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Abstract. Let F be a totally real field, p an unramified place of F dividing p and r : Gal(F/F ) →
GL2(Fp) a continuous irreducible modular representation. The work of Buzzard, Diamond and
Jarvis [9] associates to r an admissible smooth representation of GL2(Fp) on the mod p cohomol-
ogy of Shimura curves attached to indefinite division algebras which split at p. When r|Gal(Fp/Fp)

is tamely ramified and generic (and under some additional technical assumptions), we determine
the subspace of invariants of this representation under the principal congruence subgroup of level
p. In particular, the subspace depends only on r|Gal(Fp/Fp) and satisfies a multiplicity one prop-
erty.
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1. Introduction

Let p be a prime number. Barthel-Livné [2] and Breuil [4] gave a complete classification of
irreducible smooth representations of GL2(Qp) over Fp with a central character, which allowed
Breuil to define a semi-simple mod p local Langlands correspondence for GL2(Qp) [4]. The situation
is much more complicated if one wants to establish a similar mod p correspondence for GL2(L)
where L 6= Qp is a finite extension of Qp. There is no such complete classification, and the study of
irreducible admissible smooth Fp-representations of GL2(L) becomes very subtle ([8], [18], [21]).
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Motivated by the local-global compatibility result of Emerton [12] for the cohomology of modular
curves, it seems to be very promising to seek for the hypothetical correspondence for GL2(L) in the
cohomology of Shimura curves.

More precisely, let F be a totally real field, Fv be the completion of F at a fixed place v of F
above p with ring of integers OFv and residue field kFv . We consider the mod p étale cohomology
of a tower of Shimura curves (XU )U over F associated to an indefinite quaternion algebra D with
center F which splits at all places over p and at exactly one infinite place. Let SD(Fp) denote the
space

lim−→
U

H1
ét(XU,F ,Fp).

It is expected that one can get information on the hypothetical mod p local Langlands correspon-
dence by studying the action of GL2(Fv) on SD(Fp). For instance, assuming Fv/Qp unramified,
the GL2(OFv )-socles of the irreducible GL2(Fv) subrepresentations of SD(Fp) are described by the
Buzzard-Diamond-Jarvis conjecture ([9], proved in [15]). Motivated by this, for a generic Galois
representation ρ : Gal(F v/Fv) → GL2(Fp), Breuil and Paškūnas [8] construct by local method an
infinite family of smooth admissible Fp-representations of GL2(Fv) whose GL2(OFv )-socles are as
predicted by [9]. Furthermore, they conjecture that if r is a globlisation of ρ to a modular Galois rep-
resentation of Gal(F/F ), then the r-isotypic part of SD(Fp) contains one of these representations.
This conjecture is recently proved by Emerton, Gee and Savitt in [13] under mild Taylor-Wiles type
hypothesis.

In this paper, we give further constraint on these GL2(Fv)-representations in the case where ρ is
a tamely ramified (that is either split or irreducible) and generic representation. To state our main
theorem, we introduce some notations. Let r : Gal(F/F )→ GL2(Fp) be a globlisation of ρ, which
is continuous irreducible and totally odd. We assume that r is modular in the sense that

πD(r) := HomFp[Gal(F/F )](r, S
D(Fp)) 6= 0.

We can use the action of Hecke operators away from v on πD(r) to define a local factor πDv (r) at v,
which is an admissible smooth representation of GL2(Fv), and is supposed to be the right candidate
in the mod p local Langlands correspondence, and many important properties about it have been
established, see e.g. [14], [6], [13]. Our main result is the following theorem.

Theorem 1.1. Assume that Fv is unramified over Qp and ρ is tamely ramified and generic. Under
certain assumptions (see Cor. 3.9), we have πDv (r)K1 ∼= D0(ρ) as GL2(OFv )-representations, where
K1 = ker(GL2(OFv ) → GL2(kFv )), and D0(ρ) is the finite dimensional GL2(OFv )-representation
attached to ρ in [8, Thm. 1.1].

Remark 1.2. After the first version of the paper was written, we are informed that Le, Morra and
Schraen obtain a similar result independently [19]. Both the proofs use results of [13] as a global
input, however, the local representation theory part is quite different.

We also prove a similar result when D is a definite quaternion algebra unramified at all places
over p. In [13], the subspace of pro-p-Iwahori fixed vectors of πDv (r) is determined, for ρ generic,
but could be reducible non-split. The proof of our theorem uses the construction of [13] as a main
tool. We intend to extend the result to reducible non-split ρ in future work.

The organization of the paper is as follows. In Section 2, we give all the local results that we
need, especially the local criterion Corollary 2.29. Note that the criterion does not apply to ρ
reducible non-split (see Remark 2.27). In Section 3, we deduce our main theorem from our local
results and results of [13].
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We assume p ≥ 3 throughout the paper; this is harmless for our application. We fix a finite
extension E of Qp with ring of integers OE , uniformiser $E and residue field F, which is allowed
to be enlarged. They will serve as coefficient fields (or rings) for our representations.

2. Local input

In this section, L denotes a finite extension of Qp, with ring of integers OL, maximal ideal pL,
and residue field (identified with) Fq = Fpf . Fix a uniformiser $L of L; we take $L = p when L is
unramified over Qp. For λ ∈ Fq, [λ] ∈ OL denotes its Teichmüller lift. Let Γ = GL2(Fq). We call
a weight an irreducible representation of Γ over Fp. We take E large enough so that any weight is
defined over F, then a weight is (up to isomorphism) of the form ([2, Prop. 1])

Symr0F2 ⊗F (Symr1F2)Fr ⊗F · · · ⊗F (Symrf−1F2)Frf−1

⊗F deta

where 0 ≤ ri ≤ p − 1, 0 ≤ a ≤ q − 2 and Fr :
(
a b
c d

)
7→
(
ap bp

cp dp
)
is the Frobenius on Γ. We denote

this representation by (r0, · · · , rf−1) ⊗ deta. To simplify the notation, we write Vr := SymrF2 for
0 ≤ r ≤ p− 1. We recall the following definition from [13, Def. 2.1.4].

Definition 2.1. We say that (r0, · · · , rf−1)⊗ deta is regular if no ri is equal to p− 1.

Let RepΓ be the category of finite dimensional F-representations of Γ. If M ∈ RepΓ, we write
{FiliM, i ≥ 0} for its socle filtration, that is, Fil0M = socΓM , Fil1M is the preimage in M of
socΓ(M/Fil0M), etc. We call griM := FiliM/Fili−1M the i-th layer of the socle filtration where
Fil−1M := 0 by convention. Similarly we write {FiliM, i ≥ 0} for the cosocle filtration of M and
griM for the graded pieces.

We first recall some results on the structure of injective envelopes in RepΓ, mainly following [8,
§3]. If r = p − 1, we set Rp−1 := Vp−1. If 0 ≤ r ≤ p − 2, let Rr be a Γ-invariant subspace of
Vp−r−1⊗Vp−1 defined in [20, Def. 4.2.10]. By [1, Lem. 3.1], it is self-dual up to a twist and admits
Vr ⊗ detp−1−r as a sub-representation and also as a quotient. Moreover, letting Wr ⊂ Rr be given
by the exact sequence

(2.1) 0→Wr → Rr → Vr ⊗ detp−1−r → 0,

we get a filtration on Rr:
0 ( Vr ⊗ detp−1−r (Wr ( Rr

with graded pieces being Vr⊗detp−1−r, Vp−2−r⊗V Fr
1 , and Vr⊗detp−1−r. Remark that when f ≥ 2

or f = 1 and r 6= 0, this coincides with the socle filtration of Rσ.
Now fix a weight σ = (r0, · · · , rf−1)⊗det−

∑f−1
i=0 p

iri with 0 ≤ ri ≤ p−1 and set Rσ := ⊗f−1
i=0 R

Fri

ri .
If dimσ ≥ 2, i.e., if not all ri equal to 0, then Rσ is an injective envelope of σ, see [20, Cor. 4.2.22].
Otherwise, Rσ is isomorphic to injΓ(0, · · · , 0)⊕ (p− 1, · · · , p− 1), where injΓ(0, · · · , 0) denotes the
injective envelope of (0, · · · , 0) in RepΓ, see [20, Cor. 4.2.31].

From now on (until the end of subsection 2.2), we assume that dimσ ≥ 2 and that σ is regular
in the sense of Definition 2.1.

Lemma 2.2. (i) For 0 ≤ i 6= j ≤ f − 1, we have

(2.2) (WFri

ri ⊗R
Frj

rj ) ∩ (RFri

ri ⊗W
Frj

rj ) = WFri

ri ⊗W
Frj

rj .

The same statement holds if we replace Wri , Wrj by Vri ⊗ detp−1−ri , Vrj ⊗ detp−1−rj .
(ii) We have

⋂f−1
i=0

(
WFri

ri ⊗ (⊗j 6=iRFrj

rj )
)

= ⊗f−1
i=0 W

Fri

ri . The same statement holds if we replace
Wri by Vri ⊗ detp−1−ri .
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Proof. The (i) is standard, see for example [3, Chap. I, §2, n◦ 6, Prop. 7]. For (ii), we proceed by
an obvious induction using (i). �

We find it convenient to give a name for the intersection in Lemma 2.2(ii).

Definition 2.3. Denote by Aσ the following sub-representation of Rσ:

Aσ =

f−1⊗
i=0

WFri

ri .

Proposition 2.4. Aσ is multiplicity free, and is the largest sub-representation of Rσ which is
multiplicity free.

Proof. In the notation of [8, §3], Aσ is exactly the representation V2p−2−r defined in [8, Def. 3.3].
The assertion then follows from [8, Prop. 3.6, Cor. 3.11]. �

To study the structure of Aσ, we need to introduce another sub-representation of Rσ.

2.1. The representation A′σ.

Definition 2.5. We define A′σ to be the sub-representation of Rσ:

A′σ :=

f−1∑
i=0

(
RFri

ri ⊗ (⊗j 6=i(Vrj ⊗ detp−1−rj )Frj )
)
.

We write A′σ,i for RFri

ri ⊗ (⊗j 6=i(Vrj ⊗ detp−1−rj )Frj ) so that A′σ =
∑f−1
i=0 A

′
σ,i.

Lemma 2.6. The multiplicity with which σ appears in (the semisimplification of) A′σ is f + 1.

Proof. If f = 1, then A′σ,0 is just Rr0 = Rσ and the result follows from [8, Lemmas 3.4, 3.5, 3.8(i)].
Assume f ≥ 2 in the rest of the proof. Tensoring with ⊗k 6=i,j(Vrk ⊗ detp−1−rk)Frk , Lemma 2.2(i)
implies that for any 0 ≤ i 6= j ≤ f − 1, we have

A′σ,i ∩A′σ,j = σ,

so that
0→ σ → A′σ,i ⊕A′σ,j → A′σ,i +A′σ,j → 0

is exact. This shows that the multiplicity with which σ appears in A′σ,i + A′σ,j is 3. An induction
shows that the multiplicity with which σ appears in

∑m
i=0A

′
σ,i is m+ 1 for any 0 ≤ m ≤ f − 1. �

We can describe A′σ,i explicitly.

Lemma 2.7. The Γ-socle and cosocle of A′σ,i is isomorphic to σ.

Proof. Since A′σ,i is a non-zero sub-representation of Rσ and soc(Rσ) = σ, we have soc(A′σ,i) = σ

and in particular is irreducible. Now, the representations RFri

ri and (Vrj⊗detp−1−rj )Frj are self-dual
up to a twist, so is A′σ,i. We deduce that the cosocle of A′σ,i is also irreducible. It follows from (2.1)
that A′σ,i admits σ as a quotient, hence the cosocle has to be σ. �

Definition 2.8. For each 0 ≤ i ≤ f − 1, we define two weights as follows:
– if f = 1, let µ+

0 (σ) := Vp−1−r0 and µ−0 (σ) := Vp−3−r0 ⊗ det;
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– if f ≥ 2, let

µ±i (σ) := (r0, · · · , p− 2− ri, ri+1 ± 1, · · · , rf−1)⊗ deta
±
i −

∑f−1
j=0 p

jrj .

where a+
i = pi(ri + 1)− pi+1 and a−i = pi(ri + 1).

By convention, when µ−i (σ) is not a genuine weight, i.e. when f = 1 and r0 = p− 2, or f ≥ 2 and
ri+1 = 0, we say that µ−i (σ) is not defined.

By [8, Lem. 3.8(i)] the representation

(V Fri

p−2−ri ⊗ V
Fri+1

1 )⊗
(
⊗j 6=i(Vrj ⊗ detp−1−rj )Frj

)
is semi-simple, and is isomorphic to µ+

i (σ)⊕ µ−i (σ); here and below we ignore µ−i (σ) in the direct
sum when it is not defined. Knowing the socle and cosocle of A′σ,i, we get the following.

Lemma 2.9. The socle filtration of A′σ,i has length 3, with graded pieces σ, µ+
i (σ)⊕µ−i (σ), and σ.

Corollary 2.10. We have an isomorphism A′σ,i/(A
′
σ,i ∩Aσ) ∼= σ.

Proof. It follows from that A′σ,i∩Aσ is of multiplicity free (by Proposition 2.4) and contains Fil1A
′
σ,i

by construction. �

2.2. The structure of Aσ.

Proposition 2.11. We have socΓ(Rσ/Aσ) ∼= σ⊕f .

Proof. For each 0 ≤ i ≤ f − 1, tensoring the exact sequence (2.1) with ⊗j 6=iRFrj

rj gives an exact
sequence

0→WFri

ri ⊗ (⊗j 6=iRFrj

rj )→ Rσ → (Vri ⊗ detp−1−ri)Fri ⊗ (⊗j 6=iRFrj

rj )→ 0.

By Lemma 2.2(ii), Aσ is equal to the intersection of WFri

ri ⊗ (⊗j 6=iRFrj

rj ) for 0 ≤ i ≤ f − 1, so we get
an injection

Rσ/Aσ ↪→
f−1⊕
i=0

(Vri ⊗ detp−1−ri)Fri ⊗ (⊗j 6=iRFrj

rj ).

Since (Vri⊗detp−1−ri)Fri⊗(⊗j 6=iRFrj

rj ) embeds into Rσ, we deduce that Rσ/Aσ embeds into (Rσ)⊕f

so that socΓ(Rσ/Aσ) ⊆ σ⊕f . To show the equality, we use the embedding

A′σ/(A
′
σ ∩Aσ) ↪→ Rσ/Aσ,

whose image in fact lies in the socle of Rσ/Aσ by Corollary 2.10. Since Aσ is multiplicity free, σ
appears in A′σ ∩ Aσ exactly once. Lemma 2.6 implies that the multiplicity of σ in socΓ(Rσ/Aσ) is
at least f , which completes the proof. �

It is easy to see from the above proof that A′σ/(A′σ ∩ Aσ) is identified with socΓ(Rσ/Aσ). Let
Bσ be the pullback of socΓ(Rσ/Aσ), i.e. given by

0→ Aσ → Bσ → socΓ(Rσ/Aσ)→ 0.

Then A′σ is contained in Bσ; in fact, Bσ = A′σ +Aσ.

Lemma 2.12. The quotient Bσ/A′σ has no sub-quotient isomorphic to σ.

Proof. We have an exact sequence 0 → Aσ → Bσ → σ⊕f → 0 by Proposition 2.11. Moreover,
Aσ is multiplicity free, with σ appearing there exactly once. So the multiplicity of σ in (the
semisimplification of) Bσ is f + 1, which is also the multiplicity of σ in A′σ by Lemma 2.6. �
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Proposition 2.13. Let M be a sub-representation of Bσ. Assume M ∩A′σ ⊆ Aσ. Then M ⊆ Aσ.

Proof. Consider the commutative diagram of exact sequences (with α the induced morphism)

0 // M ∩Aσ

��

// M //

��

M/(M ∩Aσ)

α

��

// 0

0 // Aσ // Bσ // socΓ(Rσ/Aσ) // 0.

Since α is injective, it suffices to show α = 0. The assumption implies M ∩A′σ ⊆M ∩Aσ. Denote
by α′ the composition

α′ : M/(M ∩A′σ) �M/(M ∩Aσ)
α→ socΓ(Rσ/Aσ).

The first map being surjective, α = 0 if and only if α′ = 0. However, the natural isomorphism
M/(M ∩A′σ) ∼= (M +A′σ)/A′σ allows us to view M/(M ∩A′σ) as a sub-representation of Bσ/A′σ. By
Lemma 2.12, Bσ/A′σ has no sub-quotient isomorphic to σ, while socΓ(Rσ/Aσ) ∼= σ⊕f by Proposition
2.11, hence α′ = 0. �

Now we treat the general case.

Proposition 2.14. Let M be a sub-representation of Rσ. Assume M ∩A′σ ⊆ Aσ. Then M ⊆ Aσ.

Proof. Let M ′ := M ∩Bσ. Then M ′ ∩A′σ = M ∩A′σ ⊆ Aσ, so Proposition 2.13 implies M ′ ⊆ Aσ.
Consider the following commutative diagram where α′ is the map constructed in Proposition 2.13
(with M replaced by M ′)

M ′
� � //

����

M

����
M ′/(M ′ ∩A′σ)

α′

��

M/(M ∩Aσ)� _

α

��
socΓ(Rσ/Aσ) �

� // Rσ/Aσ.

We know that α′ = 0 and we want to prove α = 0. Assume α 6= 0. Then Im(α) would have a
non-zero intersection with socΓ(Rσ/Aσ). Let v̄ ∈ Im(α)∩ socΓ(Rσ/Aσ) and let v ∈M be a lift of v̄.
Then v belongs to Bσ by definition, so that v ∈M ∩Bσ = M ′, which gives a contradiction because
α′ = 0. �

Next we give a criterion for the condition in Proposition 2.14 to hold. In particular, if M is a
sub-representation of Rσ, then gr1M embeds into

gr1Rσ
∼=

f−1⊕
i=0

(
µ+
i (σ)⊕ µ−i (σ)

)
.

Definition 2.15. Let σ be a regular weight and M be a sub-representation of Rσ. We say that M
is alternative, if for each 0 ≤ i ≤ f − 1, gr1M does not contain simultaneously µ+

i (σ) and µ−i (σ)
(resp. does not contain µ+

i (σ)) if µ−i (σ) is defined (resp. if µ−i (σ) is not defined).
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Since Rσ is an injective envelope of σ in RepΓ, we have a natural isomorphism HomΓ(σ,Rσ/Aσ) ∼=
Ext1

Γ(σ,Aσ). Hence Ext1
Γ(σ,Aσ) is of dimension f over F by Proposition 2.11. On the other hand,

for each 0 ≤ i ≤ f − 1, we can use Corollary 2.10 to view A′σ,i as an (non-zero) element in
Ext1

Γ(σ,Aσ ∩ A′σ,i), whose push-out provides a non-zero element in Ext1
Γ(σ,Aσ), denoted by Xi,

and it is easily seen that {Xi, 0 ≤ i ≤ f − 1} form an F-basis of Ext1
Γ(σ,Aσ). For our purpose,

it is more convenient to view Xi as an element of Ext1
Γ(σ,Aσ ∩ A′σ). Remark, to be precise, that

Aσ ∩A′σ fits in a short exact sequence

(2.3) 0→ σ → Aσ ∩A′σ →
f−1⊕
i=0

(µ+
i (σ)⊕ µ−i (σ))→ 0,

and by Lemma 2.7 we have HomΓ(Xi, µ
±
j (σ)) = 0 if and only if i = j.

Lemma 2.16. Let M be an alternative sub-representation of Rσ. Then M ∩A′σ ⊆ Aσ.

Proof. Obviously we may assume that M is contained in A′σ. Suppose that M * Aσ, so that
M/(Aσ ∩M) is non-zero. Since every irreducible sub-representation of M/(Aσ ∩M) is isomorphic
to σ, we get a non-split extension

0→ Aσ ∩M → Y → σ → 0

whose push-out gives an extension class in Ext1
Γ(σ,Aσ∩A′σ), denoted by X. Then there exist ci ∈ F,

not all zero, such that
X = c0X0 + · · ·+ cf−1Xf−1.

Without loss of generality, we assume that c0 6= 0. Since HomΓ(X0, µ
±
0 (σ)) = 0 by Lemma 2.7, and

HomΓ(Xi, µ
±
0 (σ)) 6= 0, 1 ≤ i ≤ f − 1,

Lemma 2.17 below, applied to A = σ, B = Aσ ∩A′σ, C = µ+
0 (σ) or µ−0 (σ), implies that

(2.4) HomΓ(X,µ±0 (σ)) = 0.

On the other hand, sinceM is alternative, gr1M does not contain µ∗0(σ) for ∗ ∈ {+,−} (with ∗ = +
if µ−0 (σ) is not defined), i.e. HomΓ(Aσ ∩M,µ∗0(σ)) = 0. Using (2.3) we see that

HomΓ

(
(Aσ ∩A′σ)/(Aσ ∩M), µ∗0(σ)

)
6= 0.

By construction we have a commutative diagram of exact sequences

0 // Aσ ∩M //

��

Y //

��

σ // 0

0 // Aσ ∩A′σ // X // σ // 0

from which we get (Aσ ∩A′σ)/(Aσ ∩M) ∼= X/Y , therefore

0 6= HomΓ(X/Y, µ∗0(σ)) ↪→ HomΓ(X,µ∗0(σ)).

This contradicts (2.4) and allows to conclude. �

Lemma 2.17. Let A,B,C ∈ RepΓ. Let X,X ′ ∈ Ext1
Γ(A,B) which are represented by short exact

sequences 0→ B → X → A→ 0 and 0→ B → X ′ → A→ 0. Assume that
(i) HomΓ(X,C) = 0;
(ii) HomΓ(X ′, C)→ HomΓ(B,C) is an isomorphism.

Then the Baer sum X +X ′ ∈ Ext1
Γ(A,B) satisfies HomΓ(X +X ′, C) = 0.
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Proof. We first recall the construction of the Baer sum. Let X ′′ be the pullback {(x, x′) ∈ X×X ′ :
x̄ = x̄′ in A}. Then X + X ′ is the quotient of X ′′ by the skew diagonal {(−b, b) : b ∈ B}, see [22,
Def. 3.4.4]. X ′′ contains three copies of B: 0 × B, B × 0, and the skew diagonal, taking quotient
by which we get respectively X, X ′ and Y := X + X ′. Denote by s : B → X ′′ the skew diagonal
morphism.

On the one hand, we have a commutative diagram of exact sequences

0 // B // X ′ // A // 0

0 // B
s // X ′′

OO

// Y

OO

// 0

which induces (using (ii))
HomΓ(X ′, C)

��

HomΓ(B,C)

HomΓ(X ′′, C)
s̃ // HomΓ(B,C).

In particular, s̃ is surjective. On the other hand, using (i) and the exact sequence 0 → 0 × B →
X ′′ → X → 0 we get

dimF HomΓ(X ′′, C) ≤ dimF HomΓ(B,C),

hence s̃ is in fact an isomorphism.
The lemma follows by applying HomΓ(∗, C) to the sequence 0→ B

s→ X ′′ → Y → 0. �

Remark 2.18. Although we have only defined Rσ, Aσ, etc and proved the results for regular
weights σ of the form (r0, · · · , rf−1)⊗det−

∑f−1
i=0 p

iri such that dimσ ≥ 2, all these can obviously be
generalized to general regular weights of dimension at least 2 by a twist.

2.3. An auxiliary lemma. Let σ be a regular weight (possibly of dimension 1). By [8, Lem.
3.2], the irreducible constituents of injΓσ (without multiplicities) are parametrised by a certain
set I(x0, · · · , xf−1) defined in the beginning of [8, §3]. For later use, we recall its definition.
The set I(x0, · · · , xf−1) consists of elements of the form λ = (λ0(x0), · · · , λf−1(xf−1)) where
λ0(x0) ∈ {x0, p− 2− x0 ± 1} if f = 1, and if f > 1 then:

(i) λi(xi) ∈ {xi, xi ± 1, p− 2− xi, p− 2− xi ± 1} for 0 ≤ i ≤ f − 1
(ii) if λi(xi) ∈ {xi, xi ± 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}
(iii) if λi(xi) ∈ {p− 2− xi, p− 2− xi ± 1}, then λi+1(xi+1) ∈ {xi+1 ± 1, p− 2− xi+1 ± 1}

with the conventions xf = x0 and λf (xf ) = λ0(x0). Each λ gives rise to a weight by “evaluating”
at σ = (r0, · · · , rf−1) ⊗ η, but note that it is not a genuine one if λi(ri) < 0 or λi(ri) > p − 1 for
some i (so we will ignore it in this case). In any case, an irreducible constituent of Aσ corresponds
to a unique element of I(x0, · · · , xf−1).

Let S := {0, ..., f − 1}. For λ ∈ I(x0, · · · , xf−1), set

S(λ) := {i ∈ S | λi(xi) = p− 2− xi ± 1, xi ± 1}.

We also write S(τ) := S(λ) if τ is the corresponding weight. Recall from [8, Def. 4.10] that, if
λ, λ′ ∈ I(x0, · · · , xf−1), we say λ and λ′ are compatible if, whenever λi(xi) ∈ {p−2−xi−±1, xi±1}
and λ′i(xi) ∈ {p−2−xi−±1, xi±1} for the same i, then the signs of the ±1 are the same in λi(xi)
and λ′i(xi). The following property is directly checked.
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Lemma 2.19. Fix an element λ ∈ I(x0, · · · , xf−1). For every subset S ′ of S(λ), there exists
exactly one element λ′ ∈ I(x0, · · · , xf−1) such that S(λ′) = S ′ and λ′ is compatible with λ.

Let τ be an irreducible constituent of injΓσ. Then there exist finite dimensional representations of
Γ with socle σ and cosocle τ by taking the image of any non-zero morphism φ ∈ HomΓ(injΓτ, injΓσ).
Since σ is regular, [8, Cor. 3.12] implies that among these representations there exists a unique
one, denoted by I(σ, τ), such that σ appears with multiplicity 1. Moreover, I(σ, τ) is multiplicity
free. By [8, Cor. 4.11] and Lemma 2.19, the irreducible constituents of I(σ, τ) are parametrised by
subsets of S(τ), hence I(σ, τ) has at most 2|S(τ)| irreducible constituents (as we possibly need to
forget some fake weights).

Lemma 2.20. Let σc be an irreducible constituent of injΓσ. Assume that I(σ, σc) has 2|S(σc)| irre-
ducible constituents. Then, for every irreducible constituent τ of I(σ, σc), the following statements
hold:

(i) the weight τ is regular;
(ii) there exists a unique weight τ c of I(σ, σc) such that S(τ c) = S(σc)\S(τ);
(iii) the representation I(τ, τ c) exists, and has the same semi-simplification as I(σ, σc).

Proof. Since the results in the case f = 1 are obvious, we assume f ≥ 2 in the rest of the proof.
(i) Assume τ is not regular. Let µ ∈ I(x0, · · · , xf−1) be the element corresponding to τ . Then,

µi(ri) = p − 1 for some i ∈ S. Since 0 ≤ ri ≤ p − 2, this happens only when ri = 0 and
µi(xi) = p − 1 − xi. By definition of I(x0, · · · , xf−1), we have i + 1 ∈ S(µ). By Lemma 2.19,
there exists a unique element µ′ ∈ I(x0, · · · , xf−1) which is compatible with µ and such that
S(µ′) = S(µ)\{i+ 1}. Then µ′i+1(xi+1) ∈ {p− 2− xi+1, xi+1}, hence µ′i(xi) ∈ {xi, xi − 1, xi + 1};
but the condition i ∈ S(µ′) and the compatibility with µ imply that µ′i(xi) = xi − 1. Since ri = 0,
µ′ does not correspond to a genuine weight, giving a contradiction to the assumption.

(ii) The assumption together with Lemma 2.19 implies that each subset of S(σc) corresponds to
a genuine weight, whence the assertion.

(iii) We may assume σ 6= σc, i.e. S(σc) 6= ∅, therefore τ and τ c are non-isomorphic. Let
µ, µc ∈ I(x0, · · · , xf−1) be the elements corresponding to τ, τ c. We can write µc = ν ◦ µ for some
(unique) ν := (νi(xi))i with νi(xi) ∈ Z ± xi. We claim that ν ∈ I(x0, · · · , xf−1). First, we check
that νi(xi) ∈ {xi, xi ± 1, p− 2− xi, p− 2− xi ± 1}. If i ∈ S(µ), then i /∈ S(µc), hence

µi(xi) ∈ {xi ± 1, p− 2− xi ± 1}, µci (xi) ∈ {xi, p− 2− xi}

so that µci (xi) = νi(µi(xi)) with νi(xi) ∈ {xi±1, p−2−xi±1}. Similar statement holds if i ∈ S(µc).
If i /∈ S(λc), then

µi(xi), µ
c
i (xi) ∈ {xi, p− 2− xi}

so that µci (xi) = νi(µi(xi)) with νi(xi) ∈ {xi, p − 2 − xi}. Next, we verify that the relations (ii),
(iii) in the definition of I(x0, · · · , xf−1) are satisfied. This is a direct but tedious check and we only
give details for some special cases. For example, in the case when i ∈ S(µ) (hence i /∈ S(µc)), we
have µci (xi) ∈ {xi, p− 2− xi} and the following possibilities:

– If µi(xi) ∈ {xi ± 1} and µci (xi) = xi, then νi(xi) ∈ {xi ± 1}; on the other hand, by the
definition of I(x0, · · · , xf−1) we have

µi+1(xi+1), µci+1(xi+1) ∈ {xi+1, p− 2− xi+1}

so that νi+1(xi+1) ∈ {xi+1, p−2−xi+1} which verifies the relation required in the definition
of I(x0, · · · , xf−1).
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– If µi(xi) ∈ {xi ± 1} and µci (xi) = p − 2 − xi, then νi(xi) ∈ {p − 2 − xi ± 1}; on the other
hand, by the definition of I(x0, · · · , xf−1) we have

µi+1(xi+1) ∈ {xi+1, p− 2− xi+1}, µci+1(xi+1) ∈ {xi+1 ± 1, p− 2− xi+1 ± 1}
so that νi+1(xi+1) ∈ {xi+1 ± 1, p− 2− xi+1 ± 1} which verifies the relation required in the
definition of I(x0, · · · , xf−1).

– If µi(xi) ∈ {p− 2− xi ± 1}, we claim that µci (xi) = xi and so νi(xi) ∈ {p− 2− xi ± 1}. In
fact, otherwise µci (xi) = p− 2− xi, then by the definition of I(x0, · · · , xf−1)

µi+1(xi+1), µci+1(xi+1) ∈ {xi+1 ± 1, p− 2− xi+1 ± 1},
so that i+ 1 ∈ S(µ)∩S(µc) which is impossible. Consequently, µci+1(xi+1) ∈ {xi+1, p− 2−
xi+1} and so νi+1(xi+1) ∈ {xi+1 ± 1, p− 2− xi+1 ± 1}, which verifies the relation required
in the definition of I(x0, · · · , xf−1).

Having checked that µc = ν ◦µ for some ν ∈ I(x0, · · · , xf−1), we deduce from [8, Lem. 3.2] that
τ c appears in injΓτ . Since τ is regular by (i), the representation I(τ, τ c) exists; see the discussion
after Lemma 2.19. Moreover, from the explicit description of ν we see that S(ν) = S(λc).

More generally, we claim that if τ ′ is any irreducible constituent of I(σ, σc), then τ ′ is an
irreducible constituent of injΓτ , i.e. we can write µ′ = ν′ ◦ µ for some ν′ ∈ I(x0, · · · , xf−1)
where µ′ ∈ I(x0, · · · , xf−1) corresponds to τ ′ inside injΓσ. In fact, the above check still works if
i /∈ S(µ) ∩ S(µ′), and if i ∈ S(µ) ∩ S(µ′), the compatibility with λc implies that

µ′i(xi) = ν′i(µi(xi)), with ν′i(xi) ∈ {xi, p− 2− xi}.
The relations (ii), (iii) in the definition of I(x0, · · · , xf−1) are verified in the same way as above.
This proves the claim. Moreover, we obtain that S(ν′) = (S(µ) ∪ S(µ′))\(S(µ) ∩ S(µ′)), which is
in particular contained in S(ν) = S(λc).

To finish the proof, we check that τ ′ is an irreducible constituent of I(τ, τ c). This amounts to
check the compatibility between ν′ and ν by [8, Cor. 4.11], which is an easy exercise. �

2.4. Tame types and their lattices. We call tame types the irreducible E-representations of
GL2(OL) that arise by inflation from an irreducible E-representation of GL2(Fq). These representa-
tions are either principal series, cuspidal, one-dimensional, or twist of the Steinberg representations.
In this paper, we only consider the principal series types and the cuspidal types, and all tame types
occurring in the following will be assumed to be of this kind. We choose a GL2(OL)-invariant lattice
V ◦ of a tame type V and consider its reduction V ◦ := V ◦/$EV

◦ whose semi-simplification, denoted
by V , does not depend on the choice of the lattice. We write JH(V ) for the set of Jordan-Hölder
factors of V . We recall the following well-known results on tame types.

Proposition 2.21. Let V be a tame type. Then
(i) V is residually multiplicity free, i.e., each element of JH(V ) appears exactly once in V .
(ii) For any Jordan-Hölder factor σ of V , there is up to homothety a unique GL2(OL)-stable

OE-lattice (Vσ)◦ (resp. (V σ)◦) in V such that the cosocle (resp. socle) of its reduction is σ.
(iii) Let σ ∈ JH(V ) and (Vσ)◦ (resp. (V σ)◦) be as in (ii). If τ ∈ JH(V ) is such that Ext1

Γ(τ, σ) 6=
0, then τ appears in the 1-st layer of the cosocle filtration (resp. socle filtration) of (Vσ)◦ (resp.
(V σ)◦).

Proof. (i) is [13, Lem. 3.1.1]. (ii) is [13, Lem. 4.1.1]. (iii) follows from [13, Thm. 5.1.1], but since
our notations here are slightly different, we explain its proof. First note that, by [8, Cor. 5.6] (using
the assumption p ≥ 3 when f = 1), the condition Ext1

Γ(τ, σ) 6= 0 is equivalent to Ext1
Γ(σ, τ) 6= 0; if
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this holds, then they are both 1-dimensional over F and we have automatically σ 6= τ . Moreover,
by taking dual and using [13, Lem. 3.1.1], it suffices to prove the assertion for (V σ)◦, whose mod
$E reduction has socle σ. We can embed (V σ)◦ into injΓσ, hence τ appear in injΓ(σ) and the
representation I(σ, τ) exists; see the discussion after Lemma 2.19. Since τ appears in (V σ)◦ exactly
once, the representation I(σ, τ) is in fact contained in (V σ)◦. We can write down I(σ, τ) explicitly:
by the uniqueness, I(σ, τ) is the unique non-split extension (class) of τ by σ, hence of length 2.
This implies that τ appears in gr1(V σ)◦, otherwise I(σ, τ) would have length ≥ 3. �

The proof of Proposition 2.21(iii) has the following consequence.

Corollary 2.22. Let V be a tame type. For any σ, τ ∈ JH(V ), the representation I(σ, τ) exists
and is a sub-representation of (V σ)◦.

2.5. Serre weights. In this subsection, we prove a general fact about the set of Serre weights
attached to a residual generic representation ρ.

From now on, we assume that L is unramified over Qp. Let f := [L : Qp]. Let ρ : Gal(Qp/L)→
GL2(F) be a continuous representation. Assume that ρ is generic in the sense of [8, §11], that is,
ρ|I(Qp/L) is isomorphic to one of the following two forms

(1)

(
ω
∑f−1
i=0 p

i(ri+1)
f ∗

0 1

)
⊗ η with 0 ≤ ri ≤ p− 3 for each i, and not all ri equal to 0 or equal

to p− 3;

(2)

ω∑f−1
i=0 p

i(ri+1)
2f 0

0 ω
pf

∑f−1
i=0 p

i(ri+1)
2f

⊗ η with 1 ≤ r0 ≤ p− 2, and 0 ≤ ri ≤ p− 3 for i > 0.

where ωf is the fundamental character of I(Qp/L) of level f as in [8, §11]. Note that there are no
generic representations if p = 2, and no reducible generic representations if p ≤ 3.

To ρ is associated a set of weights, called Serre weights and denoted by D(ρ) (see [8, §11] or
[9]). Recall that ρ is tamely ramified (or tame for short) if and only if it is either reducible split
or irreducible. The genericity of ρ implies that the cardinality of D(ρ) is 2f if ρ is tame, and is
2d for some 0 ≤ d ≤ f − 1 if ρ is reducible non-split, see [8, §11]. Moreover, if ρss denotes the
semi-simplification of ρ, then we always have D(ρ) ⊆ D(ρss). By [13, Lem. 2.1.6]1, since ρ is
generic, any weight σ ∈ D(ρ) is regular.

Proposition 2.23. There is a tame type V of GL2(OL) such that JH(V ) identifies with D(ρss).
In particular, | JH(V )| = |D(ρss)| = 2f .

Proof. This is [5, Prop. 4.4] or [11]. �

The following result is inspired by [5, Prop. 4.4] and generalises it.

Proposition 2.24. Let σ, τ be two elements of D(ρ). Then the representation I(σ, τ) exists and
any irreducible constituent of I(σ, τ) is also an element of D(ρ).

Proof. If ρ is tame, we take a tame type V such that JH(V ) = D(ρ) by Proposition 2.23. The
result follows from the proof of Corollary 2.22.

If ρ is reducible non-split, the existence of I(σ, τ) still follows from Proposition 2.23 and Corollary
2.22 by noting that D(ρ) ⊂ D(ρss). The proof of the second assertion is a little subtler. First, using

1In [13], the genericity condition is the same as in [8].
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the theory of Fontaine-Laffaille module, we attach to ρ a certain subset Jρ of S which measures
how far ρ is from splitting, see [5, §4] (we do not need the precise definition here). Remark that
the cardinality of D(ρ) is exactly 2|Jρ| (see [5, §4]). Applying [5, Prop. 4.4(ii)] to Jmin = ∅ and
Jmax = δ(Jρ) (where δ is as in loc. cit.), we find a (unique) tame character χ : I → O×E such
that the irreducible constituents of IndΓ

B(χs) which are Serre weights of ρ are exactly the weights
parametrised by subsets of δ(Jρ) (in the sense of [8, §2]). In other words, if we write σ∅ for the socle
and σc∅ for the weight corresponding to Jmax, then the set D(ρ) is exactly the set of irreducible
constituents of I(σ∅, σ

c
∅), because they have the same cardinality. Moreover, the assumption of

Lemma 2.20 is satisfied and applying it we deduce that the set D(ρ) is also the set of irreducible
constituents of I(σ, σc) for any weight σ ∈ D(ρ), where σc is defined as in Lemma 2.20 relative
to Jmax. Since τ appears in I(σ, σc), I(σ, τ) is a sub-representation of I(σ, σc) and the result
follows. �

2.6. The construction of Breuil-Paškūnas. Let ρ be as in the previous subsection. Let D0(ρ)
be the finite dimensional Γ-representation attached to ρ in [8, §13], that is, D0(ρ) is the largest
F-representation of Γ such that:

(a) socΓD0(ρ) =
⊕

σ∈D(ρ) σ

(b) any weight of D(ρ) appears exactly once in D0(ρ).
We have a Γ-equivariant decomposition D0(ρ) =

⊕
σ∈D(ρ)D0,σ(ρ) by [8, Prop. 13.1], with each

D0,σ(ρ) satisfying socΓD0,σ(ρ) = σ. Moreover, D0(ρ) is multiplicity free by [8, Cor. 13.5]. Conse-
quently, D0,σ(ρ) is a sub-representation of Aσ as defined in the beginning of §2.2 (well-defined since
σ is regular by [13, Lem. 2.1.6]).

Lemma 2.25. Fix a weight σ ∈ D(ρ) and let τ be any weight non-isomorphic to σ. If Ext1
Γ(τ,D0,σ(ρ)) 6=

0, then τ ∈ D(ρ). If this is the case, then the inclusion σ ↪→ D0,σ(ρ) induces an isomorphism

Ext1
Γ(τ, σ)

∼−→ Ext1
Γ(τ,D0,σ(ρ)).

Proof. Assume Ext1
Γ(τ,D0,σ(ρ)) 6= 0 and let M be a non-split Γ-extension 0 → D0,σ(ρ) → M →

τ → 0. Then socΓ(M) = socΓ(D0,σ(ρ)) = σ. If τ /∈ D(ρ), then the representation

M
⊕( ⊕

σ′∈D(ρ),σ′ 6=σ

D0,σ′(ρ)
)

would be strictly larger than D0(ρ) and verifies the conditions (a), (b) above, contradicting the
maximality of D0(ρ).

We have HomΓ(τ,D0,σ(ρ)/σ) = 0 as τ ∈ D(ρ), hence the natural morphism Ext1
Γ(τ, σ) →

Ext1
Γ(τ,D0,σ(ρ)) is injective. To show the surjectivity, we need to show that any non-split extension

M arises from the pushout of some extension in Ext1
Γ(τ, σ). Since socΓM = socΓD0,σ(ρ), M can

be embedded into Rσ, the injective envelope of σ in RepΓ (noting that the genericity of ρ implies
dimF σ ≥ 2 for any σ ∈ D(ρ)). Moreover, because τ is an element of D(ρ) and distinct from
σ, it does not appear in D0,σ(ρ) so that M is multiplicity free. This shows, using notations in
§2.2, that M is a sub-representation of Aσ. Consequently, the representation I(σ, τ) is a sub-
representation of Aσ. Since all the irreducible constituents of I(σ, τ) are Serre weights of ρ by
Proposition 2.24, while by construction only σ and τ are, we obtain that I(σ, τ) is of length 2, i.e.,
we have 0→ σ → I(σ, τ)→ τ → 0. �

From now on, we assume that ρ is tame.
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Lemma 2.26. For each σ ∈ D(ρ):
(i) D0,σ(ρ) is an alternative sub-representation of Aσ;
(ii) Ext1

Γ(σ,D0,σ(ρ)) = 0.

Proof. (i) We already remarked that σ is regular and D0,σ(ρ) is a sub-representation of Aσ. Write

σ = (λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

with λ = (λi(xi))i as in Lemma 11.2 (if ρ is reducible) or Lemma 11.4 (if ρ is irreducible) of [8]. Fix
0 ≤ i ≤ f − 1. If µ−i (σ) is defined, the assertion follows from [8, Thm. 14.8], because only one of
µ+
i (σ) and µ−i (σ) could be compatible with µλ (notations as in loc.cit.). Otherwise, we have either
f = 1 and λ0(r0) = p−2 (hence ρ is irreducible by the genericity of ρ), or f ≥ 2 and λi+1(ri+1) = 0.
In the first case, it is direct to check that D0,σ(ρ) does not contain µ+

0 (σ), see [8, §16]. We assume
f ≥ 2 and λi+1(ri+1) = 0 for the rest. We need show that gr1D0,σ(ρ) does not contain µ+

i (σ), i.e.,
the element µ+ := (· · · , p − 2 − xi, xi+1 + 1, · · · ), where (µ+)j(xj) = xj if j /∈ {i, i + 1}, is not
compatible with µλ. This also follows from [8, Thm. 14.8] by a careful analysis. Indeed, by the
genericity of ρ, λi+1(ri+1) = 0 if and only if one of the following holds:

(a) ρ is reducible and, either ri+1 = 0 and λi+1(xi+1) = xi+1, or ri+1 = p−3 and λi+1(xi+1) =
p− 3− xi+1;

(b) ρ is irreducible and if i+ 1 > 0, then either ri+1 = 0 and λi+1(xi+1) = xi+1, or ri+1 = p−3
and λi+1(xi+1) = p − 3 − xi+1; if i + 1 = 0, then either r0 = 1 and λ0(x0) = x0 − 1, or
r0 = p− 2 and λ0(x0) = p− 2− x0.

In all cases, we have µλ,i+1(yi+1) = p − 1 − yi+1, see the paragraph preceding [8, Thm. 14.8].
Therefore µ+ is not compatible with µλ.

For (ii), let M be a non-split Γ-extension

0→ D0,σ(ρ)→M → σ → 0.

Then we can view M as a sub-representation of Rσ. By (i), D0,σ(ρ) is alternative. Since σ is not
isomorphic to µ+

i (σ) or µ−i (σ) for any i,M is still alternative, so thatM ∩A′σ ⊆ Aσ by Lemma 2.16.
Then Proposition 2.13 implies that M ⊆ Aσ, which gives a contradiction since Aσ is multiplicity
free while M is not. �

Remark 2.27. If ρ is reducible non-split, then D0,σ(ρ) is in general not alternative, see [8, §16,
Example (ia)].

We choose a tame type V such that the Jordan-Hölder factors of V are exactly the set D(ρ);
this is possible by Proposition 2.23. For τ ∈ D(ρ), let V ◦τ be the unique homothety class of lattices
in V such that the Γ-cosocle of V ◦τ /$EV

◦
τ is τ .

Proposition 2.28. Let σ1, ..., σm ∈ D(ρ) be different weights. Let τ ∈ D(ρ) and assume that
dimF Ext1

Γ(τ, σi)=1 for all 1 ≤ i ≤ m. Let M be the universal extension

0→ ⊕mi=1σi →M → τ → 0,

i.e. the unique extension of τ by ⊕mi=1σi whose cosocle is τ . Then M is a quotient of V ◦τ /$EV
◦
τ .

Proof. By definition, V ◦τ /$EV
◦
τ has cosocle isomorphic to τ . Proposition 2.21(iii) shows that all

σ ∈ D(ρ) such that Ext1
Γ(τ, σ) 6= 0 must appear in the 1-st layer of the cosocle filtration of

V ◦τ /$EV
◦
τ , proving the result. �

Corollary 2.29. Let W be a sub-representation of ⊕σ∈D(ρ)Rσ containing D0(ρ). Assume that for
each τ ∈ D(ρ), HomΓ(V ◦τ /$EV

◦
τ ,W ) is 1-dimensional over F. Then W = D0(ρ).



14 YONGQUAN HU AND HAORAN WANG

Proof. Suppose that W is strictly larger than D0(ρ) and let τ be a weight appearing in the socle
of W/D0(ρ). Since W and D0(ρ) have the same socle (both isomorphic to ⊕σ∈D(ρ)σ), we get a
non-split Γ-extension, denoted by M ,

0→ D0(ρ)→M → τ → 0.

Lemmas 2.25 and 2.26 show that τ ∈ D(ρ) and this extension is the pushout of a non-split extension
M ′ of τ by ⊕σ∈Sσ, for some subset S ⊂ D(ρ) uniquely determined by requiring that the cosocle
of M ′ is τ . By [8, Cor. 5.6(i)], if σ ∈ D(ρ) is such that Ext1

Γ(τ, σ) 6= 0, then it is automatically of
dimension 1 over F. Therefore, we may apply Proposition 2.28 and deduce that the latter extension
is a quotient of V ◦τ /$EV

◦
τ , providing an element of HomΓ(V ◦τ /$EV

◦
τ ,W ) whose image has length

at least 2. However, by assumption HomΓ(V ◦τ /$EV
◦
τ ,W ) is of dimension 1, and must be spanned

by the composite map

(2.5) V ◦τ /$EV
◦
τ � τ ↪→ socΓW ⊆W.

The contradiction allows to conclude. �

3. Global input

We prove Theorem 1.1 in this section. Let F be a totally real extension of Q in which p is
unramified, and OF be its ring of integers. For any place v of F, let Fv denote the completion of F
at v with ring of integers OFv , uniformiser $v and residue field kv. The cardinality of kv is denoted
by qv. We let AF,f denote the ring of finite adèles of F. If S is a finite set of places of F, we let ASF,f
denote the finite adèles outside S. We write GF := Gal(F/F ) for the global absolute Galois group
of F, and GFv := Gal(F v/Fv) for the local Galois group at v.We fix an embedding F ↪→ F v so that
GFv identifies with the decomposition group of v over F. We let Frobv ∈ GFv denote a (lift of the)
geometric Frobenius element, and let ArtFv denote the local Artin reciprocity map, normalised so
that it sends $v to Frobv. The global Artin map is denoted by ArtF .

If v is a place of F over some prime l. An inertial type for Fv is a two-dimensional E-representation
τv of the inertia group IFv := I(F v/Fv) with open kernel, which may be extended to GFv .We mainly
consider l = p case. Then the tame types considered in §2.4 correspond to the non-scalar tame
inertial types under Henniart’s inertial local Langlands correspondence [17].

Let D be a quaternion algebra with center F. Let Σ be the set of finite places where D is ramified.
We assume that Σ does not contain any place dividing p. We consider the case that D is ramified
at all infinite places (the definite case), or split at exactly one infinite place (the indefinite case).
We exclude the case F = Q and D = GL2.

3.1. Space of modular forms: the definite case. Assume D is definite. For A = OE or F, a
locally constant character ψ : F×\A×F,f → A× and U =

∏
w Uw ⊂ (D ⊗F AF,f )× an open compact

subgroup such that ψ|U∩A×F,f = 1. We denote by SDψ (U,A) the space of functions

f : D×\(D ⊗F AF,f )×/U → A

such that f(xg) = ψ(x)f(g) for any x ∈ A×F,f and g ∈ (D ⊗F AF,f )×. By taking limit over all the
open compact subgroups U ⊂ (D ⊗F AF,f )× satisfying ψ|U∩A×F,f = 1, we obtain an A-module

SDψ (A) := lim−→
U

SDψ (U,A).

which carries a smooth admissible A-linear action of (D ⊗F AF,f )× by (gf)(h) := f(hg) for g, h ∈
(D ⊗F AF,f )×.
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Let S be a finite set of finite places of F which contains Σ, the places lying over p, the places at
which Uw is not maximal, and the places at which ψ is ramified. We consider the Hecke algebra

TS(OE) = OE [GL2(ASF,f )//US ] =
⊗
w/∈S

′Tw(OE),

where US =
∏
w/∈S GL2(OFw), and

Tw(OE) = OE [GL2(Fw)//GL2(OFw)] ∼= OE [Tw, S
±1
w ].

Here, Tw is the Hecke operator corresponding to the double coset

GL2(OFw)

(
$w 0
0 1

)
GL2(OFw)

and Sw is the one corresponding to

GL2(OFw)

(
$w 0
0 $w

)
GL2(OFw).

The abstract Hecke algebra TS(OE) acts on SDψ (U,OE) via Hecke correspondence, and we let
TS(U,OE) denote the image of TS(OE) in EndOE (SDψ (U,OE)).

Let r : GF → GL2(F) be a two dimensional continuous totally odd and absolutely irreducible
Galois representation. For w a finite place of F, let ρw := r|GFw denote the restriction of r to
GFw . We choose an S as above which further contains all the ramified places of r. We associate
to r a maximal ideal mSr of TS(OE), given as the kernel of the map TS(OE) → F sending Tw to
ψ(Frob−1

w ) tr(ρw(Frobw)) and Sw to qw det(ρw(Frobw)) for w /∈ S.
Let

SDψ (U,F)[mSr ] := {f ∈ SDψ (U,F), T f = 0 ∀T ∈ mSr }.

By [9, Lem. 4.6], the space SDψ (U,F)[mSr ] is independent of the choice of S, so we denote it
SDψ (U,F)[mr]. Therefore, we take the limit

SDψ (F)[mr] := lim−→
U

SDψ (U,F)[mr].

Definition 3.1. We say that r is modular if there is a finite character ψ : GF → O×E such that
det r = ε−1ψ with ε the p-adic cyclotomic character, and

SDψ (F)[mr] 6= 0.

This is equivalent to demanding the localization SDψ (U,F)mSr 6= 0 for some U.

We recall the following conjecture of [9].

Conjecture 3.2. ([9, Conj. 4.7]) Suppose that r is modular. There is a (D⊗F AF,f )×-equivariant
isomorphism

SDψ (F)[mr] ∼= ⊗′wπDw (r)

where, in the restricted tensor product on the right hand side, πDw (r) is the smooth admissible
representation of (D ⊗F Fw)× associated to ρw by Vignéras and Emerton when w - p, and when
w|p, πDw (r) is a smooth admissible representation of (D ⊗F Fw)× ∼= GL2(Fw) such that if σ is a
weight, then HomGL2(OFw )(σ, π

D
w (ρ)) 6= 0 if and only if σ ∈ D(ρw).
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Remark 3.3. The weight part of this conjecture is proved in many cases by Gee [14] and then is
completely proved in [15] (for r̄ satisfying the usual Taylor-Wiles hypothesis). In [13], the authors
proved that if ρw is generic, then the GL2(OFw)-socle of πDw (r̄) is exactly ⊕σ∈D(ρw)σ.

Let σU be a finitely generated continuous representation of some open compact subgroup U of
(D ⊗F AF,f )× over OE . We denote

SD(σU ) := HomU (σU , S
D
ψ (OE)⊗OE E/OE),

and write T(σU ) for the image of the abstract Hecke algebra in EndOE (SD(σU )).
We make the usual Taylor-Wiles assumptions on r : GF → GL2(F).

Assumption I. We assume that p is odd; r is modular and r|GF (ζp)
is absolutely irreducible, where

ζp is a primitive p-th root of unity; if p = 5, assume further that the projective image of r|GF (ζp)
is

not isomorphic to A5.

Let S be a subset of finite places of F containing Σ, the places above p and the places where r
or ψ is ramified. We can choose a finite place w1 /∈ S with the properties that
• qw1

6≡ 1 (mod p),
• the ratio of the eigenvalues of r(Frobw1

) is not equal to q±1
w1

• the residue characteristic of w1 is sufficiently large that for any non-trivial root of unity ζ in a
quadratic extension of F, w1 does not divide ζ + ζ−1 − 2.

We consider open compact subgroups U =
∏
w Uw of (D ⊗F AF,f )× for which Uw is maximal

if w /∈ S ∪ {w1}, and Uw1
is the subgroup of GL2(OFw1

) consisting of elements that are upper-
triangular and unipotent modulo w1. Under these assumptions, U is sufficiently small. For σU as
above and each w in S, fix a character ψσU ,w : GFw → O×E such that ψσU ,w(Frobw) = ψ(Frobw),

and ψσU ,w|IFw ◦ArtFw = σU |O×Fw . By Hensel’s lemma, there is a unique character θw : GFw → O×E
with the properties that θw = 1 and θ2

w = ψ−1
σU ,wψ|GFw . We write σU (θ) for the twist of σU by

⊗w∈S(θw ◦ ArtFw ◦det), where det is understood as the reduced norm of D×w if w ∈ Σ. We extend
σU (θ) to an action of U ·A×F,f by letting A×F,f act via the composite A×F,f → A×F,f/F× → O×, with
the second map the one induced by ψ ◦ArtF .

Let σU (θ)∗ denote the Pontryagin dual of σU (θ). The space SD(σU ) can be identified with the
space of continuous functions

f : D×\(D ⊗F AF,f )× → σU (θ)∗

such that f(gu) = u−1f(g) for all g ∈ (D⊗F AF,f )×, u ∈ U ·A×F,f . By the weight part of Conjecture
3.2, for every modular r : GF → GL2(F), we can choose U =

∏
w Uw with Uw = GL2(OFw) for all

w|p, and σU := ⊗w|pσw with σw a Serre weight of ρw, such that SD(σU )mSr 6= 0. We define

Mr(σU ) := SD(σU )∗mSr
,

where ∗ stands for the Pontryagin dual.

3.2. Space of modular forms: the indefinite case. Assume D is indefinite. For any open
compact subgroup U ⊂ (D ⊗F AF,f )×, there is a Shimura curve XU over F, a smooth projective
algebraic curve whose complex points are naturally identified with

D×\((D ⊗F AF,f )× × (C\R))/U.

Let A be OE or F, we define
SD(U,A) := H1

ét(XU,F , A),
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and
SD(A) := lim−→

U

H1
ét(XU,F , A)

where the limit is taken over all the open compact subgroups of (D ⊗F AF,f )×.
As in the definite case, we take S a finite set of finite places of F which contains Σ, the places

lying over p, the places at which Uw is not maximal, and we can form the abstract Hecke algebra
TS(OE) acting on SD(U,OE) and let TS(U,OE) denote its image in EndOE (SD(U,OE)). Let
r : GF → GL2(F) be as above. For suitable choice of places S, we get a maximal ideal mSr ⊂ TS(OE),
and we can define SD(U,F)[mSr ], SD(F)[mr] and SD(F)mSr as in the definite case, see [9, Page 150].
If SD(F)mSr 6= 0 for some S, we say that r is modular.

We recall the following conjecture of [9].

Conjecture 3.4. ([9, Conj. 4.9]) Suppose that r is modular. There is a GF × (D ⊗F AF,f )×-
equivariant isomorphism

SD(F)[mr] ∼= r ⊗
(
⊗′w πDw (r)

)
where, in the restricted tensor product on the right hand side, πDw (r) is the smooth admissible
representation of (D ⊗F Fw)× associated to ρw by Vignéras and Emerton when w - p, and when
w|p, πDw (r) is a smooth admissible representation of (D ⊗F Fw)× ∼= GL2(Fw) such that if σ is a
weight, then HomGL2(OFw )(σ, π

D
w (ρ)) 6= 0 if and only if σ ∈ D(ρw).

Remark 3.5. The weight part of this conjecture is also proved in [15](under the usual Taylor-Wiles
hypothesis), and the multiplicity one is proved in [13].

If σU is a finitely generated continuous representation of some open compact subgroup U of
(D ⊗F AF,f )× over OE . We denote

SD(σU ) := HomU (σU , S
D(OE)⊗OE E/OE),

and write T(σU ) for the image of the abstract Hecke algebra in EndOE (SD(σU )).
For the open compact subgroups U under similar conditions as in the definite case, there is a

local system FσU (θ)∗ on XU corresponding to σU (θ)∗ in the usual way, and SD(σU ) can be identified
with H1

ét(XU,F ,FσU (θ)∗). For modular r, we can find S,U, σU such that SD(σU )mSr 6= 0. We define

Mr(σU ) := (HomT(σU )
mS
r

[GF ](rm, S
D(σU )mSr ))∗,

where rm : GF → GL2(T(σU )mSr ) is the two dimensional continuous Galois representation associated
to r by Carayol [10].

3.3. Minimal level case. We recall the minimal level case as in [6] and more generally in [13].
Fix a place v|p. Following [13, §6.5], we assume Assumption I and make the following additional
assumption:

Assumption II. We assume that p ≥ 5, ρw is generic for all places w|p, and if w ∈ Σ, ρw is not
scalar.

In fact, the case where ρw is reducible non-scalar for all w|p, w 6= v is considered in [6, §3.3].
This is generalized to the case where ρw is irreducible in [13, §6.5]. The assumption that ρw is
generic excludes the scalar case. We follow the notations in [13, §6.5]. Let ψ be the Teichmüller lift
of ε̄det r̄, and let S be the union of Σ, the places over p, and the places where r̄ is ramified. For
each place w ∈ S,w 6= v, one can define a compact open subgroup Uw of (OD)×w and a finite free
OE-module Lw with continuous action of Uw. We write L := ⊗w∈S,w 6=v,OELw which is a finitely
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generated continuous representation of Uv :=
∏
w∈S,w 6=v Uw×

∏
w/∈S GL2(OFw). Let S′ be the union

of the set of places w|p, w 6= v for which ρw is reducible, the set of places w ∈ Σ for which ρw is
reducible, and the place w1. For places w in S′, one can define the Hecke operator Tw and choose
scalars βw ∈ F× as in loc.cit.

For any finitely generated OE-module σv with a continuous action of GL2(OFv ), we consider the
space of modular forms SD(σv⊗L) with an action of the Hecke algebra T(σv⊗L). Note that σv⊗L
yields a representation of U via the projection U → US . As in loc.cit. one can extend this action
to an action of T(σv ⊗ L)′ := T(σv ⊗ L)[Tw]w∈S′ . Denote by m′ the maximal ideal of T(σv ⊗ L)′

generated by mSr and the elements Tw − βw for w ∈ S′. We define

SD,min(σv)m′ := SD(σv ⊗ L)m′ ,

and construct Mmin
r (σv) from SD,min(σv)m′ in the same way as we constructed Mr(σU ) from

SD(σU )mSr .

Definition 3.6. We define a smooth admissible representation πDv (r) of GL2(Fv) as follows: in the
definite case,

πDv (r) := HomF[Uv ](⊗w∈S,w 6=vLw, SDψ (F)[mr])[m
′];

and in the indefinite case,

πDv (r) := HomF[Uv ][GF ](r ⊗⊗w∈S,w 6=vLw, SD(F)[mr])[m
′].

By definition, for any finite dimensional representation σv of GL2(OFv ) over F, we have

(3.1) HomGL2(OFv )(σv, π
D
v (r)) ∼= Mmin

r̄ (σv)
∗[m′].

Remark 3.7. If the decompositions in Conjectures 3.2 and 3.4 hold, the representation πDv (r)
defined above is the local factor at v. Indeed, Breuil and Diamond [6, Cor. 3.7.4] proved this when
ρw is reducible non-scalar for all w|p. By the same arguments, the multiplicity one result of [13,
Thm. 10.1.1] (recalled in Thm. 3.8 below) implies the general case when ρw are only assumed to be
generic.

3.4. Consequences. In this subsection, we first recall the multiplicity one results of [13] for lattices
of tame types, then we combine their results with our local results in §2.6 to prove our main theorem.

We continue with the minimal level case in §3.3. We let R2
w denote the universal framed defor-

mation ring for ρw over OE . For every w ∈ S,w 6= v, let Rmin
w denote the local deformation ring

defined in [13, Page 51]. The ring Rmin
w is an R2

w-algebra and is formally smooth over OE . At the
place v, let τv be a non-scalar tame inertial type for IFv satisfying the condition that det τv is a lift
of ε det ρv|IFv , so that any integral lattice of the tame type V (τv) admits a central character lifting

the character (εdet ρv|IFv ) ◦ ArtFv . We write R
2,ψ|GFv
v for the quotient of R2

v corresponding to

liftings with determinant ψ|GFv ε
−1. We let R

2,ψ|GFv ,τv
v denote the reduced, p-torsion free quotient

of R
2,ψ|GFv
v corresponding to potentially crystalline deformations of inertial type τv and Hodge-Tate

weights (0, 1).

We let Rloc denote ⊗̂w∈SR2
w. We define Rmin,τv := R

2,ψ|GFv ,τv
v ⊗̂(⊗̂w∈S,w 6=vRmin

w ), which is for-

mally smooth over R
2,ψ|GFv ,τv
v . Let Rψr,S (resp. R2,ψ

r,S ) be the universal (resp. framed) deformation
ring for deformations of r which are unramified outside S with determinant ψε−1, so that R2,ψ

r,S is
naturally an Rψr,S-algebra. We define R2,min

r,S := R2,ψ
r,S ⊗RlocRmin,τv .We also have the corresponding
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universal deformation ring Rmin
r,S defined as the image of Rψr,S in R2,min

r,S . The usual Taylor-Wiles-
Kisin patching argument [13, §6.4], [16] applied to the space Mmin

r (V (τv)
◦) defined above in both

definite and indefinite cases gives us the following data:
• positive integers g, q,
• Rmin,τv
∞ , a power series ring in g variables over Rmin,τv ,

• an OE-algebra homomorphism OE [[x1, . . . , x4#S+q−1]]→ Rmin,τv
∞ such that

Rmin,τv
∞ /(x1, . . . , x4#S+q−1) ∼= Rmin

r,S ,

• a coherent sheaf Mmin
r,∞(V (τv)

◦) over Rmin,τv
∞ with an isomorphism

Mmin
r,∞(V (τv)

◦)/(x1, . . . , x4#S+q−1) ∼= Mmin
r (V (τv)

◦).

For any tame type V, it is observed in [13, Lem. 3.1.1] that V can be defined over an unramified
extension of Qp. By going through all the above constructions, we can and we do assume that E is
an unramified extension of Qp in the following. We recall Theorem 10.1.1 of [13].

Theorem 3.8. Assume Assumptions I and II, and let τv be a non-scalar tame inertial type for IFv .
For any σ ∈ JH(V (τv)), we have the (homothety class of) lattice (V (τv)σ)◦ such that the cosocle of
its reduction is σ (see Prop. 2.21 (ii)). Then the coherent sheaf Mmin

r,∞((V (τv)σ)◦) is free of rank
one over Rmin,τv

∞ .

Corollary 3.9. Under the above assumptions, we have

dimFM
min
r ((V (τv)σ)◦)∗[m′] ≤ 1.

Therefore, we have

(3.2) dimF HomGL2(OFv )((V (τv)σ)◦, πDv (r)) ≤ 1.

Proof. The second inequality follows from the first one by (3.1). Hence, it suffices to prove the first
inequality. To simplify the notation, we denote V (τv) by V in the proof.

Since Mmin
r,∞ is a minimal fixed determinant patching functor (see [13, §6]), from Theorem 3.8,

we have that Mmin
r,∞((Vσ)◦) is a cyclic Rmin,τv

∞ -module. Then the F ∼= Rmin,τv
∞ /mRmin,τv

∞
-module

Mmin
r,∞((Vσ)◦)/mRmin,τv

∞
Mmin
r,∞((Vσ)◦)

is a cyclic F-module. Therefore,

dimFM
min
r,∞((Vσ)◦)/mRmin,τv

∞
Mmin
r,∞((Vσ)◦) ≤ 1.

As a dual F-module of Mmin
r,∞((Vσ)◦)/mRmin,τv

∞
Mmin
r,∞((Vσ)◦), Mmin

r ((Vσ)◦)∗[m′] is also of dimension
less or equal to 1. �

Corollary 3.10. Maintain the same assumptions on r as above, and assume further that ρv is
tame (i.e. either split or irreducible). Then πDv (r)K1 ∼= D0(ρv), where K1 = 1 + pM2(OFv ), and
D0(ρv) is the representation of Γ := GL2(kv) constructed by Breuil and Paškūnas and recalled in
§2.6.

Proof. We use freely the notations in §2. It suffices to show that πDv (r)K1 satisfies the hypothesis
in Corollary 2.29. From the weight part of Conjectures 3.2 and 3.4, we have

socΓ(πDv (r)K1) = socGL2(OFv ) π
D
v (r) = ⊕σ∈D(ρv)σ.

Hence πDv (r)K1 embeds into ⊕σ∈D(ρv)Rσ, where Rσ is the injective envelope of σ in RepΓ (since
dimσ ≥ 2), see the beginning of §2. By [5, Prop. 9.3] and Remark 3.7, we have a Γ-equivariant
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injection D0(ρv) ↪→ πDv (r)K1 . Since by assumption ρv is tame, we can choose a tame type V with
JH(V ) = D(ρv) by Proposition 2.23. For any σ ∈ D(ρv), let V ◦σ denote the unique Γ-stable
OE-lattice of V whose reduction has cosocle σ. Then we have a natural Γ-equivariant morphism

V ◦σ /$EV
◦
σ � σ ↪→ πDv (r)K1 ,

and hence by (3.2), we have

dimF HomΓ(V ◦σ /$EV
◦
σ , π

D
v (r)K1) = 1.

Finally, Corollary 2.29 allows to conclude. �
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