qn .

2.3 Energy Stability

In this subsection, we will prove the energy stability for the full-discrete LDG scheme based
on the convex splitting method. To simplify the notation, we use the following notations for
discretization of time variable,

δt u
n+1 = un+1 − un

Δt
,

δt wn+1 = wn+1 − wn

Δt
.

Proposition 1 (Energy stability) The solution to the scheme (2.6) and the flux (2.7) satisfies
the energy stability

1

Δt
[γ

2
(wn+1,wn+1)Ω + (Ψ (un+1), 1)Ω ] + (b(un)pn+1,pn+1)Ω

≤ 1

Δt
[γ

2
(wn,wn)Ω + (Ψ (un), 1)Ω ].

Proof We take the test functions in (2.6) as

ρ = rn+1 − qn+1, θ = −pn+1, η = sn+1,

ϕ = δt u
n+1, φ = γ δt wn+1, ξ = −δt u

n+1. (2.10)

Then we have

(δt u
n+1, rn+1 − qn+1)K = −(sn+1,∇(rn+1 − qn+1))K + ( ̂sn+1 · ν, rn+1 − qn+1)∂K ,

−(sn+1,pn+1)K = −(b(un)pn+1,pn+1)K ,

(pn+1, sn+1)K = −(rn+1 − qn+1,∇ · sn+1)K + (̂rn+1 − q̂n+1, ν · sn+1)∂K ,

(qn+1, δt u
n+1)K = −γ (wn+1,∇δt u

n+1)K + γ ( ̂wn+1 · ν, δt u
n+1)∂K ,

γ (wn+1, δt wn+1)K = −γ (un+1,∇ · δt wn+1)K + γ (̂un+1, δt wn+1 · ν)∂K ,

−(rn+1, δt u
n+1)K = −((un+1)3 − un, δt u

n+1)K . (2.11)

Summing up equations in (2.11), we obtain

(γwn+1, δt wn+1)K + (((un+1)3 − un)δt u
n+1, 1)K + (b(un)pn+1,pn+1)K
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= −(rn+1 − qn+1, sn+1 · ν)∂K + ( ̂sn+1 · ν, rn+1 − qn+1)∂K + (̂rn+1 − q̂n+1, sn+1 · ν)∂K

+ γ

Δt
[−(un+1,wn+1 · ν)∂K + ( ̂wn+1 · ν, un+1)∂K + (̂un+1,wn+1 · ν)∂K ]

+ γ

Δt
[(wn+1,∇un)K + (un+1,∇ · wn)K − ( ̂wn+1 · ν, un)∂K − (̂un+1,wn · ν)∂K ].

In the above analysis, we choose the test functions as δt un+1, δt wn+1, thus the cross (the time
level n and n + 1) terms (wn+1,∇un)K , (un+1,∇ · wn)K occur. What we need to do next
is to eliminate the cross terms. For equation (2.6e), we choose the test function as φ = wn ,
then we obtain

(wn+1,wn)K = −(un+1,∇ · wn)K + (̂un+1,wn · ν)∂K . (2.12)

From (2.6e), we have

(wn,φ)K = −(un,∇ · φ)K + (̂un,φ · ν)∂K . (2.13)

Choosing the test function φ = wn+1 in (2.13), we obtain

(wn,wn+1)K = −(un,∇ · wn+1)K + (̂un,wn+1 · ν)∂K . (2.14)

Then we have

(wn+1,∇un)K + (un+1,∇ · wn)K − ( ̂wn+1 · ν, un)∂K − (̂un+1,wn · ν)∂K

(2.12)= −(wn+1,wn)K + (wn+1,∇un)K − ( ̂wn+1 · ν, un)∂K

= − (wn+1,wn)K + (wn+1,∇un)K − ( ̂wn+1 · ν, un)∂K + (un,∇ · wn+1)K

−(̂un,wn+1 · ν)∂K − (un,∇ · wn+1)K + (̂un,wn+1 · ν)∂K

(2.14)= (wn+1,∇un)K − ( ̂wn+1 · ν, un)∂K + (un,∇ · wn+1)K − (̂un,wn+1 · ν)∂K .

According to the above relations, we have

(γwn+1, δt wn+1)K + (((un+1)3 − un)δt u
n+1, 1)K + (b(un)pn+1,pn+1)K

= −(rn+1 − qn+1, sn+1 · ν)∂K + ( ̂sn+1 · ν, rn+1 − qn+1)∂K + (̂rn+1 − q̂n+1, sn+1 · ν)∂K

+ γ

Δt
[−(un+1,wn+1 · ν)∂K + ( ̂wn+1 · ν, un+1)∂K + (̂un+1,wn+1 · ν)∂K ]

+ γ

Δt
[(wn+1,∇un)K + (un,∇ · wn+1)K − (̂un,wn+1 · ν)∂K − ( ̂wn+1 · ν, un)∂K ].

Summing up over K , with the numerical fluxes (2.7) and the above specific choices of the
fluxes (2.8) at the domain boundary, we get

(γwn+1, δt wn+1)Ω + (((un+1)3 − un)δt u
n+1, 1)Ω + (b(un)pn+1,pn+1)Ω

= (γwn+1, δt wn+1)Ω + (((un+1)3 − un)δt u
n+1, 1)Ω − 1

4Δt
((1 − (un+1)2)2, 1)Ω

+ 1

4Δt
((1 − (un)2)2, 1)Ω + 1

4Δt
((1 − (un+1)2)2, 1)Ω − 1

4Δt
((1 − (un)2)2, 1)Ω

+(b(un)pn+1,pn+1)Ω

= (γwn+1, δt wn+1)Ω + 1

4Δt
((1 − (un+1)2)2, 1)Ω − 1

4Δt
((1 − (un)2)2, 1)Ω

+(b(un)pn+1,pn+1)Ω + 1

4Δt
((2 + 2(un+1)2 + (un + un+1)2(un − un+1)2), 1)Ω

= 0.
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Then we get

(γwn+1, δt wn+1)Ω + (b(un)pn+1,pn+1)Ω+ 1

4Δt
((1−(un+1)2)2−(1 − (un)2)2, 1)Ω ≤0,

so we have the energy stability

1

Δt
[γ

2
(wn+1,wn+1)Ω + (Ψ (un+1), 1)Ω ] + (b(un)pn+1,pn+1)Ω

≤ 1

Δt
[γ

2
(wn,wn)Ω + (Ψ (un), 1)Ω ].

	


3 The High Order Time Discretization Methods

The scheme (2.4) is stable regardless of the time step size Δt . Thus, we say the scheme is
unconditionally energy stable, but it is first order accuracy in time. Furthermore, the convex
splitting scheme is just for a special choice of Ψ (u)(Ψ (u) = 1

4 (1 − u2)2). Our purpose is
to obtain a high order scheme in time and for arbitrary Ψ (u), so we will explore high order
time discretization methods for the CH equation in this section.

3.1 The Linearization Scheme

Xia et al. [35] explored the ARK method and found that it was an efficient method when it
was coupled with the LDG spatial discretization for solving PDEs containing higher order
spatial derivatives. In this section, we apply the ARK method to the CH equation (1.1), which
treats the linear part implicitly and the nonlinear part explicitly. But the non-negative mobility
b(u) in the CH equation can be constant or degenerate. For the degenerate mobility b(u), we
can not apply the ARK method directly because of the nonlinear term b(u), so we consider
a linearization technique.

Starting from un (the numerical approximation of u(tn), with u0 = u(0)), we give the
method to calculate un+1 in the following.

1. Rewrite the CH equation (1.1) in the following form

ut = ∇ · (b(un)∇(−γΔu))+ ∇ · ((b(u)− b(un))∇(−γΔu))+ ∇ · (b(u)∇(Ψ ′(u))).
(3.1)

2. Apply the LDG spatial discretization similar to [34] to the equation (3.1) and obtain an
ODE {

ut = FN (t, u(t))+ FS(t, u(t)), t ∈ [0, T ],
u(0) = u0,

(3.2)

where FS(t, u(t)) is obtained by the LDG discretization to ∇ · (b(un)∇(−γΔu)) and
FN (t, u(t)) is obtained by the remaining terms in (3.1).

3. Apply the third order ARK time discretization method to ODE (3.2) and it requires to
solve three algebraic non-symmetric linear systems at each time step. What we should
have in mind is that the time step Δt can not be chosen too large because of the explicit
treatment of the term ∇ · ((b(u)− b(un))∇(−γΔu)).

4. Apply the linear MG method to solve the linear system.
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3.2 The Nonlinear Scheme

For CH equation (1.1), especially for the equation with the degenerate mobility b(u), we can
also consider a full implicit scheme instead of the linearization technique. We first introduce
the DIRK method, here we just take the third order DIRK method for an example, which is
used in our numerical experiments. We apply the LDG spatial discretization [34] to the CH
equation (1.1) and get an ODE{

ut = F(t, u(t)), t ∈ [0, T ],
u(0) = u0,

(3.3)

where F(t, u(t)) is a nonlinear function of u.
Starting from un , we give the DIRK method to calculate un+1. Following the work [1],

the DIRK method is used to solve equation (3.3). They are given in the following form

un,i = un +Δt
3∑

j=1

ai j F(tn, j , un, j ), i = 1, 2, 3, (3.4)

un+1 = un +Δt
3∑

j=1

b j F(tn, j , un, j ),

where tn, j = tn+c jΔt and un, j approximates u(tn, j ). The coefficients ai j , i = 1, 2, 3, b j , c j

are constrained by order of accuracy and stability considerations. For a detailed description
of the method, we refer the readers to [1].

After the implicit discretization, it requires to solve three nonlinear systems of algebraic
equations (3.4) at each time step. We apply the nonlinear FAS MG method to solve these
nonlinear systems, which will be described in detail in “Appendix 2”.

4 Local Mode Analysis of the Two-Level Algorithm

4.1 Notations

We start by introducing the basic notations to describe the general setting of a two-level or
bi-grid method. Together with the family of partitions {Th}h>0 used for the LDG discretiza-
tion, we consider a coarse family of mesh partitions, {TH }H>0 with H > h and satisfying
the basic assumption TH ⊂ Th . One can think H = 2h, since in many circumstances it will
already be coarse enough. Associated to the coarse mesh partition we have the corresponding
finite element space V k

H which is defined as:

V k
H = {v ∈ L2(D) : v|D ∈ Pk(D); ∀ D ∈ TH }. (4.1)

Throughout the whole description we assume the polynomial degree k is fixed.
To link functions in both spaces, we define the prolongation and restriction operators. The

prolongation operator Ph H : VH ∨ Vh is defined as the natural inclusion. The restriction
operator RHh : Vh ∨ VH is defined as the transpose of Ph H with respect to the standard
L2-inner product. That is, it is obtained by solving:

∑
D∈TH

∫
D

RHh(uh)vH dx =
∑

D∈Th

∫
D

uh Ph H (vH )dx, ∀vH ∈ V k
H . (4.2)
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We now denote Sh as a general relaxation or smoothing operator. We specify and study
several choices in “Appendix 1”. The basic property that Sh should have is to damp the high
frequencies of the approximate solution and smooth the error. The coarse solver is defined
by AH = RHh Ah Ph H . The coarse grid correction step is to reduce the smooth components
of the error that can not be reduced by the smoother.

A fairly complete description of the linear MG method and the nonlinear FAS MG method
are given in “Appendices 1 and 2”, respectively.

4.2 The Convergence of the Two-Grid Algorithm

In this section, we consider the Local Mode Analysis for the linearization scheme (3.1). The
linear part is ∇ · (b(un)∇(−γΔu)), so what we do in the following is to analyze to the
equation

un+1 − un

Δt
= ∇ · (b(un)∇(−γΔun+1)). (4.3)

The analysis for general fourth order linear equation can be found in [21]. For convenience
we consider the Local Mode Analysis for the one-dimensional and two-dimensional cases.
Extension to higher dimensions follows immediately by means of the tensor-product prin-
ciple. For a detailed description of the Local Mode Analysis for the two-grid algorithm, we
refer the readers to “Appendix 3”.

We choose b(u) = 1, γ = 1 in Eq. (4.3). The convergence of the two-grid algorithm in
one-dimensional and two-dimensional cases are analyzed by the Local Mode Analysis and
the numerical results are shown as follows.

– One space dimension

1) We choose α = 0.75 with Jacobi smoother and α = 1.0 (no damping) with Gauss–
Seidel smoother for P1 and P2 approximation from Fig. 1.

2) From Figs. 2 and 3, we can see that the Gauss–Seidel smoother has better convergence
behavior than the Jacobi smoother.

3) The MG method is not convergent for P2 approximation with damped Jacobi
smoother according to Fig. 2.

– Two space dimension

1) We choose α = 0.85 with Jacobi smoother and α = 1.0 (no damping) with Gauss–
Seidel smoother for P1 and P2 approximation from Fig. 4.

2) From Figs. 5 and 6, we can see that the Gauss–Seidel smoother has better convergence
behavior than the Jacobi smoother.

3) The MG method is not convergent for P2 approximation with damped Jacobi
smoother according to Fig. 5.

5 Numerical Results

In this section, we perform numerical experiments of the LDG method applied to the CH
equation. We use the implicit third order ARK time-marching method and the resulting
linear system is solved by the linear MG method. The third order DIRK time discretization
method is also applied to the CH equation and we solve the resulting nonlinear equations by
the nonlinear FAS MG method. A comparison is made among these two different methods.
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Fig. 1 The asymptotic convergence factor λ changes with the damping parameter α in one dimension

For the spatial discretization we use uniform meshes. In our numerical experiments, the
number of pre- and post-relaxations is ν1 = ν2 = 3.

5.1 One Space Dimension

Example 1 Convex splitting scheme for degenerate mobility

We consider the scheme (2.4) inΩ = (0, 2π) with degenerate mobility b(u) = 1 − u2, γ =
2, Ψ (u) = 1

4 (1 − u2)2 and periodic boundary conditions. We take the exact solution of

u(x, t) = e−t sin(x), (5.1)

with the source term f , where f is a given function so that (5.1) is the exact solution.
The convex splitting scheme (2.4) is the first order accuracy in time, so we just consider P0

approximation. The L2 and L∞ errors, and the numerical order of accuracy at time t = 1.0
with different time steps are presented in Table 1. The numerical experiments go well with
the theoretical result of the unconditional energy stability for the scheme.

Example 2 ARK method for constant mobility
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Fig. 2 Eigenvalue spectral of Eh and E2grid
h with damped Jacobi smoother and P1 approximation, P2

approximation in one dimension

We consider the CH equation

ut = (b(u)(−γ uxxx + (Ψ ′(u))x ))x , (5.2)

with b(u) = 1, Ψ (u) = 3
2 (1−u2), γ = 4 inΩ = (0, 4π) and periodic boundary conditions.

The exact solution is given by

u(x, t) = e−t sin(x)− e0.5t sin(0.5x). (5.3)

The implicit third order ARK method is used in the time integration and the time step is taken
asΔt = 0.1Δx . The L2 and L∞ errors, and the numerical order of accuracy at time t = 0.5
are presented in Table 2. We can see that the method with Pk elements gives a (k + 1)-th
order of accuracy.

To illustrate the superiority of the MG solver, we present the convergence rates of the
method for a single time-step by using P1 and P2 elements. From Fig. 7, we can see that
each iteration of the MG solver is an O(N ) operation. By Table 3 we see that the convergence
is independent of the mesh size. We also find that the Gauss–Seidel smoother show better
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Fig. 3 Eigenvalue spectral of Eh and E2grid
h with Gauss–Seidel smoother and P1 approximation, P2 approx-

imation in one dimension

convergence than the Jacobi smoother. The same information for P2 approximation are
shown in Table 4 and Fig. 8 and we conclude that P2 approximation converges worse than
P1 approximation.

Example 3 ARK and DIRK methods for constant mobility

We consider the CH equation

ut = (b(u)(−γ uxxx + (Ψ ′(u))x ))x − f (x, t), (5.4)

with b(u) = 1, Ψ (u) = 1
4 (1−u2)2, γ = 2 inΩ = (0, 4π) and periodic boundary conditions.

We take the exact solution

u(x, t) = e−t sin(x)− e0.5t cos(0.5x). (5.5)

The implicit third order ARK method and the third order DIRK method are used in the time
integration with the time step Δt = 0.05Δx and Δt = 0.1Δx respectively. The L2 and
L∞ errors, and the numerical order of accuracy at time t = 0.5 are presented in Table 5.
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Fig. 4 The asymptotic convergence factor λ changes with the damping parameter α in two dimension

We can see that both methods with Pk elements give a (k + 1)-th order of accuracy. The
CPU time with these two different time discretization methods are shown in Fig. 9. We can
see that the ARK method with linear MG solver cost less CPU time. The reason is that for
constant mobility b(u), we do not need the linearization technique, so the ARK method is
more efficient.

Example 4 ARK and DIRK methods for degenerate mobility

We consider the CH equation

ut = (b(u)(−γ uxxx + (Ψ ′(u))x ))x − f (x, t), (5.6)

with b(u) = 1 − u2, Ψ (u) = 1
2 (1 − u2), γ = 2 in Ω = (0, 2π) and periodic boundary

conditions. We take the exact solution

u(x, t) = e−t sin(x). (5.7)

The implicit third order ARK method and the third order DIRK method are used in the time
integration with the time step Δt = 0.001Δx and Δt = 0.07Δx2 respectively. The L2 and
L∞ errors, and the numerical order of accuracy at time t = 0.5 are presented in Table 6.
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Fig. 5 Eigenvalue spectral of Eh and E2grid
h with damped Jacobi smoother and P1 approximation, P2

approximation in two dimension

We can see that both methods with Pk elements give a (k +1)-th order of accuracy. The CPU
time with the two different time discretization methods are shown in Fig. 10. We can see that
the DIRK method with nonlinear FAS MG solver cost less CPU time. The reason is that for
degenerate mobility b(u), the linearization technique is needed and the time step can not be
chosen larger because of the explicit treatment of the term ∇ · ((b(u)− b(un))∇(−γΔu)),
so under this situation, the DIRK method is more efficient.

5.2 Two Space Dimension

Example 5 Convex splitting scheme for degenerate mobility

We consider the scheme (2.4) inΩ = (0, 2π)× (0, 2π)with degenerate mobility b(u) =
1 − u2, γ = 1, Ψ (u) = 1

4 (1 − u2)2 and periodic boundary conditions. We take the exact
solution of

u(x, y, t) = e−2t sin(x) sin(y), (5.8)

with the source term f , where f is a given function so that (5.8) is the exact solution.
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Fig. 6 Eigenvalue spectral of Eh and E2grid
h with Gauss–Seidel smoother and P1 approximation, P2 approx-

imation in two dimension

The convex splitting scheme (2.4) is the first order accuracy in time, so we just consider P0

approximation. The L2 and L∞ errors, and the numerical order of accuracy at time t = 1.0
with different time steps are presented in Table 7. The numerical experiments go well with
the theoretical result of the unconditional energy stability for the scheme.

To illustrate the superiority of the FAS MG solver, we present the convergence rates of
the method for a single time-step by using P1 and P2 elements. From Fig. 11, we can see
that each iteration of the FAS MG solver is an O(N ) operation. From Table 8 we see that
the convergence is independent of the mesh size. It is clear that the Gauss–Seidel smoother
converges much faster than the Jacobi smoother. The same information for P2 approximation
are shown in Table 9 and Fig. 12 and we conclude that P1 approximation converges better
than P2 approximation.

Example 6 ARK and DIRK methods for constant mobility

We consider the CH equation

ut = ∇ · (b(u)∇(−γΔu + Ψ ′(u))), (5.9)
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Table 1 Accuracy test for the scheme (2.4) with the exact solution (5.1)

N Δt = 0.1Δx Δt = 1.0Δx

L2 error Order L∞ error Order L2 error Order L∞ error Order

16 1.19E–01 – 1.05E–01 – 3.45E–01 – 2.07E–01 –

32 5.43E–02 1.14 5.03E–02 1.07 2.02E–01 0.77 1.18E–01 0.80

64 2.59E–02 1.06 2.46E–02 1.02 1.09E–01 0.89 6.33E–02 0.90

128 1.27E–02 1.03 1.22E–02 1.01 5.68E–02 0.94 3.28E–02 0.95

Δt = 5.0Δx Δt = 10.0Δx

L2 error order L∞ error order L2 error order L∞ error order

16 5.78E–01 – 3.22E–01 – 5.78E–01 – 3.22E–01 –

32 4.98E–01 0.21 2.78E–01 0.21 5.17E–01 0.16 2.89E–01 0.15

64 3.55E–01 0.49 1.96E–01 0.50 4.84E–01 0.10 2.64E–01 0.13

128 2.24E–01 0.67 1.23E–01 0.67 3.52E–01 0.47 1.94E–01 0.44

Table 2 Accuracy test for the
CH equation (5.2) with the exact
solution (5.3)

N L2 error Order L∞ error Order

P0 16 5.86E–01 – 5.11E–01 –

32 2.75E–01 1.08 2.47E–01 1.04

64 1.35E–01 1.02 1.22E–01 1.01

128 6.75E–02 1.00 6.13E–01 1.00

P1 16 8.81E–02 – 1.09E–01 –

32 2.17E–02 2.02 2.71E–02 2.01

64 5.40E–03 2.00 6.77E–03 2.00

128 1.35E–03 2.00 1.69E–03 2.00

P2 16 4.41E–03 – 5.93E–03 –

32 5.40E–04 3.03 7.66E–04 2.95

64 6.72E–05 3.01 9.65E–05 2.99

128 8.38E–06 3.00 1.20E–05 3.00

with b(u) = 1, Ψ (u) = 600(ulnu + (1 − u)ln(1 − u))+ 1800u(1 − u), γ = 1. The initial
condition is

u0(x) =
{

0.71, x ∈ Ω1,

0.69, x ∈ Ω2,
(5.10)

where the square domain

Ω = (−0.5, 0.5)× (−0.5, 0.5), Ω1 = (−0.2, 0.2)× (−0.2, 0.2), Ω2 = �−Ω1.

The boundary conditions are

∂u

∂ν
= b(u)∇w · ν = 0, on ∂Ω. (5.11)

The implicit third order ARK method and the DIRK method are used in the time integration.
We use the P1 and P2 elements on the meshes with 128 × 128 cells, respectively. The time

123



396 J Sci Comput (2014) 58:380–408

iterations

lo
g(

re
si

du
al

)

2 4 6 8 10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

N=64
N=128
N=256

iterations

lo
g(

re
si

du
al

)

2 4 6 8
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

N=64
N=128
N=256

(a) (b)

Fig. 7 Convergence rates of MG solver for P1 approximation in one space dimension

Table 3 The number of MG
iterations required to reduce the
norm of the residual below the
tolerance ε = 1.0 × 10−9 for P1

approximation in one space
dimension

Δx Jacobi smoother Gauss–Seidel smoother

4π/32 8 7

4π/64 9 8

4π/128 9 7

4π/256 9 7

Table 4 The number of MG iterations required to reduce the norm of the residual below the tolerance
ε = 1.0 × 10−9 for P2 approximation with Gauss–Seidel smoother in one space dimension

Δx 4π/16 4π/32 4π/64

number of MG iterations 9 9 16

step is taken as Δt = 0.01Δx2. The contours at t = 8 × 10−5 are shown in Fig. 13. We can
see that these two methods show the same phenomenon and the numerical results compare
very well with the numerical calculations in [34].

Fig. 8 Convergence rates of MG
solver for P2 approximation with
Gauss-Seidel smoother in one
space dimension
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Table 5 Accuracy test for the CH equation (5.4) with the exact solution (5.5)

N Linear MG Nonlinear FAS MG

L2 error Order L∞ error Order L2 error Order L∞ error Order

P0 16 1.01E–00 – 9.61E–01 – 1.01E–00 – 9.61E–01 –

32 5.08E–01 0.99 4.88E–01 0.97 5.08E–01 0.99 4.88E–01 0.97

64 2.54E–01 1.00 2.44E–01 1.00 2.54E–01 1.00 2.44E–01 1.00

128 1.27E–01 1.00 1.22E–01 1.00 1.27E–01 1.00 1.22E–01 1.00

P1 16 1.24E–01 – 1.51E–01 – 1.25E–01 – 1.51E–01 –

32 3.11E–02 1.99 3.75E–02 2.00 3.13E–02 1.99 3.74E–02 2.01

64 7.66E–03 2.02 9.67E–03 1.95 7.83E–03 2.00 9.47E–03 1.98

128 1.92E–03 1.99 2.41E–03 2.00 1.95E–03 2.00 2.36E–03 2.00

P2 16 2.58E–02 – 3.36E–02 – 2.56E–02 – 3.61E–02 –

32 3.23E–03 2.99 4.27E–03 2.97 3.23E–03 2.98 4.48E–03 3.01

64 4.29E–04 2.91 5.38E–04 2.98 4.05E–04 2.99 5.57E–04 3.00

128 5.31E–05 3.01 6.47E–05 3.05 5.08E–05 2.99 6.97E–05 3.00

Fig. 9 The CPU time of the
linear scheme and the nonlinear
scheme for the CH equation (5.4)
with P1 approximation
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Example 7 ARK and DIRK methods for degenerate mobility

We consider the CH equation

ut = ∇ · (b(u)∇(−γΔu + Ψ ′(u))), (5.12)

with b(u) = u(1 − u), Ψ (u) = 3000(ulnu + (1 − u)ln(1 − u)) + 9000u(1 − u), γ = 1
in Ω = (−0.5, 0.5)× (−0.5, 0.5). The boundary conditions are taken as (5.11). The initial
condition u0 is a random perturbation of uniform state u = 0.63 with a fluctuation no larger
than 0.05.

The implicit third order ARK method and the DIRK method are used in the time integra-
tion. We use the P1 and P2 elements on the meshes with 64 × 64 cells. Figure 14 shows
the evolution of the concentration field. The concentration evolution can basically be catego-
rized in two phases, the phase separation (before t = 8 × 10−6) stage (Δt = 2 × 10−7) and
the coarsening process (from t = 8 × 10−6 onwards) stage ( Δt = 0.01Δx2). We can see
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Table 6 Accuracy test for the CH equation (5.6) with the exact solution (5.7)

N Linear MG Nonlinear FAS MG

L2 error Order L∞ error Order L2 error Order L∞ error Order

P0 16 2.69E–01 – 2.52E–01 – 2.69E–01 – 2.52E–01 –

32 1.34E–01 1.00 1.26E–01 1.00 1.34E–01 1.00 1.26E–01 1.00

64 6.71E–02 1.00 6.31E–02 1.00 6.71E–02 1.00 6.31E–02 1.00

128 3.35E–02 1.00 3.15E–02 1.00 3.35E–02 1.00 3.15E–02 1.00

P1 16 1.99E–02 – 2.77E–02 – 1.99E–02 – 2.77E–02 –

32 4.92E–03 2.01 6.86E–03 2.01 4.93E–03 2.01 6.86E–03 2.01

64 1.22E–03 2.01 1.70E–03 2.01 1.22E–03 2.01 1.70E–03 2.01

128 3.06E–04 1.99 4.26E–04 1.99 3.06E–04 1.99 4.26E–04 2.00

P2 16 2.21E–03 – 3.49E–03 – 3.29E–03 – 5.21E–03 –

32 2.77E–04 2.99 4.39E–04 2.99 4.13E–04 2.99 6.55E–04 2.99

64 3.47E–05 2.99 5.49E–05 3.00 5.17E–05 3.00 8.20E–05 3.00

128 4.36E–06 2.99 6.92E–06 2.99 6.47E–06 3.00 1.02E–05 3.00

Fig. 10 The CPU time of the
linear scheme and the nonlinear
scheme for the CH equation (5.6)
with P1 approximation
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that these two methods show the same phenomenon and the numerical results show similar
patterns with the numerical calculations in Gomez et al. [20].

5.3 Three Space Dimension

Example 8 Convex splitting scheme with degenerate mobility

We consider the scheme (2.4) inΩ = (0, 2π)× (0, 2π)× (0, 2π) with b(u) = 1 − u2, γ =
1, Ψ (u) = 1

4 (1 − u2)2 and periodic boundary conditions. We take the exact solution of

u(x, y, z, t) = e−3t sin(x) sin(y) sin(z), (5.13)

with the source term f , where f is a given function so that (5.13) is the exact solution.
The convex splitting scheme (2.4) is the first order accuracy in time, so we just consider P0

approximation. The L2 and L∞ errors, and the numerical order of accuracy at time t = 1.0
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Table 7 Accuracy test for the scheme (2.4) with the exact solution (5.8)

N Δt = 0.1Δx Δt = 1.0Δx

L2 error Order L∞ error Order L2 error Order L∞ error Order

16 2.23E–02 – 4.40E–02 – 1.29E–01 – 2.50E–01 –

32 9.81E–03 1.18 1.95E–02 1.17 7.72E–02 0.75 1.52E–01 0.71

64 4.56E–03 1.10 9.10E–03 1.10 4.05E–02 0.93 8.08E–02 0.92

128 2.20E–03 1.05 4.39E–03 1.04 2.06E–02 0.97 4.13E–02 0.97

Δt = 5.0Δx Δt = 10.0Δx

L2 error Order L∞ error Order L2 error Order L∞ error Order

16 2.53E–01 – 4.75E–01 – 2.53E–01 – 4.75E–01 –

32 2.36E–01 0.10 4.59E–01 0.05 2.47E–01 0.04 4.65E–01 0.03

64 1.55E–01 0.61 3.07E–01 0.58 2.34E–01 0.08 4.58E–01 0.02

128 9.14E–02 0.76 1.82E–01 0.75 1.54E–01 0.60 3.07E–01 0.58
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Fig. 11 Convergence rates of FAS MG solver for P1 approximation in two space dimension

Table 8 The number of FAS
MG iterations required to reduce
the norm of the residual below
the tolerance ε = 1.0 × 10−9 for
P1 approximation in two space
dimension

Δx Jacobi smoother Gauss–Seidel smoother

2π/32 13 8

2π/64 12 8

2π/128 10 8

2π/256 11 8

with different time steps are presented in Table 10. The numerical experiments go well with
the theoretical result of the unconditional energy stability for the scheme.

To illustrate the superiority of the FAS MG solver, we present the convergence rates of
the method for a single time-step by using P1 and P2 elements. From Fig. 15, we can see
that each iteration of the FAS MG solver is an O(N ) operation. From Table 11 we see that
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Table 9 The number of FAS MG iterations required to reduce the norm of the residual below the tolerance
ε = 1.0 × 10−9 for P2 approximation with Gauss–Seidel smoother in two space dimension

Δx 2π/16 2π/32 2π/64

number of MG iterations 9 11 16

Fig. 12 Convergence rates of
FAS MG solver for P2

approximation with Gauss-Seidel
smoother in two space dimension
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the number of iterations is independent of the mesh size and the Gauss–Seidel smoother
has better convergence behavior than the Jacobi smoother. The convergence rates for P2

approximation is shown in Fig. 16 and each iteration of the FAS MG solver is also an O(N )
operation.

Example 9 ARK and DIRK methods for constant mobility

We consider the CH equation

ut = ∇ · (b(u)∇(−γΔu + Ψ ′(u))), (5.14)

with b(u) = 1, Ψ (u) = 600(ulnu + (1 − u)ln(1 − u))+ 1800u(1 − u), γ = 1. The initial
condition is

u0(x) =
{

0.71, x ∈ Ω1,

0.69, x ∈ Ω2,
(5.15)

where the square domain

Ω = (−0.5, 0.5)× (−0.5, 0.5)× (−0.5, 0.5),

Ω1 = (−0.2, 0.2)× (−0.2, 0.2)× (−0.2, 0.2), Ω2 = �−Ω1.

The boundary conditions are (5.11).
The implicit third order ARK method and the DIRK method are used in the time integra-

tion. We use the P0 and P1 elements on the meshes with 64 × 64 × 64 cells, respectively.
The time step is taken asΔt = 2 ×10−7. The contours at t = 8×10−5 are shown in Fig. 17.
The numerical results show the similar phenomenon as in the two-dimensional case and we
can conclude that the MG solver is efficient for the three-dimensional problems.
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Fig. 13 The contours of u(x, t) for equation (5.9), P1 and P2 elements on the uniform mesh with 128 × 128
cells

6 Concluding Remarks

In this paper, we have presented the linear MG solver and the nonlinear FAS MG solver for
the linear and nonlinear algebraic systems arising from the LDG spatial discretization and
implicit time marching methods. We have studied the CH equation in one, two and three
dimensions with a constant mobility and degenerate mobility. The unconditional stability of
the discrete energy is proved for the CH equation with a special homogeneous free energy
density Ψ (u) = 1

4 (1 − u2)2 based on the convex splitting method. The convergence of
the linearization scheme is studied numerically by the Local Mode Analysis. Numerical
experiments show that the ARK method and the DIRK method are efficient implicit time
marching methods comparing to the explicit method for the CH equation. In addition, the
linear MG solver and the nonlinear FAS MG solver are efficient solvers that can solve the
linear and nonlinear algebraic systems with the number of iterations independent of the
problem size. The optimal or sub-optimal complexity of the MG solver for P1 and P2

approximation are numerically shown. For P2 approximation, we see the complexity of the
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Fig. 14 The contours of u(x, t) for equation (5.12) at different time with P2 elements on the uniform mesh
with 64 × 64 cells

123



J Sci Comput (2014) 58:380–408 403

Table 10 Accuracy test for the scheme (2.4) with the exact solution (5.13)

N Δt = 0.1Δx Δt = 1.0Δx

L2 error Order L∞ error Order L2 error Order L∞ error Order

8 2.35E–02 – 6.06E–02 – 1.29E–01 – 2.98E–01 –

16 9.30E–03 1.33 2.48E–02 1.28 6.95E–02 0.87 1.85E–01 0.69

32 4.22E–03 1.13 1.12E–02 1.14 3.52E–02 0.98 9.89E–02 0.90

64 2.00E–03 1.07 5.33E–03 1.07 1.54E–02 1.19 4.35E–02 1.18

Δt = 5.0Δx Δt = 10.0Δx

L2 error Order L∞ error Order L2 error Order L∞ error Order

8 2.23E–01 – 5.10E–01 – 2.23E–01 – 5.10E–01 –

16 2.11E–01 – 5.37E–01 – 2.11E–01 – 5.37E–01 –

32 1.86E–01 0.18 5.07E–01 0.08 2.07E–01 – 5.33E–01 –

64 9.42E–02 0.98 2.61E–01 0.96 1.85E–01 0.16 5.08E–01 0.07
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Fig. 15 Convergence rates of FAS MG solver for P1 approximation in three space dimension

Table 11 The number of FAS MG iterations required to reduce the norm of the residual below the tolerance
ε = 1.0 × 10−9 for P1 approximation in three space dimension

Δx Jacobi smoother Gauss–Seidel smoother

2π/16 13 9

2π/32 14 9

2π/64 15 9

MG solver is not always optimal. The main possible reason is that the condition number of the
discretization matrix is extremely large for high order spatial discretization. Therefore, it is
necessary to introduce a preconditioner such that the discretization matrix is well conditioned.
We leave this topic to our future work.
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Fig. 16 Convergence rates of
FAS MG solver for P2

approximation with Gauss-Seidel
smoother in three space
dimension
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Fig. 17 The contours of u(x, t) for equation (5.14), P0 and P1 elements on the uniform mesh with 64×64×64
cells
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Table 12 The possible choices
of the smoother operator

smoother Jacobi Gauss–Seidel damped
Jacobi

damped
Gauss–Seidel

Sh D−1
h (Dh + Lh)

−1 αD−1
h α(Dh + Lh)

−1

7 Appendix 1: The Linear MG Solver

The linear scheme requires the solution at each time step of algebraic non-symmetric linear
systems i.e.

Ahuh = fh . (7.1)

The MG method is used to solve the system and the main points of the algorithm is the bi-grid
cycle. Following [9], we can formulate the bi-grid cycle as follows:

Algorithm 1: Two-grid Cycle Starting with an initial approximation, say u0
P RE :

1. Pre-relaxation: apply ν1 pre-relaxation sweeps: for m = 1 . . . , ν1, solve

um
P RE = um−1

P RE + Sh( fh − Ahum−1
P RE ),

2. Coarse-gird correction: update the solution uν1
P RE by a coarse-grid correction step, solve

the problem once on coarse grid

AHvH = RHh( fh − Ahuν1
P RE ),

and set uCG = uν1
P RE + Ph H (vH ).

3. Post-relaxation: starting with uCG , apply ν2 post-relaxation sweeps, that is, set u0
P O ST =

uCG and for m = 1 . . . , ν2, solve

um
P O ST = um−1

P O ST + Sh( fh − Ahum−1
P O ST ).

The integers ν1 and ν2 are parameters in the scheme that control the number of relaxation
sweeps before and after visiting the coarse grid. ν1 and ν2 are called the number of pre- and
post- relaxations, respectively.

Solving the coarse grid problem at the second step of the above algorithm could be done
again with the two-level algorithm. Hence, the V-cycle multi-level algorithm in terms of the
two-level algorithm is defined by applying the two-level algorithm recursively.

Due to the block structure of Ah , we focus only on very simple block-relaxation. In
particular, we decompose Ah into a strict block-lower, a block-diagonal, and a strict block-
upper matrix, i.e.

Ah = Lh + Dh + Uh . (7.2)

Table 12 shows some possible choices of the smoother operator.

8 Appendix 2: The Nonlinear FAS MG Solver

The nonlinear scheme (3.4) requires the solution at each time step of three algebraic nonlinear
systems, i.e.

Nh(uh) = fh, (8.1)
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and the nonlinear FAS MG method is introduced to solve the system. Following [29], we
illustrate the FAS bi-grid cycle as follows:

Algorithm 2: Two-grid Cycle Starting with an initial approximation, say um
h :

1. Pre-relaxation: apply ν1 pre-relaxation sweeps to (8.1) with um
h the initial approximation

and obtain ūm
h .

2. Coarse-gird correction: compute the coarse level initial iterate

ūm
H = RHhūm

h , (8.2)

update the solution ūm
h by a coarse-grid correction step, solve the problem once on coarse

grid

NH (vH ) = NH (ū
m
H )+ RHh( fh − Nh(ū

m
h )) (8.3)

and set uCG
h = ūm

h + Ph H (vH − ūm
H ).

3. Post-relaxation: starting with uCG
h , apply ν2 post-relaxation sweeps to (8.1) and obtain

um+1
h .

Solving the coarse grid problem at the second step of the above algorithm could be done
again with the two-level algorithm. Hence, the nonlinear FAS MG algorithm in terms of the
two-level algorithm is defined by applying the two-level algorithm recursively.

9 Appendix 3: The Local Mode Analysis

In [10], the author considered a general framework for performing the Local Mode Analysis
for analyzing the convergence of two-level or bi-grid algorithms, and also provided some
quantitative information about the performance and design of the solvers. Although the
approach is applied to constant coefficients, linear problems and uniform grids, some general
results are established, based on the fact that some Local Mode Analysis can be performed
at the matrices. A different treatment has to be given to the part of the matrix associated
with interior unknowns and that associated to boundary degrees of freedom. Ignoring the
treatment of the boundaries, we now revise some of the results given in [10]. There, the
author defined the convergence factor of the two-grid method by

λ = sup
‖uν2

P O ST ‖
‖u0

P RE‖ (9.1)

in some appropriate chosen norm that might depend on the problem. It is also shown, that
under the assumptions described above (constant coefficients, linear problems, uniform grids
and neglecting the boundary condition), the convergence factor might be computed in terms
of the symbol of the error propagation operator.

For the linear iteration, the error propagation operator is defined as:

Eh := I − Sh Ah, (9.2)

where I is the identity operator in V k
h . The spectral radius, or some norm of this operator

allows to quantify how the error is reduced at each iteration. If it is less than 1 we will get a
convergent iteration. The smaller it is, the faster is the iteration.

In the case of the two level or two-grid cycle defined in Algorithm 1, the error propagation
is:

E2grid
h := Eν2

h [I − Ph H A−1
H RHh Ah]Eν1

h . (9.3)
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Following [10], if one could choose the L2-norm, denotes by Êh(θ) the symbol (in the
frequency space) of the error propagation operator, from Parseval’s identity it is formally
obtained

λ = sup
θ �=0

‖Êh(θ)‖. (9.4)

While for symmetric problems, the estimation of the spectral radius of Eh could be reduced
to the computation of its largest eigenvalue, in the present situation, since Ah is non-
symmetric and also Sh , one can not guarantee that their spectral information contain the
relevant information.

To compute the spectral radius, a possible way is to compute the first singular value of
Eh . In particular, one can define the asymptotic convergence factor (see [10]) as:

λasymp = sup
θ �=0

σ1(Êh(θ)), (9.5)

where σ1 is the spectral radius of E , (i.e. largest absolute eigenvalue). On the other hand,
a more restrictive way of ensuring that ‖E2grid

h ‖ < 1 would be to study the norms of each
of the terms in the product. From the definition, we see that an essential requirement is to
guarantee that the smoother has norm strictly less than 1.
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