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In this paper, we develop an efficient and energy stable fully-discrete local discontinuous
Galerkin (LDG) method for the Cahn–Hilliard–Hele–Shaw (CHHS) system. The semi-discrete
energy stability of the LDG method is proved firstly. Due to the strict time step restriction
(�t = O(�x4)) of explicit time discretization methods for stability, we introduce a semi-
implicit time integration scheme which is based on a convex splitting of the discrete Cahn–
Hilliard energy. The unconditional energy stability has been proved for this fully-discrete
LDG scheme. The fully-discrete equations at the implicit time level are nonlinear. Thus, the
nonlinear Full Approximation Scheme (FAS) multigrid method has been applied to solve
this system of algebraic equations, which has been shown the nearly optimal complexity
numerically. Numerical results are also given to illustrate the accuracy and capability of the
LDG method coupled with the multigrid solver.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider numerical methods in a bounded domain Ω ∈ Rd (d � 3) for the Cahn–Hilliard–Hele–Shaw
(CHHS) system:

φt = �μ − ∇ · (φu),

u = −∇p − γ φ∇μ,

∇ · u = 0, (1.1)

where γ > 0, u is the advective velocity, p is the pressure and μ is the chemical potential

μ = φ3 − φ − ε2�φ.

Numerical methods to simulate the solution of the CHHS system are few. Wise [22] introduced an unconditionally stable
finite difference method for the CHHS system. Feng and Wise [13] presented finite element analysis for a system of partial
differential equations (PDEs) consisting of the Darcy equation and the Cahn–Hilliard (CH) equation. Collins [11] presented an
unconditionally energy stable and uniquely solvable finite difference scheme for the Cahn–Hilliard–Brinkman system, which
was comprised of a Cahn–Hilliard-type diffusion equation and a generalized Brinkman equation modeling fluid flow. When
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γ = 0, the CHHS system is reduced to the CH equation [5]. Many numerical methods have been developed to treat the CH
equation, using finite elements [1–3], multigrid methods [16–18] and finite difference methods [12,14,20]. Xia et al. [23]
developed a local discontinuous Galerkin (LDG) method for the CH equation and proved the energy stability. Guo and Xu
studied the multigrid solver coupled with the LDG method for the CH equation in [15].

Solutions of the CHHS system generally have boundary layers spread throughout the domain, so spatial resolution is
extremely important in the choice of numerical schemes. In this paper, we introduce an LDG method for the CHHS system,
which is high order accurate, nonlinear stable and flexible for arbitrary h and p adaptivity. The semi-discrete energy stability
of the LDG method is also proved.

For the fourth order nonlinear CHHS system, explicit time discretization methods will require severe time step restriction
(�t =O(�x4)), so we explore implicit methods. Following the method introduced by Wise [22], we develop a semi-implicit
time integration scheme based on a convex splitting of the discrete Cahn–Hilliard energy. We also prove the unconditional
discrete energy stability of the fully-discrete LDG scheme, i.e. the scheme is stable regardless of time step size. Being implicit
in time, the equations at the implicit time level are nonlinear. The efficiency of the implicit method highly depends on the
efficiency of the nonlinear solver. The nonlinear Gauss–Seidel method and the Newton method can be used to solve the
nonlinear equations, but they suffer from slow convergence rates for large system. In this paper, we apply the nonlinear
Full Approximation Scheme (FAS) multigrid method to solve the nonlinear equations arising by the semi-implicit scheme. In
particular, we numerically show that the multigrid solver has nearly optimal complexity.

The discontinuous Galerkin (DG) method we discuss in this paper is a class of finite element methods, using discontin-
uous, piecewise polynomials as the solution and test space. Reed and Hill [19] first introduced the DG method in 1973, in
the framework of neutron linear transport. Cockburn et al. [6–9] applied the DG method for solving nonlinear hyperbolic
conservation laws.

For PDEs containing higher order spatial derivatives, it is difficult to apply the DG method directly, so the LDG method
was introduced. The idea of the LDG method is to rewrite the equations with higher order derivatives as a first order
system, then apply the DG method to the system. The first LDG method was constructed by Cockburn and Shu in [10] for
solving nonlinear convection diffusion equations containing second order spatial derivatives. Their work was motivated by
the successful numerical experiments of Bassi and Rebay [4] for the compressible Navier–Stokes equations. Yan and Shu
developed an LDG method for a general KdV type equation (containing third order spatial derivatives) in [26], and they
generalized the LDG method to PDEs with fourth and fifth order spatial derivatives in [27]. Xia et al. [23,24] developed the
LDG method to solve the Cahn–Hilliard type equations and the Allen–Cahn/Cahn–Hilliard system. For a detailed description
about the LDG methods for high-order time-dependent PDEs, we refer the readers to [25]. A common feature of these LDG
methods is that stability can be proved for quite general nonlinear cases. DG and LDG methods also have several attractive
properties, such as their flexibility for general geometry, unstructured meshes, arbitrary hp adaptivity and their excellent
parallel efficiency.

This paper is organized as follows. In Section 2, we present the LDG method for the CHHS system and prove the energy
stability. In Section 3, we introduce a semi-implicit time integration method and prove an unconditional discrete energy
stability for the fully-discrete scheme. Section 4 contains numerical results for the nonlinear CHHS system. The numerical
results demonstrate the accuracy and capability of the LDG method and the multigrid solver. Finally, we give concluding
remarks in Section 5. In Appendix A, we give a detailed description of the nonlinear FAS multigrid method.

2. The LDG method for the Cahn–Hilliard–Hele–Shaw system

2.1. Energy stability of the Cahn–Hilliard–Hele–Shaw system

The CHHS system was developed to model spinodal decomposition of a binary fluid in a Hele–Shaw cell, tumor growth
and cell sorting, and two phase flows in porous media. The CHHS equation (1.1) can be written into the following form

φt = �μ + ∇ · (φ(∇p + γ φ∇μ)
)
, (2.2a)

μ = φ3 − φ − ε2�φ, (2.2b)

and p will be obtained from the following Laplacian equation

−�p = γ ∇ · (φ∇μ). (2.3)

In the CHHS system, φ is the concentration field, γ and ε are constants. The phase equilibria are represented by the pure
fluids φ = ±1. We assume no flux boundary conditions, namely u · n = 0 and ∂nμ = 0 on ∂Ω . We can clearly see that the
boundary condition for the velocity u is equivalent to ∂n p = 0 on ∂Ω . Thus, in this paper, the boundary conditions are
assumed as

∂nφ = ∂nμ = ∂n p = 0, on ∂Ω. (2.4)

The system (2.2)–(2.3) is mass conservative and energy dissipative, i.e.
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d

dt
E = −

∫
Ω

(
|∇μ|2 + 1

γ
|u|2

)
dx � 0, (2.5)

where

E =
∫
Ω

(
1

4
φ4 − 1

2
φ2 + ε2

2
|∇φ|2

)
dx. (2.6)

2.2. The LDG method for the Cahn–Hilliard–Hele–Shaw system

In this subsection, we develop the LDG method for the CHHS system in Ω ∈Rd with d � 3. Although we do not perform
numerical experiments in three dimensions in this paper, the LDG method and the energy stability results of this paper are
valid for all d � 3.

2.2.1. Notations
Let Th denote a tessellation of Ω with shape-regular elements K . Let Γ denote the union of the boundary faces of

elements K ∈ Th , i.e. Γ = ⋃
K∈Th

∂ K , and Γ0 = Γ \∂Ω . In order to describe the flux functions, we need to introduce some
notations. Let e be a face shared by the “left” and “right” elements K L and K R . For our purpose “left” and “right” can be
uniquely defined for each face according to any fixed rule, see, e.g. [25,26] for more details of such a definition. Define the
normal vectors ν L and νR on e pointing exterior to K L and K R , respectively. If ψ is a function on K L and K R , but possibly
discontinuous across e, let ψL denote (ψ |KL )|e and ψR denote (ψ |K R )|e , the left and right trace, respectively.

Let Pk(K ) be the space of polynomials of degree at most k � 0 on K ∈ Th . The finite element spaces are denoted by

Vh = {
ϕ: ϕ|K ∈ Pk(K ), ∀K ∈ Th

}
,

Σd
h = {

Φ = (φ1, . . . , φd)
T : φl|K ∈ Pk(K ), l = 1, . . . ,d, ∀K ∈ Th

}
.

Note that functions in Vh , Σd
h are allowed to be completely discontinuous across element interfaces.

2.2.2. The LDG method
To construct the LDG method, firstly we rewrite the Cahn–Hilliard–Hele–Shaw system (2.2)–(2.3) as a system containing

only first order derivatives:

φt = ∇ · w + ∇ · s, (2.7a)

w = ∇μ, (2.7b)

μ = φ3 − φ − ε2∇ · v, (2.7c)

v = ∇φ, (2.7d)

s = φ(q + γ φw) (2.7e)

and

−∇ · q = γ ∇ · r, (2.8a)

q = ∇p, (2.8b)

r = φw. (2.8c)

To simplify the notation, we still use φ, w , μ, v , s, q, r and p to denote the numerical solution. The LDG scheme to
solve the Cahn–Hilliard–Hele–Shaw system (2.7) and (2.8) is as follows: Find φ, μ, p ∈ Vh and w , v , s, q, r ∈ Σd

h , such that,
for all test functions ϕ , ψ , ξ ∈ Vh and Φ , Ψ , ζ , η, ρ ∈ Σd

h∫
K

φtϕ dK = −
∫
K

(w + s) · ∇ϕ dK +
∫
∂ K

(ŵ · ν + ŝ · ν)ϕ ds, (2.9a)

∫
K

w · Φ dK = −
∫
K

μ∇ · Φ dK +
∫
∂ K

μ̂Φ · ν ds, (2.9b)

∫
μψ dK =

∫ (
φ3 − φ

)
ψ dK +

∫
ε2 v · ∇ψ dK −

∫
ε2 v̂ · νψ ds, (2.9c)
K K K ∂ K
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∫
K

v · Ψ dK = −
∫
K

φ∇ · Ψ dK +
∫
∂ K

φ̂Ψ · ν ds, (2.9d)

∫
K

s · ζ dK =
∫
K

φ(q + γ φw) · ζ dK (2.9e)

and ∫
K

q · ∇ξ dK −
∫
∂ K

q̂ · νξ ds = −γ

∫
K

r · ∇ξ dK + γ

∫
∂ K

r̂ · νξ ds, (2.10a)

∫
K

q · ηdK = −
∫
K

p∇ · ηdK +
∫
∂ K

p̂η · ν ds, (2.10b)

∫
K

r · ρ dK =
∫
K

φw · ρ dK . (2.10c)

The “hat” terms in (2.9)–(2.10) in the cell boundary terms from integration by parts are the so-called “numerical fluxes”,
which are functions defined on the edges and should be designed based on different guiding principles for different PDEs
to ensure stability and local solvability of the intermediate variables. It turns out that we can take the simple choices such
as

ŵ|e = w L, ŝ|e = sL, μ̂|e = μR , φ̂|e = φL, v̂|e = v R , (2.11)

and

r̂|e = rL, q̂|e = qL, p̂|e = pR . (2.12)

By the boundary conditions (2.4), we take

ŵ = 0, ŝ = 0, μ̂ = μin, φ̂ = φin, v̂ = 0, (2.13)

and

r̂ = 0, q̂ = 0, p̂ = pin, (2.14)

at the domain boundary, where φin means the value taken from the inside of the boundary element. We remark that the
choice for the fluxes (2.11)–(2.12) is not unique. Considering the compactness of the stencil and the optimal accuracy, the
crucial part is taking ŵ , ŝ and μ̂ from opposite sides, v̂ and φ̂ from opposite sides, q̂, r̂ and p̂ from opposite sides.

2.2.3. Energy dissipative
It is easy to show that the LDG scheme is mass conservative. And also we can prove the semi-discrete scheme is energy

stable in the following.

Proposition 2.1 (Energy dissipative). The solution to the LDG scheme (2.9)–(2.10) and the flux (2.11)–(2.12) with the boundary con-
ditions (2.13)–(2.14) satisfies energy dissipative

d

dt
E = −

∫
Ω

(
|w|2 + 1

γ
|q + γ φw|2

)
dx � 0, (2.15)

where

E =
∫
Ω

(
1

4
φ4 − 1

2
φ2 + ε2

2
|v|2

)
dx. (2.16)

Proof. Firstly, we take the time derivative of Eq. (2.9d) and choose the test function Ψ = ε2 v to obtain

ε2
∫
K

vt · v dK = −ε2
∫
K

φt∇ · v dK + ε2
∫
∂ K

φ̂t v · ν ds. (2.17)

For other equations in (2.9)–(2.10), we choose the test functions
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ϕ = μ, Φ = w + s, ψ = −φt, ζ = −w, ξ = 1

γ
p, η = 1

γ
q + r, ρ = −q,

respectively to get∫
K

φtμdK = −
∫
K

(w + s) · ∇μdK +
∫
∂ K

(ŵ · ν + ŝ · ν)μds,

∫
K

w · (w + s)dK = −
∫
K

μ∇ · (w + s)dK +
∫
∂ K

μ̂(w + s) · ν ds,

−
∫
K

μφt dK = −
∫
K

(
φ3 − φ

)
φt dK −

∫
K

ε2 v · ∇φt dK +
∫
∂ K

ε2 v̂ · νφt ds,

−
∫
K

s · w dK = −
∫
K

φ(q + γ φw) · w dK ,

1

γ

∫
K

q · ∇p dK − 1

γ

∫
∂ K

pq̂ · ν ds = −
∫
K

r · ∇p dK +
∫
∂ K

p̂r · ν ds,

∫
K

q ·
(

1

γ
q + r

)
dK = −

∫
K

p∇ ·
(

1

γ
q + r

)
dK +

∫
∂ K

p̂

(
1

γ
q + r

)
· ν ds,

−
∫
K

r · q dK = −
∫
K

φw · q dK .

Combining the above equations with (2.17), implies

d

dt

∫
K

(
1

4
φ4 − 1

2
φ2 + ε2

2
|v|2

)
dK +

∫
K

(
|w|2 + 1

γ
|q + γ φw|2

)
dK

= −
∫
K

∇ · (μ(w + s)
)

dK +
∫
∂ K

(
(ŵ · ν + ŝ · ν)μ + μ̂(w + s) · ν)

ds

−
∫
K

ε2∇ · (φt v)dK + ε2
∫
∂ K

(φ̂t v · ν + v̂ · νφt)ds

−
∫
K

∇ ·
(

p

(
1

γ
q + r

))
dK +

∫
∂ K

(
p̂

(
1

γ
q + r

)
· ν + p

(
1

γ
q̂ + r̂

)
· ν

)
ds. (2.18)

Finally, summing up Eq. (2.18) over K and noticing the fluxes in (2.11)–(2.12) are from the opposite sides of ∂ K as well as
the boundary conditions (2.13)–(2.14), we have

d

dt

∫
Ω

(
1

4
φ4 − 1

2
φ2 + ε2

2
|v|2

)
dx +

∫
Ω

(
|w|2 + 1

γ
|q + γ φw|2

)
dx = 0,

which implies the result (2.15). �
3. Time discretization

The LDG spatial discretization for the CHHS typically results in an ordinary differential equation (ODE). The CHHS system
is a fourth order nonlinear partial differential equation and explicit time marching methods usually require severe time step
(�t = O(�x4)) restriction for stability. Thus, we will explore an implicit time marching method to relax this constraint of
the time step.

3.1. Fully-discrete LDG scheme

Wise [22] introduced an unconditionally stable finite difference scheme for the CHHS system based on a convex splitting
of the discrete CH energy. Based on the work in [22], we apply the convex splitting method to the CHHS system coupled
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with the LDG spatial discretization, and obtain an unconditionally stable LDG scheme. The fully-discrete convex splitting
LDG scheme is

φn+1 − φn

�t
= �μn+1 + ∇ · (φn(∇pn+1 + γ φn∇μn+1)), (3.19a)

μn+1 = (
φn+1)3 − φn − ε2�φn+1, (3.19b)

−�pn+1 = γ ∇ · (φn∇μn+1). (3.19c)

The LDG scheme for the fully-discrete scheme becomes: Find φn+1, μn+1, pn+1 ∈ Vh and wn+1, vn+1, sn+1, qn+1, rn+1 ∈ Σd
h ,

such that, for all test functions ϕ , ψ , ξ ∈ Vh and Φ , Ψ , ζ , η, ρ ∈ Σd
h∫

K

φn+1 − φn

�t
ϕ dK = −

∫
K

(
wn+1 + sn+1) · ∇ϕ dK +

∫
∂ K

(
ŵn+1 · ν + ŝn+1 · ν)

ϕ ds, (3.20a)

∫
K

wn+1 · Φ dK = −
∫
K

μn+1∇ · Φ dK +
∫
∂ K

μ̂n+1Φ · ν ds, (3.20b)

∫
K

μn+1ψ dK =
∫
K

((
φn+1)3 − φn)ψ dK +

∫
K

ε2 vn+1 · ∇ψ dK −
∫
∂ K

ε2 v̂n+1 · νψ ds, (3.20c)

∫
K

vn+1 · Ψ dK = −
∫
K

φn+1∇ · Ψ dK +
∫
∂ K

φ̂n+1Ψ · ν ds, (3.20d)

∫
K

sn+1 · ζ dK =
∫
K

φn(qn+1 + γ φn wn+1) · ζ dK (3.20e)

and ∫
K

qn+1 · ∇ξ dK −
∫
∂ K

q̂n+1 · νξ ds = −γ

∫
K

rn+1 · ∇ξ dK + γ

∫
∂ K

r̂n+1 · νξ ds, (3.21a)

∫
K

qn+1 · ηdK = −
∫
K

pn+1∇ · ηdK +
∫
∂ K

p̂n+1η · ν ds, (3.21b)

∫
K

rn+1 · ρ dK =
∫
K

φn wn+1 · ρ dK . (3.21c)

The numerical fluxes are

ŵn+1|e = wn+1
L , ŝn+1|e = sn+1

L , μ̂n+1|e = μn+1
R , φ̂n+1|e = φn+1

L , v̂n+1|e = vn+1
R , (3.22)

and

r̂n+1|e = rn+1
L , q̂n+1|e = qn+1

L , p̂n+1|e = pn+1
R . (3.23)

At the domain boundary, we take

ŵn+1 = 0, ŝn+1 = 0, μ̂n+1 = (
μn+1)in

, φ̂n+1 = (
φn+1)in

, v̂n+1 = 0, (3.24)

and

r̂n+1 = 0, q̂n+1 = 0, p̂n+1 = (
pn+1)in

. (3.25)

3.2. Discrete energy dissipative

In this subsection, we will prove the unconditional discrete energy stability for the fully-discrete LDG scheme (3.19). To
simplify the notation, we use the following notations for discretization of time variable,

δtφ
n+1 = φn+1 − φn

�t
,

δt vn+1 = vn+1 − vn

�t
.
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Proposition 3.1 (Discrete energy dissipative). The solution to the LDG scheme (3.20)–(3.21) and the flux (3.22)–(3.23) with the bound-
ary conditions (3.24)–(3.25) satisfies energy dissipative∫

Ω

(
1

4

(
φn+1)4 − 1

2

(
φn+1)2 + ε2

2

∣∣vn+1
∣∣2

)
dx �

∫
Ω

(
1

4

(
φn)4 − 1

2

(
φn)2 + ε2

2

∣∣vn
∣∣2

)
dx.

Proof. We take the test functions in (3.20) as

ϕ = μn+1, Φ = wn+1 + sn+1, ψ = −δtφ
n+1, Ψ = ε2δt vn+1, ζ = −wn+1.

For other equations in (3.21), we choose the test functions

ξ = 1

γ
pn+1, η = 1

γ
qn+1 + rn+1, ρ = −qn+1

to obtain∫
K

δtφ
n+1μn+1 dK = −

∫
K

(
wn+1 + sn+1) · ∇μn+1 dK +

∫
∂ K

(
ŵn+1 · ν + ŝn+1 · ν)

μn+1 ds,

∫
K

wn+1 · (wn+1 + sn+1)dK = −
∫
K

μn+1∇ · (wn+1 + sn+1)dK +
∫
∂ K

μ̂n+1
(

wn+1 + sn+1) · ν ds,

−
∫
K

μn+1δtφ
n+1 dK = −

∫
K

((
φn+1)3 − φn)δtφ

n+1 dK −
∫
K

ε2 vn+1 · ∇δtφ
n+1 dK +

∫
∂ K

ε2 v̂n+1 · νδtφ
n+1 ds,

ε2
∫
K

vn+1 · δt vn+1 dK = −ε2
∫
K

φn+1∇ · δt vn+1 dK + ε2
∫
∂ K

φ̂n+1δt vn+1 · ν ds,

−
∫
K

sn+1 · wn+1 dK = −
∫
K

φn(qn+1 + γ φn wn+1) · wn+1 dK ,

and

1

γ

∫
K

qn+1 · ∇pn+1 dK − 1

γ

∫
∂ K

q̂n+1 · νpn+1 ds = −
∫
K

rn+1 · ∇pn+1 dK +
∫
∂ K

r̂n+1 · νpn+1 ds,

∫
K

qn+1 ·
(

1

γ
qn+1 + rn+1

)
dK = −

∫
K

pn+1∇ ·
(

1

γ
qn+1 + rn+1

)
dK +

∫
∂ K

p̂n+1

(
1

γ
qn+1 + rn+1

)
· ν ds,

−
∫
K

rn+1 · qn+1 dK = −
∫
K

φn wn+1 · qn+1 dK .

Combining the above equations, we get

ε2
∫
K

vn+1 · δt vn+1 dK +
∫
K

((
φn+1)3 − φn)δtφ

n+1 dK +
∫
K

(∣∣wn+1
∣∣2 + 1

γ

∣∣qn+1 + γ φn wn+1
∣∣2

)
dK

= −
∫
K

∇ · (μn+1(wn+1 + sn+1))dK +
∫
∂ K

((
ŵn+1 · ν + ŝn+1 · ν)

μn+1 + μ̂n+1
(

wn+1 + sn+1) · ν)
ds

−
∫
K

∇ ·
(

pn+1
(

1

γ
qn+1 + rn+1

))
dK +

∫
∂ K

(
p̂n+1

(
1

γ
qn+1 + rn+1

)
· ν + pn+1

(
1

γ
q̂n+1 + r̂n+1

)
· ν

)
ds

− ε2

�t

∫
K

∇ · (φn+1 vn+1)dK + ε2

�t

∫
∂ K

(
v̂n+1 · νφn+1 + φ̂n+1 vn+1 · ν)

ds

+ ε2

�t

∫
K

(
vn+1 · ∇φn + φn+1∇ · vn)dK − ε2

�t

∫
∂ K

(
v̂n+1 · νφn + φ̂n+1 vn · ν)

ds. (3.26)

For Eq. (3.20d), we choose the test function as Ψ = vn , and obtain
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∫
K

vn+1 · vn dK = −
∫
K

φn+1∇ · vn dK +
∫
∂ K

φ̂n+1 vn · ν ds. (3.27)

From (3.20d), we have∫
K

vn · Ψ dK = −
∫
K

φn∇ · Ψ dK +
∫
∂ K

φ̂nΨ · ν ds. (3.28)

Choosing the test function Ψ = vn+1 in (3.28), implies∫
K

vn · vn+1 dK = −
∫
K

φn∇ · vn+1 dK +
∫
∂ K

φ̂n vn+1 · ν ds. (3.29)

By substituting (3.27) and (3.29), we have∫
K

(
vn+1 · ∇φn + φn+1∇ · vn)dK −

∫
∂ K

(
v̂n+1 · νφn + φ̂n+1 vn · ν)

ds

(3.27)=
∫
K

(
vn+1 · ∇φn − vn+1 · vn)dK −

∫
∂ K

v̂n+1 · νφn ds

=
∫
K

(
vn+1 · ∇φn − vn+1 · vn − φn∇ · vn+1 + φn∇ · vn+1)dK −

∫
∂ K

v̂n+1 · νφn ds

(3.29)=
∫
K

(
vn+1 · ∇φn + φn∇ · vn+1)dK −

∫
∂ K

(
v̂n+1 · νφn + φ̂n vn+1 · ν)

ds. (3.30)

Finally, summing up Eqs. (3.26) and (3.30) over K and noticing the fluxes in (3.22)–(3.23) are from the opposite sides of ∂ K
as well as the boundary conditions (3.24)–(3.25), we get

ε2
∫
Ω

vn+1 · δt vn+1 dx +
∫
Ω

((
φn+1)3 − φn)δtφ

n+1 dx +
∫
Ω

(∣∣wn+1
∣∣2 + 1

γ

∣∣qn+1 + γ φn wn+1
∣∣2

)
dx = 0.

Then

ε2
∫
Ω

vn+1 · δt vn+1dx + 1

�t

∫
Ω

(
1

4

(
φn+1)4 − 1

2

(
φn+1)2

)
dx − 1

�t

∫
Ω

(
1

4

(
φn)4 − 1

2

(
φn)2

)
dx

+ 1

4�t

∫
Ω

((
2 + 2

(
φn+1)2 + (

φn + φn+1)2)(−φn+1 + φn)2)
dx

+
∫
Ω

(∣∣wn+1
∣∣2 + 1

γ

∣∣qn+1 + γ φn wn+1
∣∣2

)
dx = 0,

therefore we obtain the discrete energy stability∫
Ω

(
1

4

(
φn+1)4 − 1

2

(
φn+1)2 + ε2

2

∣∣vn+1
∣∣2

)
dx �

∫
Ω

(
1

4

(
φn)4 − 1

2

(
φn)2 + ε2

2

∣∣vn
∣∣2

)
dx. �

Remark 3.1. The unconditional energy stability is proved. But as for the solvability of the convex splitting scheme, the proof
is not easy in the LDG framework. Even though the auxiliary variables in the LDG method give the easy treatment for
nonlinear and high order derivative terms, the theoretical analysis of solvability for the LDG is more troublesome because
of the auxiliary variables. We will leave it to our future work.

3.3. Algorithm flowchart and the multigrid solver

Given φn , μn and pn , the algorithm to get φn+1, μn+1 and pn+1 is

1. We choose a local basis in cell K , then wn+1, vn+1, sn+1, qn+1 and rn+1 can be eliminated from Eqs. (3.20b), (3.20d),
(3.20e), (3.21b) and (3.21c), respectively, by simply inverting a small mass matrix in each case.
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Table 4.1
Accuracy test for Example 4.1 at t = 0.5. To maintain the accuracy, the time steps are chosen as �t = 0.1�x, �t = 0.4�x2 and �t = 0.4�x3 for P0, P1

and P2 approximation, respectively. ε = 0.2, γ = 2.0.

N L2 error Order L∞ error Order

P0 16 3.66E−01 – 1.73E−01 –
32 1.69E−01 1.11 7.92E−02 1.13
64 8.32E−02 1.02 4.23E−02 0.91

128 4.17E−02 0.99 2.18E−02 0.95

P1 16 1.59E−01 – 4.59E−02 –
32 4.86E−02 1.71 1.47E−02 1.64
64 1.32E−02 1.88 4.14E−03 1.83

128 3.38E−03 1.96 1.07E−03 1.95

P2 16 7.14E−02 – 1.96E−02 –
32 1.04E−02 2.77 3.12E−03 2.66
64 1.33E−03 2.97 3.97E−04 2.96

128 1.64E−04 3.02 4.90E−05 3.02

2. We get a system of three coupled second-order nonlinear equations for {φn+1,μn+1, pn+1}⎧⎪⎨
⎪⎩

φn+1 = L1
(
μn+1, pn+1, φn),

μn+1 = L2
(
φn+1, φn),

pn+1 = L3
(
μn+1, φn).

(3.31)

3. We solve the system of nonlinear equations (3.31) at each time step and get φn+1, μn+1 and pn+1.

The semi-implicit convex splitting scheme (3.19) is stable regardless of time step size. However, we need to solve a
system of nonlinear algebraic equations at each time step. The overall performance highly depends on the performance
of the solver. Traditionally iterative solution methods such as Gauss–Seidel method and Newton method suffer from slow
convergence rates.

We apply the nonlinear FAS multigrid method to solve the nonlinear equations and we will numerically show the nearly
optimal convergence of the multigrid solver in the next section. For detailed descriptions of the FAS multigrid algorithm and
the Gauss–Seidel smoother, we refer the readers to Appendix A and Appendix B, respectively.

4. Numerical tests

In this section, we perform numerical experiments of the LDG method applied to the Cahn–Hilliard–Hele–Shaw system.
We consider the convex splitting scheme (3.19) and the resulting nonlinear equations are solved by the FAS multigrid
method. For the spatial discretization, we use uniform meshes. All the computations are performed in double precision.

Example 4.1 (Convergence of the multigrid solver). To demonstrate the superiority of the multigrid solver, we present the
convergence rates of the method. For the tests we take the exact solution of

φ(x, y, t) = e−2t sin(x) sin(y), (4.32)

with the source term f (x, y, t), where f (x, y, t) is a given function so that make the exact solution. The initial condition is

φ(x, y,0) = sin(x) sin(y), (4.33)

and the domain is [0,2π ] × [0,2π ] with periodic boundary conditions. The time step is fixed as �t = 0.01�x and the
spatial step size varies from �x = 2π/32 to �x = 2π/128 in the test results.

We present the convergence rates of the multigrid solver at the 10th time step for various choices of ε and γ in
Fig. 4.1. From Fig. 4.1, we can see the optimal convergence of the multigrid solver for P1 approximation and nearly optimal
convergence for P2 approximation, with ε = 0.1 and ε = 0.2. When ε is smaller (ε = 0.05), the nearly optimal convergence
for P1 and P2 approximation are shown.

The L2 and L∞ errors and numerical orders of accuracy at time t = 0.5 are contained in Table 4.1. To maintain the ac-
curacy, the time steps are chosen as �t = 0.1�x, �t = 0.4�x2 and �t = 0.4�x3 for P0, P1 and P2 approximation, respec-
tively. We can see that the method with Pk elements gives (k + 1)th order of accuracy in both L2 and L∞ norms. What we
should keep in mind is that the choice of this refinement path has nothing to do with any time step restriction for stability.

Example 4.2 (Spinodal decomposition and energy dissipation). We consider the convex splitting scheme (3.19) with the LDG
spatial discretization. The initial data is a random field of values that are uniformly distributed about the average compo-
sition φ̄ = −0.05, with amplitude 0.05. The domain is [0,6.4] × [0,6.4] and the boundary conditions are (2.4). We take
ε = 0.03. For γ we use the values 0.0 and 4.0.
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Fig. 4.1. Convergence rates of multigrid solver with P1 and P2 approximation for various choices of ε and γ .
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Fig. 4.2. The time evolution of the CHHS system implemented with scheme (3.19) for Example 4.2.
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Fig. 4.3. Energy trace of numerical solution for Example 4.2.

Fig. 4.4. The initial shape for Example 4.3. The contours φ = −0.8, 0.0 and 0.8 are shown.

Fig. 4.2 shows the simulations with different γ at the times t = 1.0, 3.0, 5.0 and 30.0. From Fig. 4.2, we can see
that identified particles have a smaller shaper factor for γ = 4.0 than for γ = 0.0 when compared at the same time. In
spinodal decomposition, particles can coarsen, i.e. large particles may grow at the expense of smaller particles. Fig. 4.2
shows statistically similar patterns in the numerical solution as those in Wise [22].

The energy trace with different γ is presented in Fig. 4.3. We can see that the discrete energy is non-increasing in time,
which agrees with the theoretical result. In the early stages of decomposition, the energy is closely matched. Then in the
latter stages of decomposition, the energy decrease faster for larger γ .

Example 4.3 (Shape relaxation and energy dissipation). We consider the convex splitting scheme (3.19). The initial shape is
shown in Fig. 4.4. The domain is [0,3.2] × [0,3.2] and the boundary conditions are (2.4). We take ε = 0.03. Three different
values for γ , namely, 0.0, 2.0 and 10.0 are used. The results of the simulations at different times are presented in Fig. 4.5.
We can see that with the initial shape 4.4, the isolated shapes will relax to a circular disk. For larger γ , the shapes relax
faster to a circular disk. What we should notice in Fig. 4.5 is that the interfacial thickness-which can, roughly speaking, be
measured as the distance between the contours φ = −0.8 and φ = 0.8 appears to be invariant with respect to different γ .
The energy trace with different γ is presented in Fig. 4.6. We can see that the discrete energy is non-increasing in time,
which agrees with the theoretical result. The energy decrease faster for larger γ . The numerical results compare very well
with the numerical calculations performed by Wise [22].

We consider the scheme (3.19) with the square initial shape presented in Fig. 4.7. The results of the simulations at
different times are presented in Fig. 4.8. For the initial shape of a triangle as is shown in Fig. 4.9, the simulations at
different times are presented in Fig. 4.10. In all cases the shape relaxes to a disk. We also can see that larger positive values
of γ will lead to an increase in the speed with which shapes relax.
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Fig. 4.5. The results of CHHS system implemented with scheme (3.19) with the respectively values γ = 0.0, 2.0 and 10.0. The initial shape is shown in
Fig. 4.4. We show the contours φ = −0.8, 0.0 and 0.8.

Finally, we remark that the numerical results presented above are qualitatively very similar to those presented in [22].
But, what we should have in mind is that the DG spatial discretization does allow for more flexibility than that of the finite
difference method in several other ways. DG methods are a class of finite element methods, which can handle the irregular
computational domain and complex boundary conditions easily comparing with the finite difference methods. Meanwhile,
since the basis functions can be completely discontinuous, discontinuous Galerkin methods have the flexibility which is not
shared by typical finite element methods, such as the allowance of arbitrary triangulation with hanging nodes, complete
freedom in changing the polynomial degrees in each element independent of that in the neighbors (p-adaptivity), and
extremely local data structure (elements only communicate with immediate neighbors regardless of the order of accuracy
of the scheme) and the resulting embarrassingly high parallel efficiency.

5. Conclusion

In this paper, we have constructed a fully-discrete LDG method for the Cahn–Hilliard–Hele–Shaw system. The energy
stability is proved for the semi-discrete scheme firstly. As for the time discretization, we presented a convex splitting
semi-implicit scheme and proved the unconditional energy stability. That is, the energy is always non-increasing in time
regardless of time step sizes. The use of the semi-implicit method will result in a nonlinear system of algebraic equations
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Fig. 4.6. Energy trace of numerical solution for Example 4.3 with the initial shape 4.4.

Fig. 4.7. The square initial shape for Example 4.3. The contours φ = −0.8, 0.0 and 0.8 are shown.

at each time step and the FAS multigrid solver is adopted to solve the system. We show numerically that the number of the
multigrid iterations is nearly independent of the problem size and is of nearly optimal complexity. Although not addressed
in this paper, the local discontinuous Galerkin methods are flexible for general geometry, unstructured meshes and h–p
adaptivity, and have excellent parallel efficiency.

In future, the high order schemes in time and the theoretical analysis for the LDG scheme, such as solvability and error
estimates etc., will be our further research topics.

Appendix A. The nonlinear FAS multigrid solver

We start by introducing the basic notations to describe the general setting of a two-level method. Together with the
family of partitions {Th}h>0 used for the LDG discretization, we consider a coarse family of mesh partitions, {TH }H>0 with
H > h and satisfying the basic assumption TH ⊂ Th . One can think H = 2h, since in many circumstances it will already
be coarse enough. Associated to the coarse mesh partition we have the corresponding finite element space V H which is
defined as

V H = {
ϕ: ϕ|D ∈ Pk(D), ∀D ∈ TH

}
. (1.34)

To link functions in both spaces, we define the prolongation and restriction operators. The prolongation operator PhH :
V H ∨ Vh is defined as the natural inclusion. The restriction operator R Hh: Vh ∨ V H is defined as the transpose of PhH with
respect to the standard L2-inner product. That is, it is obtained by solving:

∑
D∈TH

∫
R Hh(uh)v H dx =

∑
D∈T

∫
uh PhH (v H ),dx, ∀v H ∈ V H . (1.35)
D h D
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Fig. 4.8. The results of CHHS system implemented with scheme (3.19) with the respectively values γ = 0.0, 2.0 and 10.0. The initial shape is shown in
Fig. 4.7. We show the contours φ = −0.8, 0.0 and 0.8.

The nonlinear scheme (3.19) requires the solution at each time step of an algebraic nonlinear system, i.e.

Nh(uh) = fh, (1.36)

and the nonlinear FAS multigrid method is introduced to solve the system. Following [21], we illustrate the FAS bi-grid cycle
as follows:

Algorithm 1: Two-grid cycle. Starting with an initial approximation, say um
h :

1. Pre-relaxation: apply ν1 pre-relaxation sweeps to (1.36) with um
h the initial approximation and obtain ūm

h .
2. Coarse-gird correction: compute the coarse level initial iterate

ūm
H = R Hhūm

h , (1.37)

update the solution ūm
h by a coarse-grid correction step, solve the problem on coarse grid

NH (v H ) = NH
(
ūm) + R Hh

(
fh − Nh

(
ūm))

(1.38)
H h
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Fig. 4.9. The triangle initial shape for Example 4.3. The contours φ = −0.8, 0.0 and 0.8 are shown.

and set uC G
h = ūm

h + PhH (v H − ūm
H ).

3. Post-relaxation: start with uC G
h , apply ν2 post-relaxation sweeps to (1.36) and obtain um+1

h .

Solving the coarse grid problem at the second step of the above algorithm could be done again with the two-level algorithm.
Hence, the nonlinear FAS multigrid algorithm is defined by applying the two-level algorithm recursively.

Appendix B. The Gauss–Seidel smoother

In this subsection, we give a detailed discussion of the smoothing operator for our problem. Firstly, we look at the
implementation of the LDG scheme (3.20)–(3.21). If a local basis of Pk(K ) is chosen and denoted as ϕl

i, j(x, y) for l =
1,2, . . . , L = (k + 1)(k + 2)/2, we can express the numerical solution φn+1(x, y) as

φn+1(x, y) =
L∑

l=1

φl
i, jϕ

l
i, j(x, y),

and we should solve for the coefficients φn+1
i, j = [φ1

i, j, . . . , φ
L
i, j]T . Then, we consider the equation

∫
K

φn+1 − φn

�t
ϕ dK = −

∫
K

(
wn+1 + sn+1) · ∇ϕ dK +

∫
∂ K

(
ŵn+1 · ν + ŝn+1 · ν)

ϕ ds,

where wn+1 = [wn+1
1 , wn+1

2 ]T , s = [sn+1
1 , sn+1

2 ]T , choose ϕ = ϕl
i, j(x, y), l = 1,2, . . . , L = (k + 1)(k + 2)/2 and with the chosen

flux for wn+1, sn+1, we have

φn+1
i, j = φn

i, j + �t
(

A
(

wn+1
1i, j + sn+1

1i, j

) + B
(

wn+1
1i−1, j + sn+1

1i−1, j

)
+ C

(
wn+1

2i, j + sn+1
2i, j

) + D
(

wn+1
2i, j−1 + sn+1

2i, j−1

))
,

where A, B , C , D are L × L matrices. Other equations in (3.20)–(3.21) can be discreted similarly. Then, by the algorithm
shown in Section 3.3, we can eliminate some auxiliary variables and get a system of three coupled second-order nonlinear
equations for {φn+1

i, j ,μn+1
i, j , pn+1

i, j }.
For smoothing, we use a nonlinear Gauss–Seidel method. Let m be the index for the lexicographic Gauss–Seidel. And the

Gauss–Seidel smoothing is as follows: for every (i, j), steeping lexicographically from (1,1) to (N, N), find φm+1
i, j , μm+1

i, j and

pm+1
i, j that solve

φm+1
i, j − �t XYμm+1

i, j − �t XY1 pm+1
i, j = φn

i, j + �t
(

X Mμm+1
i−1, j + X Pμm

i+1, j + Y Mμm+1
i, j−1 + Y Pμm

i, j+1

)
+ �t

(
X M1 pm+1

i−1, j + X P1 pm
i+1, j + Y M1 pm+1

i, j−1 + Y P1 pm
i, j+1

)
, (2.39)

− Jacmφm+1
i, j + μm+1

i, j + ε2 XY2φ
m+1
i, j = −φn

i, j + rm
i, j − Jacmφm

i, j

− ε2(X M2φ
m+1 + X P2φ

m + Y M2φ
m+1 + Y P2φ

m )
(2.40)
i−1, j i+1, j i, j−1 i, j+1
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Fig. 4.10. The results of CHHS system implemented with scheme (3.19) with the respectively values γ = 0.0, 2.0 and 10.0. The initial shape is shown in
Fig. 4.9. We show the contours φ = −0.8, 0.0 and 0.8.

−XY2 pm+1
i, j − γ XY1μ

m+1
i, j = X M2 pm+1

i−1, j + X P2 pm
i+1, j + Y M2 pm+1

i, j−1 + Y P2 pm
i, j+1

+ γ
(

X M1μ
m+1
i−1, j + X P1μ

m
i+1, j + Y M1μ

m+1
i, j−1 + Y P1μ

m
i, j+1

)
, (2.41)

where X M, X M1, X M2, X P , X P1, X P2, Y M, Y M1, Y M2, Y P , Y P1, Y P2, XY , XY1, XY2 are L × L matrices. Note that we have
linearized the cubic term using a local Newton approximation. Let rm = (φm)3, we have∫

Ii, j

rmϕl
i, j(x, y)dx dy =

∫
Ii, j

(
φm)3

ϕl
i, j(x, y)dx dy, l = 1, . . . , L

then we can get rm
i, j . And Jacm is a Jacobian matrix, i.e.

∂(r1m
i, j , . . . , rLm

i, j )

∂(φ1m
i, j , . . . , φLm

i, j )
.

The 3L × 3L linear system defined by (2.39)–(2.41) can be solved by Cramer’s Rule and thus we get φm+1, μm+1 and pm+1.
i, j i, j i, j
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One full block Gauss–Seidel relaxation has concluded when we have stepped lexicographically through all the grid points,
from (1,1) to (N, N).
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