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In this paper, we present an efficient and unconditionally energy stable fully-discrete 
local discontinuous Galerkin (LDG) method for approximating the Cahn–Hilliard–Brinkman 
(CHB) system, which is comprised of a Cahn–Hilliard type equation and a generalized 
Brinkman equation modeling fluid flow. The semi-discrete energy stability of the LDG 
method is proved firstly. Due to the strict time step restriction (�t = O(�x4)) of explicit 
time discretization methods for stability, we introduce a semi-implicit scheme which 
consists of the implicit Euler method combined with a convex splitting of the discrete 
Cahn–Hilliard energy strategy for the temporal discretization. The unconditional energy 
stability of this fully-discrete convex splitting scheme is also proved. Obviously, the fully-
discrete equations at the implicit time level are nonlinear, and to enhance the efficiency 
of the proposed approach, the nonlinear Full Approximation Scheme (FAS) multigrid 
method has been employed to solve this system of algebraic equations. We also show 
the nearly optimal complexity numerically. Numerical experiments based on the overall 
solution method of combining the proposed LDG method, convex splitting scheme and the 
nonlinear multigrid solver are given to validate the theoretical results and to show the 
effectiveness of the proposed approach for the CHB system.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider numerical methods in a bounded domain � ∈ Rd (d � 3) for the Cahn–Hilliard–Brinkman 
(CHB) system:

φt = ∇· (M(φ)∇μ) − ∇· (φu), (1.1)

−∇ · [ν(φ)D(u)] + η(φ)u = −∇p − γ φ∇μ,

∇· u = 0,

where M(φ) > 0 is a mobility that incorporates the Peclet number, γ > 0 is a surface tension parameter, u is the advective 
velocity, p is the pressure, ν(·) > 0 is the fluid viscosity, η(·) > 0 is the fluid permeability, D(u) = ∇u + (∇u)T and μ is the 
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chemical potential

μ = φ3 − φ − ε2�φ.

The CHB system is new enough, and there have been limited numerical simulations works in the existing literature. 
Collins et al. [12] presented an unconditionally energy stable and uniquely solvable finite difference scheme for the CHB 
system. Wise [28] introduced an unconditionally stable finite difference method for the Cahn–Hilliard–Hele–Shaw (CHHS) 
system. Guo et al. [18] developed an efficient fully-discrete local discontinuous Galerkin (LDG) method for the CHHS system. 
Feng and Wise [15] presented finite element analysis for a system of partial differential equations (PDEs) consisting of the 
Darcy equation and the Cahn–Hilliard (CH) equation. We know that when γ = 0, the CHB system is reduced to the CH 
equation [5], and many numerical methods have been developed to solve the CH equation, using finite elements [1–3], 
multigrid methods [19–21] and finite difference methods [14,16,26]. Xia et al. [29] developed an LDG method for the CH 
equation and proved the energy stability. Based on the LDG spatial discretization, Guo and Xu [17] studied the multigrid 
solver coupled with high order semi-implicit time marching method for the CH equation.

Solutions of the CHB system generally have boundary layers spread throughout the domain, so spatial resolution is 
extremely important in the choice of numerical schemes. The occurrence of the divergence free condition in the CHB system 
leads to the spatial resolution more difficult. In this paper, we introduce an LDG method to approximate the CHB system, 
which are high order accurate, nonlinear stable and flexible for arbitrary h and p adaptivity. The proof of the theoretical 
energy stability of the semi-discrete LDG scheme is also given in this paper.

The CHB system is difficult to approximate numerically due to the small time step size (�t =O(�x4)) required to main-
tain stability for explicit time integration methods. The major difficulty for the system is to find a suitable time integration 
method to improve the stability of the numerical simulation for large time steps. We develop a semi-implicit time integra-
tion scheme which consists of the implicit Euler method combined with a convex splitting of the discrete CH energy. The 
unconditional discrete energy stability of the fully-discrete convex splitting scheme has also been proved, i.e. the scheme is 
stable regardless of time step size. Being implicit in time, the equations at the implicit time level are nonlinear. The effi-
ciency of the semi-implicit method highly depends on the efficiency of the nonlinear solver. In this paper, we demonstrate 
an efficient and practical nonlinear Full Approximation Scheme (FAS) multigrid method to solve the nonlinear equations 
arising by the semi-implicit scheme. In addition, we numerically show that the multigrid solver has optimal complexity for 
P1 approximation and nearly optimal complexity for P2 approximation.

The discontinuous Galerkin (DG) method we discuss in this paper is a class of finite element methods using completely 
discontinuous piecewise polynomial space for the numerical solution and the test functions in the spatial variables. Reed 
and Hill [25] first introduced the DG methods in 1973, in the framework of neutron linear transport. Later, it was developed 
for hyperbolic conservation laws containing first order derivatives by Cockburn et al. in a series of papers [6–9].

It is difficult to apply the DG method directly to PDEs containing higher order spatial derivatives, therefore the LDG 
method was introduced. The idea of the LDG method is to rewrite the equations with higher order derivatives as a first 
order system, then apply the DG method to the system. The first LDG method was constructed by Cockburn and Shu in 
[10] for solving a convection diffusion equation (containing second derivatives). Their work was motivated by the successful 
numerical experiments of Bassi and Rebay [4] for the compressible Navier–Stokes equations. Later, Yan and Shu developed 
an LDG method for a general KdV type equation (containing third order spatial derivatives) in [32], and they generalized 
the LDG method to PDEs with fourth and fifth order spatial derivatives in [33]. Xia et al. developed the LDG method to 
solve the Cahn–Hilliard type equations in [29] and extended the method in [30] to the more general application system 
which was coupled with the Allen–Cahn and Cahn–Hilliard equations. For a detailed description about the LDG methods for 
high-order time-dependent PDEs, we refer the readers to the review paper [31]. A common feature of these LDG methods is 
that stability can be proved for quite general nonlinear cases. DG and LDG methods also have several attractive properties, 
such as their flexibility for general geometry, unstructured meshes, arbitrary h and p adaptivity and their excellent parallel 
efficiency.

This paper is organized as follows. In Section 2, we develop an LDG method for the CHB system and prove the theoretical 
result of energy stability. In Section 3, we introduce a semi-implicit time integration method and prove the unconditional 
discrete energy stability for the fully-discrete scheme. In Section 4, we provide some results of numerical experiments 
validating our theoretical results and showing the effectiveness of the proposed LDG method, convex splitting scheme and 
the multigrid solver. Finally, we give concluding remarks in Section 5.

2. The LDG method for the Cahn–Hilliard–Brinkman system

2.1. Energy stability of the Cahn–Hilliard–Brinkman system

The CHB system was recently proposed to model phase separation and coarsening of a binary fluid in a Brinkman porous 
medium [24]. The CHB system on a bounded domain � ∈ Rd (d � 3) is

φt = ∇· (M(φ)∇μ) − ∇· (φu), (2.1a)

−∇ · [ν(φ)D(u)] + η(φ)u = −∇p − γ φ∇μ, (2.1b)

∇· u = 0, (2.1c)
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where μ is the chemical potential and given as

μ := δφ E = φ3 − φ − ε2�φ, (2.2)

and the Ginzburg–Landau free energy E is given by

E(φ) =
∫
�

{
ε2

2
|∇φ|2 + 1

4
(φ2 − 1)2

}
dx. (2.3)

In the CHB system, φ denotes the concentration field and ε is a positive constant. The phase equilibria are presented by 
the pure fluids φ = ±1. We assume that M , ν , η ∈ C∞ , and M(x) ≥ M0 > 0, η(x) ≥ η0 > 0 and ν(x) ≥ ν0 > 0, for all x. For 
example, we shall frequently use a regularized degenerate mobility of the form

M(φ) = 1

Pe

√
(1 + φ)2(1 − φ)2 + ε2 ≥ ε

Pe
> 0, (2.4)

where Pe > 0 is the Peclet number. To close the system, we assume that the system (2.1) is supplemented with the following 
Dirichlet boundary conditions for velocity u, i.e.

u = 0 on ∂�, (2.5)

and Neumann boundary conditions for φ and μ, i.e.

∂nφ = ∂nμ = 0 on ∂�. (2.6)

The Neumann boundary conditions (2.6) represent local thermodynamic equilibrium on the boundary. With the above 
boundary conditions, the CHB system (2.1) is mass conservative and energy dissipative, i.e.

d

dt
E = −

∫
�

(
M(φ)|∇μ|2 + 1

γ
η(φ)|u|2 + 1

2γ
ν(φ)|D(u)|2

)
dx � 0. (2.7)

When the surface tension vanishes, i.e. γ = 0, the CHB system reduces to the Cahn–Hilliard equation [5], and when 
η = 0, equation (2.1b) is a Stokes type equation. The Cahn–Hilliard–Hele–Shaw system is obtained by setting ν = 0 in 
equation (2.1b). The CHB system is a simplified version of the model derived by Lee et al. [22,23], which was used to 
describe gravity-driven, density-mismatched, two-phase flow in a Hele–Shaw cell.

2.2. The LDG method for the Cahn–Hilliard–Brinkman system

In this section, we consider the LDG method for the CHB system in � ∈ Rd with d � 3. Although we do not perform 
numerical experiments in three dimensions in this paper, the LDG method and the energy stability results of this paper are 
all valid for d � 3.

2.2.1. Notations
Let Th denote a tessellation of � with shape-regular elements K . Let � denote the union of the boundary faces of 

elements K ∈ Th , i.e. � = ∪K∈Th ∂ K , and �0 = �\∂�. In order to describe the flux functions we need to introduce some 
notations. Let e be a face shared by the “left” and “right” elements K L and K R . For our purpose “left” and “right” can be 
uniquely defined for each face according to any fixed rule, see, e.g. [31,32] for more details of such a definition. Define the 
normal vectors ν L and νR on e pointing exterior to K L and K R , respectively. If ψ is a function on K L and K R , but possibly 
discontinuous across e, let ψL denote (ψ |KL )|e and ψR denote (ψ |K R )|e , the left and right trace, respectively.

Let Pk(K ) be the space of polynomials of degree at most k � 0 on K ∈ Th . The finite element spaces are denoted by

Vh =
{
ϕ : ϕ|K ∈ Pk(K ), ∀K ∈ Th

}
,

�d
h =

{
� = (φ1, · · · , φd)

T : φl|K ∈ Pk(K ), l = 1 · · ·d, ∀K ∈ Th

}
,

�d
h =

{
� = (θ1, · · · , θd)

T : θ l|K ∈ (Pk(K ))d, l = 1 · · ·d, ∀K ∈ Th

}
.

Note that functions in Vh , �d
h and �d

h are allowed to be completely discontinuous across element interfaces.

2.2.2. The LDG method
To construct the LDG method, firstly we rewrite the Cahn–Hilliard–Brinkman system (2.1) as a system containing only 

first order derivatives:

φt = ∇ · w1 − ∇· s, w1 = M(φ)w, w = ∇μ, μ = φ3 − φ − ε2∇· v, (2.8a)

v = ∇φ, s = φu, 0 = ∇ · u, r = φw, q = η(φ)u, (2.8b)

q − ∇ · Q = −∇p − γ r, Q = ν(φ)D(u), D(u) = ∇u + (∇u)T . (2.8c)



390 R. Guo, Y. Xu / Journal of Computational Physics 298 (2015) 387–405
Applying the LDG method to system (2.8), we have the scheme: Find φ, μ, p ∈ Vh , w1, w , v , s, q, u, r ∈ �d
h and Q , 

D(u) ∈ �d
h , such that, for all test functions ϕ1, ϕ2, ϕ3 ∈ Vh , η, η1, η2, η3, η4, η5, η6 ∈ �d

h and �1, �2 ∈ �d
h , we have∫

K

φtϕ1dK = −
∫
K

(w1 − s)·∇ϕ1dK +
∫
∂ K

(ŵ1·ν − ŝ·ν)ϕ1ds, (2.9a)

∫
K

w1·ηdK =
∫
K

M(φ)w·ηdK , (2.9b)

∫
K

w·η1dK = −
∫
K

μ∇·η1dK +
∫
∂ K

μ̂η1·νds, (2.9c)

∫
K

μϕ2dK =
∫
K

(φ3 − φ)ϕ2dK +
∫
K

ε2 v·∇ϕ2dK −
∫
∂ K

ε2 v̂·νϕ2ds, (2.9d)

∫
K

v·η2dK = −
∫
K

φ∇·η2dK +
∫
∂ K

φ̂η2·νds, (2.9e)

∫
K

s·η3dK =
∫
K

φu·η3dK , (2.9f)

0 = −
∫
K

u·∇ϕ3dK +
∫
∂ K

ûp ·νϕ3ds, (2.9g)

∫
K

r·η4dK =
∫
K

φw·η4dK , (2.9h)

∫
K

q·η5dK =
∫
K

η(φ)u·η5dK , (2.9i)

∫
K

(q + γ r)·η6dK =
∫
K

(p∇·η6 − Q ·∇η6)dK +
∫
∂ K

( Q̂ ·ν·η6 − p̂η6·ν)ds, (2.9j)

∫
K

Q ·�1dK =
∫
K

ν(φ)D(u)·�1dK , (2.9k)

∫
K

D(u)·�2dK = −
∫
K

u· (∇·�2 + ∇·�T
2 )dK +

∫
∂ K

û· (�2·ν + �T
2 ·ν)ds. (2.9l)

The “hat” terms in (2.9) in the cell boundary terms from integration by parts are the so-called “numerical fluxes”, which 
are functions defined on the edges and should be designed based on different guiding principles for different PDEs to ensure 
stability and local solvability of the intermediate variables. For CHB equation with periodic boundary conditions, similar to 
the development in [18], it turns out that we can take the simple choices such as

ŵ1|e = w1L, ŝ|e = sL, μ̂|e = μR , φ̂|e = φL,

v̂|e = v R , û|e = uR , ûp|e = uR , p̂|e = pL, Q̂ |e = Q L . (2.10)

We remark that the choice for the fluxes (2.10) is not unique. Considering the compactness of the stencil and the optimal 
accuracy, the crucial part is taking ŵ1, ̂s and μ̂ from opposite sides, v̂ and φ̂ from opposite sides, ûp and p̂ from opposite 
sides, û and Q̂ from opposite sides.

Remark 2.1. For CHB equation with boundary conditions (2.5)–(2.6), similar to the development of LDG method for Stokes 
system in [11], the numerical flux should be chosen as

ŵ1|e = w1L, ŝ|e = sL, μ̂|e = μR , φ̂|e = φL, v̂|e = v R ,

û|e = uR , Q̂ |e = Q L, ûp|e = uR + D11[p], p̂|e = pL, (2.11)

where [p] = pRνR + pLν L and the parameter D11 is chosen as O(�x).
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By the boundary (2.5)–(2.6), we take

ŵ1 = 0, ŝ = 0, μ̂ = μin, φ̂ = φin, v̂ = 0,

û = 0, Q̂ = Q in − C11uin ⊗ ν in, ûp = 0, p̂ = pin, (2.12)

at the domain boundary, where φin means the value taken from the inside of the boundary element, ν in is the unit normal 
vector pointing exterior to the boundary, and the parameter C11 is chosen as O( 1

�x ).

2.2.3. Energy dissipative
It is easy to show that the LDG scheme is mass conservative. And also we can prove the semi-discrete scheme is energy 

stable in the following.

Proposition 2.2 (Energy dissipative). The solution to the LDG scheme (2.9) and the flux (2.10) satisfies the energy dissipative

d

dt
E = −

∫
�

(
M(φ)|w|2 + 1

γ
η(φ)|u|2 + 1

2γ
ν(φ)|D(u)|2

)
dx � 0, (2.13)

where

E =
∫
�

(
1

4
(φ2 − 1)2 + ε2

2
|v|2

)
dx. (2.14)

Proof. Firstly, we take the time derivative of equation (2.9e) and choose the test function η2 = ε2 v to obtain

ε2
∫
K

vt · vdK = −ε2
∫
K

φt∇· vdK + ε2
∫
∂ K

φ̂t v·νds. (2.15)

For other equations in (2.9), we choose the test functions

ϕ1 = μ, η = −w, η1 = w1 − s, ϕ2 = −φt, η3 = w, ϕ3 = − 1

γ
p,

η4 = −u, η5 = − 1

γ
u, η6 = 1

γ
u, �1 = − 1

2γ
D(u), �2 = 1

2γ
Q ,

respectively to get∫
K

φtμdK = −
∫
K

(w1 − s)·∇μdK +
∫
∂ K

(ŵ1·ν − ŝ·ν)μds,

−
∫
K

w1· wdK = −
∫
K

M(φ)w· wdK ,

∫
K

w· (w1 − s)dK = −
∫
K

μ∇· (w1 − s)dK +
∫
∂ K

μ̂(w1 − s)·νds,

−
∫
K

μφtdK = −
∫
K

(φ3 − φ)φtdK −
∫
K

ε2 v·∇φtdK +
∫
∂ K

ε2 v̂·νφtds,

∫
K

s· wdK =
∫
K

φu· wdK ,

0 = 1

γ

∫
K

u·∇pdK − 1

γ

∫
∂ K

ûp ·νpds,

−
∫
K

r· udK = −
∫
K

φw· udK ,

− 1

γ

∫
q· udK = − 1

γ

∫
η(φ)u· udK ,
K K
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γ

∫
K

(q + γ r)· udK = 1

γ

∫
K

(p∇· u − Q ·∇u)dK + 1

γ

∫
∂ K

( Q̂ ·ν· u − p̂u·ν)ds,

− 1

2γ

∫
K

Q ·D(u)dK = − 1

2γ

∫
K

ν(φ)D(u)·D(u)dK ,

1

2γ

∫
K

D(u)· Q dK = − 1

2γ

∫
K

u· (∇· Q + ∇· Q T )dK + 1

2γ

∫
∂ K

û· ( Q ·ν + Q T ·ν)ds.

By the symmetric property of matrix Q , we have

1

2γ

∫
K

D(u)· Q dK = − 1

γ

∫
K

u· (∇· Q )dK + 1

γ

∫
∂ K

û· ( Q ·ν)ds.

Combining the above equations with (2.15), implies

d

dt

∫
K

(
1

4
(φ2 − 1)2 + ε2

2
|v|2

)
dK +

∫
K

(
M(φ)|w|2 + 1

γ
η(φ)|u|2 + 1

2γ
ν(φ)|D(u)|2

)
dK

= −
∫
K

∇· (μ(w1 − s))dK +
∫
∂ K

((ŵ1·ν − ŝ·ν)μ + μ̂(w1 − s)·ν)ds

−
∫
K

ε2∇· (φt v)dK + ε2
∫
∂ K

(φ̂t v·ν + v̂·νφt)ds

+ 1

γ

∫
K

∇· (pu)dK − 1

γ

∫
∂ K

(̂up · νp + p̂u·ν)ds

− 1

γ

∫
K

∇· ( Q · u)dK + 1

γ

∫
∂ K

( Q̂ ·ν· u + û· ( Q ·ν))ds. (2.16)

Finally, summing up equation (2.16) over K and noticing the fluxes in (2.10) are from the opposite sides of ∂ K as well as 
the periodic boundary condition, we have

d

dt

∫
�

(
1

4
(φ2 − 1)2 + ε2

2
|v|2

)
dx +

∫
�

(
M(φ)|w|2 + 1

γ
η(φ)|u|2 + 1

2γ
ν(φ)|D(u)|2

)
dx = 0,

which implies the energy dissipative result (2.13). �
3. Time discretization

In this section, we explore efficient semi-implicit time discretization techniques for the LDG scheme (2.9) to solve the 
CHB system. The main difficulty is the stiffness of the LDG spatial discretization operator, which would require an unrea-
sonably small time step (�t =O(�x4)) for explicit local time stepping methods. It would therefore be desirable to develop 
semi-implicit time discretization techniques to relax this constraint of the time step.

3.1. Fully-discrete convex splitting scheme

In this subsection, we develop a semi-implicit scheme for the CHB system, which is based on a convex splitting approach 
of the discrete CH energy. The semi-discrete convex splitting scheme is given as

φn+1 − φn

�t
= ∇· (M(φn)∇μn+1) − ∇· (φnun+1), (3.1a)

μn+1 = (φn+1)3 − φn − ε2�φn+1, (3.1b)

−∇ · [ν(φn)D(un+1)] + η(φn)un+1 = −∇pn+1 − γ φn∇μn+1, (3.1c)

∇· un+1 = 0. (3.1d)

To define the LDG method for the scheme (3.1), we first rewrite it as a first order system
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φn+1 − φn

�t
= ∇ · wn+1

1 − ∇· sn+1, wn+1
1 = M(φn)wn+1, wn+1 = ∇μn+1, (3.2a)

sn+1 = φnun+1, μn+1 = (φn+1)3 − φn − ε2∇· vn+1, vn+1 = ∇φn+1, (3.2b)

rn+1 = φn wn+1, qn+1 = η(φn)un+1, qn+1 − ∇ · Q n+1 = −∇pn+1 − γ rn+1, (3.2c)

Q n+1 = ν(φn)D(un+1), D(un+1) = ∇un+1 + (∇un+1)T , 0 = ∇ · un+1. (3.2d)

The LDG scheme for the semi-discrete scheme becomes: Find φn+1, μn+1, pn+1 ∈ Vh , wn+1
1 , wn+1, vn+1, sn+1, qn+1, un+1, 

rn+1 ∈ �d
h and Q n+1, D(un+1) ∈ �d

h , such that, for all test functions ϕ1, ϕ2, ϕ3 ∈ Vh , η, η1, η2, η3, η4, η5, η6 ∈ �d
h and �1, 

�2 ∈ �d
h , we have

∫
K

φn+1 − φn

�t
ϕ1dK = −

∫
K

(wn+1
1 − sn+1)·∇ϕ1dK +

∫
∂ K

(
̂wn+1

1 ·ν − ŝn+1·ν)ϕ1ds, (3.3a)

∫
K

wn+1
1 ·ηdK =

∫
K

M(φn)wn+1·ηdK , (3.3b)

∫
K

wn+1·η1dK = −
∫
K

μn+1∇·η1dK +
∫
∂ K

μ̂n+1η1·νds, (3.3c)

∫
K

μn+1ϕ2dK =
∫
K

((φn+1)3 − φn)ϕ2dK +
∫
K

ε2 vn+1·∇ϕ2dK −
∫
∂ K

ε2 v̂n+1·νϕ2ds, (3.3d)

∫
K

vn+1·η2dK = −
∫
K

φn+1∇·η2dK +
∫
∂ K

φ̂n+1η2·νds, (3.3e)

∫
K

sn+1·η3dK =
∫
K

φnun+1·η3dK , (3.3f)

0 = −
∫
K

un+1·∇ϕ3dK +
∫
∂ K

̂un+1
p ·νϕ3ds, (3.3g)

∫
K

rn+1·η4dK =
∫
K

φn wn+1·η4dK , (3.3h)

∫
K

qn+1·η5dK =
∫
K

η(φn)un+1·η5dK , (3.3i)

∫
K

(qn+1 + γ rn+1)·η6dK =
∫
K

(pn+1∇·η6 − Q n+1·∇η6)dK +
∫
∂ K

(̂Q n+1·ν·η6 − p̂n+1η6·ν)ds, (3.3j)

∫
K

Q n+1·�1dK =
∫
K

ν(φn)D(un+1)·�1dK , (3.3k)

∫
K

D(un+1)·�2dK = −
∫
K

un+1· (∇·�2 + ∇·�T
2 )dK +

∫
∂ K

ûn+1· (�2·ν + �T
2 ·ν)ds. (3.3l)

The numerical fluxes are

̂wn+1
1 |e = wn+1

1L , ŝn+1|e = sn+1
L , μ̂n+1|e = μn+1

R , φ̂n+1|e = φn+1
L ,

v̂n+1|e = vn+1
R , ûn+1|e = un+1

R ,
̂un+1

p |e = un+1
R , p̂n+1|e = pn+1

L , ̂Q n+1|e = Q n+1
L . (3.4)

The time discretization method which is based on a convex splitting of the discrete CH energy is similar what is 
described by Collins et al. in [12]. There is an important property that the convex splitting scheme generally inherit, uncon-
ditional energy stability. And the proof of the property will be given in Section 3.2.
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3.2. Discrete energy dissipative

In this subsection, we will prove the unconditional discrete energy stability for the fully-discrete convex splitting scheme 
(3.3). To simplify the notation, we use the following notations for discretization of time variable,

δtφ
n+1 = φn+1 − φn

�t
,

δt vn+1 = vn+1 − vn

�t
.

Proposition 3.1 (Discrete energy dissipative). The solution to the LDG scheme (3.3) and the flux (3.4) satisfies energy dissipative∫
�

(
1

4
((φn+1)2 − 1)2 + ε2

2
|vn+1|2

)
dx �

∫
�

(
1

4
((φn)2 − 1)2 + ε2

2
|vn|2

)
dx.

Proof. We take the test functions in (3.3) as

ϕ1 = μn+1, η = −wn+1, η1 = wn+1
1 − sn+1, ϕ2 = −δtφ

n+1, η2 = ε2δt vn+1, η3 = wn+1,

ϕ3 = − 1

γ
pn+1, η4 = −un+1, η5 = − 1

γ
un+1, η6 = 1

γ
un+1, �1 = − 1

2γ
D(un+1), �2 = 1

2γ
Q n+1,

to obtain ∫
K

δtφ
n+1μn+1dK = −

∫
K

(wn+1
1 − sn+1)·∇μn+1dK +

∫
∂ K

(
̂wn+1

1 ·ν − ŝn+1·ν)μn+1ds,

−
∫
K

wn+1
1 · wn+1dK = −

∫
K

M(φn)wn+1· wn+1dK ,

∫
K

wn+1· (wn+1
1 − sn+1)dK = −

∫
K

μn+1∇· (wn+1
1 − sn+1)dK +

∫
∂ K

μ̂n+1(wn+1
1 − sn+1)·νds,

−
∫
K

μn+1δtφ
n+1dK = −

∫
K

((φn+1)3 − φn)δtφ
n+1dK

−
∫
K

ε2 vn+1·∇δtφ
n+1dK +

∫
∂ K

ε2 v̂n+1·νδtφ
n+1ds,

ε2
∫
K

vn+1· δt vn+1dK = −ε2
∫
K

φn+1∇· δt vn+1dK + ε2
∫
∂ K

φ̂n+1δt vn+1·νds,

∫
K

sn+1· wn+1dK =
∫
K

φnun+1· wn+1dK ,

0 = 1

γ

∫
K

un+1·∇pn+1dK − 1

γ

∫
∂ K

̂un+1
p ·νpn+1ds,

−
∫
K

rn+1· un+1dK = −
∫
K

φn wn+1· un+1dK ,

− 1

γ

∫
K

qn+1· un+1dK = − 1

γ

∫
K

η(φn)un+1· un+1dK ,

1

γ

∫
K

(qn+1 + γ rn+1)· un+1dK = 1

γ

∫
K

(pn+1∇· un+1 − Q n+1·∇un+1)dK

+ 1

γ

∫
(̂Q n+1·ν· un+1 − p̂n+1un+1·ν)ds,
∂ K
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− 1

2γ

∫
K

Q n+1·D(un+1)dK = − 1

2γ

∫
K

ν(φn)D(un+1)·D(un+1)dK ,

1

2γ

∫
K

D(un+1)· Q n+1dK = − 1

γ

∫
K

un+1· (∇· Q n+1)dK + 1

γ

∫
∂ K

ûn+1· ( Q n+1·ν)ds.

Combining the above equations, we get

ε2
∫
K

vn+1· δt vn+1dK +
∫
K

((φn+1)3 − φn)δtφ
n+1dK

+
∫
K

(
M(φn)|wn+1|2 + 1

γ
η(φn)|un+1| + 1

2γ
ν(φn)|D(un+1)|2

)
dK

= −
∫
K

∇· (μn+1(wn+1
1 − sn+1))dK +

∫
∂ K

((
̂wn+1

1 ·ν − ŝn+1·ν)μn+1

+ μ̂n+1(wn+1
1 − sn+1)·ν)ds + 1

γ

∫
K

∇· (pn+1un+1)dK − 1

γ

∫
∂ K

(
̂un+1

p · νpn+1

+ p̂n+1un+1·ν)ds − 1

γ

∫
K

∇· ( Q n+1· un+1)dK + 1

γ

∫
∂ K

(̂Q n+1·ν· un+1 + ûn+1· ( Q n+1·ν))ds

− ε2

�t

∫
K

∇·
(
φn+1 vn+1

)
dK + ε2

�t

∫
∂ K

(
v̂n+1·νφn+1 + φ̂n+1 vn+1·ν

)
ds

+ ε2

�t

∫
K

(
vn+1·∇φn + φn+1∇· vn

)
dK − ε2

�t

∫
∂ K

(
v̂n+1·νφn + φ̂n+1 vn·ν

)
ds. (3.5)

For equation (3.3e), we choose the test function as η2 = vn , and obtain∫
K

vn+1· vndK = −
∫
K

φn+1∇· vndK +
∫
∂ K

φ̂n+1 vn·νds. (3.6)

From (3.3e), we have∫
K

vn·η2dK = −
∫
K

φn∇·η2dK +
∫
∂ K

φ̂nη2·νds. (3.7)

Choosing the test function η2 = vn+1 in (3.7), implies∫
K

vn· vn+1dK = −
∫
K

φn∇· vn+1dK +
∫
∂ K

φ̂n vn+1·νds. (3.8)

By substituting (3.6) and (3.8), we have∫
K

(
vn+1·∇φn + φn+1∇· vn

)
dK −

∫
∂ K

(
v̂n+1·νφn + φ̂n+1 vn·ν

)
ds

(3.6)=
∫
K

(
vn+1·∇φn − vn+1· vn

)
dK −

∫
∂ K

v̂n+1·νφnds

=
∫
K

(
vn+1·∇φn − vn+1· vn − φn∇· vn+1 + φn∇· vn+1

)
dK −

∫
∂ K

v̂n+1·νφnds

(3.8)=
∫
K

(
vn+1·∇φn + φn∇· vn+1

)
dK −

∫
∂ K

(
v̂n+1·νφn + φ̂n vn+1·ν

)
ds. (3.9)

Finally, summing up equations (3.5) and (3.9) over K and noticing the fluxes in (3.4) are from the opposite sides of ∂ K as 
well as the boundary conditions, we get
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ε2
∫
�

vn+1· δt vn+1dx +
∫
�

((φn+1)3 − φn)δtφ
n+1dx

+
∫
�

(
M(φn)|wn+1|2 + 1

γ
η(φn)|u|n+1 + 1

2γ
ν(φn)|D(un+1)|2

)
dx = 0.

Then

ε2
∫
�

vn+1· δt vn+1dx + 1

�t

∫
�

(
1

4
((φn+1)2 − 1)2

)
dx − 1

�t

∫
�

(
1

4
((φn)2 − 1)2

)
dx

+ 1

4�t

∫
�

(
(2 + 2(φn+1)2 + (φn + φn+1)2)(−φn+1 + φn)2

)
dx

+
∫
�

(
M(φn)|wn+1|2 + 1

γ
η(φn)|u|n+1 + 1

2γ
ν(φn)|D(un+1)|2

)
dx = 0,

therefore we obtain the discrete energy stability∫
�

(
1

4
((φn+1)2 − 1)2 + ε2

2
|vn+1|2

)
dx �

∫
�

(
1

4
((φn)2 − 1)2 + ε2

2
|vn|2

)
dx. �

Remark 3.2. The unconditional energy stability for the fully discrete convex splitting scheme (3.3) is proved, i.e. the scheme 
is stable regardless of time step size. But as for the solvability of the convex splitting scheme, the proof is not easy in 
the LDG framework. Even though the auxiliary variables in the LDG method give the easy treatment for nonlinear and 
high order derivative terms, the theoretical analysis of solvability for the LDG method is more troublesome because of the 
auxiliary variables. We will leave it to our future work.

Remark 3.3. Diegel et al. [13] studied the convergence analysis for the Cahn–Hilliard–Darcy–Stokes system, combined with 
a mixed finite element method in space. However, the convergence analysis for the convex splitting scheme in the LDG 
framework is difficult because of the auxiliary variables, which will be left to our future work.

Remark 3.4. The energy stability for the semi-discrete LDG scheme (2.9) and fully discrete convex splitting scheme (3.3) for 
variables φ and v are proved in Proposition 2.2 and 3.1, respectively. The numerical solutions with LDG spatial discretization 
are discontinuous piecewise polynomial, which leads to that the numerical solutions for φ and v are in L2(�) space, but 
not in H1(�) space. Therefore, H1-stability for the numerical solution φ will not be proved.

3.3. Algorithm flowchart and the multigrid solver

Given φn , μn , pn and un , the algorithm to get φn+1, μn+1, pn+1 and un+1 is as follows

1. We choose a local basis in cell K , then wn+1
1 , wn+1, vn+1, sn+1, rn+1, qn+1, Q n+1 and D(un+1) can be eliminated 

from equations (3.3b), (3.3c), (3.3e), (3.3f), (3.3h), (3.3i), (3.3k) and (3.3l) respectively, by simply inverting a small mass 
matrix in each case.

2. We get a system of 3 + d (d is the dimension of the problem) coupled nonlinear equations for {φn+1, μn+1, pn+1, un+1}⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φn+1 = L1(μ
n+1, un+1, φn),

μn+1 = L2(φ
n+1, φn),

L3(un+1) = 0,

L4(μ
n+1, un+1, pn+1, φn) = 0.

(3.10)

3. We solve the system of nonlinear equations (3.10) at each time step and get φn+1, μn+1, pn+1 and un+1.

The semi-implicit convex splitting scheme (3.1) is stable regardless of time step size. However, the scheme is nonlinear, 
and we need to solve a system of nonlinear algebraic equations (3.10) at each time step, which presents a challenge regard-
ing practical implementation. The overall performance highly depends on the performance of the solver. Traditional iterative 
solution methods such as Gauss–Seidel method and Newton method suffer from slow convergence rates, especially for large 
algebraic systems.

The nonlinear FAS multigrid method is employed here to solve the nonlinear equations and we will numerically show 
the nearly optimal convergence of the multigrid solver in the next section. The reader is referred to Trottenberg et al. [27]
for complete details of the nonlinear FAS multigrid algorithm.
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Table 4.1
Accuracy test for Example 4.1 at t = 0.5. To maintain the accuracy, the time step is chosen as �t = 0.1�x, �t = 0.4�x2 and �t = 0.4�x3 for P0, P1 and 
P2 approximation, respectively.

N ε = 1.0, γ = 1.0 ε = 0.2, γ = 2.0

L2 error order L∞ error order L2 error order L∞ error order

P0 8 4.90E-01 – 1.90E-01 – 9.06E-01 – 2.83E-01 –
16 2.31E-01 1.08 9.16E-02 1.05 3.52E-01 1.36 1.66E-01 0.77
32 1.11E-01 1.05 4.41E-02 1.05 1.47E-01 1.25 7.23E-02 1.19
64 5.47E-02 1.02 2.18E-02 1.01 6.63E-02 1.15 3.36E-02 1.10

P1 8 5.21E-01 – 2.26E-01 – 5.36E-01 – 1.87E-01 –
16 1.55E-01 1.74 6.42E-02 1.82 1.62E-01 1.72 4.70E-02 1.99
32 4.15E-02 1.90 1.68E-02 1.94 4.88E-02 1.73 1.45E-02 1.69
64 1.06E-02 1.97 4.27E-03 1.98 1.32E-02 1.88 4.10E-03 1.83

P2 8 3.80E-01 – 1.24E-01 – 3.84E-01 – 1.06E-01 –
16 6.34E-02 2.59 2.02E-02 2.62 7.16E-02 2.43 1.96E-02 2.44
32 8.30E-03 2.93 2.62E-03 2.95 1.04E-02 2.78 3.10E-03 2.66
64 1.04E-03 2.99 3.29E-04 2.99 1.33E-03 2.97 4.02E-04 2.95

4. Numerical tests

In this section, we perform numerical experiments of the LDG method applied to the Cahn–Hilliard–Brinkman system. 
We consider the convex splitting scheme (3.3) and the resulting nonlinear equations are solved by the FAS multigrid method. 
For the spatial discretization, we use uniform meshes. All the computations are performed in double precision.

Example 4.1 (Convergence of the multigrid solver). To demonstrate the convergence and nearly optimal complexity of the 
multigrid solver, we provide evidence that the multigrid convergence rate is nearly independent of the grid size �x. For the 
tests we take the exact solution of

φ(x, y, t) = e−2t sin(x) sin(y), (4.1)

with the source term f (x, y, t), where f (x, y, t) is a given function so that make the exact solution. The initial condition is

φ(x, y,0) = sin(x) sin(y), (4.2)

and the domain is [0, 2π ] × [0, 2π ] with periodic boundary conditions. The spatial step size varies from �x = 2π/32 to 
�x = 2π/128 in the test results.

The only one tunable parameter in our multigrid solver is λ, i.e. the number of multigrid smoothing sweeps. We present 
the convergence rates of the multigrid solver at the 10th time step for various choices of λ in Fig. 4.1. Three different values 
for λ, namely, 3, 4 and 5 are used. We choose M = 1, ε = 0.1 and γ = 2.0 in our tests.

From Fig. 4.1, we can see the optimal convergence of the multigrid solver for P1 approximation and nearly optimal 
convergence for P2 approximation, with λ = 4 and λ = 5. While for λ = 3 and P2 approximation, we do not observe a 
similar feature. Significantly more multigrid iterations are required for smaller values of spatial step size �x.

The L2 and L∞ errors and numerical orders of accuracy at time t = 0.5 are contained in Table 4.1. To maintain the accu-
racy, the time step is chosen as �t = 0.1�x, �t = 0.4�x2 and �t = 0.4�x3 for P0, P1 and P2 approximation, respectively. 
We can see that the method with Pk elements gives (k + 1)th order of accuracy in both L2 and L∞ norms. What we should 
keep in mind is that the choice of this refinement path has nothing to do with any time step restriction for stability.

Example 4.2 (Spinodal decomposition). Here we present a couple of simulations of spinodal decomposition. The energy dissi-
pation is demonstrated at the numerical level and we show the effect of different values of the parameter γ . We consider 
the convex splitting scheme (3.1) with the LDG spatial discretization with P2 approximation on a 128 × 128 mesh and 
boundary conditions (2.5)–(2.6). The initial data is a random field of values that are uniformly distributed about the average 
composition φ̄ = −0.05, with amplitude 0.05. The domain is [0, 6.4] × [0, 6.4]. We take

M(φ) =
√

(1 + φ)2(1 − φ)2 + ε2, ε = 0.03, η = 1 and ν = 1.

For γ we use the values 0.0 and 4.0.
Fig. 4.2 shows the simulations with different γ at times t = 1.0, 4.0, 12.0 and 20.0. From Fig. 4.2, we can see that 

identified particles have a smaller shaper factor for γ = 4.0 than for γ = 0.0 when compared at the same time. In spin-
odal decomposition, particles can coarsen, i.e. large particles may grow at the expense of smaller particles. Fig. 4.2 shows 
statistically similar patterns in the numerical solution as those in Collins et al. [12].

The computed discrete energy trace with different γ is presented in Fig. 4.3. We can see that the discrete energy is 
non-increasing in time, which agrees with the theoretical result. In addition, in the early stages of decomposition, the 
energy is closely matched. Then in the latter stages of decomposition, the energy decrease faster for larger γ . What we 
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Fig. 4.1. Convergence rates of multigrid solver with P1 and P2 approximation for various choices of λ.
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Fig. 4.2. The time evolution of the CHB system implemented with scheme (3.1) with P2 approximation on a 128 × 128 mesh for Example 4.2.
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Fig. 4.3. Energy trace of numerical solution for Example 4.2.

should point out is that the energy is always non-increasing in time regardless of the parameter values of the space or time 
step sizes.

Example 4.3 (Buoyancy-driven flows). To simulate buoyancy-driven flow, we replace the Brinkman flow (2.1b) by

−∇ · [ν(φ)D(u)] + η(φ)u + ∇p = −γ φ∇μ + b, (4.3)

where b is a buoyancy term that depends on the mass density. The mass density is assumed depend on φ, i.e. ρ = ρ(φ), 
and we employ a Boussinesq type approximation:

b = −b(φ)̂k, b(φ) = χ(φ − φ0), (4.4)

where φ0 is a constant (usually the average value of φ), and χ is a constant. Thus, the corresponding convex-splitting 
scheme that we use for the buoyancy-driven flow is (3.1) with (3.1c) replaced by

−∇ · [ν(φn)D(un+1)] + η(φn)un+1 = −∇pn+1 − γ φn∇μn+1 − b(φn )̂k. (4.5)

The test involves the simulation of the buoyancy-driven flow with different values of γ . Again, we consider the convex 
splitting scheme with the LDG spatial discretization with P2 approximation on a 128 × 128 mesh and boundary conditions 
(2.5)–(2.6). The physical parameters are ε = 0.03, φ0 = φ̄ = −0.05, χ = 10, η = 1 and ν = 1. We take the mobility to be

M(φ) =
√

(1 + φ)4(1 − φ)4 + ε2. (4.6)

The initial data is a random field of values that are uniformly distributed about the average composition φ̄ = −0.05, with 
amplitude 0.05. The domain is [0, 6.4] × [0, 6.4]. For γ we use the values 2.0 and 4.0.

The simulation of the buoyancy-driven flow is shown in Fig. 4.4. As expected, the mixture phase separates into domains 
wherein φ ≈ 1 and φ ≈ −1. After a very rapid phase separation process, the blue phase (φ ≈ −1) sinks and the red phase 
(φ ≈ 1) rises. The fluids mix in complicated ways as this process occurs. The numerical results compare very well with the 
numerical calculations performed by Collins et al. [12].

Example 4.4 (Boundary-driven flows). We consider the last case, i.e. the boundary-driven flow. Specifically, we simulate the 
deformation of a particle in shear flow. We also consider the convex splitting scheme (3.1) with P2 approximation on a 
128 × 128 mesh, and the boundary conditions are given as follows. Let u = (u, v) and � = [0, 6.4] × [0, 6.4]. We assume 
that all fields are periodic in the x direction, and we set at y = 0 and y = 6.4, ∂yφ = ∂yμ = 0, and v = 0. For the first 
component of the velocity vector, u = σ at y = 0, and u = −σ at y = 6.4, where σ > 0 is the shear rate.

The physical parameters are M = 1, ε = 0.03, γ = 4.0, η = 0 and ν = 1. The result of the boundary-driven simulation 
for σ = 1 and σ = 2 are reported in Fig. 4.5 and Fig. 4.6, respectively. From these figures, we can see that the shear rate is 
relatively modest, with respect to the surface tension, and the particle is stretched.

Finally, we remark that the numerical results presented above are qualitatively very similar to those presented in [12]. 
But, what we should have in mind is that the DG spatial discretization does allow for more flexibility than that of the finite 
difference method in several other ways. DG methods are a class of finite element methods, which can handle the irregular 
computational domain and complex boundary conditions easily comparing with the finite difference methods. Meanwhile, 
since the basis functions can be completely discontinuous, discontinuous Galerkin methods have the flexibility which is not 
shared by typical finite element methods, such as the allowance of arbitrary triangulation with hanging nodes, complete 
freedom in changing the polynomial degrees in each element independent of that in the neighbors (p-adaptivity), and 
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Fig. 4.4. The time evolution of the CHB system implemented with convex splitting scheme with P2 approximation on a 128 × 128 mesh for Example 4.3.
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Fig. 4.5. The time evolution of the CHB system implemented with convex splitting scheme with P2 approximation on a 128 × 128 mesh for Example 4.4
with σ = 1.0.
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Fig. 4.6. The time evolution of the CHB system implemented with convex splitting scheme with P2 approximation on a 128 × 128 mesh for Example 4.4
with σ = 2.0.
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extremely local data structure (elements only communicate with immediate neighbors regardless of the order of accuracy 
of the scheme) and the resulting embarrassingly high parallel efficiency.

5. Conclusion

In this paper, we have proposed a fully-discrete semi-implicit convex splitting method for approximating the Cahn–
Hilliard–Brinkman system, which consists of the implicit Euler method combined with a convex splitting discrete Cahn–
Hilliard energy strategy for the temporal discretization. The energy stability is proved for the semi-discrete scheme firstly. 
We also prove the unconditional energy stability for the fully-discrete semi-implicit LDG scheme. That is, the energy is 
always non-increasing in time regardless of time step sizes, which is observed in our computations and provides some ev-
idence that our scheme is indeed stable. The semi-implicit method will result in a nonlinear system of algebraic equations 
at each time step and the FAS multigrid solver is employed to solve the system. We show numerically that the number 
of the multigrid iterations is nearly independent of the problem size and is of nearly optimal complexity. Numerical ex-
periments based on the overall solution method of combining the fully-discrete convex splitting scheme and the nonlinear 
multigrid solver are presented to validate the theoretical results and to show the effectiveness of the proposed methods for 
approximating the Cahn–Hilliard–Brinkman phase field model. Although not addressed in this paper, the local discontinuous 
Galerkin method are flexible for general geometry, unstructured meshes and h and p adaptivity, and have excellent parallel 
efficiency.
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