THE BREUIL-MEZARD CONJECTURE FOR NON-SCALAR
SPLIT RESIDUAL REPRESENTATIONS

YONGQUAN HU AND FUCHENG TAN

ABSTRACT. We prove the Breuil-Mézard conjecture for split non-scalar resid-
ual representations of Gal(Q,,/Qp) by local methods. Combined with the cases
previously proved in and [25], this completes the proof of the conjecture
(when p > 5). As a consequence, the local restriction in the proof of the
Fontaine-Mazur conjecture in is removed.
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NOTATION

e p > 5 is a prime number. The p-adic valuation is normalized as v,(p) = 1.

e E/Q, is a sufficiently large finite extension with ring of integers O, a (fixed)
uniformizer w, and residue field F. Its subring of Witt vectors is denoted
by W (F).

e For a number field F', the completion at a place v is written as F,,, for which
we fix a uniformizer denoted by w,,.

e For a local or global field L, G, = Gal(L/L). The inertia subgroup for the
local field is written as I7,.
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e For each finite place v in a number field F, fix a map G, — G by choosing
an inclusion F' < F,, of algebraic closures.

e ¢ : Gg, — Z, is the cyclotomic character, w : Gg, — F, is its reduction
mod p, and @ is the Teichmiiler lifting of w.

e 1:Gg, — F, is the trivial character. We also let 1 denote other trivial
representations, if no confusion arises.

e Normalize the local class field map Q) — G(az so that uniformizers corre-
spond to geometric Frobenii. Then a character of G, will also be regarded
as a character of Q.

e For a ring R, m-SpecR denotes the set of maximal ideals.

e For R a noetherian ring and M a finite R-module of dimension at most
d, let £g, (M) denote the length of the Ry,-module M,, and let Z4(M) =
>-p R, (My)p for all p € Spec R such that dimR/p = d. When the context
is clear, we simply denote it by Z(M).

e For R a noetherian local ring with maximal ideal m and M a finite R-
module, and for an m-primary ideal q of R, let eq(R, M) denote the Hilbert-
Samuel multiplicity of M with respect to q. We abbreviate e, (R, M) =
e(R, M) and eq(R, R) = eq(R).

e For r > 0, we let Sym”E? (resp. Sym’[F?) be the usual symmetric power
representation of GLo(Z,,) (resp. of GLo(F,), but viewed as a representation
of GLy(Zy)).

1. INTRODUCTION

Consider the following data:
- an integer k > 2,
- a representation 7 : Ig, — GL2(E) with open kernel,
- a continuous character ¢ : Gg, — O such that ¢|1@p = " 2detr.

We call such a triple (k,7,%) a p-adic Hodge type. We say a 2-dimensional contin-
uous representation p : Gg, — GL2(E) is of type (k,7,%) if p is potentially semi-
stable (i.e. de Rham) such that its Hodge-Tate weights are (0, k—1), WD(p)|r,, = 7,
and detp ~ 1e. Here WD(p) is the Weil-Deligne representation associated to p by
Fontaine [12].

By a result of Henniart [I3], there is a unique finite dimensional smooth irre-
ducible Q,-representation o(7) (resp. o (7)) of GLz(Z,) associated to 7, such
that for any infinite dimensional smooth absolutely irreducible representation 7w
of GL2(Q,) and the associated Weil-Deligne representation LL(7) via classical lo-
cal Langlands correspondence, we have Homgr,(z,)(o(7),7) # 0 if and only if
LL(m)|r,, ~ 7 (vesp. Homgr,(z,)(c*(7),m) # 0 if and only if LL(m)[;,, =~ 7 and
the monodromy operator is trivial). We remark that o(7) and ¢ (7) differ only
when 7 = x @ x is scalar, in which case

o(t) =st®xodet, o“(r)=xodet
where st is the inflation to GLa(Z,) of the Steinberg representation of GLa(F,).

Enlarging F if needed, we may and do assume o(7) is defined over E. Form the
finite dimensional GL3(Z,)-representation

o(k,7) = Sym*2E? @ o(1)
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and the semi-simplification o (k, T)SS of the reduction modulo w of a GL3(Z,,)-stable

O-lattice inside o(k, 7). Then o(k, T)ss does not depend on the choice of the lattice.
Recall that the finite dimensional irreducible F-representations of GL2(Z,) are
of the form

Onm = Sym"F? @ det™, ne€{0,---,p—1},me{0,---,p—2}.
For each On,m 1€t @y m = an m(k, 7) be the multiplicity with which o, ,,, occurs in
(k T) We have the obvious analogue in the crystalline case by considering
o (k,T) = SyrnkiQE2 ®p o’ (1)
and denote the resulting numbers by aS Lo (k7).
Let p: Gg, — GL2(FF) be a continuous representatlon and RV (p) be its universal

framed deformation ring ([I8]). The following results on the structure of potentially
semi-stable framed deformation rings are known.

Theorem 1.1 (Kisin, [I8]). There is a unique (possibly trivial) quotient RP¥ (k, 7,7)
(resp. RIY(k,7,p)) of RP(p) such that

(i) A map = : RO(p) — E', for any finite extension E'/E, factors through
REY(k,1,p) (resp. RI¥(k,7,D)) if and only if the Galois representation p, corre-
sponding to x is of type (k,T,v) (resp. and is potentially crystalline).

(ii) RV (k,7,p) (resp. RV (k,7,D)) is p-torsion free.

(iii) ROV (k,7,p)[1/p] (resp. RV (k,7,5)[1/p]) is reduced, all of whose irre-
ducible components are smooth of dimension 4.

The following conjecture, the so-called Breuil-Mézard conjecture, relates the
Hilbert-Samuel multiplicity of R2Y(k,7,5)/w (resp. RLY(k,7,5)/w) with the
numbers Gy, ., (resp. as; ).

Conjecture 1.2 (Breuil-Mézard, [4]). For any (k,7,v) as above, we have

(1) e(RPY (k,7,7)/w) = Zankaunm()

(2) e(Rg ’w(k 7,0)/w) = Za (K, 7)o, (P)

for some integers (i, m(p) which are mdependent of k, T and 1.

In particular, the conjecture implies that
i (p) = ¢ (R (0 + 2, (@)%, ) /= )

which can be computed. We refer the reader to [I9 1.1.6] for these numbers, and
remark that when n = p — 2 and p is scalar, pp—2.,(p) = 4, as is shown in [27]
Conjecture [1.2| was proved by Kisin [19] in the cases that p is not (a twist of) an
extension of 1 by w. He first proved the “<” part of (|1|) and using the p-adic local
Langlands [6], and then combined it with the (global) modularity lifting method
to deduce the “>" part. Years later, the conjecture was proved by Paskunas [25]
for all p with only scalar endomorphisms, using the p-adic local Langlands and his
previous (local) results in [24]. We prove, also using local methods (except for one
global input due to Emerton [9], see the introduction of [25]), the following theorem
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(in the language of cycles of [I0]), which in particular includes the remaining case
of the conjecture (when p > 5).

Theorem 1.3 (Remark Theorem Theorem . For any continuous
representation p : Gg, — GLa(IF) which is isomorphic to the direct sum of two
distinct characters, and for any (k,T,v) as above, there are 4-dimensional cycles
Zp.m of RO(p) which are independent of (k,T,v) such that

ZRY(k,7,0) /@) =Y anm (ks T) Znm.

Z(RV (k1 0) /@) = ) (B, T) Zn

Moreover, we have Z,, ,, = Z(R2Y (n+2, (@™)%2,5)/w)). In particular, the Breuil-
Mézard Conjecture[1.9 is true.

In fact, we prove Theorem in the language of versal deformation rings R¥**(p)
(see . This implies the result, as is explained in

Remark is for the generic case, i.e. for p = x1 ® x2 with X1X2—1 ¢ {1,w*t},
while Theorem [5.11] and Theorem [5.12] are for the non-generic case, i.e. p~1 G w
(up to twist), which is a new result.

For the proof, we follow closely that of [25], but have to deal with some extra
complications, especially when p is a twist of 1 ® w, which we explain now. In [25],
Paskunas developed a general formalism to deduce the Breuil-Mézard conjecture,
the key of which is to construct an appropriate representation of GL2(Q,) with
coefficients in RV'(p) satisfying several good properties, one of which is that it
gives the universal deformation of p over RV*(p) via Colmez’s functor (in fact, to
do so, we should work with deformation rings with fixed determinant, but we ignore
this issue in this introduction). Then, using the p-adic local Langlands, he reduces
the proof of the conjecture to representation theory of GL2(Q,). When 7 is split
and generic, such a construction can be done easily and essentially follows from
that of [25].

However, we are not able to do it directly when p is a twist of 1 w. In contrast,
such a GL2(Q))-representation over the pseudo-deformation ring of (the trace of)
p is known, thanks to Pagkiinas’ previous work [24]. This naturally suggests that
we first mimic Pasktnas’ strategy in the setting of potentially semi-stable pseudo-
deformation rings, and then pass to the corresponding versal deformation rings, as
Kisin did in [I9]. There are however two complications in doing so. The first one
is that the GL2(Q,)-representation over the pseudo-deformation ring constructed
in [24] is not flat, which makes the arguments more involved when verifying the
setting of [25]; see The second is that even if the (analogous) conjecture
for pseudo-deformation rings is proven, the local argument in [19, §1.7] only gives
the inequality “<”. To resolve these, we construct and study morphisms among
various deformation rings, and reduce the conjecture to the (analogous) statement
for pseudo-deformation rings and to the cases which have been treated in [25].
Thus, our proof may also be viewed as a refinement of the local argument in [19].

With the main result of [25] and Theorem in hand, Kisin’s original proof [19]
applies to give the Fontaine-Mazur conjecture for geometric Galois representations
p: Gg — GL2(O) such that p|g,, is a twist of an extension of 1 by w, split or not.
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These are complementary to the cases treated in [I9]. Putting them together, we
have the following theorem (recall that p > 5).

Theorem 1.4. Let p : Gg — GL2(O) be a continuous representation which is
unramified away from a finite set of primes, whose residual representation p is odd
with restriction ploc,) being absolutely irreducible. If p|G@p is potentially semi-
stable with distinct Hodge-Tate weights, then p comes from a modular form, up to
a twist.

Note that the majority cases of Theorem was also proved by Emerton [9],
namely the cases for which ﬁ|G@p is not a twist of an extension of w by 1 or an
extension of 1 by 1. Thus the only new case proved here is when ﬁ\G@p is a twist
of the direct sum 1 ¢ w.

The paper is organized as follows. Section 2 and Section 4 are devoted to the
study of the pseudo-deformation rings using representation theory of GL2(Q,) via
the theory developed in [24],[25]. In Section 3, we give explicit descriptions of
certain deformation rings and maps among them. We prove Theorem in Section
5 and prove Theorem in Section 6.

Acknowledgments. The authors are deeply indebted to Mark Kisin and Vy-
tautas Pagktinas for the works [I9] and [25]. The first named author would like
to thank Xavier Caruso and Laurent Moret-Bailly for several discussions, and Vy-
tautas Pasktnas for helpful correspondences. They thank the referee for providing
many constructive comments and for help in improving the content of this paper.
They are grateful to the Morningside Center of Mathematics and the Max-Planck
Institute for Mathematics for their hospitality in the final stages of the project.

2. PREPARATIONS ON F-REPRESENTATIONS OF GL42(Q,)

In this section, we redefine and study Kisin’s map 6 [19] 1.5.11]. It will be used
in §4.

Let G := GL2(Qp), K = GLy(Z,) and Z C G be the centre. Denote by
P C G the upper triangular Borel subgroup, by I C K the upper triangular Iwahori
subgroup, and by I; C K the upper triangular pro-p-Iwahori subgroup.

Let Modg" (O) be the category of smooth G-representations on O-torsion mod-
ules and Modgﬁn(O) be its full subcategory consisting of locally finite objects.
Here an object 7 € Modg"(O) is said to be locally finite if for all v € 7 the O[G]-
submodule generated by v is of finite length. For 7 € Modlc’;ﬁn((’)), we write socgT for
its G-socle, namely the largest semi-simple sub-representation of 7. Let Modg" ()
and Modlc’;ﬁn (F) be respectively the full subcategory consisting of G-representations
on F-modules, i.e. killed by w. Moreover, for a continuous character ¢ : Z — O*,
adding the subscript ¢ in any of the above categories indicates the corresponding
full subcategory of G-representations with central character (.

Let Modf;°(O) be the category of compact O[K]-modules with an action of O[G]
such that the two actions coincide when restricted to O[K]. This category is anti-
equivalent to Modg" (O) under the Pontryagin dual 7 — 7¥ := Homp (7, E/O), the
latter being equipped with the compact-open topology. Finally let €(O) and €¢(F)

pro

be respectively the full subcategory of Mody, () anti-equivalent to Modlc’fg((’)) and
Mod, ™% (F).
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2.1. Some F-representations of G. Fix an integer r € {0, ...,p— 1} and consider
the representation Sym’F? of KZ obtained by letting p € Z act trivially. Fix a
continuous character x : Q; — F* and A € F. For our purpose we will assume:

(H) A#0and (r,A\) # (p— 1,£1).

Write I(Sym"F?) := C—Indf(ZSymTIFQ, the compact induction of Sym"F? from
KZ to G, and I, (Sym"F?) := I(Sym"F?) ® x o det. By [I, Proposition 8], we have
End¢ (I, (Sym"F?)) = F[T,] for certain Hecke operator 7). (as normalized in [1}, §3.1]
or in [19, 1.2.1]). We will often write 7' = T, if no confusion is caused. Write

7(r, A, x) := I, (Sym"F?) /(T — \).
By [II Theorem 30], 7(r, A, x) is an irreducible principal series if (r, A\) # (0,%1)

(under our assumption (H)), and is reducible of length 2 if (r, \) = (0, £1) in which
case we have a non-split short exact sequence:

0 — Sp®xpu+1 odet — 7(0,+1,x) = xpux1 odet — 0

where Sp denotes the Steinberg representation of G' and p+1 : Q) — F* denotes
the unramified character sending p to +1.

Since F[T] acts freely on I, (Sym"F?) by [I, Theorem 19], for each n € N we have
a natural G-equivariant injection

(T —\) : I, (Sym"F?) /(T — \)" — I,(Sym"F?) /(T — X\)"**.

Write 7, (r, A, x) := I, (Sym"F?) /(T — \)™ for n > 1 so that m1(r, A, x) = 7(r, A, X).
For convenience, we set mo(r, A, x) := 0. Then, for 1 < m < n, we have an exact
sequence of G-representations:

(3) 0 — T (r, A x) T T (T, A, X) = Tnem (1, A, x) = 0
which is non-split because F[T] acts freely on I, (Sym"F?).
Put

Too (1, A, X) = hﬂﬁn(r, A X)-

Then 74 (1, A, X) is a smooth locally finite F-representation of G with central char-
acter x2w". Taking m = 1 and passing to the limit over n in (3), we obtain a
non-split exact sequence

(4) 0 — m(r, A x) = Too(r, A, X) = Too (1, A, X) — 0.

Lemma 2.1. (i) The F-vector space Homg (w(r, A, X), Too (1, A, X)) is of dimension
1 and is spanned by the second arrow constructed in . In particular, any non-zero
G-equivariant morphism 7(r, A, X) = Too (1, A, X) i injective.
(i) We have
_ _ [ 7 AX) if (r,A) # (0,41)
S0CGToo (T, A, X) = socam(r, A, x) = { Sp ®@ypry odet if (r,\) = (0,=£1).

Proof. We give a proof for the sake of completeness although the argument is stan-
dard. To simplify the notation, we write m, for m,(r, A, x) (where n € NU {oco}).

(i) By construction it suffices to prove that for any n > 1, the F-vector space
Homg (71, m,) is of dimension 1 and is spanned by (T'— A\)"~! : m; — m,. This is
clear when n = 1. Let n > 2 and assume the assertion is true for n — 1. Then the
exact sequence with m =n — 1 induces

0 — Homg (71, mp—1) = Homeg (71, 7,) — Home (71, 7m1).
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We deduce that Homg (7, 7,) is of dimension < 2, and the equality holds if and
only if the last arrow is surjective if and only if is split (when m = n—1). Since
(3) is non-split, the result follows.

(ii) The second equality is clear by what we have recalled. For the first one, if
(r,A) # (0,£1), then m is irreducible and each irreducible constituent of 7., is
isomorphic to 71 so the lemma follows from (i).

Assume now (r,A\) = (0,£1) so that socgm = Sp®xp+1 o det. We assume
moreover A = 1 and Y is trivial; the general case can be deduced by twisting. In
particular, the central character of m, is trivial. Clearly if 7 is an irreducible smooth
F-representation of G such that Homg (7, 7o) # 0 then 7 22 Sp or 7 2 1 (the trivial
F-representation of G). Moreover, by (i) the natural morphism Homg (71, 7o) —
Homg (Sp, Too) is non-zero, hence dimy Homg (Sp, o) > 1 and Homg (1, 7o) = 0.

We are left to show dimp Home (Sp, 7o) = 1, or equivalently dimy Home (Sp, m,) =
1 for all n > 1. For each n > 2 we define 7,, to be the kernel of the composition
m, — m — 1. Then 7, fits into the exact sequence

(5) 0— 71 — 7 — Sp — 0.
If we had dimp Homg(Sp,7,) > 2 for some k € N which we choose to be the
smallest, then k > 2 and the sequence with n = k must split and would induce
an exact sequence
0—>Sp®mr_1 > — 1 —0.

Since Homg(mg—1, 1) # 0 and Exté/z(l, 1) = 0 (since p # 2, see [24], §10.1]), this
would imply dimp Homg (7, 1) > 2 hence

dimp HomK(SymOIFQ, 1) = dimp Horrlg(I(SyIlrlolF2)7 1) > 2.
This being impossible, the assertion follows. O

Let Injom(r, A, x) be an injective envelope of 7 (r, A, x) in Modlc’f?(IF), where
¢ : Z — O* is a continuous character whose reduction modulo w is equal to
x2w", the central character of m(r,\,x). Lemma implies the existence of a
G-equivariant injection

0 Too(r, A, x) = Injom(r, A, x)-
Such an injection need not be unique. We will show later that the image of 6 does
not depend on the choice; see Corollary

Let H be the Hecke algebra associated to C—Indﬁ (¢ and Mody the category of
H-modules. Denote by Z : Modg’:(F) — Mody the left exact functor induced by
taking I;-invariants and R'Z its right derived functors for i > 1, cf. [24] §5.4] for a
collection of properties about this functor. Recall the following result.

Lemma 2.2. Let m be a smooth irreducible non-supersingular F-representation of
G. Then
(i) Extj(Z(r),*) = 0;
(i) Exty, (Z(m), Z(7(r, A\, X)) = 0 except when © = socgn(r, A, x) in which case
the space is of dimension 1 over F.

Proof. (i) It is a special case of [24, Lemma 5.24]. (ii) If (r,\) # (0,+£1) so that

7(r, A, x) is irreducible, it is a special case of [24] Lemma 5.27(ii)]. If (r, A) = (0, 1),
then it follows from [24] Lemma 5.27(iii)], using (i) for the second assertion. O
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Proposition 2.3. The morphism 0 identifies moo (1, \, X) with the largest G-stable
subspace of Injom(r, A, x) generated by its I -invariants. In other words, 0 induces
an isomorphism

0 : oo (1,0, x) = (G- (Injgm(r, A, X)) ™).

Proof. To simplify the notation, we write m,, for 7, (r, A, x) where n € NU {oo}.
Let 7 be an irreducible object in Mod¢”. (). Recall that we have the following
exact sequence

0 — Extl,(Z(m),Z(me0)) B Extl o (m, 7o) — Homy (Z(m), R'Z(700))

see for example [24, §5.4], where T : Mody — Modg"(F) denotes the functor
M= My c—IndIG1 ¢ and Exté,c indicates that the extensions are calculated in
the category Modg(IF). By the main result of [23], an extension 0 — oo — V —
7 — 0 lies in the image of T if and only if V is generated by its I;-invariants, i.e.
V = (G-V1). We will show Ext},(Z(r),Z(7)) = 0 which will imply the assertion.

By definition of 7, we have an isomorphism Z () 2 lim 7 () as H-modules
which induces Exty, (Z(7),Z(7s0)) = lim Exty,(Z(r),Z(m,)). The latter isomor-
phism holds because Z(r) is a finitely presented H-module, see [31I]. So it suffices
to show that the transition map

an  Exty (Z(n), Z(m,))—Exty, (Z(7), Z(Tni1))

is zero for any n > 1. By Lemma we may assume m = socqmi. The exact
sequence induces a sequence of H-modules

(6) 0— Z(mn) = Z(mpy1) = Z(m) — 0,

which is still exact by the main result of [23] because m, 1 is generated by its I;-
invariants. Applying Homy (Z(), *) to it and using Lemma [2.2(i) and the fact that
Homy (Z(7),Z(7y)) = Homg(m, m,) 2 F for all n > 1 by Lemma i), we get a
long exact sequence

0 — Homy (Z(r), Z(m1)) — Exth(Z(r), I(m,)) 3 Exth(Z(r), I(mns1))
— Ext, (Z(r),Z(m1)) — 0.

Since this holds for all » > 1, an induction on n, using Lemma ii), implies that
all dimensions over F appeared in the last exact sequence are equal to 1, and the
morphism «,, must be zero. This finishes the proof. |

Corollary 2.4. The image of 0 does not depend on the choice of 0. More generally,
for any non-zero morphism 0" : oo (r, A\, x) = Injom(r, A, X), its image coincides
with that of 0.

Proof. The first assertion follows from Proposition Since 0’ is nonzero, we can
define the largest integer k € N such that ¢’ factors through 74 (r, A, x). Then the
induced map

Too(Ty Ay X) [Tk (1, Ay x) = Injom(r, A, x)
must be an injection, using Lemma when 7(r, A, x) is reducible. The quotient
Too (T, Ay X) /i (1, A, X) is isomorphic to meo (7, A, X) by , so we can apply the first
assertion to conclude. (I
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Corollary 2.5. For any smooth irreducible F-representation o of K, 8 induces an
isomorphism
Hompg (0, moo (7, A, X)) = Hompg (o, Injom(r, A, x))-

Moreover, the two spaces are non-zero if and only if Homg (o, 7(r, A, x)) # 0.
Proof. The second assertion follows from the first one by definition of 7w, (r, A, X).
By Frobenius reciprocity, we need to show that the injection (induced from 6)

Home (L (0), Too (r, A, X)) = Home(Ly (o), Injgm(r, A, X))
is an isomorphism, where x’ : Q — F* is the character making the central char-
acter of I,/(o) to be that of 7(r, A, x). But this follows from Proposition since
the image of I,/(0) = Injgm(r, A, x) is generated by its I1-invariants, hence lies in
(7o (1, Ay X))- O
Remark 2.6. The above results (Proposition and Corollaries hold
true in the case (r,\) = (p — 1,£1). To see this one can either modify the above
proofs or apply (the proof of) [19, 1.5.5].

The next lemma will be used in the proof of Proposition [2.9

Lemma 2.7. For any smooth irreducible F-representation o of K, the following
sequence induced by s exact

0 — Homg (o, w(r, A, x)) = Homg (0, oo (1, A, X)) = Hompg (0, moo (1, A, X)) — 0.

Proof. To simplify the notation, we write m,, for 7, (r, A, x) (where n € NU {oo}).
We may assume Y is trivial by twisting. We also assume that Homg (o, m) # 0,
otherwise the assertion is trivial by Corollary By [1, Theorem 34], this implies
that ¢ = Sym"F? if r ¢ {0,p — 1}, and ¢ € {Sym"F2, Sym? 'F?} otherwise.
Moreover, in all cases, we have dimy Homg (o, 7m1) = 1.

Since Homp (0, oo ) =2 li_rr>1n>1 Homg (o, 7, ), it suffices to prove the exactness of

the sequence
0 — Homg (o, m) = Homg (0, 7,) = Homg (0, m—1) — 0

for all n > 1, or equivalently, to prove dimy Homg (o, 7,) = n for all n > 1. This is
true if o =2 Sym"F?, since an easy induction on n shows that

Hom g (Sym"F?, 7,,) = Homg (I(Sym'F?), 7,,)
is of dimension n over F, with a basis given by

{I(Sym"F?) - m; < m,,1 < i < n},
where the first arrow is the natural quotient map and the second is given by .
If 0 2 Sym"F?, then we have r € {0,p — 1} and ¢ = Sym? ' ""F? so that

sock (m,) = (Sym"F?)®™ @ (SymP~ !~ TF2)®ne
for some nq,ne > 0. By the case already treated, we have ny = n. On the other
hand, since dimp Z(m;) = 2, an induction on n using the exact sequence @ shows
that dimp Z(7,,) = 2n. Using the fact that Indf{]l =~ SymF2 ¢ Sym? 'F2, we show
that socgm, is generated by /1 as a K-representation, so that

L _

2n = dimg Z (7, ) = dimp(socxm,) ny + noa.

This implies no = n and finishes the proof. O
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2.2. The prime ideal J. We keep the notation in the preceding subsection. Let

7V (r, A, xX) be the Pontryagin dual of 7(r, A, x) and w (7, A, x) be that of 7w (r, A, X).

They are objects in €¢(F), the dual category of 1\/I0dlc’fz-l (F). Dualizing the sequence

(), we get an injective G-equivariant endomorphism of 7%, (r, A, x) which we denote
by S. We have
(7) 0= ml(r A x) 2w (r A ) = 7 (r A x) = 0
and w2 (1, A, x) = Hm 72 (r, A, x)/S™ so that 7% (r, A, X) can be naturally viewed
as an F[S]-module.
N Let P := PI‘Oj%(O)ﬂ'V (r, A, x), a projective eilvelope of 7V (r, A, x) in €(O), and
E := Endg,(0)(P) which acts naturally on P. Then we have an isomorphism
PRoF = Injom(r, )\7)())\/ in €¢(F). The injection 0 : m(r, A, x) — Injgm(r, A, X)
chosen in §2.1] induces a surjection in €(O):
0V : P - P@oF — 7l (r\ )
Define a right ideal of E as follows:
J:={peE:0"o0p=0}.

According to Proposition 2.3} J does not depend on the choice of 6.
Remark 2.8. Note that E need not be commutative, see |24, §9]. In fact, it is
shown in [24] that E is commutative if and only if (r,\) # (p — 2, £1).

Let W be a smooth F-representation of K of finite length. Recall from [25]
Definition 2.2] the compact left E-module M (W) defined as

M (W) := Hom{iy (P, W)V,
The main result of [I1] implies that P is also projective in Mod% % (0), so that M(-)
is an exact functor. Write Ann(M(W)) for the annihilator of M (W) in E, i.e.
Ann(M(W)):={p € E:uop =0, Yu € Homg (P, W")}.

Proposition 2.9. Let o be a smooth irreducible F-representation of K. We have
M(o) # 0 if and only if Homg (o, 7(r, A, x)) # 0. If this is the case, then J =
Ann(M(c)). Moreover, E/J = F[S], and J is a (two-sided) prime ideal of E.
Proof. We write m, = m,(r, \, x) for all n € NU {co} to simplify the notation.

The first assertion follows from Corollaryand that P@oF = (Injgm(r, A, x)) v
Assume Homg (o, ) # 0. Dualizing, Corollary [2.5| gives an isomorphism
(8) Hom{fiy (Y, 0") = Homfky (P, oY)
so that J C Ann(M (c)). Conversely, let ¢ € Ann(M (c)) and assume ¥ o ¢ # 0.
The image of 6¥ o ¢ is then a non-zero sub-object of ¥, whose Pontryagin dual
is the image of some non-zero morphism 6’ : 7o, — Injom. However, we have
Hom (o, Im(6')) # 0 by Corollaries 2.4/ and [2.5| hence Homgj[ﬁ;t{]] (Im(6Y o), 0") #
0. In view of (§), it contradicts that ¢ € Ann(M (c)).

For the last assertion, we claim that M (o) is a cyclic E-module. This implies
that M(c) = E/Ann(M (o)) = E/J. However, Lemma and the isomorphism
give an exact sequence

(9) 0— M(oc)—»M(c) — Homg[’[“;(]] (m, %)Y = 0.



THE BREUIL-MEZARD CONJECTURE FOR SPLIT RESIDUAL REPRESENTATIONS 11

Since Homfy (Y, 0¥)" = F, we get M(o) = F[S] hence E/.J = F[S].

Now we prove the claim. Since we have a natural isomorphism M (o) ®z F
Hom{r (P ®@zF,0")Y by [25, Proposition 2.4], it suffices to show that the latter
space, whenever non-zero, is 1-dimensional over F by Nakayama’s lemma. By the
projectivity of }5, we can find z € E which makes the following diagram commuta-
tive:

~J

Por .

L,

v S v
T ——> T

Applying Homfgﬁ}t(]](*, V)V to the diagram and the cokernels we get using @) and
(8):

(10) dimg Hom{iq(P/2P,0")" = dimp Homgfh (ry,0¥)¥ = 1.

Since FE is a local ring by |24, Corollary 2.5] and x is not an isomorphism (as S is

not surjective), x lies in the maximal ideal of E. This implies a natural surjection
P/xP — P ®g[F, and therefore

Hom iy (P/xP, oY) — Hom&fkq(P @5 F,o¥)".
This proves the claim using . O

Corollary 2.10. For W a non-zero smooth F-representation of K of finite length,
J is the only associated prime ideal of M(W).

Proof. Tt follows from Proposition [2.9)since M () is exact. O

2.3. Colmez’s functor. We keep the notation of the preceding subsection. Recall
that Colmez ([6]) has defined an exact and covariant functor V from the category
of smooth, finite length representations of G on O-torsion modules with a central
character to the category of continuous finite length representations of G, on O-
torsion modules. Moreover, if 7 is an object of finite length in Modg’:(O), then
the determinant of V() is equal to (. Following Pagktinas [25] §3], we define an
exact covariant functor V : €(0) — RepG@p(O) as follows: for M € €;(O) of
finite length, we let V(M) := V(M")V(e¢) where V denotes the Pontryagin dual.
For general M € €.(0O), write M = lim M; with M; of finite length in ¢ (0) and
define V(M) := l&nV(M,)

Proposition 2.11. The G, -representation V(m¥(r, A, x)) is of rank 1 over F[S]
and isomorphic to Xug}r)\, where pis iy : Go, — F[S]* is the unramified character
sending geometric Frobenii to S + .
Proof. By the proof of [19, 1.5.9], V(I,(Sym"F?)/(T — \)™) is isomorphic to the
character
xw T usia : Go, — (F[S]/S™)*.

Using the fact that ¢ reduces to x2w”, this implies by definition that

V(L (Sym™F?) /(T = N)")Y) = (" isa) ™ - (wx?w") = xpigi -
The result follows by passing to the limit. O
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As in [19, §1.5], denote by t the pseudo-representation defined by

xw i + xpa-
and by RP*¢(t) the universal pseudo-deformation ring with fixed determinant e
(see for more details). It follows from results of [24] that E = RPS<(%) if
(r,\) # (p—2,+1) and RP*S(¥) — E otherwise (note that the definition of RP¥¢ (%)
in [24] is slightly different from ours). Recall that Proposition [2.9| gives a surjective
ring morphism E — F[S], which we denote by 6.

Corollary 2.12. Assume (H) and moreover that (r,\) # (p — 2,£1). Then, via
the natural isomorphism E = RP%S(%), the map 0 : E — F[S] coincides with the
map 6 : RP>¢(t) — F[S] constructed in [19, 1.5.11].

Proof. The isomorphism E 2 RP*<(%) in [24] is compatible with Colmez’s functor,
namely it is given by

V : E = Ende,(0)(P) 2 Endg,, (V(P)) = R*(v).

The corollary follows since both 6 and 6 induce the same pseudo-deformation of
over F[S] by Proposition and [19, 1.5.11] (taking into account of the determi-
nant). O

3. THE VERSAL AND PSEUDO-DEFORMATION RINGS

Let p: Gg, — GL2(IF) be a (continuous) representation. We aim to describe the
versal deformation rings for various p explicitly, and then construct maps between
them. For these we follow the methods of [2] and [24] Appendix B].

3.1. The versal deformation rings. We refer the reader to [22] for the general
theory of Galois deformations. The deformation functor D(p) on the category
of Artinian local O-algebras with residue field F always has a versal hull RV =
RY*(p), which is unique up to non-canonical isomorphisms.

In the rest of this section, we always assume that p is of the form (§ %) or (1 9).
It is obvious that the deformation functor D(p) is representable by a universal
deformation ring if p is non-split, and has only a versal hull otherwise.

Denote by L C Q, the fixed field of Ker(p), and write H = Gal(L/Q,). Let
U C H be its p-Sylow subgroup, which is isomorphic to F, if p is a non-split
extension, and is trivial otherwise. Write F' as the fixed field of Kerw. Then the
quotient C' = Gal(F'/Q,) is isomorphic to F)S. For a deformation pa to (4,m), the
image of Gr C G, thus has diagonal entries lying in 1+m and the lower left (resp.
upper right) entry lying in m, hence p4 factors through Gal(F(p)/Qy), with F(p)
the composition of all the finite extensions of F' whose degrees are powers of p. As
the order of C'is prime to p, we can and do fix an isomorphism

Gal(F(p)/Qp) = Gr(p) x C.
We regard C as a subgroup of GLy(R) for any complete noetherian local ring R,

via the map
1 0
g (0 wc(g>>

where we : €' — Z,; is the Teichmiiller lifting of wle: C — IF;.
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A pro-p group D is called a Demuskin group if dimg H'(D,F,) := n(D) < oo,

dimg, H?(D,F,) = 1, and the cup product
HY(D,F,) x H(D,F,) = H*(D,F,)
is a non-degenerate bilinear form. Since we assume p # 2, the Demuskin group D is
determined (up to isomorphism) by n(D) and (D), where t(D) denotes the order
of the torsion subgroup of D*’. Namely, D is isomorphic to the pro-p group with
n(D) generators ty,--- ,t,(p) and one relation
D
5[t o)t ta] -+ [ta(p)—1. ta(py] = 1,

where [t;,t;] = t;ltjfltitj are commutators; see [20, Theorem 3]. It is well-known
(see e.g. [20, Theorem 7]) that Gr(p) is a Demuskin group, for which n(Gr(p)) =
p+1and t(Gp(p)) = p.

For a pro-p group F, define a filtration {F;};>1 by setting

Fi=F,  F=FF-Fl,  enF=Fi/Fiq

The Frattini quotient gr; F will play an important role in the following. By [2,
Lemma 3.1] the action on F of a group of order prime to p is determined by the
action on gryF, up to inner automorphisms of F.

We choose F to be a free pro-p group in p + 1 generators, and a surjection

¢: F — Gr(p)

whose kernel R is generated by a single element » € F. We see that gr; F =~
gryGr(p), hence r € F,. By [2 Lemma 3.1], the C-action on Gp(p) extends
uniquely to F and makes ¢ a C-equivariant homomorphism, hence gives a homo-
morphism

(11) ¢: FxC — Gp(p) x C~Gal(F(p)/Qy).

We will relate » with the Demuskin relation.
The local class field theory and the C-module structure of G (p)*® determined
by Iwasawa [15, Theorem 1] give the following result.

Lemma 3.1. There is ¢ natural isomorphism of F,[C]-modules
griF ~grGp(p) ~F, & p, ®F,[C]

such that p, is the image of the torsion subgroup of Gp (p)*® under the projection
Gr(p)® — griGr(p) on which C acts by w, and F,[C] is the image of the 2nd
ramification subgroup Ip o of the inertia Ip.

(GEN) Fix generators &, - - - ,§, of gry Gr(p) so that &1 generates p1, and &3, -+« , &,
generate F,,[C], and such that C acts on & by w'.

We remark that Lemma [3.2] below is the best one can achieve, when choosing
generators of F that respect both C-actions and the Demuskin relation; cf. [2]
Proposition 3.6].

Lemma 3.2. There exist generators to,--- ,t, in F lifting &o, - ,&p such that

(Z) Vi € {07 U 7p}avg S C; we have gtig_l = tf)lc(g)
(ii) The element rp = 1} [to, tp][t1, tp—1] - [t%,tp;l] s congruent to v modulo
F3.
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Proof. Take a lifting ¢,--- ,t, € F so that the C-actions are as in (i), which is
achievable as C' is of order prime to p; recall [2 Lemma 3.1]. That they may be
chosen to satisfy (ii) follows essentially from [20, Proposition 3] (see also [25, Lemma
B.1]), where it is shown how the cup product H'(D,F,) x H*(D,F,) — H*(D,F,)
for a Demuskin group D is determined by the image of an element of 5 modulo F3.
Namely, the image in Fo/F3 of such an element must be of the form of Demuskin
relation (up to rescaling), and it defines an isomorphism H?(D,F,) = F,. It is then
easy to see that rp defines the same cup product on H'(Gr(p),F,) x H (Gr(p),F,)
as that defined by r, hence has the same image as r modulo F3. O

To construct the (uni-)versal deformations for some p with semi-simplification
1 ® w, we first introduce the following general result.

Proposition 3.3. Let R be a complete noetherian local O-algebra with residue field
F. Suppose there are matrices m; in GLa(R) which satisfy the following conditions:

(1) C-actions: gm;g~*' = mfg(g),Vg eC.

(2) Demuskin relation: m¥[mg, mpl[ma, mp_1]--- [mp2;17mp7+1] =1.
Then we have

(i) The assignment t; — m; (1 = 0,---,p) is a C-equivariant group homomor-
phism, hence defines a homomorphism ag : F x C — GLa(R), which satisfies that
ar(r) € ar(Fs).

(ii) There is a continuous homomorphism

pr : Gal(F(p)/Qp) — GLa(R)

and a continuous homomorphism
¢ FxC — Gal(F(p)/Qyp)

with the properties Ker ¢’ € Fa, ar = pro @', and ¢' = ¢ mod Fs.
(#ii) Moreover, ¢' can be chosen uniformly for various R if NgKer ag is non-
empty.

Proof. (i) follows from (1) and (2); we have ag(r) € ar(F3) by Lemma [3.2(ii) and
that rp € Ker ag.

(ii) and (iii) can be obtained by the proof of [2, Proposition 3.8], with Ker«a
loc.cit. replaced by the intersection of the Ker ag’s; the intersection is taken for
the uniformness of ¢’. More precisely, we first note that C' acts on H*(Gr(p),F,)
by w™!, since the latter is the F,-dual of p, on which C acts by w. Thus, by
the discussion on [2, Page 118], C' acts on r by ©. Now, for any ¢ > 2, form the
composite N; of F; and NpKerar. Then [2, Lemma 3.2] shows that there is an
element r; € N; on which C acts as @, and r; = r mod F; for any i > 2, hence all
r; € Fo.

Denote by C,, the closure of {r;};>; in N;NF,. Then I := N;>2C), is non-empty
by the compactness of F, and lies in (Mg Ker ag) N Fs. Note that C' acts on any
element in C,., (for any i > 2) via @, because the set {x € Flg-z = 2*9) Vg € G}
is closed. Thus C' acts on any element in [ via @. Furthermore, an element in I
is congruent to r modulo F3 by the construction of s, hence F modulo such an
element defines a Demuskin group which is isomorphic to G g (p), by [20, Proposition
3]. Then, F modulo an element in I C F» gives the wanted homomorphisms ¢’
and pg. O
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Depending on the shapes of the representations p, the (candidates for) versal
deformations and deformation rings are listed below.

For each R = R"*", R', RP®" and the matrices m; in GL2(R) below, direct com-
putation shows that the conditions (1) and (2) in Proposition are satisfied.
(We refer the reader to [2, Lemma 5.3 (i)-(iii)] for more details on the choices of
these matrices.) Moreover, the intersection Ng Ker ag of these rings is non-empty,
because, for instance, t5 lies in it. Therefore Proposition [3.3] applies.

3.1.1. The split case. Let p be 1w. We pick indeterminate variables ag, a1, b, cg, c1,
dp,dy and write

14 dg)t/? 0 1 0
m0=(1—|—a0)1/2<( 00) (L+dy) 2 ) T e 1)

_ 1/2 (1*P+d1)1/2 0 _ 10

10
mp72 = O 1 s m2 = .. = mp73 = I2><2.
Set

OIIG'O? ag, b7 Cp, C1, d07 dlﬂ

(codr — c1dp) '
By the description above, the same proof as in [24] B.4] shows that the reducibility
ideal of R¥*" is (bcy, bey ), that is, for 2 : RV — F a closed point, the corresponding
deformation p, is reducible if and only if (beg, beg) C Ker z.

Rver —

3.1.2. The non-split cases. (1) Assume p is a non-split extension of w by 1 (unique
up to scalar as p > 5). Pick indeterminate variables ag, a1, co,c1,do,d1. Set
mo,- -, My as in the split case, except that we replace m,_o = ((1) 11’) with my,_o =
(b))

Set

R! — O[[amahcmchdo,dl]]
(Codl — C1 do)

One sees easily that the reduction of pg: given by Proposition [3.3]is a non-split
extension of w by 1. Similarly as before, we have that the reducibility ideal of R!
is (C()7 Cl).

(2) Assume p is a non-split extension 0 — w — p — 1 — 0. We know that
Exté% (1,w) ~ H'(Gg,,w) is of dimension 2, so p could be either peu ramifi¢ or

trés ramifié extensions, as defined by Serre [28, §2.4]. We recall the definition below.
Write Ko = Q)" the maximal unramified extension of Q,, and K; = Ko(p,) the
tamely ramified field. Then Kummer theory tells us that the Galois representation
Plea@, /x,) must factor through Gal(K/K;) for some K of the form
P t

K:Kt(:c}/p,--~ L) for ;€ KEJ(KE)P,

for some m > 1. We then say 5 is peu ramifié if plv,(x;) for each i, and say
the associated element in H'(Gg,,w) is a peu ramifié extension. A peu ramifié
extension is unique up to scalars. Depending on context, we sometimes call the
trivial extension 1 @ w a peu ramifié extension. All the other extensions are called
trés ramifié extensions.

The following equivalent variation of Serre’s definition is easy to obtain.
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Lemma 3.4. An extension 0 — w — p — 1 — 0 is peu ramifié if and only if the
image of 2nd ramification subgroup Ir o C Gal(Q,/K;) under p is trivial.

Proof. First recall from Lemma that the image of I (or equivalently, that of
the wild inertia Ir1) in gryGp(p) is isomorphic to p, ® F,[C] as F,[C]-modules,
and that under the same reduction the 2nd ramification subgroup /g2 is mapped
onto IF,[C] and the p-torsion subgroup of Iz is mapped onto .

Let H be the kernel of the projection Ir1 — p, C griGr(p) and K be the fixed
field of H. Then H = Ips and K is an abelian extension over K; of degree p.
Moreover, since K; contains the p-th roots of unity, K is a Kummer extension and
of the form K = K;(u'/?) with u € K /(K )P. We then have the 2nd ramification
subgroup Gal(K/K:)s = {1} by [29, p.68, Corollary]. On the other hand, it is
elementary to check that Gal(K,(u'/?)/K;)s = {1} if and only if v,(u) = 0 (mod p).
The claim follows. O

Remark 3.5. By Kummer theory, we have the isomorphism

Q) /(Q) = H'(Gg, w), ur (g g(u!/?)/ul?).
Then the image of 5 /(ZX)P in H'(Gg,,w) is the peu ramifié line. Hence a peu
ramifié extension p must factor through Gal(Q, (1, (1 —p)*/?)/Q,); take u =1—p
in the proof of Lemma|3.4)

Assume p is a non-split extension of 1 by w which is peu ramifié. We pick
indeterminate variables ag, a1, z1, xo, x3 and write

1+x)Y/2 0 10
mo = (1 +a0)1/2 < ( 01) (1 +$1>_1/2 3 my = 1 1 P
1—pH4 zim9)t/? 0 10
T = (1+a1)1/2< ( 0 ) (1 —p+xay)~ /2 )7 "= g, 1)
1
mp2:<0 Jf’)a Mg =+ =mp 3= Iaxa.
Set

RPeY = O[[ao, a1, 1,2, xg]].
The reducibility ideal of RP" is (x3).
By Lemma (GEN) and the choices m;, the deformation pgres obtained via
Proposition 3.3 reduces to the peu ramifié extension p modulo the maximal ideal
of RP®" (up to isomorphism). This justifies the notation pgeeu.

Corollary 3.6. The rings R = R'*, R, RP®" in §435.1. 1] are the (uni-)versal

deformation rings of the corresponding p, and the continuous homomorphisms pgr
obtained via Pmpositz’on are the associated (uni-)versal deformations.

Proof. This is by the same proof as in [2, Theorem 6.2]. O

We need to consider the deformations with fixed determinants, which is needed
to link the deformation rings to p-adic Langlands correspondence.
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Corollary 3.7. Keep the notation above. Let ¢ : Gg, — O be a continuous
character whose reduction mod w is equal to 1, and let D(p)¥ be the sub-functor
of D(p) parametrizing the deformations with determinants equal to eip. Then the
functor D(p)¥ is (pro-)represented by the quotient of R by (ag — ag, a1 — ) for
some ag,ay € wO.

Proof. This is clear by the choice of the matrices m; = ag(t;). |

3.2. Comparison of various deformation rings. Let p: Gg, — GL2(IF) be the
representation as before. Define DP* = DP5(trp) as the functor from the category of
Artinian local O-algebras A with residue field F to the category of sets of pseudo-
deformations of trp, which is always (pro-)represented by a complete noetherian
local O-algebra RP® = RPS(trp), equipped with the universal pseudo-deformation
TV Furthermore, we define DP*¥ to be the sub-functor of DP® parametrizing
the pseudo-deformations T € DP*(A) such that ey (g) is mapped to w
under the structure morphism. The noetherian local O-algebra representing DPS¥
is denoted by RP*¥ and the corresponding universal pseudo-deformation is denoted
by Tuniv,w_

By the constructions in §§3.1.1] and Proposition [3.3] we will write down the
maps among various (pseudo-)deformation rings, adapting the idea of [24, Appendix
BJ.

3.2.1. The map f'. First consider a non-split extension 0 — 1 — p' — w — 0.
The construction of R! = R*"(p') provides the following description of the pseudo-
deformation ring RPS = RPS(trp).

Proposition 3.8. The natural homomorphism R — R' given by taking traces is
an tsomorphism and induces the isomorphism

froRPSY ~ RV,
Proof. This is [24, Proposition B.15]. O

We identify RP$¥ = RV from now on, hence have an isomorphism
(12) Rps,w = O[[Co,cl,do,dl]]/(q)dl — Cldo).
Recall that we have defined in a prime ideal J of RP*¥, the kernel of the

map 6 : RP>Y — F[S]. (Here we have taken ¢ loc. cit. to be 1, whose reduction
mod w is trivial.)

Lemma 3.9. Under the identification (@, we have J = (w, cp, ¢1,d1).

Proof. First, w € J as the image of 8 is F[S]. Since ¢y, ¢; lie in the reducibility ideal,
they lie in J. By Proposition the image of the inertia I under § o T"V+¥ s
trivial as x is trivial in our case. By Lemmaand the choice (GEN) of generators
of gry F =~ gr;Gr(p) (and [2, Lemma 3.1] again), the image t;,_; = ¢'(t,-1) € Gr(p)
of t,_1 € F comes from Ip, hence has trivial action under 6 o Tuiv,¥ - Thus we
have 6(dy) = 0, noting that T"V-¥(t/ ;) = (1 + a1)?((1 —p+ d1)"/? + (1 -
p + dy)~Y?) with a3 € wO by Corollary and 6(p) = 0. We thus get the
inclusion (w, ¢g, ¢1,d1) C J, from which the result follows since they have the same
height. (|
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3.2.2. The map fP*. Let pP°" be a (non-split) peu ramifié extension. By the
construction of RPWY = Oy, 79, 73] in §3.1.2] the ideal of RP™¥ generated by
the (1,2)-entry of pgrenw(g) for all g € G, is just (23), so the conjugation

(%5 9)prrens (5 1)

still takes values in RP®™“¥. We check easily that this gives a representation on
RPe"Y whose residual representation is a non-split extension of w by 1, hence
induces a ring homomorphism RY¥ — RP®“¥ It is seen at the same time that
(“"gl ?)pRpeu,w(moi’ (1)) is isomorphic to the base change to RP*™¥ of the universal
representation on RV¥. By Proposition (iii) and the fact that taking conjugation
does not change traces, the composition of the above map with gives us the
trace map:

Olco, c1,do, di]

(cody — c1dp)

Co — T3, C1 V> T2I3, do — T, d1 = T1T2.

3.2.3. The map f¥*. Assume p = 1D w is split. As in §3.2.2] one checks, using the

construction in § and Proposition that the conjugation by (8 (1))

on the universal representation ppver.s gives a map RM¥ — RV™¥ hence the trace
map:

(14) fY RSV 5 R e by, di—di, i=0, 1.
By Lemma RVe"¥ / JRV*"¥ have three minimal prime ideals:

(15) p1 = (w,co,c1,d1), P2 = (w,b,c1,d1), p3=(w,b,do,dy).

In fact, one checks that JRV"¥ = p; Npy N p3. Write

(16) J RP — RptY

for the induced homomorphism. The following property of f*" and f5" will be
used in the proof of the Breuil-Mézard conjecture later.

(13) fPe s RPSY e

Proposition 3.10. For i = 1,2, f’°" is flat, and for any radical ideal a of RP®,
aRY°" is still radical.
Pi

Proof. We only prove the claim for py; the proof for p, goes over verbatim. Note
that R?S’w is a regular local ring, because its Krull dimension is 3 and its maximal
ideal is generated by w,co,d; (as ¢; = codldal). Also, R;‘fr’w is Cohen-Macaulay
since it is a localization of a Cohen-Macaulay ring. Since (f¥**)~1(p;) = J, the
map f : RPSY — R;fr’w factors as
, : R
RPSY s RPSY 5 RYOV
where the second map is a local homomorphism. The first map is clearly flat.
The second map is also flat by [21, Theorem 23.1], since one checks directly that
dim R;?nw = dim R§S7w+dim Rv\a’?nw/JR;Tr’w = 3. In fact, since JR;(fr’d) = PlR;‘fw}’
the quotient ring R;Tr‘w/JR;fr’w is a field. Thus the map fy°" is flat.
Recall [14, Theorem 2.1]: Let u : A — B be a local flat morphism of noetherian
local rings, with A a Nagata ring. If B/msB is a geometrically reduced A/my-

algebra, then u is a reduced morphism (see [14, Definition 1.1] for its definition),
which in particular sends radical ideals to radical ideals.
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For the second assertion, we first note that aRBS’w is a radical ideal. Hence,
it suffices to check that the map R%Y — Ry™" sends radical ideals to radical
ideals. The last map is a flat local morphism of noetherian local rings. The ring
Rgs’w is a Nagata ring, since it is a localization of a complete noetherian local
ring; see [3, Chapitre IX, §4, n°4]. By [14, Theorem 2.1], we only need to show
that R;Tr’w/JR;fr’w ~ F((do, b)), the field of fractions of RV**¥ /p; ~ F[do,b], is
geometrically reduced over Rf}s’w /J Rf}s’w ~ F((dy)) =: k. To see this, let ¥’ be any
finite extension of k. Then k' ®j k((b)) is reduced since it is a field. But we have
the inclusion k' ®j F((do, b)) C k' @4 k((b)) by the flatness of k" over k, which implies
that &' ®g F((do, b)) is also reduced. O

Remark 3.11. One sees easily that the induced homomorphism f3°" : RPSY
Rver,l/; .
by 15 not flat.

Remark 3.12. In the case that p is split generic, that is, p = x1 P x2 with X1X2_1 ¢
{1,w*'Y, the situation is similar and in fact simpler. More precisely, using the
machinery above, one gets, after choosing parameters, that RP>Y = O[y1,y2, y3]

and RV = O[b,y1,y2,ys]. By a similar construction as in §§3.1.1] taking
traces induces the homomorphism

F R S RV sy, ya e, ys o bys.
One then sees that fV°" is flat and maps radical ideals to radical ideals.

3.2.4. The maps ;. Consider the ideals p, and p3 of R¥*"*¥. Meanwhile, one checks
that RP"/JRP®" has two minimal prime ideals, which we denote by g2, q3 (notation
chosen to be consistent with po, p3):

g2 = (w,z2,23), qz = (w,x1,x3).
—_—

Proposition 3.13. Let R;ffr’w (i = 2,3) be the completion of R;fr’w with respect to

its maximal ideal. We still write f¥°° for the composition RP>Y — R¥eHY — R;fr’w.
(i) There is a unique local homomorphism of O-algebras
(17) Vi : ROV — Ry

which is compatible with the trace maps fP* and f¥°'. That is, we have the follow-
ing commutative diagram:

(18) Rps¥

fpeu l Y“

Y T

(i) The map ~; is flat and sends radical ideals to radical ideals.

Proof. (i) Define

Y5 RPewY R;fr’w, r1+— dy, Tor> calcl, x3 — beg.
One checks that this is well-defined. Now look at the inverse image of the maximal

ideal piR;‘f“w in RP*%%  which is a prime ideal containing q; but not the maximal
ideal (because it does not contain x; (resp. x2) when ¢ = 2 (resp. i = 3)), hence
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must be equal to q;. This implies that 7; factors through qu)fu’w — R‘p’?’w, and it
makes the diagram commute using the definitions of , . On the other

hand, any morphism 7/ : Ra’fu’qb — R;fr’w fitting into the commutative diagram
(18) must be of the form above.
(ii) It can be proved similarly as in the proof of Proposition The flatness

of 7; follows from [2I, Theorem 23.1], which applies as Rgfu’w is regular and R;’fr’w
is Cohen-Macaulay, being the completion of a localization of the Cohen-Macaulay

ring R¥*"¥. More concretely, one checks that

me,‘;“'”’R/;%Eb = PzR/ZC:b
is the maximal ideal, hence dimR/;fer = dim RP™™Y + dimR/;fl?/’/ng:uw@ -
> That ~; sends radical ideals to radical ideals follows from [I4] Theorem 2.1].

—_—

Namely, it suffices to show, say for ¢ = 2, that R;ir’w/mecu,wR;zr’w ~ F((co, do))
ag

is geometrically reduced over the residue field F((;)) of RPS™¥, via the map 7; :
x1 — dp; but we have seen how to show this in the proof of Proposition [3.10} The
same argument goes through when ¢ = 3. (]

Remark 3.14. One checks easily that there does not exist an RP>Y -homomorphism
from RPSMY to RVe™¥ .

4. THE MULTIPLICITY OF PSEUDO-DEFORMATION RINGS

In this section, we will study the multiplicity of potentially semi-stable pseudo-
deformation rings of p:= 1 & w.

Recall that RP®Y = RPS¥(trp) denotes the universal pseudo-deformation ring of
p with fixed determinant ey, where ¢ : Gg, — O™ is a continuous character. To
lighten the notation, we will omit the superscript ¢ in the rest of the section; for
example, we write RP® for RPSY.

For n € m-SpecRP*[1/p] we denote by x(n) the quotient field RP*[1/p]/n, Oy m)
the ring of integers of x(n), and T}, for the induced pseudo-deformation of p defined
over x(n).

Denote by I the intersection of all n € m-SpecRP%[1/p] such that T, is the trace
of an absolutely irreducible representation of GG, which is potentially semi-stable of
type (k,7,1), and by IT® (resp. I5°) the intersection of all n € m-SpecRP%[1/p] such
that T}, is the trace of an absolutely reducible representation which is potentially
semi-stable of type (k, 7,%) and contains a one-dimensional sub-representation lift-
ing 1 (resp. w) with the higher Hodge-Tate weight. We define in a similar way
I3 and I, (i = 1,2) by replacing “semi-stable” by “crystalline” in the above
definition. Here we note that for an indecomposable reducible potentially semi-
stable representation of distinct Hodge-Tate weights, the unique one-dimensional
sub-representation is automatically of higher weight.

Remark 4.1. In the definition of I}” (and I} ;), we could have demanded that Ty
come from an indecomposable reducible representation, because it follows from [26]

that, for instance for IS®, if p = 61 @ 0y is potentially semi-stable of type (k,T,v),
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such that 61 (resp. 62) lifts 1 (resp. w) and Gg, acts on d3 via the higher Hodge-
Tate weight, then any non-split extension

06 —p =6 =0

s also potentially semi-stable of the same type. Moreover, p’ is automatically po-
tentially crystalline except when k = 2 and T = x @ x is scalar, in which case
6251_1 =€ and Ext};Q’ (01,02) is 2-dimensional and we can always find a non-split
potentially crystallmep extension.

Fix a p-adic Hodge type (k,,%), and write V for o(k,7) := Sym" 2E? @ o(7)
or 0% (k,7) := Sym" ?E? ® 0 () (when we consider potentially crystalline defor-
mation rings). Choose a K-stable O-lattice © inside V. Let N7, Ny be respectively
a projective envelope of 7/ and of Sp” in the category €, (Q), where 7, := IndIGga

QX 0 .
6’ Q;). For ¢ =1,2, set

M;(©) := Homo (HomSfsy (Ny, ©7), 0),
where ©¢ denotes the Schikhof dual of © (see [30]). Then M;(0) and M(O)

are natural compact RP*-modules where RP® acts on N7 and Ns via the natural
isomorphisms RP* = Endg, (0y(N1) = Endg, 0y (N2) (cf. [24 §10]).

with @ := w ® w™! the smooth character of T := (

4.1. The module M;(©). Recall that p' denotes a non-split extension of w by 1
(unique up to scalars), R'**(p') the universal deformation ring of p* with deter-
minant e) and R¥*(k,7,p') the potentially semi-stable deformation ring of type
(k,7,1). (The superscript ¢ is omitted as we remarked.) The following theorem is
a consequence of results of [24],[25].

Theorem 4.2. We have an isomorphism
Ann(M,(©)) =2 I2° N 1°

rr

and an equality of 1-dimensional cycles (where J is the prime ideal defined in
Zl (pr/(]—ps n Ifs,w)) = ap,371<].

rr
I ap sy by I, I%,, o<

. ps
The same statement holds if we replace I erires Ler1s Qp31

irr?
respectively.

Proof. Note that V(N;) is isomorphic to the universal deformation of 5! by [24
Corollary 10.72]. By [25, Corollary 6.5] we know
RY (04) /A e (M3 (©)) = RY (k, 7, 71).

The natural isomorphism f! : RPS — RV*"(p!) (see Proposition induces an
isomorphism from RP$/(IP* N I}®) to RV (k,7,p'). The first assertion follows from
this and the second assertion from [25, Theorem 6.6] and Proposition which
say that Zl(var(k‘,T, ﬁl)/w) = ap_g,lzl(Ml(O'p_371)) = ap_3,1J. (I
4.2. The module M;(0). We turn to study the action of RP® on M3(©). Recall
that Ny denotes a projective envelope of Sp” in € (0). For 71,7 € Modlc’f:; (F)
we will write el (7, m2) = dimp EXté;,w(Wl, 7). We refer to [24, §10.1] for the list

of 61(7r17 7o) when 7y, w9 are both irreducible non-supersingular representations.
If m is an RP%[1/p]-module of finite length, we define as in [25] §2.2]

I(m) := Hom®™ (Ny @ ges m°, E),
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where m" is any RPS-stable O-lattice in m (the definition does not depend on the
choice of m®). Equipped with the supremum norm, II(m) is an admissible unitary
E-Banach space representation of G.

The following result is an analogue of [25, Proposition 4.7]. Recall from [24] that
an absolutely irreducible Banach space representation is called non-ordinary if it is
not a subquotient of a parabolic induction of a unitary character.

Proposition 4.3. For almost all n € m-SpecRP*[1/p]|, the k(n)-Banach space rep-
resentation II(k(n)) is either absolutely irreducible non-ordinary or fits into a non-
split extension

0 — (Ind%6; @ dae ™) eont = H(k(n)) = (IndGds @ 816 eont — 0,
where 01, 0 : Q; — k(n)* are unitary characters such that 6102 = ey and 5162_1 #+
1,ett.
We need some preparations to prove this proposition. In the proof of the next

lemma, we shall use Emerton’s functor of ordinary parts defined in [§]; our main
reference for this is [24] §7.1].

Lemma 4.4. We have (N2 ® o= F)V)™ 2 Sp @192 @ 782

Proof. First note that Ny ®pges F is the maximal quotient of Ny, which contains
Sp" with multiplicity one (in fact Sp¥ must appear as its cosocle), or equivalently,
(N2 @pes F)Y is the (unique) maximal smooth F-representation of G with G-socle
isomorphic to Sp and such that (No® gesF)Y / Sp contains no subquotient isomorphic
to Sp. We now construct it explicitly. Consider the smooth F-representation 71 of
G defined in [24], (181)], which fits into an exact sequence

0—>Sp—>m—1a1—0.

Moreover the G-socle of 71 is Sp. By [24, Lemma 10.12], e! (74, 71) = 2, hence there
exists an extension of 7, @ 7, by 71, denoted by 77:

(19) 0—=7 =7 = Ta®Tq =0,

such that the G-socle of 7{ is still Sp. In particular, we have an injection 7{ —
(N2 ®pges F)V. We shall prove that it is in fact an isomorphism. For this it suffices to
show e (m,7{) = 0 for all irreducible 7 € Modg",, (F) except when 7 = Sp. Firstly,
one checks e!(1,7]) = 0, using that (see [24, §10.1])

e(1,1) =0, e'(1,7,) =0, e'(1,Sp)=2.

We claim that el(m,,7{) = 0. For this we need to use Emerton’s functor of ordi-
nary parts relative to P (see [§]). We denote by Ordp : Modlc’;hz (F) — Modé’rﬁéjl (F)
this functor and by R‘Ordp its right derived functors for i > 1. It follows from [11]
that R‘Ordp = 0 for i > 2. Moreover we know by [24, (182),(126)] that

Ordpr =1, R'Ordpry = (a™1)92
Ordpmy = a1, R'Ordp7my = 1.
Applying Ordp to gives

0—1— Ordpr, = (@)% 2 (a2 5 R'Ordpr] — 192 — 0.
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The connecting morphism 9 must be injective. Indeed, if not, we would have that
Homy(Ordp7],a™1) # 0, hence Homy (o™, Ordp7{) # 0 since there is no non-
trivial T-extension between a~! and 1 (as p # 2). We then get

Homg(m, ) # 0
by the adjointness property between Ordp and Ind$ (see [24] (120),(125)]), which

contradicts the definition of 7{. We deduce that Ordp7] = 1 and R!Ordpr] =2 192,
Since p # 2, the claim follows from this and the exact sequence (see e.g. [24], (123)])

0 — Exty (o, Ordpr]) = Extg; (o, 1) — Homg (o, R'Ordpry).
Since the block of Sp consists of {Sp, 1,7} by [24, Proposition 5.42], we see

that Extg, w(m, ) = 0 for all irreducible 7 € Modg”, (F) except for 7 = Sp. This
shows that (N ®@pges )V is isomorphic to 77, and the lemma follows. O

Write 9B for the block of Sp, i.e. B = {Sp,1,7,}. Let Baunadﬁﬂ(E)‘B be the
category of admissible unitary E-Banach space representations IT of G, of finite
length and with central character 1, such that all the irreducible constituents of
T lie in 8. Here II"° denotes the semi-simplification of the modulo w reduction of
any open bounded G-invariant lattice in II. As in [24] §10], for n a maximal ideal
of RPS[1/p], let Bana“jz)1 1(E)® be the full subcategory of Baunmdm 1(E)® consisting
of those IT such that m(II) is killed by a power of n, where m is defined as in [24]
Corollary 4.42] with P = Ns.

We will need to apply Colmez’s functor V to objects in Banadm A(E)B. For such
a II, we define

V(1) := V(0! ®p E
for any open bounded G-invariant O-lattice © in II. Remark that V is exact
and contravariant on Bangd?; 1(E)®. By the proof of [25, Lemma 4.2], for m an
RP3[1/p]-module of finite length, we have

(20) V(II(m)) = V(N3) ®pges m.
To see this, we just tensor the sequence [25] (22)] with E (over O).

Lemma 4.5. The representation II(k(n)) is nonzero, of finite length, and has an

irreducible G-socle (in the category BanadZ’ﬂ(E)%). In particular, it is indecom-

posable and lies in the category Bangdz' TE)®.

Proof. Tt follows from [24] Lemma 4.25] that II(x(n)) is non-zero and of finite length.
By Lemma Ny @pges F is of finite length in €, (0O) and is finitely generated as
an O[K]-module, so [24, Corollary 4.33] implies that II(k(n)) has an irreducible
G-socle. The last assertion follows from this and the decomposition of categories
adm,fl ~ adm,fl
Bangp"(E)® = (P Bang (B}
nem-SpecRPs([1/p]

established in [24, Corollary 10.106]. O

Recall that RP® is isomorphic to Ofcg,c1,dp,d1]/(codr — c1dp) by (12)). Let

t = (cp,¢1) be the reducibility ideal of RPS. Also recall from §4.1 that N7 denotes
a projective envelope of ) in €, (0).
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Lemma 4.6. We have an exact sequence of R**[Gq,]-modules:

(21) 0 — t.V(N)) — V(Ng) — pi™V — 0,

where pi™Y is the universal deformation of the trivial representation 1 to RPS/t

(viewed as an RP®-module).

Proof. This follows from [24] Remark 10.97]. In fact it gives a commutative diagram
of RP*[Gg,]-modules:

0 ——= V(Ns) V(M) P 0
0> P e V(N1 [V (N)) > 0 >0
and the result follows from the snake lemma. O

Lemma 4.7. Assume n contains the reducibility ideal v. Then t Qpges k(1) is of
dimension 2 over k(n) if n = (co, ¢1,dp, d1) and of dimension 1 otherwise.

Proof. Write f = cody — c1dp so that RP® = Olcg, ¢1,do, d1]/(f). Let ng :=nn RPS
so that RP®/ng = O,y and

t®pes £(0) Zt/(v.ng) ®o, () K(N).

In particular if n = (co, ¢1,do,d1), we have f € v.ng and see easily that v/v.ng is
free of rank 2 over O = Oy, generated by co,c1. When n # (co, ¢1,do, dy), then
making a base change from x(n) to a finite field extension x’, we may assume that
n = (co,c1,do — ti,dy — t}) with ¢/ € &’ and at least one of them is non-zero, say
t!, # 0. This implies that ¢; = cothty * in t @ges £/, hence the latter x’-space is of
dimension 1 (it is nonzero by Nakayama’s lemma). The lemma follows. (]

Proof of Proposition[{.3 Suppose first that T, is absolutely irreducible. By [24}
Proposition 10.107(i)], the category Bang{g}l’ﬁ(E)n‘B contains only one absolutely
irreducible object denoted by II,,, which must be non-ordinary. In particular, each
irreducible subquotient of II(k(n)) is isomorphic to II, and Lemma gives an
injection II,, < II(k(n)). Lemma implies that the setup of |24, Proposition
4.32] is satisfied, which implies that m(ITI(x(n))/II,,) = 0 (we use the notation m as
in loc.cit.), hence II(k(n))/II, = 0.

Suppose from now on that T, is absolutely reducible and can be written as
T, = 61 + 62 over a finite extension L’ of k(n) with 5152_1 # 1, e, Since 6, # 0o as
they reduce to different characters, we have only excluded the case when T, = §+de
(with 62 = 1)). Using the isomorphism RP® 22 R¥**(p!), [24, Corollary 10.94] implies
that we only exclude the ideal (co, ¢1,do, d1).

We first treat the case when L' = k(n). Up to order, we may assume that

91 reduces to 1 modulo the maximal ideal of O, ), and therefore do reduces to
w. Then [24, Proposition 10.107(ii)] implies that Banfs " (E)P has exactly two

(non-isomorphic) absolutely irreducible objects II; and IIy, where
H1 = (Indgcsl X 62671)(;0711‘,7 H2 = (Iﬂdg52 ® 51671)(:0711‘,-

Let II be the unique irreducible Banach space sub-representation of II(k(n)) given
by Lemma Since II” contains Sp as a subquotient, we have IT = II; by our
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convention. Moreover, by the assumption p > 5 we must have IL” ~7,. Put
I := TI(x(n)) /11

As in the irreducible case, [24, Proposition 4.32] implies that each irreducible sub-
quotient of II’ is isomorphic to IIs. To conclude we need to show that II =2 II,, or
equivalently V(ITy) 2 &,.

Tensoring the sequence with k(n) (over RP®) gives

e V(N @poe £(0) 2 V(No) @poe k(1) = pUY @ e 5(n) — 0.

On the one hand, since n contains the reducibility ideal t, pi™¥ ® ges £ (1) is non-zero
and pi™Y @ pes Oy (n) is a deformation of 1 to O (y,). By our convention, this implies
that pi™V @ pges #(n) is isomorphic to d;. On the other hand, since V(N;) is the
universal deformation of p* over R¥*"(p') ~ RP®, it is flat over RP®. Together with
Lemma [4.7] this implies that

t.V<N1) & Rps ,‘Q(‘I‘l) = V(Nl) & Rps (’C & Rps Ii(l‘l)) = V(Nl) & Rps H(n).

which is isomorphic to a non-split extension of d5 by §; by [25] Proposition 4.9(ii)].
The map ¢ can not be injective, since V(Ny) @ gps £(n) does not contain &; as a sub-
representation (otherwise, II(x(n)) would admit II; as a quotient which contradicts
Lemma . As consequence, ITm(¢p) = dy, and V(Ny) ®@pges £(n) is a non-split
extension of §; by Js.

For general L', the same argument as above shows that V(II(k(n))) ®, ) L',
which is isomorphic to V(Ny) ®ges L' by , is a non-split extension of d; by ds.
Since 1 # w (as p > 2), [25] Lemma 4.5] implies that d1,d2 are in fact defined over
k(n). As in the proof of [25, Proposition 4.9], we see that II(x(n)) is a non-split
extension of IIs by IT;. O

Remark 4.8. We thank Paskunas for pointing out to us that No is not flat over
RPs,

Proposition 4.9. If V =o(k,7) (resp. V = o (k,T)), then
dimﬁ(n) HOIHK(V7 H(H(ﬂ))) S 1

for almost alln € m-SpecRP*[1/p]. Moreover, for suchn, dim, ) Homg (V, II(k(n)))
1 if and only if Ty is absolutely irreducible and potentially semi-stable (resp. poten-
tially crystalline) of type (k,T,1), or Ty is reducible and isomorphic to the trace of a
potentially semi-stable (resp. potentially crystalline) representation of type (k,T,1)
which is non-split and contains a one-dimensional sub-representation lifting w.

Proof. We exclude the finite set of n as in Proposition [4.3] The case when T}, is
absolutely irreducible is identical to that of [25, Proposition 4.14]. Assume that T,
is absolutely reducible. Then by the proof of Proposition T, can be written of
the form &; + 6o over x(n) with §;6, ' # 1,e*!, and TI(x(n)) fits into a non-split
extension
0—1II, — H(Ii(n)) — 1y — 0

with II;, ITs absolutely irreducible and non-isomorphic. As in the proof of Proposi-
tion @ we assume that d; reduces to 1 and dy reduces to w modulo the maximal
ideal of Oy (n), so that V(IL;) = §; for i = 1,2. Now the proof of [25, Proposition
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4.14] gives that II(x(n))*®, the subspace of locally algebraic vectors in II(k(n)), is
non-zero if and only if H?lg is non-zero, if and only if the Gg,-representation

(22) 0 — 0y — V(I(k(n))) = 6, — 0

is potentially semi-stable (resp. potentially crystalline if V' = o (k, 7)) of type
(k,7,1). We conclude as in the proof of loc.cit., noting that the sequence is
non-split since II(x(n)) is a non-split extension of Iy by TI;. O

Recall the fixed K-stable lattice © in V and the RP*-module M3(©). As in §4.1,
we have the following result.

Theorem 4.10. We have an isomorphism
Ann(M2(©)) =2 12" N I5®

1rr

and an equality of 1-dimensional cycles
Zy (R /(Ii; N I3°, @) = (a0,0 + ap—1,0)J-

rr
: ps  rps ps ps_ _cr
The same statement holds if we replace Iy, 15", a0,0, ap—1,0 by Loy 1ps Leros G0
Ccr y
a,’q o respectively.

Proof. Write ¥ for the set of n in the statement of Proposition [4.9] such that
dim,, () Homg (V,II(k(n))) = 1. By Proposition 4.9|and Remark we see that ¥
forms a dense subset of Spec (RP*/(IF) N I5®)) [1/p], hence of Spec RP*/(IP° N I5®),
see [25, Remark 2.43]. Now [25, Proposition 2.22] implies that ¥ forms a dense
subset of the support of M»(0), so we get the equality \/Ann(M2(0)) = I>* N IY*.

To prove the theorem, we need to check the conditions (a),(b),(c) in [25, Theorem
2.42] in order to apply it. The condition (a) follows from the definition of N, using
the main result of [II]. The condition (c¢)(i) is just Proposition and (c)(ii)
proceeds exactly as in [25] §4.2] using the main result of [7] and Proposition in
place of |25 Proposition 4.9].

We are left to verify the condition (b). By [25, Proposition 2.29], it suffices
to prove that M»(0) is a finitely generated Cohen-Macaulay RP*-module. Recall
that we have constructed an element x € RP® in the proof of Proposition [2.9
which is a lifting of S via the surjection RP* — F[S]. We claim that (w, x) forms a

regular sequence for My (0). Firstly, since Ny is projective in ModI;{rZ((’)), the exact

sequence 0 — © 5 O — ©/wO — 0 induces an exact sequence of RP-modules

This implies that w is regular for M3(0) and M3(0)/wM3(©) = My (0/wO).
Secondly, it follows from the exact sequence @[) (in Proposition loc.cit.) that x is
regular for Ms(o) for any smooth irreducible F-representation o of K, hence also
regular for M(©/w®) (here we use that Ny is projective in Modj:7-(O)). Moreover,
the quotient M3(0/w®)/xM5(0/wO) is of Krull dimensional 0 since this is true
for M>(o)/xM>s(c) by (9). This proves the claim. Finally, Lemma and [25]
Proposition 2.15] imply that M»(©) is finitely generated over RPS.

All conditions of [25, Theorem 2.42] being verified, we deduce that Ann(M(0))
is a radical ideal, hence the equality Ann(M2(0)) = IP> N I2°. We also deduce an
equality of 1-dimensional cycles

2 (B (N 1)) = 3 . 21 (Ma(00)).

n,m
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But it follows from Proposition [2.9that My (0m,m) # 0 if and only if (n,m) = (0,0)
or (p —1,0), in which case the associated 1-dimensional cycle is J. (]

5. PROOF OF THE BREUIL-MEZARD CONJECTURE

In this section we prove the Breuil-Mézard conjecture for the residual represen-
tation 1 & w. To do this, we study the relation between potentially semi-stable
pseudo-deformation rings and potentially semi-stable (of the same type) deforma-
tion rings so that we can use what is proved in Section 3 and Section 4 to deduce
the multiplicities of potentially semi-stable deformation rings (modulo w).

Notational remark: As the character v will be fixed everywhere, we omit it from
the notation of the deformation rings for simplicity. For m € m-SpecR¥*"[1/p],
write pn, for the associated deformation of p.

Let p be an extension of two distinct characters x2 by x1 and fix a p-adic Hodge
type (k,7,9). A closed point in Spec R¥**(k, 7, p)[1/p] is called of reducibility type
irr if the corresponding Gg,-representation is absolutely irreducible. For a closed
point 2 € Spec RY"(k, 7,p)[1/p] such that the corresponding Gg,-representation V,
is reducible, it has to be an (possibly split) extension of two distinct characters d;
lifting x;, respectively. We say the point z is of reducibility type x;, or more briefly,
of type 1, if §; has the higher Hodge-Tate weight.

For x € {irr, 1,2}, define an ideal IY® of R¥*" as follows:

I;/er — ( ﬂ m) N Rver,
mem-SpecRVer[1/p]
for m ranging over all the maximal ideals such that py, is potentially semi-stable of
type (k,7,v) and of reducibility type *, so that

RVeT(k7 7_7 ﬁ) — Rver/(Iyer m Iiler m Iger).

1rr

In the pseudo-deformation ring RP® = RP*(trp), define the ideal
IP® .= I7°" N RP.

One sees that this definition coincides with the one defined at the beginning of
Section 4.
We define in an obvious way the ideals I3, and I&. (x € {irr,1,2}) by consid-

ering potentially crystalline representations of type x.

Remark 5.1. In [19], a quotient ring Ry of RP (denoted by RP*(k,7,p) in [5])
is introduced, which can be seen as the analogue of RV (k,7,p). One checks that
Ry, = RP /(IR NIY°NIS°) and that I° defines the (closure of union of ) components

in Spec Ry; [1/p] of type * defined loc. cit.

In the rest of this section, we will take p = 1 @ w and use the convention y; = 1
and x2 = w while we talk about reducibility types.

Recall from §3] that there are three minimal prime ideals of R¥® containing
JRYT: p1,p2, ps3, and that JRY" = p; Np2 Np3. We first record the following fact,
which says that they induce all possible minimal prime ideals of R¥¢*(k,7,p)/w.

Proposition 5.2. (i) The quotient ring RV*" /(13" +(w)) has at most three minimal
prime ideals, that is among {p1, P2, ps}.

(i) The quotient ring R¥®" /(I7°" + (w)) has at most one minimal prime ideal p1,
with the quantity being one if and only if 17" # R¥".
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(#ii) The quotient ring R /(I3 + (w)) has at most two minimal prime ideals

P2 and Ps3.
The same hold in the crystalline case, i.e. with I7*" replaced by I3,

cry**

Proof. (i) Let * € {irr,1,2} and q € Spec R¥®" be any minimal prime ideal over
IV** 4+ (w). By Theorems 4.2/ and J is the radical of the ideal IY® + (w). Since
the natural map f¥¢ : RP® — R maps I£® into IY®, there exists r € N large
enough such that

(pl N P2 N pB)erer =J" R C (Ifb + (w))Rver Cq.

Hence q must contain one of the p1, po, ps. By Theoremand [21l, Theorem 31.5],
RYer /(IV*" +(w)) is equidimensional of dimension 2, which implies that q has height
3. Since p; (i =1,2,3) also has height 3, the first claim follows.

The proofs of (ii) and (iii) are similar and we only give that of (ii). We follow
the arguments in the proof of [5, Lemma 4.3.4(ii)]. Let ¢’ be a minimal prime ideal
over I7°". By the proof of (i) we only need to show q’ & ps,ps. As in the proof
loc.cit., the associated deformation

Pyq’ - GQp — GLQ(Rver/q/)

is reducible and it contains a free sub-R"®* /q’-module of rank 1 as a direct summand,
which is a deformation of the trivial character 1. The same property holds for any
prime ideal of R¥®" containing q’. However, by the explicit description of ppgver
in the deformations pp, and pp, are reducible non-split, containing a free
sub-module of rank 1 lifting w. This implies q' € po, p3 and the result follows. O

By [21], Theorem 14.7] we have
(23)
3 3
(R (k,7,p) /@) = Y MR (k,7.D)p, [@)e(R [pi) = D LR (k, 7, D)y, /)
i=1 i=1
where the second equality holds because e(RY" /p;) = 1 for ¢ = 1,2,3. We are left
to study ¢(RY"(k, T, D)y, /™), which is also equal to e(R"*"(k, T,p)p, /w). Of course,
the same happens in the crystalline case.

5.1. Multiplicities at p; and ps. Recall the maps [ R — Ry, for
1=1,2,3.

Proposition 5.3. (i) For i = 1,2, we have I3 Ry = IRy and I} Ry =
[ZPSR;?{

(i) For x € {irr,2}, we have I} Ry [1/p] = |/ I Ryer[1/p].

Proof. First look at I)*. Using the fact that R¥°"[1/p] is a Jacobson ring, we have
by definition

L RY1/p] = N n, R /p] = N m,
nem-SpecRver(1/p] mem-SpecRVver[1/p]

where n ranges over all maximal ideals such that p, is absolutely irreducible of
type (k,7,1), and m ranges over all maximal ideals such that tr(py) is absolutely
irreducible of type (k,7,), that is tr(pm) = tr(p’) for some p’ which is absolutely
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irreducible of type (k,7,1). Clearly these conditions define the same subset of
m-SpecR¥**[1/p], hence the equality

(24) LR 1/p] =/ IRRr(1/p] = |/ I Rver[1/p)
where the second equality holds because taking radical commutes with localization.
Taking localization at p; (viewing the two sides as RV*'-modules), i = 1,2, 3, gives

(25) L Ry [1/p] = (/IR Ry [1/p]

hence (ii) holds for * = irr. To deduce (i), first remark that if A is an O-algebra
and I is an ideal of A such that the quotient A/I is an O-flat module, then I =
(IA[1/p]) M A. Since the map RP® — Ry*" (here i = 1,2) is flat by Proposition

3.10) R;;fr/IpSR"er is O-flat as RP®/I7} is. This implies that Ry /, /I0)Ryer is also

rr irr rr

O-flat and thus improves to be

LERY =\ [IPRyer, =12,

Then we conclude still by Proposition which says that IRy is already
radical. So far we have proved (i) and (ii) for % = irr.

The claim for IY*" (i = 1,2) is proved similarly, using Proposition More
precisely, with the notation in the proof of loc. cit. let n € Spec((R"*"/q’)[1/p]) be
any closed point such that trp, comes from some potentially semi-stable represen-
tation of type (k, 7, ). Since we have fixed its reducibility type, the representation
pn itself has to be potentially semi-stable of type (k,7,1). The rest of the proof
then goes over as in the irreducible case. O

Remark 5.4. In general, we do not expect IESR;";‘” = IRy to be true (this would
imply IY°RYe = IY°T). For example, in the crystalline case it could happen that
Ifriirr = (co — p,c1,d1) in RPS. Then Igslrerer = (cody — c1dp, beg — p, ber, dy) and

RYer /157, R has p3 as a minimal prime ideal, which implies that R¥" /1 f:lrrR"“

is not equidimensional, while RY*" /1Y, is equidimensional by Theorem (1.1}

Proposition 5.5. Fori = 1,2, we have

K(Rver(k,T,ﬁ)pi/W) :g(RES/(]PS [ZPS,W)).

rr

Proof. 1t follows from Proposition [5.2] that R¥"(k,7,p),, = Ry /(I3 N I7°) for
i =1,2. Then Proposition i) implies further that

Rk, 7, D)p, 2 (I8 0 IT) & e B3

irr

Since the local map RY® — Ryt is flat by (the proof of) Proposition S0 is
R /(IZ NI, w) — R (k,7,p)p; /. Applying Lemma 5.6/ below to it we obtain

rr

E(Rver(k,ﬂﬁ)pi/w) _ E(Rgb/(lps [Z'PS7 ) (Rver/J) = K(Rps/(lpﬁ IzI’b’w))

irr rr

Here we have used the fact that e(RyS"/J) = 1. O

Lemma 5.6. Let A — B be a local map of Noetherian local rings with radicals m
and n, respectively. Let p C A be a nilpotent prime ideal and suppose that all the
minimal prime ideals of B lie over p. Assume further that B is flat over A. Then

en(B) = en/pp(B/pB)L(Ap).
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Proof. Let {q1,--- ,qm} be the set of minimal prime ideals of B. By [21, Theorem
14.7], we have

E €n/q; (B/4:) EB (qu)
i=1
and

€n/pB (B/pB) = Zen/q (B/a:)¢ (B/pB)q ((B/pB)qi)

Since A — B is flat, so is A, — qu for any 7. By Nagata’s flatness theorem (see
for example [21] Ex. 22.1]), we have

Up,,(Bg,) = ta,(Ap) - U, (Bq,/pBy,).
The result follows.

Note that we can also adapt the proof of [19, 1.3.10], where all the inequalities
appeared become equalities under the assumption that B is flat over A. ([

Remark 5.7. In this remark, we take o to be of the form p = x1 ® x2 with
X1Xz ' ¢ {1,w*'Y. The situation is simpler, in the sense that the analogue of
Proposition holds except that the minimal ideal p3 disappears. In this case,
there are only two minimal prime ideals of R¥" containing JR'®"; in the notation
of Remark J = (w,y2,y3). By Remark the natural homomorphism
RP$ — R¥®" s flat and maps radical ideals to radical ideals. If we let p* (reap. p*)
be the unique non-split extension of x2 by x1 (resp. of x1 by x2), then we have

(R (k7)) = (R (k, 7, 91) ) + e( R (b, 7, 7%) /).

which proves the Breuil-Mézard conjecture in this case; the conjecture for the two
terms on the right hand side are already known by [19] and [25]. The crystalline
case is shown in the same way.

5.2. Multiplicity at po and p3. We determine the multiplicity of RV*(k, 7,p)/w
at po and p3, by means of deformation rings of peu ramifié extensions, for which
the Breuil-Mézard conjecture has been treated in [25].

Recall the map
fPeu . RPS o Oleo, ¢1,do, 1]
(cody — c1dp)
Co — T3, C1 V> T2T3, do — T, dy — T1T3.
Here RP" := RV'(pP*") denotes the universal deformation ring (with fixed deter-
minant ey) of pP°", the (non-split) peu ramifié extension of 1 by w. Recall that
RPe"/ JRP" has two minimal prime ideals q2 = (w0, z2, z3) and q3 = (w, 21, x3).
By Proposition we have the following commutative diagram

Rps

fpeu l \fvj:

peu _ Ti _ pver
qu Rpi

—> Rpeu ~ O[[fﬂl,xg,l’g]],

In the proof of Prop081t10n we have seen that pi@r lies over q,RY;" (i = 2,3)
and qu"er = szver under the map ~; lb
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Denote by IP™" (resp. I5°") the ideal of RP°" cutting out the closure in Spec RP®"
of closed points in Spec R¥**(k, 7, pP°")[1/p] which are of irreducible type (resp. of
reducible type). The notation IJ°" is chosen as a component of reducible type is

automatically of type 2.
Proposition 5.8. We have for i = 2,3 the following relations under the map -y;

m:

PeU Dver __ TVer Dver Peu PHver __ TVer PDver
I Rpi =1 Rpw 15 Rpi =1 Rm.

irr irr

Proof. By Proposition [5.3] we have for * € {irr,2} and i € {2, 3}
LRy fp) = 12 Ryt (1 /) = \J 12 Ryer[1 /).
Applying Lemma below to A = Ry and I = |/IZRyer, J = IY* Ry we get

(26) 1 Ry(1/0) = I Ry R (1) = 1 B [1/p),

where to get the second equality we have applied Lemma ii) to A = Ry®" which
is a Nagata ring, being a localization of a complete noetherian local ring (see [3|
Chapitre IX, §4, n°4]). On the other hand, a similar proof as in Proposition
shows

(27) IPURE[1/p] = (/TP REM L /) = /TP RE[1/p).
Then using the commutative diagram (18], we get

ver Dver ‘} ver S\ Dver — S eu Hyer " eu Hyer
ne Ryt fp) @\ pe () Ry ) = 1 R Ry /) & 1R ).

Here, we use (the proof of) Lemma ii), applied to the morphism ~;, to get the
second equality, since «; sends radical ideals to radical ideals by Proposition |3.13
Since 7; : Rj;" — E‘ga is flat by Plropositionaugain7 we conclude as in the proof
of Proposition (1) O

Lemma 5.9. Let (A,m) be a noetherian local ring and denote by A its m-adic
completion.

(i) Let I C J be two ideals of A such that IA[l/p] = JA[l/p]. Then we have
TA[1/p] = JA[1/p]. )

(i) If moreover A is a Nagata ring, then the natural morphism A — A sends
radical ideals to radical ideals. In particular, VIA = /TA for any ideal I of A.

Proof. (i) Write M = I/J and consider the exact sequence of A-modules:
(28) 0—-I—J—M-—0.

The assumption that TA[1/p] = JA[l/p] implies that M[1/p] = 0. Since M is a
finitely generated A-module, we can find n € N large enough such that p”m = 0 for
all m € M. Taking m-adic completions and inverting p, the sequence induces
an exact sequence

0 — TA[1/p] — JA[1/p] — M[1/p] — 0.
By definition we have M = @19 M /m‘M, so that M is also killed by p™ and
therefore M[1/p] = 0. The result follows.
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(ii) By Nagata-Zariski theorem, see for example [I4, Theorem 1.3], the natural
morphism A — A is a reduced morphism, hence sends radical ideals to radical
ideals. To show the last assertion, we remark that for any ring morphism f :
A — B which sends radical ideals to radical ideals and any ideal I of A, we have
VIB = /IB. Indeed, the inclusion C holds in general, and the inclusion O holds
because IB C VIB and VIB is already radical. O

Corollary 5.10. We have the equality
K(Rver(ka T, p)p’z /w) + Z(Rver(k7 T, p)P:} /w) = ap,0 + 2ap—1,0-
Proof. To lighten the notation, denote RP¢"(k, 1) := RV"(k, 7, p*"). First, a simi-

lar proof as that of Propositionimplies that RP"(k, 7)/wo has at most 2 minimal
prime ideals g2 and g3, so that by [21I, Theorem 14.7]

(R (k,7)/) = LR (b, 7)qa /) + ERP (b, 7)g /0),
where we have used that RP®/qy and RP®“/qs both have Hilbert-Samuel multi-
plicity 1. Since we know e(RP®“(k,7)/w) = ao,0 + 2ap—1,0 by the Breuil-Mézard
conjecture for pP°* which is proved in [25], it suffices to show
(29) R (7, B)p, /) = LR (k,7)g, /), i = 2.3,
Proposition and Proposition imply that

Rver(k, 7,7)p, = R (K, 7)q, @ gpen Ry
Note that takmg completlon does not change Hllbert Samuel multiplicities. Then
using that quver =p; RVE"r for ¢ = 2,3, we get (29)) by applying Lemma to the
flat map RP°"(k, T)q, /o — R"er@:?,p)pi/w, base change of the flat local morphlsm
Ry — Ryer, as in the proof of Proposition O

5.3. Conclusion. We can now prove the (cycle version of) Breuil-Mézard conjec-
ture for p = 1 @ w. First we prove it for potentially semi-stable deformation rings.

Theorem 5.11. The cycle version of the Breuil-Mézard Conjecture (hence the
original Conjecture is true for the representation p = 1 @ w. Precisely, we
have

Z(RY" (k,7,p)/w) = ap—3,191 + ao,0P2 + ap—1,0(p2 + p3).
Proof. Theorem [£:2] Theorem [£.10] and Proposition [5.5 imply that
K(Rver(k@ 7, ﬁ)m/w) = Qp-3,1, E(Rver(ka T, ﬁ)Pz /w) = ap,0 + ap-1,0-

Together with Corollary this implies that ¢(RY*"(k, T,P)ps /@) = ap—1,0- They
prove the theorem by ([23). O

To prove the Breuil-Mézard Conjecture for potentially crystalline deformation
rings, it is enough to assume that the Galois type 7 is scalar, since otherwise
potentially semi-stable and potentially crystalline deformation rings coincide by [4]
Lemma 2.2.2.2].

Theorem 5.12. The cycle version of the crystalline Breuil-Mézard Conjecture
(hence the original C’onjecture holds forp=1& w:

Z(Re" (k,7,p) /@) = ap”s 11 + agiopa + ap”y o(p2 + p3)-
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Proof. In the case k > 2, all the previous arguments in §§5.115.2] go over verbatim
with 1%, IY*" and RY*"(k, 7, p) replaced by I&., I7F%, and Ry (k, 7, p), respectively.
For example, Proposition [5.3] which is the key result, holds true, since a represen-
tation is potentially crystalline of type (k,7,1) if and only if its trace is.

We are left to treat the special case £ = 2. In this case there are crystalline
representations and semi-stable non-crystalline representations with the same trace,
which makes Proposition (ii) fail when * = 2. However, we give a direct proof
in this case. After twisting, we may assume 7 = 1 is the trivial type and v is the
trivial character.

First of all, Theorem implies that
Z(Rver(27 ]]-75)/72) = P2 +Pp3

since (2, ]l)ss = 0p_1,0- By definition, Spec R¥" (2, 1,5)/w is a union of irreducible
components of Spec R¥*"(2,1,7)/w. Moreover, we know by [I7, Proposition 3.6]
that RY"(2, 1,p) is formally smooth, which implies that the cycle Z(R¥" (2, 1,7)/w)
is simply of the form p; for some ¢ € {2,3}. However, we cannot have i = 3, since
the image of Spec(R¥*"/p3) in Spec RP® reduces to the closed point, whereas that
of Spec R¥®"(2,1,7)/w does not because we can find easily two crystalline liftings
of p with distinct traces. Hence we have Z(Ry" (k,7,p)/ww) = p2 which proves the

theorem since mss = 00,0- U

6. THE FONTAINE-MAZUR CONJECTURE

This section is devoted to the proof of Theorem Since the arguments for
deducing the Fontaine-Mazur conjecture from the Breuil-Mézard conjecture are now
standard [I9], we only emphasize how to modify Kisin’s original proof in the cases
that are not covered in [19].

Let F be a totally real field in which p is split. Let D be a quaternion algebra
with centre F', ramified at all infinite places and a set of finite places > which does
not contain the places above p. Let U C (D ®p Aé)x be the open compact as in
[19 2.1.1]. Fix a continuous representation o : U — Aut(][, W, ) such that

W,, = Symk“ﬂ(ﬁpﬂ ® o(1y) @ det™™,  Volp

with w, an integer and 7, : I, — GL2(F) a representation with open kernel, and
o is trivial at other places. Fix a character ¢ : (A{,)X/F>< — O so that at any
U,NOF , o is given by ¢. Extend o to be a representation of the product U (A?)X
by letting the second component act by 9. Let S, (U, O) be the set of continuous
function f : D*\(D ®F A?)X — [, Ws, defined in [19, 2.1.1], which is chosen to
be a finite projective O-module by shrinking U; cf. [19, 2.1.2].

We take S to be the union of ¥, := X U {v,v|p} and some other unramified

places v such that U, C D) consists of matrices which are upper triangular and
unipotent modulo w,. Consider a continuous absolutely irreducible representation

p: GF,S — GLQ(F)

such that there is an eigenform f € S, (U, O) with the associated Galois repre-
sentation reducing to p; cf. [19] 2.2.3] for additional technical conditions on p. We
have the universal deformation ring Rp g := R"*"(p) analogous to the local setting.

In the following, it is more convenient to use the universal framed deformation
rings; see, for example, [I7, Section 2| for basics. Note that by [I7, Proposition 2.1]
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a universal framed deformation ring R" is formally smooth over a corresponding
versal deformation ring RV®", and that all the closed points of Spec R7[1/p] lying
above a given closed point of Spec RV'[1/p] give rise to isomorphic representations.
Hence our main results in Section [5] hold for framed deformation rings.

We add the superscript [J to the notation of deformation rings to indicate framed
deformations, and as before use the superscript ¥ to indicate the deformations with
fixed determinant ¢. Among them, the universal framed deformation ring RE’ g
of the global absolutely irreducible p is defined by considering deformations of p,
together with the lifts of a fixed basis of (the representation space of) p|g,., for each
v € X;,. In particular, this gives a natural map of O-algebras Rg:b = (X\)REW —

R%’g, where REW is the local framed deformation ring of p|g, . We denote the
various quotient rings analogously.

Let Q,, (for any n > 1) be the set of auxiliary primes as in [I9] 2.2.4], for which
h = |Qn| = dims H' (G p,s,ad"A(1)) is independent of n and Rg.” (Sg, = SUQn
and U, for v € @, are defined as in [19, 2.1.6]) is topologically generated by
g = h+j—d elements as an Rg:/’—algebra, with j =4|E,|-1and d = [F : Q]+3|%,].
Set
My, = So4(Ug,; O)mg, @re  Rpl,
F,50, W Qn

where the ideal mq, is associated to p and @, as in [19, 2.1.5, 2.1.6], and Ug, =

leq, U

Fix a K-stable filtration of W, ®o F by F-vector spaces:

OZLOC"'CLS:WU®OF7
such that the graded piece o; = L;11/L; is absolutely irreducible, which then has
the form 0i = ®’U‘Po—"i,v7mi,u’ with i, € {0? P~ 1} and m; v € {07 P~ 2}
This induces a filtration {M;} on M,,@oF for any n > 0. Let ¢, C Ofy1, -+ , Yn+;]
be the ideal as in [19] 2.2.9]. There are maps of Ry = Rg:’b [z1,- - ,24]-modules
frn : Mpi1/cni1Muy1 — My /e, M, compatible with the filtrations (modulo w).
The Roo-module My, = lim M,, /¢, M, is finite free as an Ofy,- - , yn+;]-module,
whose reduction mod w has a filtration
O:Mgo C---CM: =My,®0F,

each of whose graded pieces is a finite free F[yi, - - - , yn+;]-module.

As explained in [19] 2.2.10], the action of RY*¥ on My, for v|p factors through
the potentially semi-stable quotient RE’“’, twist of R‘:'”p(kv, Tos PlGp, @w™"), and
for v € X factors through certain quotient RE“" whose closed points parametrize
extensions of 7, by 7,(1), where 7, is the unramified character such that 42 =
YlGp, - Denote Rg;w = @)UengE’w. It can be shown that Rg;w is of relative

dimension d over O. Now M, is an Ro, = Rg;w [x1,--- ,z4]-module.
Leti € {1,---,s}. Forv € ¥ and v|p such that p|g,, is not a twist of < o(')) * >,

let RE# be as in the proof of [19} 2.2.15]. Otherwise, we define for v|p with p|q,,
(possibly split) peu ramifié (resp. tres ramifié) that

RE;}# = RO:¥iw (2, (&'}mi,u)@Q’p|GFv )/ @
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with ¢, : Gp, — O* any character such that ¥; .|, = " »@*"v and ¢;, =
Ylgp, mod w, (cf. [19, 2.2.13]). That is, we use the semi-stable instead of
crystalline deformation rings in the latter cases as building blocks, because of
the appearance of components of semi-stable non-crystalline points. Then we
form the completed tensor product Rgpwl of the RE?’ for all v € ¥, and set

— . —D7
R = Rzpl’/’i[[ajl, sz

Remark 6.1. We take the opportunity to remark that in [19, 1.7.14], it is said
that in the case k = p the crystalline deformation ring for an unramified non-split
extension of 1 by itself is formally smooth. This is false since by the main result of
[27] such a ring modulo @ has multiplicity 2. Fortunately, it is only needed in the
proof of [19, 2.2.15] (and hence the rest of [19]) that in such a case the crystalline
deformation ring modulo w is geometrically irreducible and generically reduced.
This is verified in [277, Proposition 2].

Lemma 6.2. For anyi=1,---,s, the support of the R _-module M} /Mi1 is all
of Spec RY_.

Proof. This is a modification of the proof of [I9 2.2.15], which uses the existence
of modular liftings of prescribed type. For the latter in the cases that p|q,, is a

twist of < C(L)} I > (v|p), which is not treated in [19], we use [I7, Theorem 9.7] as

follows.

Suppose we are in these cases. By [, Theorem 5.3.1(i)], we know that the
cycle Z(RP¥ir (2, (@m)%2 plg,, )/w) is irreducible if p is trés ramifié. In the
(possibly split) peu ramifié case, it is the sum of two irreducible components, one
of which is just Z(R(;Dr’wi’“(2, (@™mi)®2 Dlay, ) /@), and the other of which is the
closure of the semi-stable non-crystalline points, as predicted by the Breuil-Mézard
conjecture. Now [I7, Theorem 9.7] tells us that the support of M /MiZ! as an
R! -module, meets each irreducible component of R’_, and in fact consists of all of
it by dimension counting; cf. the proof of [I9] 2.2.15]. O

Proposition 6.3. M is a faithful Roo-module which is of rank 1 at each generic
point of Rso.

Proof. By Lemma and the proof of [19, 2.2.15], we deduce that the inequality
[19, 2.2.16] holds for all p|g,, . Recall Theorem and the main result of [25].
These then give e(Roo/wRoo) < e(Moo /My, R /ooRs) as in the proof of [19,
2.2.17]. Now the result follows from [19] 2.2.11]. O

Theorem 6.4. Let F' be a totally real field in which p splits. Let p : Gpg —
GL2(0) be a continuous representation such that p is odd, pla,, is absolutely
irreducible, the restriction plg. for each place v|p is potentially semi-stable of
distinct Hodge-Tate weights, and the residual representation p is modular. Then p

comes from a Hilbert modular form.
As a consequence, Theorem [1.4] holds.

Proof. By Proposition and [19, 2.2.11], the modularity holds in the case that
plig, ;v € ¥, is an extension of v, by 7,(1). The general case then follows from the
base change arguments as in the proof of [19, 2.2.18]. For Theorem one only
needs that p is modular, which is the main result of [16], [17]. O
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