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Abstract. We prove a new upper bound for the dimension of the space of cohomological

automorphic forms of fixed level and growing parallel weight on GL2 over a number field
which is not totally real, improving the one obtained in [19]. The main tool of the proof is

the mod p representation theory of GL2(Qp) as started by Barthel-Livné and Breuil, and

developed by Paškūnas.

1. Introduction

Let F be a finite extension of Q of degree r, and r1 (resp. 2r2) be the number of real (resp.
complex) embeddings. Let F∞ = F ⊗QR, so that GL2(F∞) = GL2(R)r1 ×GL2(C)r2 . Let Z∞
be the centre of GL2(F∞), Kf be a compact open subgroup of GL2(Af ) and let

X = GL2(F )\GL2(A)/KfZ∞.

If d = (d1, ..., dr1+r2) is an (r1 + r2)-tuple of positive even integers, we let Sd(Kf ) denote the
space of cusp forms on X which are of cohomological type with weight d.

In this paper, we are interested in understanding the asymptotic behavior of the dimension
of Sd(Kf ) as d varies and Kf fixed. Define

∆(d) =
∏
i≤r1

di ×
∏
i>r1

d2
i .

When F is totally real, Shimizu [27] proved that

dimC Sd(Kf ) ∼ C ·∆(d)

for some constant C independent of d. However, if F is not totally real, the actual growth rate
of dimC Sd(Kf ) is still a mystery; see the discussion below when F is quadratic imaginary.

The main result of this paper is the following (see Theorem 6.1 for a slightly general
statement).

Theorem 1.1. If F is not totally real and d = (d, ..., d) is a parallel weight, then for any
fixed Kf , we have

dimC Sd(Kf )�ε d
r−1/2+ε.

To compare our result with the previous ones, let us restrict to the case when F is imaginary
quadratic. In [13], Finis, Grunewald and Tirao has proven the bounds

d� dimC Sd(Kf )� d2

ln d
, d = (d, d)
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using base change and the trace formula respectively (the lower bound is conditional on Kf ).
In [19], Marshall has improved the upper bound to be

(1.1) dimSd(Kf )�ε d
5/3+ε

while our Theorem 1.1 gives
dimSd(Kf )�ε d

3/2+ε,

hence a saving by a power d1/6. It worths to point out that such a power saving is quite
rare for tempered automorphic forms. Indeed, purely analytic methods, such as the trace
formula, only allow to strengthen the trivial bound by a power of log, cf. [13]. We refer to
the introduction of [19] for discussion on this point and a collection of known results.

Finally, let us mention that the experimental data of [13] (when F is quadratic imaginary)
suggests that the actual growth rate of dimC Sd(Kf ) is probably d. We hope to return to this
problem in future work.

Let us first explain Marshall’s proof of the bound (1.1). It consists of two main steps, the
first of which is to convert the problem to bounding the dimension of certain group cohomology
of Emerton’s completed cohomology spaces Hj (in mod p coefficients) and the second one is to
establish this bound. For the first step, he used the Eichler-Shimura isomorphism, Shapiro’s
lemma and a fundamental spectral sequence due to Emerton. For the second, he actually
proved a bound in a more general setting which applies typically to Hj . To make this precise,
let us mention a key intermediate result in this step (stated in the simplest version). Let

K1 =

(
1 + pZp pZp
pZp 1 + pZp

)
, T1(pn) =

(
1 + pZp pnZp
pnZp 1 + pZp

)
and Z1

∼= 1 + pZp be the center of K1. Also let F be a sufficiently large finite extension of Fp.
By a careful and involved analysis of the structure of finitely generated torsion modules over
the Iwasawa algebra Λ := F[[K1/Z1]], Marshall proved the following ([19, Prop. 5]): if Π is a
smooth admissible F-representation of K1/Z1 which is cotorsion1, then for any i ≥ 0,

(1.2) dimFH
i(T1(pn)/Z1,Π)� p4n/3.

Our proof of Theorem 1.1 follows closely the above strategy. Indeed, the first step is
identical to Marshall’s. Our main innovation is in the second step by improving the bound
(1.2). The key observation is that Emerton’s completed cohomology is not just an admissible
representation of K1, but also carries naturally a compatible action of GL2(Qp), which largely
narrows the possible shape of Hj . Indeed, this is already observed in [19] and used once2 when
deriving (1.1) from (1.2). However, the mod p representation theory of GL2(Qp) developed
by Barthel-Livné [2], Breuil [4] and Paškūnas [24, 25], allows us to make the most of this fact
and prove the following result.

Theorem 1.2. Let Π be a smooth admissible F-representation of GL2(Qp) with a central
character. Assume that Π is admissible and cotorsion. Then for any i ≥ 0,

dimFH
i(T1(pn)/Z1,Π)� npn.

We obtain the bound by using numerous results of the mod p representation theory of
GL2(Qp). First, the classification theorems of [2] and [4] allow us to control the dimension of
invariants for irreducible π, in which case we prove

(1.3) dimFH
i(T1(pn)/Z1, π)� n.

In fact, to do this we also need more refined structure theorems due to Morra [21, 22]. Second,
the theory of Paškūnas [24] allows us to pass to general admissible cotorsion representations.
To explain this, let us assume moreover that all the Jordan-Hölder factors of Π are isomorphic

1that is, the Pontryagin dual Π∨ := HomF(Π,F) is torsion as an F[[K1]]-module
2we mean the trick of ‘change of groups’, see §5.3
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to a given supersingular irreducible representation π. Paškūnas [24] studied the universal
deformation of π∨ and showed that the universal deformation space is three dimensional.
We show that the admissibility and cotorsion condition imposed on Π forces that Π∨ is a
deformation of π∨ over a one-dimensional space. Knowing this, we deduce easily Theorem 1.2
from (1.3).

We point out that to prove Theorem 1.2 for i ≥ 1 and to generalize it to a finite product
of GL2(Qp), we need to solve several complications caused by the additional requirement
of carrying an action of GL2(Qp). In doing so, we prove some results which might be of
independent interest. We explain these in more detail below.

The first complication comes when we try to prove Theorem 1.2 for higher cohomology
degrees. To apply the standard dimension-shifting argument, we need also consider admissible
representations Π which are not necessarily cotorsion, that is, the Pontryagin dual Π∨ has a
positive rank over Λ. Using the bound in the torsion case, one is reduced to consider torsion-
free Π∨. The usual argument (as in [19, §3.2]) uses the existence of morphisms Λs → Π∨

and Π∨ → Λs with torsion cokernels, where s is the Λ-rank of Π∨. However, these are only
morphisms of Λ-modules, so the bound for torsion modules does not apply to these cokernels.
To solve this issue, we prove that under certain conditions a torsion-free Λ-module which
carries a compatible action of GL2(Qp) is actually free. The proof of this fact uses crucially
a result of Kohlhaase [18].

To explain the second, we recall the following interesting result of Breuil-Paškūnas [6]: if
Π is a smooth admissible F-representation of GL2(Qp) with a central character, then there
exists a GL2(Qp)-equivariant embedding

Π ↪→ Ω,

where Ω|GL2(Zp) is an injective envelope of Π|GL2(Zp) in the category of smooth F-representations
of GL2(Zp) with the (fixed) central character. Although this construction works for the group
GL2(F ) for any local field F , it does not generalize (at least not obviously) to a finite product,
say G = GL2(Qp) × · · · × GL2(Qp). This causes an obstacle in generalizing Theorem 1.2 to
G. To overcome this we prove, using the theory of Serre weights, a weaker replacement of the
construction of Breuil-Paškūnas. Roughly, it says that we may always embed Π into some Ω
which, although not necessarily an injective envelope of Π|GL2(Zp), is an injective object. This
statement generalizes to G.

Notation. Throughout the paper, we fix a prime p and a finite extension F over Fp taken to
be sufficiently large.

Acknowledgement. Our debt to the work of Vytautas Paškūnas and Simon Marshall will be
obvious to the reader. We also thank Marshall for his comments on an earlier draft.

2. Non-commutative Iwasawa algebras

Let G be a p-adic analytic group of dimension d and G0 be an open compact subgroup of
G. We assume G0 is uniform and pro-p. Let

Λ = F[[G0]] = lim←−
N/G0

F[G0/N ]

be the Iwasawa algebra ofG0 over F. A finitely generated Λ-module is said to have codimension
c if ExtiΛ(M,Λ) = 0 for all i < c and is non-zero for i = c; the codimension of the zero module
is defined to be∞. We denote the codimension by jΛ(M). If M is non-zero, then jΛ(M) ≤ d.
For our purpose, we set

δΛ(M) = d− jΛ(M)
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and call it the canonical dimension of M . It is easy to see that if 0→ M ′ → M → M ′′ → 0
is a short exact sequence of finitely generated Λ-modules, then

(2.1) δΛ(M) = max{δΛ(M ′), δΛ(M ′′)}.

If M is a finitely generated Λ-module, we have the notion of Gelfand-Kirillov dimension of
M , defined to be the growth rate of the function dimFM/JnM , where J denotes the maximal
ideal of Λ. We have the following important fact ([1, §5.4]).

Theorem 2.1. For all finitely generated Λ-modules M , the canonical dimension and the
Gelfand-Kirillov dimension of M coincide.

For n ≥ 0, define inductively Gn+1 := Gpn[Gn, G0] which are normal subgroups of G0; the
decreasing chain G0 ⊇ G1 ⊇ · · · is called the lower p-series of G0, see [1, §2.4]. We have
|Gn : Gn+1| = pd. With this notation, the utility of the above theorem is the following result
(see [9, Thm. 2.3]).

Corollary 2.2. Let M be a finitely generated Λ-module of codimension c. Then

(2.2) dimFH0(Gn,M) = λ(M) · p(d−c)n +O(p(d−c−1)n)

for some rational number λ(M) > 0.

Since the Artin-Rees property holds for the J-adic filtration of Λ (see [14, Lem. A.32]), by
a standard argument we see that if 0→M1 →M →M2 → 0 is an exact sequence of finitely
generated Λ-modules of codimension c, then λ(M) = λ(M1) + λ(M2).

Proposition 2.3. Let M be a finitely generated Λ-module and φ : M → M be an endomor-
phism. Assume that

⋂
n≥1 φ

n(M) = 0.3 Then one the following holds:

(i) φ is nilpotent and δΛ(M) = δΛ(M/φ(M));
(ii) φ is not nilpotent and for k0 � 1,

(2.3) δΛ(M) = max
{
δΛ(M/φ(M)), δΛ(φk0(M)/φk0+1(M)) + 1

}
.

In any case, δΛ(M) ≤ δΛ(M/φ(M)) + 1.

Proof. We assume first that φ is nilpotent, say φk0 = 0 for some k0 ≥ 1. Then M admits
a finite filtration by φk(M) (for k ≤ k0). Since each of the graded pieces is a quotient of
M/φ(M), the assertion follows from (2.1).

Now assume that φ is not nilpotent, so by Lemma 2.4 below φ induces an injection
φk0(M) → φk0(M) for some k0 � 1 and the RHS of (2.3) does not depend on the choice
of k0. The above argument shows that

δΛ(M/φk0(M)) = δΛ(M/φ(M)).

Hence, by (2.1) applied to the short exact sequence 0 → φk0(M) → M → M/φk0(M) → 0,
we need to show

δΛ(φk0(M)) = δΛ(φk0(M)/φk0+1(M)) + 1.

That is, by replacing M by φk0(M), we may assume φ is injective and need to show δΛ(M) =
δΛ(M/φ(M)) + 1. Indeed, this follows from [14, Lem. A.15]. �

Lemma 2.4. Let M be a finitely generated Λ-module. Let φ ∈ EndΛ(M) be such that⋂
n≥1 φ

n(M) = 0. Then one of the following holds:

(i) φ is nilpotent;

3It would be more natural to impose the condition φ(M) ⊂ JM . We consider the present one for the following

reasons. On the one hand, in practice we do need consider φ such that
⋂
n≥1 φ

n(M) = 0 but φ(M) * JM .

On the other hand, since M is finitely generated, the condition
⋂
n≥1 φ

n(M) = 0 implies φn(M) ⊂ JM for

n� 1, see the proof of Lemma 4.15.
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(ii) φ is not nilpotent and for k0 � 0, φ induces an injection φk0(M)→ φk0(M).

Proof. For any k ≥ 1, φ induces a surjective morphism

M/φ(M) � φk(M)/φk+1(M).

Since Λ is noetherian and M is finitely generated, any ascending chain of submodules of
M/φ(M) is stable, so there exists k0 � 0 such that

φk0(M)/φk0+1(M) = φk(M)/φk+1(M), ∀k � k0.

For this k0, φ : φk0(M) → φk0(M) is injective. If φk0(M)/φk0+1(M) = 0, then φk0(M) = 0
by Nakayama’s lemma, that is, φ is nilpotent. �

Recall that the projective dimension, denoted by pdΛ(M), is defined to be the length of
a minimal projective resolution of M . It is proved in [28, Cor. 6.3] that pdΛ(M) is equal to
max{i : ExtiΛ(M,Λ) 6= 0}. We always have pdΛ(M) ≥ jΛ(M) and say M is Cohen-Macaulay
if pdΛ(M) = jΛ(M).

Lemma 2.5. Let M be a finitely generated Λ-module. Let φ ∈ EndΛ(M) be such that⋂
n≥1 φ

n(M) = 0. Assume φ is injective. Then M is Cohen-Macaulay if and only if M/φ(M)
is Cohen-Macaulay.

Proof. Since φ is injective, Proposition 2.3 implies that jΛ(M) = jΛ(M/φ(M)) − 1. On the
other hand, we also have pdΛ(M) = pdΛ(M/φ(M))− 1. �

2.1. Torsion vs torsion free. Assume now G0 is a uniform and pro-p. Then Λ is a noe-
therian integral domain. Let L be the field of fractions of Λ. If M is a finitely generated
Λ-module, then M ⊗Λ L is a finite dimensional L-vector space, and we define the rank of M
to be the dimension of this vector space. We see that rank is additive in short exact sequences
and that M has rank 0 if and only if M is torsion.

Let O = W (F) be the ring of Witt vectors with coefficients in F. Similar to Λ = F[[G0]],
we may form the Iwasawa algebras

Λ̃ := O[[G0]] = lim←−
N/G0

O[G0/N ], Λ̃Qp = Λ̃⊗Zp Qp.

They are both integral domains. Let LQp be the field of fractions of Λ̃Qp . If M is a finitely

generated module over Λ̃Qp , we define its rank as above and the analogous facts hold.

Recall the following simple fact, see [10, Lem. 1.17].

Lemma 2.6. Let M be a finite generated Λ̃-module which is furthermore p-torsion free, then

M ⊗Zp Qp is torsion as a Λ̃Qp-module if and only if M ⊗Zp Fp is torsion as an Λ-module.

3. Mod p representations of GL2(Qp)

Notation. Let p be a prime4 ≥ 5, G = GL2(Qp), K = GL2(Zp), Z be the center of G, T be

the diagonal torus, and B =

(
∗ ∗
0 ∗

)
the upper Borel subgroup.

Let RepF(G) denote the category of smooth F-representations of G with a central character.

Let Repl,fin
F (G) denote the subcategory of RepF(G) consisting of locally finite objects. Here an

object Π ∈ RepF(G) is said to be locally finite if for all v ∈ Π the F[G]-submodule generated
by v is of finite length.

4It is not always necessary, but for convenience we make this assumption throughout the paper.
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If Π,Π′ ∈ Repl,fin
F (G), we simply write ExtiG(Π,Π′) for the extension groups computed in

Repl,fin
F (G). In particular, the extension classes are required to carry a central character. In

particular, ExtiG(Π,Π′) = 0 if Π,Π′ have distinct central characters.

Let Modpro
F (G) be the category of compact F[[K]]-modules with an action of F[G] such

that the two actions coincide when restricted to F[K]. It is anti-equivalent to RepF(G) under
Pontryagin dual Π 7→ Π∨ := HomF(Π,F). Let C = C(G) be the full subcategory of Modpro

F (G)

anti-equivalent to Repl,fin
F (G).

An object M ∈ C is called coadmissible if M∨ is admissible in the usual sense. This
is equivalent to requiring M to be finitely generated over F[[K]] (or equivalently, finitely
generated over F[[H]] for any open compact subgroup H ⊂ K).

IfH is a closed subgroup ofK, we denote by RepF(H) the category of smooth F-representations
of H such that H ∩ Z acts by a character. Let C(H) be the dual category of RepF(H).

For n ≥ 1, let Kn =
( 1+pnZp pnZp

pnZp 1+pnZp

)
. Also let Z1 := K1∩Z. Since Z1 is pro-p, any smooth

character χ : Z → F× is trivial on Z1, so any F-representation of G (resp. K) with a central
character can be viewed as a representation of G/Z1 (resp. K/Z1). Set

Λ := F[[K1/Z1]].

Since K1/Z1 is uniform (as p > 2) and pro-p, the results in §2 apply to Λ. Note that
dim(K1/Z1) = 3. To simplify the notation, we write j(·) = jΛ(·), δ(·) = δΛ(·) and pd(·) =
pdΛ(·).

If H is a closed subgroup of G and σ is a smooth representation of H, we denote by IndGH σ

the usual smooth induction. When H is moreover open, we let c-IndGHσ denote the compact

induction, meaning the subspace of IndGH σ consisting of functions whose support is compact
modulo H.

Let ω : Q×p → F× be the mod p cyclotomic character. If H is any group, we write 1H for
the trivial representation of H (over F).

3.1. Irreducible representations. The work of Barthel-Livné [2] shows that absolutely
irreducible objects in RepF(G) fall into four classes:

(1) one dimensional representations χ ◦ det, where χ : Q×p → F× is a smooth character;

(2) (irreducible) principal series IndGB χ1 ⊗ χ2 with χ1 6= χ2;

(3) special series, i.e. twists of the Steinberg representation Sp := (IndGB 1T )/1G;
(4) supersingular representations, i.e. irreducible representations which are not isomor-

phic to sub-quotients of any parabolic induction.

For 0 ≤ r ≤ p−1, let SymrF2 denote the standard symmetric power representation of GL2(Fp).
Up to twist by detm with 0 ≤ m ≤ p − 1, any absolutely irreducible F-representation of
GL2(Fp) is isomorphic to SymrF2. Inflating to K and letting

( p 0
0 p

)
act trivially, we may view

SymrF2 as a representation of KZ. Let I(SymrF2) := c-IndGKZSymrF2 denote the compact
induction to G. It is well-known that EndG(I(SymrF2)) is isomorphic to F[T ] for a certain
Hecke operator T ([2]). For λ ∈ F we define

π(r, λ) := I(SymrF2)/(T − λ).

If χ : Q×p → F× is a smooth character, then let π(r, λ, χ) := π(r, λ)⊗ χ ◦ det. In [2], Barthel
and Livné showed that any supersingular representation of G is a quotient of π(r, 0, χ) for
suitable (r, χ). Later on, Breuil [4] proved that π(r, 0, χ) is itself irreducible, hence completes
the classification of irreducible objects in RepF(G). We will refer to (r, λ, χ) as above as a
parameter triple.
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Recall the link between non-supersingular representations and compact inductions: if λ 6= 0
and (r, λ) 6= (0,±1), then

π(r, λ) ∼= IndGB µλ−1 ⊗ µλωr,
where µx : Q×p → F× denotes the unramified character sending p to x. If (r, λ) ∈ {(0,±1), (p−
1,±1)}, we have non-split exact sequences:

0→ Sp⊗µ±1 ◦ det→ π(0,±1)→ µ±1 ◦ det→ 0,

0→ µ±1 ◦ det→ π(p− 1,±1)→ Sp⊗µ±1 ◦ det→ 0.

It is clear for non-supersingular representations and follows from [4] for supersingular rep-
resentations that any absolutely irreducible π ∈ RepF(G) is admissible. Therefore π∨ is
coadmissible and it makes sense to talk about δ(π∨).

Theorem 3.1. Let Π ∈ RepF(G).

(i) If Π is of finite length, then Π is admissible and δ(Π∨) ≤ 1.

(ii) Conversely, if Π is admissible and δ(Π∨) ≤ 1, then Π is of finite length.

Proof. (i) The first assertion is clear. For the second, we may assume Π is absolutely ir-
reducible. Corollary 2.2 allows us to translate the problem to computing the growth of
dimF ΠKn . If Π is non-supersingular, then it is easy, see [22, Prop. 5.3] for a proof. If Π
is supersingular, this is first done in [23, Thm. 1.2] and later in [22, Cor. 4.15] (of course,
both proofs are based on [4]).

(ii) If δ(Π∨) = 0, then (up to enlarge F) all the irreducible subquotients of Π are one-
dimensional. Since p ≥ 5 by assumption, if χ, χ′ : Q×p → F× are two smooth characters

(distinct or not), we have Ext1
G(χ ◦ det, χ′ ◦ det) = 0 by [23, Thm. 11.4]. Therefore Π is a

direct sum of one-dimensional representations. But Π is admissible by assumption, so it is of
finite length.

Assume δ(Π∨) = 1. Consider the G-socle filtration with graded pieces sociΠ (i ≥ 1)
given by soc1Π = socGΠ, soc2(Π) = socG(Π/soc1Π), etc. Since Π is admissible, sociΠ is
non-zero and of finite length. Since there is no non-trivial extension between two characters,
for any two successive pieces sociΠ, soci+1Π, (at least) one of them contains an infinite
dimensional irreducible representation of G. On the other hand, using Corollary 2.2 and
the additivity of λ(·) with respect to short exact sequences, we deduce that the number of
irreducible subquotients of Π∨ which have Gelfand-Kirillov dimension 1 is finite.5 Putting
these together, we see that the socle filtration of Π is finite, hence Π has finite length. �

Recall the following result of Kohlhaase.

Theorem 3.2. Let π ∈ RepF(G) be absolutely irreducible. Then π∨ is Cohen-Macaulay of
codimension 2 (resp. codimension 3) if π is infinite dimensional (resp. one-dimensional).

Proof. This is proved in [18, §5]. Precisely, see Prop. 5.4 when π is an (irreducible) principal
series representation, Prop. 5.7 when π is special series, Thm. 5.13 when π is supersingular.
The case when π is one-dimensional is trivial. �

Recall that a block in RepF(G) is an equivalence class of irreducible objects in RepF(G),
where τ ∼ π if and only if there exists a series of irreducible representations τ = τ0, τ1, . . . , τn =
π such that Ext1

G(τi, τi+1) 6= 0 or Ext1
G(τi+1, τi) 6= 0 for each i.

5Strictly speaking, we also need to know that λ(·) is uniformly bounded below for any infinite dimensional

irreducible representation. This can be seen by the result of Morra recalled in (i), or by the general theory of
Hilbert polynomials.
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Proposition 3.3. The category Repl,fin
F (G) decomposes into a direct product of subcategories

Repl,fin
F (G) =

∏
B

Repl,fin
F (G)B

where the product is taken over all the blocks B and the objects of Repl,fin
F (G)B are rep-

resentations with all the irreducible subquotients lying in B. Correspondingly, we have a
decomposition of categories C =

∏
B CB, where CB denotes the dual category of RepF(G)B.

Proof. See [24, Prop. 5.34]. �

The following theorem describes the blocks (when p ≥ 5 as we are assuming).

Theorem 3.4. Let π ∈ RepF(G) be absolutely irreducible and let B be the block in which π
lies. Then one of the following holds:

(I) if π is supersingular, then B = {π};
(II) if π ∼= IndGB χ1 ⊗ χ2ω

−1 with χ1χ
−1
2 6= 1, ω±1, then

B =
{

IndGB χ1 ⊗ χ2ω
−1, IndGB χ2 ⊗ χ1ω

−1
}

;

(III) if π = IndGB χ⊗ χω−1, then B = {π};
(IV) otherwise, B = {χ ◦ det,Sp⊗χ ◦ det, IndGB α⊗ χ ◦ det}, where α = ω ⊗ ω−1.

Proof. See [24, Prop. 5.42]. �

Convention: By [24, Lem. 5.10], any smooth irreducible Fp-representation of G with a
central character is defined over a finite extension of Fp. Theorem 3.4 then implies that for
a given block B, there is a common field F such that irreducible objects in B are absolutely
irreducible. Hereafter, given a finite set of blocks, we take F to be sufficiently large such that
irreducible objects in these blocks are absolutely irreducible.

3.2. Projective envelopes. Fix π ∈ RepF(G) irreducible and let B be the block in which π

lies. Let InjGπ be an injective envelope of π in Repl,fin
F (G); the existence is guaranteed by [24,

Cor. 2.3]. Let P = Pπ∨ := (InjGπ)∨ ∈ C and E = Eπ∨ := EndC(P ). Then P is a projective
envelope of π∨ in C and is naturally a left E-module. Since P is indecomposable, Proposition
3.3 implies that (the dual of) every irreducible subquotient of P lies in B. Also, E is a local
F-algebra (with residue field F). Paškūnas has computed E and showed in particular that E
is commutative, except when B is of type (III) listed in Theorem 3.4; in any case, we denote
by R = Z(E) the center of E. Hence E = R except for blocks of type (III).

Theorem 3.5. (Paškūnas) Keep the above notation.

(i) R is naturally isomorphic to the Bernstein center of CB. In particular, R acts on any
object in CB and any morphism in CB is R-equivariant.

(ii) We have the following facts:

(I) If B is of type (I), then E is commutative isomorphic to F[[x, y, z]] and P is a flat
E-module.

(II) If B is of type (II), then E is commutative isomorphic to F[[x, y, z]] and P is a flat
E-module.

(III) If B is of type (III), then E is non-commutative and its center R is isomorphic to
F[[x, y, z]]. E is a free R-module of rank 4 and carries an involution ∗ such that
R = {a ∈ E : a∗ = a}. Moreover, P is a flat E-module, hence also flat over R.

(IV) If B is of type (IV), then E is commutative isomorphic to F[[x, y, z, w]]/(xw − yz).

In particular, R is a Cohen-Macaulay complete local noetherian F-algebra of Krull dimension
3.
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Proof. (i) This is [24, Thm. 1.5].

(ii) These are proved in [24]. Precisely, see Prop. 6.3 for type (I), Cor. 8.7 for type (II), §9
for type (III) and Cor. 10.78, Lem. 10.93 for type (IV). The flatness of P over E (for blocks
of type (I)-(III)) follows from Cor. 3.12. �

However, if B is of type (IV), P is not flat over E. This causes quite a bit of complication in

the proof of our main result. To solve this, we determine in §3.7 all the Tor-groups TorEi (F, P ).
We state a result which will be used there.

Lemma 3.6. For i ≥ 1, we have

HomC(P,TorEi (F, P )) = 0.

Proof. Choose a resolution of F by finite free E-modules: F• → F → 0. Then the homology
of F• ⊗E P computes TorEi (F, P ). It is clear that

HomC(P, F• ⊗E P ) ∼= F•.

Since HomC(P,−) is exact, this implies

HomC(P,Hi(F• ⊗E P )) ∼= Hi(F•)

as required. �

Proposition 3.7. (i) F⊗E P (resp. F⊗R P ) has finite length in C.

(ii) If π /∈ {Sp, πα} ⊗ χ ◦ det for any χ : Q×p → F×,6 then F ⊗E P (resp. F ⊗R P ) is
Cohen-Macaulay.

Proof. (i) By definition, F⊗E P is characterized as the maximal quotient of P which contains
π∨ with multiplicity one. This object is denoted by Q in [24, §3] and can be described
explicitly. If B is of type (I) or (III), Q is just π∨. If B is of type (II), it has finite length by
[25, Prop. 6.1]. If B is of type (IV), it follows from Proposition 3.30 below in §3.7 where the
explicit structure of F⊗E P is determined.

To see that F ⊗R P has finite length, we may assume B is of type (III). Then E is a free
R-module of rank 4, so that F⊗R P ∼= (F⊗R E)⊗E P ) ∼= (F⊗E P )⊕4.

(ii) the result follows from the explicit description of F ⊗E P , using Theorem 3.2 and
Proposition 3.34 in the case π = 1G. �

3.3. Serre weights. We keep the notation in the previous subsection. Let π ∈ RepF(G) be
irreducible. By a Serre weight of π we mean an isomorphism class of (absolutely) irreducible
F-representations of K, say σ, such that HomK(σ, π) 6= 0. Denote by D(π) the set of Serre
weights of π. The description of D(π) can be deduced from [2] and [4]; see [25, Rem. 6.2] for
a summary.

Lemma 3.8. If π 6= π′ are two objects in a block B, then D(π) ∩D(π′) = ∅.

Proof. The statement is trivial if B is of type (I) or (III). For type (II) or type (IV), it is a
direct check (using the assumption p ≥ 5), see [25, Rem. 6.2]. �

Let (r, λ, χ) be a parameter triple. For any n ≥ 1, set

πn(r, λ, χ) := I(SymrF2)/(T − λ)n ⊗ χ ◦ det,

so that π1(r, λ, χ) = π(r, λ, χ). Because F[T ] acts freely on I(SymrF2) by [2, Thm. 19], for
m ≤ n we have an exact sequence

0→ πm(r, λ, χ)
(T−λ)n−m−→ πn(r, λ, χ)→ πn−m(r, λ, χ)→ 0.

6hereafter, we will often express this condition as π /∈ {Sp, πα} up to twist
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Put

π∞(r, λ, χ) := lim−→
n≥1

πn(r, λ, χ).

Then π∞(r, λ, χ) is a locally finite smooth F-representation of G and we have an exact sequence

(3.1) 0→ π(r, λ, χ)
T−λ→ π∞(r, λ, χ)→ π∞(r, λ, χ)→ 0.

Proposition 3.9. Assume λ 6= 0. The following statements hold.

(i) We have socGπ∞(r, λ, χ) = socG π(r, λ, χ). In particular, there exists a G-equivariant
embedding θ : π∞(r, λ, χ) ↪→ InjGπ(r, λ, χ).

(ii) The morphism θ identifies π∞(r, λ, χ) with the largest G-stable subspace of InjGπ(r, λ, χ)

which is generated by its I1-invariants, where I1 =
( 1+pZp Zp

pZp 1+pZp

)
is the pro-p Iwahori sub-

group. In particular, the image of θ does not depend on the choice of θ.

(iii) For any irreducible σ ∈ RepF(K), θ induces an isomorphism

HomK(σ, π∞(r, λ, χ)) ∼= HomK(σ, InjGπ(r, λ, χ)).

Moreover, they are non-zero if and only if HomK(σ, π(r, λ, χ)) 6= 0.

(iv) If HomK(σ, π(r, λ, χ)) 6= 0, then HomK(P, σ∨)∨ is a cyclic E-module isomorphic to
F[[S]] (where S denotes T − λ), with the annihilator independent of σ.

Proof. If (r, λ) 6= (p − 1,±1), this is proved in [16, §2]: Lem. 2.1 for (i), Prop. 2.3 for (ii),
Cor. 2.5 for (iii), Prop. 2.9 for (iv).

If (r, λ) = (p− 1,±1), the statements are still true and the proof can be adapted from the
case of (r, λ) = (0,±1). �

Corollary 3.10. Let π ∈ RepF(G) be irreducible and P = Pπ∨ . If π /∈ {1G,Sp} up to twist,
then HomK(P, σ∨) 6= 0 if and only if σ ∈ D(π). If π ∈ {1G,Sp}, then HomK(P, σ∨) 6= 0 if
and only if σ ∈ {Sym0F2,Symp−1F2}.

Proof. The result is clear if B is of type (I), and follows from Proposition 3.9 otherwise. �

Corollary 3.11. Let π ∈ RepF(G) be irreducible and P = Pπ∨ .

(i) Let σ ∈ RepF(K) be irreducible. Whenever non-zero, HomK(P, σ∨)∨ is a cyclic E-
module. If Jσ denotes the annihilator, there exists x /∈ Jσ such that

(3.2) HomK(P, σ∨)∨ ∼= E/Jσ ∼= F[[x]].

(ii) Let σ̃ = ⊕σσ where the sum is taken over all σ such that HomK(P, σ∨) 6= 0. Then
HomK(P, σ̃∨)∨ is a Cohen-Macaulay E-module of Krull dimension 1.

Proof. (i) If B is not of type (I), the result is a reformulation of Proposition 3.9(iv). If B is
of type (I), it is proved in [25, Thm. 6.6, (38)].

(ii) Remark that although E is non-commutative when B is of type (III), E/Jσ̃ is commu-
tative by Proposition 3.9, where Jσ̃ denotes the annihilator of HomK(P, σ̃∨)∨. So it makes
sense to talk about the Cohen-Macaulayness. That being said, if B is not of type (I), the
result follows from Proposition 3.9(iv). If B is of type (I), it is a special case of [25, Lem.
2.33] via [25, Thm. 5.2]. �

We record a result in the context of commutative algebra which will be used in Section 5.

Lemma 3.12. Let σ ∈ RepF(K) be irreducible such that HomK(P, σ∨) is non-zero. View
HomK(P, σ∨)∨ as an R-module and let J ′σ be the annihilator. There exist g, h ∈ J ′σ such that
J ′σ/(g, h) has finite length.
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Proof. First note that R = E and J ′σ = Jσ except when B is of type (III).

If B is of type (I) or (II), R is isomorphic to a power series ring over F in three variables, so
we may even choose g, h such that Jσ = (g, h). If B is of type (III), R = Z(E) is isomorphic
to a power series ring in three variables and Proposition 3.28 proved in §3.6 below implies
that the image of R → F[[x]] is F[[x2]] (with a suitable choice of x), the result is also clear.
If B is of type (IV), then R is isomorphic to F[[x, y, z, w]]/(xw − yz) and it is proved in [16,
Lem. 3.9] that Jσ = (y, z, w) with a suitable choice of variables. It suffices to take g = y − z
and h = w. �

The following general result is extracted from [15, Thm. 3.5].

Proposition 3.13. Let P̃ ∈ C and f ∈ EndC(P̃ ). Assume

(a) P̃ is projective in C(K);
(b) for any irreducible σ ∈ RepF(K), the induced morphism

f∗ : HomK(P̃ , σ∨)∨ → HomK(P̃ , σ∨)∨

is injective.

Then f is injective and P̃ /fP̃ is projective in C(K).

Proof. Consider the exact sequence P̃
f→ P̃ → P̃ /fP̃ → 0. Let σ ∈ RepF(K) be irreducible.

Applying HomK(−, σ∨)∨ we obtain

HomK(P̃ , σ∨)∨
f∗→ HomK(P̃ , σ∨)∨ → HomK(P̃ /fP̃ , σ∨)∨ → 0.

Denote by Im(f) the image of f : P̃ → P̃ . Then f∗ factors as

(3.3) HomK(P̃ , σ∨)∨
α
� HomK(Im(f), σ∨)∨

β→ HomK(P̃ , σ∨)∨,

with α surjective. Since f∗ is injective by assumption, β is also injective and α is an isomor-
phism.

Since P̃ is projective in C, it remains projective in C(K) by [12]. Applying HomK(−, σ∨)∨

to 0→ Im(f)→ P̃ → P̃ /fP̃ → 0, we get an exact sequence of E-modules:

0→ Ext1
K(P̃ /fP̃ , σ∨)∨ → HomK(Im(f), σ∨)∨

β→ HomK(P̃ , σ∨)∨ → HomK(P̃ /fP̃ , σ∨)∨ → 0.

The injectivity of β implies Ext1
K(P̃ /fP̃ , σ∨)∨ = 0. This being true for every irreducible

σ ∈ RepF(K), we deduce that P̃ /fP̃ is projective in C(K).

As a consequence, Im(f) is also projective in C(K). To check f : P̃ → P̃ is injective, let N

be the kernel. For any irreducible σ ∈ RepF(K), the exact sequence 0→ N → P̃ → Im(f)→ 0
induces

0→ HomK(N, σ∨)∨ → HomK(P̃ , σ∨)∨
α→ HomK(Im(f), σ∨)∨ → 0.

Since α is an isomorphism, we obtain HomK(N, σ∨)∨ = 0. This being true for any σ, we

finally obtain N = 0, so f : P̃ → P̃ is injective. �

The following result complements [25, Thm. 5.2].7

Corollary 3.14. If π ∈ {1G,Sp}, there exists f ∈ E such that f : P → P is injective and
P/fP isomorphic to a projective envelope of Sym0F2 ⊕ Symp−1F2 in C(K).

7Although our result is stated for mod p coefficients, the p-adic case can be deduced from this by the proof of
[25, Prop. 5.1].
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Proof. Write σ̃ = Sym0F2 ⊕ Symp−1F2. By Proposition 3.9, HomK(P, σ̃∨)∨ is isomorphic to
F[[S]] as E-modules. Let f ∈ E be any lifting of S, then we obtain

HomK(P/fP, σ̃∨)∨ ∼= HomK(P/fP, (Sym0F2)∨)∨ ⊕HomK(P/fP, (Symp−1F2)∨)∨ ∼= F2.

In particular, P/fP is coadmissible and we conclude by Proposition 3.13. �

3.4. Principal series and deformations. Recall that T denotes the diagonal torus of G.
If η : T → F× is a smooth character, set πη = IndGB η (possibly reducible). Let InjT η be

an injective envelope of η in RepF(T ) and set Πη = IndGB InjT η. Then Πη is a locally finite
smooth representation of G. It is easy to see that socGΠη = socGπη, which we denote by π.
So there is a G-equivariant embedding Πη ↪→ InjGπ and by [24, Prop. 7.1] the image does
not depend on the choice of the embedding.

Let (r, λ, χ) be a parameter triple such that πη ∼= π(r, λ, χ). This is always possible by [2,
Thm. 30] and we have (r, λ) 6= (0,±1).

Proposition 3.15. We have π∞(r, λ, χ) ⊂ Πη, both identified with subspaces of InjGπ.

Proof. This follows from [2, 3]. Recall that F[T ] denotes the Hecke algebra associated to
I(SymrF2). In [2, §6.1] is constructed an F[T, T−1]-linear morphism

P : I(SymrF2)⊗F[T ] F[T, T−1]→ IndGB X1 ⊗X2

where Xi : Q×p → (F[T, T−1])× are tamely ramified characters given by

X1 unramified, X1(p) = T−1, X1X2 = ωr.

By [2, Thm. 25], P is an isomorphism except for r = 0, in which case P is injective and we
have an exact sequence ([3, Thm. 20])

(3.4) 0→ I(Sym0F2)⊗F[T ] (F[T, T−1])
P→ IndGB X1 ⊗X2 → Sp⊗F[T, T−1]/(T−2 − 1)→ 0.

Since (r, λ) 6= (0,±1), specializing (3.4) to (T − λ)n identifies πn(r, λ, χ) with a sub-
representation of Πη. Taking limit gives the result. �

Corollary 3.16. Πη is not admissible.

Proof. Since π∞(r, λ, χ) is not admissible by Proposition 3.9(iv), the result is a consequence
of Proposition 3.15. �

Let Mη∨ = (Πη)∨ ∈ C and Eη∨ = EndC(Mη∨).

Lemma 3.17. Eη∨ is isomorphic to F[[x, y]] and Mη∨ is flat over Eη∨ .

Proof. By [24, Prop. 7.1], we have a natural isomorphism Eη∨ ∼= EndC(T )((InjT η)∨) and the
latter ring is isomorphic to F[[x, y]] by [24, Cor. 7.2].

By [24, §3.2], (InjT η)∨ is isomorphic to the universal deformation of the T -representation η∨

(with fixed central character), with Eη∨ being the universal deformation ring. In particular,
it is flat over Eη∨ . The result follows from this and the definition of Mη∨ . �

Let P = Pπ∨ = (InjGπ)∨ and E = Eπ∨ .

Lemma 3.18. The natural quotient morphisms P � Mη∨ � π∞(r, λ, χ)∨ induce surjective
ring morphisms

E � Eη∨ � EndC(π∞(r, λ, χ)∨) ∼= F[[S]].

Proof. For the first surjection, see [24, Prop. 7.1]. Since EndG(π(r, λ, χ)) = F, the dual
version of (3.1) implies EndC(π∞(r, λ, χ)∨) ∼= F[[S]]. By Proposition 3.9(i)-(ii), the quotient
map θ∨ : P → π∞(r, λ, χ)∨ induces a surjection E � F[[S]]. �
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Proposition 3.19. Let M ∈ C be a coadmissible quotient of Mη∨ . Then δ(M) ≤ 2.

Proof. Since M is coadmissible while Mη∨ is not by Corollary 3.16, the kernel of Mη∨ � M
is non-zero; denote it by N . We claim that HomC(Mη∨ , N) 6= 0. For this it suffices to prove
HomC(P,N) 6= 0, because any morphism P → N must factor through P �Mη∨ → N , see [24,
Prop. 7.1(iii)]. Assume HomC(P,N) = 0 for a contradiction. Then π∨ (recall π := socGπη)
does not occur in N . This is impossible unless πη is reducible, i.e. πη ∼= π(p − 1, 1) up to
twist. Assuming this, we have π = 1G and all irreducible subquotients of N are isomorphic
to Sp∨. In particular, we obtain HomK(N, (Sym0F2)∨) = 0. However, this would imply an
isomorphism

HomK(Mη∨ , (Sym0F2)∨)∨ ∼= HomK(M, (Sym0F2)∨)∨

which contradicts the coadmissibility of M .

The claim implies the existence of f ∈ Eη∨ which annihilates M . Since Eη∨ ∼= F[[x, y]] is a
Cohen-Macaulay integral domain of Krull dimension 2, we may find g ∈ Eη∨ such that f, g is a
system of parameters of Eη∨ . Since Mη∨/(f, g) is of finite length, so is M/(f, g)M = M/gM .
Theorem 3.1 implies that δ(M/gM) ≤ 1 and we conclude by Proposition 2.3. �

3.5. Coadmissible quotients. Keep the notation in the previous subsection. Let M ∈ C
be a coadmissible quotient of P = Pπ∨ . We set m(M) := HomC(P,M) which is a finitely
generated E-module. There is a natural morphism

(3.5) ev : m(M)⊗E P →M

which is surjective by [24, Lem. 2.10]. Remark that we should have written m(M)⊗̂EP in
(3.5), where ⊗̂ means taking completed tensor product. But since m(M) is finitely generated
over E, the completed and usual tensor product coincide, see the discussion before [25, Lem.
2.1].

Proposition 3.20. Let M ∈ C be a coadmissible quotient of P = Pπ∨ . The following state-
ments hold.

(i) m(M)⊗E P is coadmissible.

(ii) If M is torsion over Λ, then so is m(M)⊗E P .

Proof. Let Ker be the kernel of (3.5). By [24, Lem. 2.9] we have

HomC(P,m(M)⊗E P ) ∼= m(M),

so HomC(P,Ker) = 0 because P is projective in C. This implies that Ker does not admit π∨

as a subquotient. In particular, if B is of type (I) and (III) of Theorem 3.4, then Ker = 0 and
ev is an isomorphism, so both the assertions are trivial. In the rest of the proof, we assume
B is of type (II) or (IV).

(i) We need to check that for any irreducible σ ∈ RepF(K), HomK(m(M)⊗EP, σ∨) is finite
dimensional over F. By [25, Prop. 2.4] we have a natural isomorphism of compact E-modules:

(3.6) HomK(m(M)⊗E P, σ∨)∨ ∼= m(M)⊗E HomK(P, σ∨)∨.

Therefore it is enough to consider those σ such that HomK(P, σ∨) 6= 0. By Corollary 3.10,
these are exactly the weights in D(π) if π /∈ {1G,Sp} up to twist, and are {Sym0F2,Symp−1F2}
if π ∈ {1G,Sp}.

Assume π /∈ {1G,Sp} up to twist. Lemma 3.8 implies that HomK(Ker, σ∨) = 0 for σ ∈
D(π) because π∨ does not occur in Ker. Hence, we obtain an isomorphism

HomK(m(M)⊗E P, σ∨)∨ ∼= HomK(M,σ∨)∨.

Since M is coadmissible, they are finite dimensional.
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Assume π = 1G. The above argument (using Lemma 3.8) shows

HomK(Ker, (Sym0F2)∨) = 0,

so HomK(m(M) ⊗E P, (Sym0F2)∨) is finite dimensional as before. We are left to treat the
case σ = Symp−1F2. However, Proposition 3.9(iv) implies that the E-modules HomK(P, σ∨)∨,
with σ ∈ {Sym0F2,Symp−1F2}, are naturally isomorphic. So we deduce the result from (3.6).
The proof in the case π = Sp is similar.

(ii) It is equivalent to show that Ker is a torsion Λ-module. Since the case of type (II) is
similar and simpler, we assume in the rest that B is of type (IV), so that B consists of three
irreducible objects and we let π1, π2 be the two other than π. Since Ker is coadmissible by
(i) and does not admit π∨ as a subquotient, we can find s1, s2 ≥ 0 and a surjection

P⊕s1π∨1

⊕
P⊕s2π∨2

� Ker .

Let Q1 (resp. Q2) be the maximal quotient of Pπ∨1 (resp. Pπ∨2 ) none of whose irreducible

subquotients is isomorphic to π∨. Then the above surjection must factor through Q⊕s11 ⊕
Q⊕s22 � Ker. Hence, it is enough to show that any coadmissible quotient of Q1 (resp. Q2) is
torsion. This follows from the results in [24, §10] as we explain below. Up to twist we may
assume B = {1G,Sp, πα}.

Let us first assume π = πα, so that up to order π1 = 1G and π2 = Sp. We have the
following exact sequences

(3.7) 0→ Pπ∨α → P1∨G
→M1∨T

→ 0,

(3.8) P⊕2
π∨α
→ PSp∨ →M1∨T ,0

→ 0,

see [24, (234),(236)], where M1∨T ,0
is a submodule of M1∨T

defined by (233) in loc. cit. Com-
bining this with Proposition 3.19 implies the assertion.

If π = 1G, then (up to order) π1 = Sp and π2 = πα. The assertion for Q1 follows from the
exact sequence (see [24, (179)])

(3.9) P⊕2
1∨G
→ PSp∨ → Sp∨ → 0.

The assertion for Q2 follows from (3.9) together with the following one

(3.10) 0→ PSp∨ → Pπ∨α →Mα∨ → 0

given in [24, (235)]. A similar argument works in the case π = Sp. �

Remark 3.21. (i) The above proof shows that in any case Qi has a finite filtration (in fact
of length ≤ 2) with graded pieces being subquotients of Mη∨ .

(ii) If π = 1G and if we set π1 = Sp, π2 = πα, then we have the following description of
Qi: Q1 = Sp∨ and Q2 splits into

0→ Sp∨ → Q2 →Mα∨ → 0.

We record the following consequence of the above proof.

Corollary 3.22. Keep the notation in Proposition 3.20. If π /∈ {1G,Sp} up to twist, then

HomK(m(M)⊗E P, σ∨) ∼= HomK(M,σ∨).

If π ∈ {1G,Sp}, then for σ ∈ {Sym0F2,Symp−1F2},

dimF HomK

(
m(M)⊗E P, σ∨

)
= max

σ
{dimF HomK(M,σ∨)}.

Theorem 3.23. Let π ∈ RepF(G) be irreducible and M ∈ C be a coadmissible quotient of
P = Pπ∨ . There exists f ∈ R such that f annihilates M and P/fP is a finite free Λ-module.
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Proof. By Proposition 3.20, we may assume M = m(M) ⊗E P . The quotient map P � M
induces a surjective map E � m(M), that is m(M) is a cyclic E-module. Let a denote the
annihilator.

Let σ̃ = ⊕σσ where the sum is taken for all the irreducible σ ∈ RepF(K) such that
HomK(P, σ∨) 6= 0. By [24, Prop. 2.4], we have

(3.11) HomK(M, σ̃∨)∨ ∼= m(M)⊗E HomK(P, σ̃∨)∨.

Since HomK(P, σ̃∨)∨ is a Cohen-Macaulay E-module of dimension 1 by Corollary 3.11 and
HomK(M, σ̃∨)∨ is a finite dimensional quotient (as a vector space over F), there exists f ∈ a
which is regular for HomK(P, σ̃∨)∨ by [7, Thm. 2.1.2(b)].

If B is of type (III), the above argument only gives an element f ∈ E while we need an
element in R. However, Corollary 3.27 below shows that ff∗ ∈ R and verifies the required
condition. �

3.6. Blocks of type (III). In this subsection, we assume B is of type (III), that is, B = {π}
with π ∼= IndGB χ ⊗ χω−1. Let P = Pπ∨ and E = EndC(P ). Then E is non-commutative.

Let R = Z(E) be the center of E. After twisting we assume π ∼= IndGB 1⊗ ω−1 and that the
central character of P is ω (being the one of π∨).

The goal of this subsection is to explain how to pass from E to R, hence complete the proof
of Theorem 3.23. To this aim, we need pass to Galois side via a functor of Colmez. We first
introduce some notation.

• Let GQp = Gal(Qp/Qp), G be the maximal pro-p quotient of GQp and Gab the maximal
abelian quotient of G. Then

Gab
Qp
∼= Gal(Qp(µp∞)/Qp)×Gal(Qur

p /Qp) ∼= Z×p × Ẑ

Gab ∼= (1 + pZp)× Zp.

Here µp∞ is the group of p-power order roots of unity in Qp and Qur
p is the maximal

unramified extension of Qp. We choose a pair of generators γ̄, δ̄ of Gab such that
γ̄ 7→ (1 + p, 0) and δ̄ 7→ (1, 1). Then G is a free pro-p group generated by 2 elements
γ, δ which lift respectively γ̄, δ̄. See [26, §2] for details.
• Let Rps,1 denote the universal deformation ring over O (recall O := W (F)) that

parameterizes all two-dimensional pseudo-characters of G lifting the trace of the trivial
F-representation and having determinant equal to 1. For our purpose, we only need

to consider R
ps,1

:= Rps,1 ⊗O F. Let T : G → R
ps,1

be the associated universal
pseudo-character.

• Colmez [11] has defined an exact and covariant functor V from the category of smooth,
finite length representations of G on F-vector spaces with a central character to the
category of continuous finite length representations of GQp on F-vector spaces. We

will use a modified version as in [24, §5.7], denoted by V̌, which applies to objects in
C.

Following [24, (145)], we let (note that in loc. cit. the ring is defined over O and is denoted
by R)

R′ := (R
ps,1⊗̂F[[G]])/J

where J is the closure of the ideal generated by g2−T (g)g+ 1 for all g ∈ GQp . One may show

that the center of R′ is equal to R
ps,1

and the natural morphism

(3.12) ϕ : F[[G]]→ R′

is surjective; see [24, (150), Cor. 9.24].
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Note that R
ps,1

is isomorphic to F[[t1, t2, t3]]. Set

(3.13) u := γ − 1− t1, v := δ − 1− t2.

By [24, Cor. 9.25], R′ is a free R
ps,1

-module of rank 4 with a basis given by {1, u, v, t′} where
t′ := uv − vu. Using [24, (160)], one checks that R′t′ = t′R′.

Lemma 3.24. The kernel of R′ � R′ab is generated by t′ and R′ab is isomorphic to F[[u, v]].

Proof. It follows from Lemma [24, Lem. 9.3] and the proof of [24, Cor. 9.27]. �

On the other hand, R′ is equipped with an involution ∗ by letting g∗ := g−1. By [24, Lem.
9.14], we know

R
ps,1

= Z(R′) = {a ∈ R′ : a = a∗}.
We also have (see [24, (160)]):

u∗ = −u, v∗ = −v, t′∗ = −t′

which determine explicitly ∗. Lemma 3.24 implies that the kernel of R′ � F[[u, v]] is stable
under ∗.

Now we explain the relation between R′ and E. As explained in [24, §9.1], the functor V̌
induces a natural transformation Defπ∨ → Def V̌(π∨) between certain deformation functors of

π∨ and of V̌(π∨) respectively, hence induces a morphism

(3.14) ϕV̌ : F[[G]]op → E

which can be shown to be surjective. By [24, Cor. 9.27], (3.12) induces an isomorphism

ϕ : E
∼−→ R′op, hence an isomorphism Eab ∼= F[[u, v]] using Lemma 3.24.

Recall from Lemma 3.18 that we have a surjective morphism q′ : Eab � F[[S]].

Lemma 3.25. The composite morphism F[[u, v]]
ϕ−1

∼= Eab q′→ F[[S]] is obtained by modulo v.

Proof. It suffices to prove that the image of v in F[[S]] is zero. Choose a parameter triple
(r, λ, χ) such that π ∼= π(r, λ, χ). Then F[[S]] is identified with EndC(π∞(r, λ, χ)∨). So we are
reduced to prove v annihilates V̌(π∞(r, λ, χ)∨).

It is proved in [17, 1.5.9] and reformulated in [16, Prop. 2.11] that

V̌(π∞(r, λ, χ)∨) ∼= µ−1
S+λ

where µS+λ : G → F[[S]]× is the unramified character sending geometric Frobenii to S+λ. In

particular, µS+λ(δ) = 1 by our choice. Since t2 = δ+δ−1

2 − 1, and v = δ− 1− t2 by definition,
we obtain the result. �

We finally obtain the following result which completes the proof of Theorem 3.23.

Proposition 3.26. The kernel of the quotient morphism E → F[[S]] is stable under the
involution ∗.

Corollary 3.27. Let f ∈ E. Then ff∗ ∈ R. If P/fP is coadmissible, so are P/(f∗)P and
P/(ff∗)P . In particular, ff∗ 6= 0.

Proof. Let σ ∈ RepF(K) be a weight such that HomK(P, σ∨) 6= 0. By Corollary 3.10, this
implies σ ∈ D(π). The exact sequence P → P → P/fP → 0 induces

HomK(P, σ∨)∨
f→ HomK(P, σ∨)∨ → HomK(P/fP, σ∨)∨ → 0

Since P/fP is coadmissible by assumption, HomK(P/fP, σ∨) is finite dimensional. By iden-
tifying EndE(HomK(P, σ∨)∨) with F[[S]], we deduce that f is non-zero in F[[S]]. Proposition
3.26 implies that the image of f∗ in F[[S]] is also non-zero. The result follows from this. �
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We also note the following result. Recall that R denotes the center of E.

Proposition 3.28. Up to a change of variable S, the image of R� F[[S]] is equal to F[[S2]].

Proof. By Lemma 3.25, Eab � F[[S]] induces an isomorphism F[[u]] ∼= F[[S]]. We choose S
to be the image of u.

Via the isomorphism ϕ : E ∼= R′op, we are reduced to determine the image of

ι : Z(R′) ↪→ R′ ∼= Eop � F[[S]].

By [24, (159)], we have u2 ∈ Z(R′), so F[[S2]] is contained in Im(ι). On the other hand,
we have S /∈ Im(ι). Indeed, if S = ι(x) with x ∈ Z(R′), then x − u lies in the kernel of
R′ � F[[S]]. However, by Proposition 3.26 this kernel is stable under the involution ∗, so the
image of (x− u)∗ in F[[S]] is also zero. This gives a contradiction because (x− u)∗ = x+ u is
sent to 2S 6= 0. �

3.7. Blocks of type (IV). In this subsection, we complement some results in the work of
Paškūnas [24, 25] when B is of type (IV). The notation here are the same as in the previous
subsections. In particular, π ∈ RepF(G) is irreducible of type (IV), and Pπ∨ is a projective
envelope of π∨ in C and Eπ∨ = EndC(Pπ∨). Note that the rings Eπ∨ are naturally isomorphic
(to F[[x, y, z, w]]/(xw− yz)) for any π ∈ B (see [24, §10]), so the subscript will be omitted in
the rest (while the one of Pπ∨ will be kept). Up to twist, we may assume B = {1G,Sp, πα}.

3.7.1. F⊗E Pπ∨ . Our first aim is to determine F⊗E Pπ∨ for π ∈ B. For π1, π2 ∈ Repl,fin
F (G),

we will write (following [24, §10])

e1(π1, π2) := dimF Ext1
G(π1, π2).

For convenience of the reader, we recall the list of e1(π1, π2) for π1, π2 ∈ B, see [24, §10.1]:

e1(1G,1G) = 0, e1(Sp,1G) = 1, e1(πα,1G) = 1,

e1(1G,Sp) = 2, e1(Sp,Sp) = 0, e1(πα,Sp) = 0,

e1(1G, πα) = 0, e1(Sp, πα) = 1, e1(πα, πα) = 2.

We deduce that there exists a unique (up to isomorphism) non-split sequence

(3.15) 0→ 1G → κ→ πα → 0.

Also, let τ1 be the universal extension of 1⊕2
G by Sp, i.e. we have

(3.16) 0→ Sp→ τ1 → 1⊕2
G → 0

with socGτ1 = Sp.

Lemma 3.29. We have

e1(Sp, κ) = 2, e1(πα, τ1) = 2, e1(τ1, πα) = 1.

Proof. See [24, Lem. 10.18] for the first equality, [24, Lem. 10.12] for the second, [24, (187)]
and the argument before it for the third. �

Proposition 3.30. Let π ∈ B and set Qπ∨ = F ⊗E Pπ∨ . In the following statements, the
existence of the extensions is guaranteed by Lemma 3.29.

(i) If π = 1G, Q1∨G
is isomorphic to the universal extension of κ∨ by (Sp∨)⊕2:

(3.17) 0→ (Sp∨)⊕2 → Q1∨G
→ κ∨ → 0.

(ii) If π = Sp, QSp∨ is isomorphic to the universal extension of τ∨1 by (π∨α)⊕2:

(3.18) 0→ (π∨α)⊕2 → QSp∨ → τ∨1 → 0.
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(iii) If π = πα, Qπ∨α is isomorphic to the unique non-split extension of π∨α by τ∨1 :

(3.19) 0→ τ∨1 → Qπ∨α → π∨α → 0.

Proof. By definition, F⊗EPπ∨ is characterized as the maximal quotient of P which contains π∨

with multiplicity one. We need to check that if π′ is irreducible such that Ext1
G(π′, (Qπ∨)∨) 6=

0, then π′ ∼= π. Proposition 3.3 implies that we may assume π′ ∈ B.

(i) Write (in this proof) τ for the dual of the extension (3.17); we need to check

Ext1
G(Sp, τ) = 0 = Ext1

G(πα, τ).

Since e1(Sp,Sp) = 0, the first equality follows from the construction of τ . The second is clear
since e1(πα,Sp) = 0 (see the formulae recalled above) and e1(πα, κ) = 0 by [24, (194)].

(ii) is proved in [16, Lem. 4.4, (19)].

(iii) is proved in [25, Prop. 6.1, (35)]. �

3.7.2. TorEi (F, Pπ∨). Recall that if η : T → F× is a smooth character, we let πη = IndGB η and

Πη = IndGB InjT η, Mη∨ = (Πη)∨, Eη∨ = EndC(Mη∨)

where InjT η denotes an injective envelope of η in RepF(T ). In the rest we only consider η ∈
{1T , α}. By Lemma 3.18 there is a natural surjection q : E � Eη∨ induced by Pπ∨η �Mη∨ .

Lemma 3.31. In the isomorphism E ∼= F[[x, y, z, w]]/(xw−yz), we may choose the variables
such that q : E � Eη∨ is given by modulo (z, w).

Proof. First, via Colmez’s functor we may identity E with the special fiber of a certain
universal Galois pseudo-deformation ring over O := W (F), see [24, Thm. 10.71]. This ring is

denoted by Rψ in loc. cit. and we write R
ψ

for its special fiber. Let r denote the reducible

locus of Rψ (see [24, Cor. B.6] for its definition) and r its image in R
ψ

. Then by [24, Cor.

B.5, B.6], R
ψ

is isomorphic to F[[c0, c1, d0, d1]]/(c0d1 + c1d0) and r = (c0, c1). On the other

hand, via the natural isomorphism E ∼= R
ψ

, ker(q) is identified with r and Eη∨ with R
ψ
/r,

see [24, Lem. 10.80]. This gives the result up to a change of variables. Note that the choice
we make is not the one in [24, Lem. 10.93]. �

Lemma 3.32. We have

TorE1 (F,Mη∨) ∼= (π∨η )⊕2, TorE2 (F,Mη∨) ∼= π∨η , TorEi (F,Mη∨) = 0, ∀i ≥ 3.

Proof. By Lemma 3.31, we have a resolution of Eη∨ by free E-modules:

0→ E
(−z,w)→ E⊕2 (wz)→ E → Eη∨ → 0.

We deduce that

TorE1 (Eη∨ ,Mη∨) ∼= M⊕2
η∨ , TorE2 (Eη∨ ,Mη∨) ∼= Mη∨ , TorEi (Eη∨ ,Mη∨) = 0, ∀i ≥ 3.

Because Mη∨ is a flat Eη∨-module by Lemma 3.17, the base change spectral sequence gives
the result. �

Proposition 3.33. We have

TorEi (F, Pπ∨) i = 1 i = 2 i ≥ 3
π = 1G Sp∨⊕Sp∨ Sp∨ 0
π = Sp κ∨ 0 0
π = πα 1∨G 0 0

Proof. We first observe the following facts:
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(a) SL2(Qp) acts trivially on TorEi (F, Pπ∨α ) for i ≥ 1. Indeed, [24, Cor. 10.43] states

this for i = 1 but the proof works for all i ≥ 1. This implies that TorEi (F, Pπ∨α ) is
isomorphic to a finite direct sum of 1∨G.

(b) 1∨G does not occur in TorEi (F, P1∨G
) for i ≥ 1; this is a special case of Lemma 3.6.

Recall the following exact sequences

(3.20) 0→ Pπ∨α → P1∨G
→M1∨T

→ 0,

(3.21) 0→ PSp∨ → Pπ∨α →Mα∨ → 0,

see (3.7), (3.10). From (3.20) and Lemma 3.32, we obtain a long exact sequence

· · · → π∨1T → TorE1 (F, Pπ∨α )→ TorE1 (F, P1∨G
)→ (π∨1T )⊕2 → Qπ∨α → Q1∨G

→ π∨1T → 0.

From (a), (b), we deduce

(3.22) 0→ TorE1 (F, P1∨G
)→ (π∨1T )⊕2 → Qπ∨α → Q1∨G

→ π∨1T → 0,

(3.23) 0→ TorE2 (F, P1∨G
)→ π∨1T → TorE1 (F, Pπ∨α )→ 0,

TorEi (F, Pπ∨α ) = 0, i ≥ 2

TorEi (F, P1∨G
) = 0, i ≥ 3.

Using Proposition 3.30, (3.22) implies TorE1 (F, P1∨G
) ∼= (Sp∨)⊕2, while (3.23) implies

TorE1 (F, Pπ∨α ) ∼= 1∨G, TorE2 (F, P1∨G
) ∼= Sp∨ .

Similarly, using Lemma 3.32 the sequence (3.21) induces

· · · → π∨α → TorE1 (F, PSp∨)→ TorE1 (F, Pπ∨α )→ (π∨α)⊕2 → QSp∨ → Qπ∨α → π∨α → 0.

Using Proposition 3.30 and what has been proved, we deduce the result for TorEi (F, PSp∨). �

Proposition 3.34. Let m be an E-module of finite length. Then m ⊗E P1∨G
is a Cohen-

Macaulay Λ-module of codimension 2.

More generally, if N ⊂ m ⊗E P1∨G
is a subobject in C which is a finite direct sum of Sp∨,

then (m⊗E P1∨G
)/N is a Cohen-Macaulay Λ-module of codimension 2.

Proof. (i) We prove this by induction on the length of m. We may enlarge F so that irreducible
subquotients of m (as E-modules) are isomorphic to F. If m = F, we need to prove Q1∨G

is

Cohen-Macaulay of codimension 2. By Proposition 3.30(i) and Theorem 3.2, it is enough
to prove κ∨ is Cohen-Macaulay. This follows from [18, Prop. 5.7], which says that κ∨ is
isomorphic to Ext2

Λ(Sp∨,Λ) up to twist (the latter module is naturally equipped with an
action of G). Alternatively, we may apply [24, Lem. 10.23] which says that κ∨ has projective
dimension 2, hence is Cohen-Macaulay.

If the length of m is ≥ 2 then let m1 ( m be a submodule of length 1 and let m2 := m/m1.
We then obtain a long exact sequence

TorE1 (m2, P1∨G
)
∂→ F⊗E P1∨G

→ m⊗E P1∨G
→ m2 ⊗E P1∨G

→ 0.

From Proposition 3.33 and Proposition 3.30(i), we deduce that the cokernel of ∂ has the shape

(3.24) 0→ (Sp∨)⊕m → Coker(∂)→ κ∨ → 0

with m ∈ {0, 1, 2}. Since both Sp∨ and κ∨ are Cohen-Macaulay of codimension 2, we obtain
the result.

(ii) Let N ⊂ m ⊗E P1∨G
be as in the statement and M be the corresponding quotient. If

m = F, then M has the shape as in (3.24), and we conclude in the same way. The general
case is proved by induction in a similar way as in (i). �
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4. Main result

We keep the notation of Section 3. For n ≥ 1, let

Kn =

(
1 + pnZp pnZp
pnZp 1 + pnZp

)
, T1(pn) =

(
1 + pZp pnZp
pnZp 1 + pZp

)
.

Recall that Λ := F[[K1/Z1]].

The main result of this section is as follows.

Theorem 4.1. Let Π ∈ RepF(G). Assume that Π is admissible and that Π∨ is torsion as a
Λ-module. Then for any i ≥ 0, we have

dimFH
i(T1(pn)/Z1,Π)� npn.

Remark 4.2. Note that |K1 : T1(pn)| = p2(n−1). Hence a trivial upper bound for the dimen-
sion of Hi(T1(pn)/Z1,Π) is given by c·p2n for some constant c > 0. In [19, Prop. 4], Marshall

has improved this bound to be � p
4n
3 (for a general finitely generated torsion Λ-module which

need not carry a compatible action of G). In Section 6, we use Theorem 4.1 to improve some
results in [19].

The rest of the whole section is devoted to the proof of Theorem 4.1 (and its extension to
SL2(Qp)). The proof is divided into several steps, the first of which is the following.

Lemma 4.3. In Theorem 4.1, we may assume that Π is indecomposable and has an irreducible
G-socle.

Proof. Let S be the G-socle of Π. Since Π is admissible, S decomposes as a finite direct sum
⊕ri=1πi with πi irreducible. For each i, we let InjGπi be an injective envelope of πi in RepF(G).
The inclusion π1 ↪→ Π extends to a G-equivariant morphism α1 : Π → InjGπ1. It is clear
that Ker(α1) has G-socle isomorphic to ⊕ri=2πi and Im(α1) has G-socle π1. Continuing this
with Ker(π1), we get a finite filtration of Π such that each graded piece, say gri(Π), has an
irreducible G-socle. Since Π∨ is torsion as a Λ-module if and only if each (gri(Π))∨ is, we
obtain the result. �

The plan of the proof of Theorem 4.1 is as follows: in §4.1, we prove a bound of the
dimension of ΠT1(pn) for Π of finite length; in §4.2 we prove a lemma which allows to control
the dimension of invariants from that of representations of lower canonical dimension; we
combine these results to prove the theorem for i = 0 in §4.3 and for i ≥ 1 in §4.4.

4.1. Irreducible representations. The following control theorem will play a key role in the
proof of Theorem 4.1.

Theorem 4.4. Let Π ∈ RepF(G) be of finite length. Then

dimF ΠT1(pn) � n.

It is clear that we may assume Π is irreducible in Theorem 4.4. Further, by the recall in
§3.1, up to twist it is enough to prove the following

Theorem 4.5. For any 0 ≤ r ≤ p− 1 and λ ∈ F, we have

dimF π(r, λ, 1)T1(pn) � n.

We need some preparation to prove Theorem 4.5. To begin with, we establish a double
coset decomposition formula in K. Let

K0(pn) =

(
Z×p Zp
pnZp Z×p

)
, H =

(
1 0
0 1 + pZp

)
.
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Lemma 4.6. For any n ≥ 1, we have

(4.1) |K0(pn)\K/H| = (2n− 1)(p− 1) + 2.

Proof. Let A =
(
a b
c d

)
∈ K. We have the following facts:

(i) if A ∈ K0(p), i.e. c ∈ pZp, we have two subcases:
• if c ∈ pnZp, then

(
a b
c d

)
∈ K0(pn);

• if c ∈ pZp\pnZp (so n ≥ 2), write c = upk with u ∈ Z×p and 1 ≤ k ≤ n− 1, then(
a b
c d

)
=

(
d−1(ad− bc) ubd−1

0 u

)(
1 0
pk [λ]

)(
1 0
0 t

)
where λ := u−1d ∈ F×p and t := u−1d

[λ] ∈ 1 + pZp.
We deduce that

K0(p) = K0(pn)
⋃( ⋃

1≤k≤n−1,λ∈F×p

K0(pn)

(
1 0
pk [λ]

)
H

)
.

It is easy to check that this is a disjoint union, hence the cardinality ofK0(pn)\K0(p)/H
is 1 + (n− 1)(p− 1).

(ii) if A /∈ K0(p), i.e. c ∈ Z×p , we still have two cases:

• if d ∈ Z×p , then(
a b
c d

)
=

(
−[λ]d−1(ad− bc) a

0 c

)(
0 1
1 [λ]

)(
1 0
0 t

)
where λ := c−1d ∈ F×p and t = c−1d

[λ] ∈ 1 + pZp;
• if d ∈ pZp, then(

a b
c d

)(
0 1
1 0

)
=

(
b a
d c

)
∈ K0(p).

Combining (i) and (ii) the cardinality of K0(pn)\K/H is equal to

[1 + (n− 1)(p− 1)] + [(p− 1) + 1 + (n− 1)(p− 1)] = (2n− 1)(p− 1) + 2.

�

Proposition 4.7. Let n ≥ 1 and σ be a smooth F-representation of K0(pn) of finite dimension

d. Let V be a quotient K-representation of IndKK0(pn) σ, then dimF V
H ≤ 2dpn.

Proof. Let W be the corresponding kernel so that we have an exact sequence

0→W → IndKK0(pn) σ → V → 0.

Taking H-invariants, it induces

0→WH →
(

IndKK0(pn) σ
)H → V H

∂→ H1(H,W ),

hence an equality of dimensions

(4.2) dimFW
H + dimF V

H = dimF
(

IndKK0(pn) σ
)H

+ dimF Im(∂).

Now note that H ∼= 1+pZp ∼= Zp is a pro-p group of cohomological dimension 1, so by Lemma
4.8 below we have

dimFW
H = dimFH

1(H,W ) ≥ dimF Im(∂),

hence by (4.2)

dimF V
H ≤ dimF

(
IndKK0(pn) σ

)H
.

We are thus reduced to prove the proposition in the special case V = IndKK0(pn) σ. Using [2,

Lemma 3], it is easy to see that any irreducible smooth F-representation of K0(pn) is one-
dimensional, so there exists a filtration of σ by sub-representations, of length d, such that all
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graded pieces are one-dimensional. Hence, we may assume d = 1, in which case the result
follows from Lemma 4.6. �

Lemma 4.8. Let W be a finite dimensional F-representation of Zp, then

(4.3) dimFH
1(Zp,W ) = dimFH

0(Zp,W ).

Proof. This is clear if dimFW = 1 because then W must be the trivial representation of Zp
so that

H1(Zp,W ) ∼= Hom(Zp,F)

is of dimension 1. The general case is proved by induction on dimFW using the fact that
H2(Zp, ∗) = 0 and that W always contains a one-dimensional sub-representation. �

Remark 4.9. In the proof of Proposition 4.7, we crucially used the fact that H has cohomo-
logical dimension 1. This fact, very special to the group GL2(Qp), is also used in [4] and [23]
(but for the unipotent subgroup of B(Zp)).

4.1.1. Supersingular case. We give the proof of Theorem 4.5 when π is supersingular, i.e.
π = π(r, 0, 1) for some 0 ≤ r ≤ p− 1. Since we have a G-equivariant isomorphism ([4, Thm.
1.3])

π(r, 0, 1) ∼= π(p− 1− r, 0, ωr)
we may assume r > 0 in the following.

Set σ := SymrF2 and for n ≥ 1 denote by σn the following representation of K0(pn):

σn

((
a b
pnc d

))
:= σ

((
d c
pnb a

))
.

Let R0 := σ and Rn := IndKK0(pn) σn for n ≥ 1. It is easy to see that

(4.4) dimFR0 = (r + 1), dimFRn = (r + 1)(p+ 1)pn−1, ∀n ≥ 1.

Moreover, the following properties hold (see [5, §4]):

(i) c-IndGKZσ|K ∼= ⊕n≥0Rn;
(ii) the Hecke operator T |Rn : Rn → Rn+1⊕Rn−1 is the sum of a K-equivariant injection

T+ : Rn ↪→ Rn+1 and (for n ≥ 1) a K-equivariant surjection T− : Rn � Rn−1.
(iii) we have an isomorphism of K-representations

(4.5) π(r, 0, 1) ∼=
(

lim−→
n even

R0 ⊕R1
⊕R2 ⊕ · · · ⊕Rn

)
⊕
(

lim−→
n odd

R1/R0 ⊕R2
R3 ⊕ · · · ⊕Rn

)
.

Denote by π0 and π1 the two direct summands of π in (4.5). For all n ≥ 0, we let Rn denote
the image of Rn → π(r, 0, 1). Then Rn ⊂ π0 if n is even, and Rn ⊂ π1 if n is odd.

Lemma 4.10. For all n ≥ 0, we have Rn ⊂ Rn+2 and dimFRn = (r + 1)pn.

Proof. The inclusion Rn ⊂ Rn+2 follows from (4.5). Moreover, (4.5) shows that if n is even,
then

dimFRn =

n∑
k=0

(−1)k dimFRk,

and if n is odd,

dimFRn =

n∑
k=0

(−1)k+1 dimFRk.

The result then follows from (4.4). �

At this point, we need the following result of Morra. Recall that π = π0 ⊕ π1 as K-
representations.
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Theorem 4.11. Let n ≥ 1. For i ∈ {0, 1}, the dimension of Kn-invariants of πi satisfies

dimF π
Kn
i ≤ (p+ 1)pn−1.

Moreover, πi is (nearly) uniserial in the following sense: if W1,W2 are two K-stable subspaces
of πi such that

dimFW2 − dimFW1 ≥ p,
then W1 ⊂W2.

Proof. See [22, Cor. 4.14, 4.15] for the dimension formula. Note that the formula in loc. cit.

is for the dimension of πKn0 ⊕ πKn1 . The second statement follows from [21, Thm. 1.1] which
describes the K-socle filtration of πi. To explain this, fix i ∈ {0, 1}. By [21, Thm. 1.1], πi
admits a filtration Filkπi, k ≥ 0 such that

Fil0πi = 0, Fil1πi = socKπi, Filk+1/Filkπi ∼= Ind
GL2(Fp)

B(Fp) χk, ∀k ≥ 2,

for suitable characters χk : B(Fp) → F×. In particular, the graded pieces have dimension
p+ 1 except for the first. Moreover, the filtration satisfies the property that for any K-stable

subspace W ⊂ πi and any k ≤ k′, the condition dimF Filkπi ≤ dimFW ≤ dim Filk
′
πi implies

Filkπi ⊂W ⊂ Filk
′
πi.

Now, for the givenW1 let k1 be the smallest index such thatW1 ⊂ Filk1πi; then dimF Filk1πi−
dimFW1 ≤ p. The assumption then implies that W2 contains Filk1πi, proving the result. �

Corollary 4.12. We have πKn ⊂ Rn ⊕Rn+1.

Proof. We have assumed r ≥ 1, so by Lemma 4.10 we get for n ≥ 1:

dimFRn ≥ 2pn ≥ (p+ 1)pn−1 + p ≥ dimF π
Kn
i + p.

By the (nearly) uniserial property of πi, this implies πKn0 ⊂ Rn if n is even, while πKn1 ⊂ Rn
if n is odd. Putting them together, we obtain the result. �

Proof of Theorem 4.5 when λ = 0. Since T1(pn) contains Kn, we have an inclusion πT1(pn) ⊂
πKn , so Corollary 4.12 implies

πT1(pn) ⊂ (Rn)T1(pn) ⊕ (Rn+1)T1(pn) ⊂ (Rn)H ⊕ (Rn+1)H .

Noting that dimF σ ≤ p, we obtain by Proposition 4.7

dimF π
T1(pn) ≤ dimF(Rn)H + dimF(Rn+1)H ≤ 4p2n,

hence the result. �

4.1.2. Non-supersingular case. Assume from now on λ 6= 0. We define the subspaces Rn
(n ≥ 0) of c-IndGKZσ as above. We still have the properties (i) and (ii) recalled there. The only
difference, also the key difference with the supersingular case, is that the induced morphisms
Rn → π(r, λ, 1) are all injective (because λ 6= 0). Moreover, if we write Rn for the image of
Rn in π(r, λ, 1), then Rn ⊂ Rn+1 and

π(r, λ, 1) = lim−→
n≥0

Rn.

Proposition 4.13. Let n ≥ 1, we have an inclusion π(r, λ, 1)Kn ⊂ Rn.

Proof. By [21, Thm. 1.2], π(r, λ, 1) satisfies a (nearly) uniserial property as in the supersin-
gular case. Moreover, we have (see [22, §5]) dimF π(r, λ, 1)Kn = (p+ 1)pn−1 while

dimFRn = dimFRn = (r + 1)(p+ 1)pn−1.

We then conclude as in the supersingular case. �
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Proof of Theorem 4.5 when λ 6= 0. Since T1(pn) contains Kn, we obtain by Proposition 4.13

πT1(pn) ⊂ (Rn)T1(pn) ⊂ (Rn)H .

The result then follows from Proposition 4.7. �

We close this subsection by the following consequence.

Corollary 4.14. Let M ∈ C be coadmissible. If δ(M) ≤ 1, then dimFMT1(pn) � n.

Proof. A direct consequence of Theorem 3.1 and Theorem 4.4. �

4.2. Key lemma. In this subsection, we prove a lemma which can be viewed as an analogue
of Proposition 2.3. These two results will allow us to relate the canonical dimension of a
coadmissible module M ∈ C and the F-dimension of T1(pn)-coinvariants of M .

Lemma 4.15. Let M be a finitely generated Λ-module and φ ∈ EndΛ(M). Assume that⋂
n≥1 φ

n(M) = 0.

(i) If φ is nilpotent, then dimFMT1(pn) ∼ dimF
(
M/φ(M)

)
T1(pn)

.

(ii) If φ is not nilpotent, then for k0 � 1,

dimFMT1(pn) � max

{
dimF

(
M/φ(M)

)
T1(pn)

, pn dimF
(
φk0(M)/φk0+1(M)

)
T1(pn)

}
.

In any case, we have dimFMT1(pn) � pn dimF((M)/φ(M))T1(pn).

Proof. (i) If φ is nilpotent, M admits a finite filtration by φk(M), for k ≤ k0 where k0 �
1 is such that φk0 = 0. For any k ≥ 1, φ induces a surjective morphism M/φ(M) �
φk(M)/φk+1(M), giving the result.

(ii) By Lemma 2.4, there exists k0 � 0 such that φ : φk0(M) → φk0(M) is injective.
Using the short exact sequence 0 → φk0(M) → M → M/φk0(M) → 0 and applying (i) to
M/φk0(M), we are reduced to prove

dimF φ
k0(M)T1(pn) � pn dimF

(
φk0(M)/φk0+1(M)

)
T1(pn)

.

That is, by replacing M by φk0(M), we may assume φ is injective in the rest.

Set Q := M/φ(M) so that we have a short exact sequence 0→M
φ→M → Q→ 0. Let J

denote the maximal ideal of Λ. Since M/JM is finite dimensional and M = lim←−kM/φk(M)

by (a), we may choose k1 � 0 such that the composite morphism M
φk1

→ M → M/JM is
zero. Replacing φ by φk1 and Q by M/φk1(M), we may assume φ(M) ⊂ JM . Since φ is
G-equivariant, we obtain inductively

φk(JsM) ⊂ Jk+sM, ∀k, s ≥ 1.

Letting Qk := M/φk(M), the short exact sequence 0→M
φk→M → Qk → 0 then induces by

modulo Jk+1:

M/JM
φk→M/Jk+1M → Qk/J

k+1Qk → 0.

If I is another (two-sided) ideal of Λ containing Jk+1, then we obtain by modulo I again:

M/(J + I)M →M/IM → Qk/IQk → 0.

Since dimFM/(J + I)M is bounded by c0 := dimFM/JM which depends only on M , and
since Qk is a successive extension of Q (k times), we obtain the following inequality:

(4.6) dimFM/IM ≤ dimFQk/IQk + c0 ≤ k dimFQ/IQ+ c0.
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We specialize the above inequality to our situation. Recall that Λ is topologically generated
by three elements, say z1, z2, z3, such that every element of Λ can be uniquely expressed as a
sum over multi-indices α = (α1, α2, α3) ∈ N3:

x =
∑
α

λαz
α, zα = zα1

1 zα2
2 zα3

3 .

Moreover, zαzβ = zα+β up to terms of degree > |α| + |β|, see [19, Thm. 10]. The ideal J
is simply spanned by the set of elements zα with |α| > 0. Let In denote the two-sided ideal
of Λ generated by the maximal ideal of F[[T1(pn)/Z1]]. Then it is easy to see that J3pn is
contained in In. Applying (4.6) to I = In, we obtain

dimFMT1(pn) = dimFM/InM ≤ (3pn − 1) · dimFQ/InQ+ c0,

giving the result. �

Remark 4.16. In the proof of Lemma 4.15, it is crucial that we are working with T1(pn)
instead of K1(p2n) (this group will show up in §6 for application), although they are (up to
finite order) conjugate to each other in GL2(Qp). We have learnt this trick of “averaging”
from [19] (used in a different manner there).

4.3. The proof in degree 0.

Proof of Theorem 4.1 for i = 0. Let M := Π∨ ∈ C. Then the Pontryagin dual induces natural
isomorphisms for i ≥ 0 (

Hi(T1(pn)/Z1,Π)
)∨ ∼= Hi(T1(pn)/Z1,M).

So we could instead work with M .

By Lemma 4.3, we may assume M is a quotient of Pπ∨ for some irreducible π ∈ RepF(G).
Write P = Pπ∨ , E = Eπ∨ and R = Z(E) in the following.

By Theorem 3.23 there exists a regular element f ∈ mR (where mR denotes the maximal
ideal of R) such that:

(a) P/fP is a finitely generated free Λ-module;
(b) f annihilates M , i.e. M is a quotient of P/fP .

Since R is a Cohen-Macaulay integral domain of Krull dimension 3, we can find g, h ∈ mR
such that f, g, h form a regular sequence. As a consequence, f, g, h is a system of parameters
for R. We deduce from Proposition 3.7 that P/(f, g, h)P is of finite length in C, hence so is
M/(g, h)M (noting that f annihilates M). Theorem 4.4 then implies that

(4.7) dimF
(
M/(g, h)M

)
T1(pn)

� n.

By assumption M is torsion, so δ(M) ≤ 2. Consider the endomorphism g : M → M and
the cokernel M/gM . By Proposition 2.3 there are two possibilities:

– g is nilpotent on M . In this case, Lemma 4.15 implies

dimFMT1(pn) ∼ dimF(M/gM)T1(pn) � pn dimF(M/(g, h)M)T1(pn) � npn.

– g is not nilpotent and for k0 � 1, δ
(
gk0(M)/gk0+1(M)

)
≤ 1. In this case, we have

dimF(gk0M)T1(pn) � npn by Lemma 4.15 and Theorem 4.4. It suffices to show the

same estimation for M/gk0M . But M/(gk0 , h)M is of finite length in C because
M/(g, h)M is, so the result follows again by Lemma 4.15 and Theorem 4.4.

�
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4.4. Higher homological degrees. In [19] or [8], once a bound is obtained for torsion Λ-
modules, the extension to higher homological degrees is rather easy using the trivial dimension
formula for free Λ-modules. However, it is much subtler in our situation, because to be able
to apply Theorem 4.1 we need guarantee in each step that the module M ∈ C in consideration
can be split into two parts in C, not just as Λ-modules. To overcome this difficulty, we prove
the following result.

Proposition 4.17. Fix π as above. Let M ∈ C be a non-zero coadmissible quotient of P .
Assume that M is torsion-free as a Λ-module.

(i) If B is not of type (IV), then M is a free Λ-module.
(ii) If π ∼= χ ◦ det, then M is a free Λ-module and the kernel of the evaluation morphism

(3.5) has finite length.

Proof. Let f, g, h ∈ mR be constructed in the last proof. In particular, f annihilates M and
P/fP is a free Λ-module.

We claim that g : M →M is injective. Otherwise, the submodule M [g] killed by g would be
torsion by Proposition 2.3, contradicting the assumption. Similarly, if h : M/gM → M/gM
were not injective, the pre-image of (M/gM)[h] in M would be torsion. Therefore, g, h is an
M -sequence.

Since Λ is a local ring, M is free over Λ if and only if the projective dimension pd(M) = 0.
Since j(M) = 0 by assumption, it suffices to prove M is Cohen-Macaulay. Since g, h is an
M -sequence, we are left to show M/(g, h)M is Cohen-Macaulay (of codimension 2) by Lemma
2.5. If B is not of type (IV), each object in B is Cohen-Macaulay by Theorem 3.2, hence so
is M/(g, h)M which is of finite length. This proves (i).

(ii) Up to twist we may assume π = 1G. Let m = m(M) := HomC(P,M) and let Ker be
the kernel of ev : m⊗E P �M . Remark 3.21 implies that Ker splits into two parts

0→ Ker1 → Ker→ Ker2 → 0

where Ker1 is a finite direct sum of Sp∨ and Ker2 has all its irreducible subquotients isomor-
phic to π∨α . Since g, h is an M -sequence and HomC(P,−) is exact, g, h is also an m-sequence.
Consider the following commutative diagram

0 // Ker //

g

��

m⊗E P //

g

��

M //
_�

g

��

0

0 // Ker // m⊗E P // M // 0

which implies by the Snake lemma that Ker[g] ∼= (m⊗E P )[g] and

(4.8) 0→ Ker /gKer→ (m/g)⊗E P →M/gM → 0.

Since (m ⊗E P )[g] is a quotient of TorE1 (m/g, P ), it contains only Sp∨ as subquotients by
Proposition 3.33. Hence the same is true for Ker[g]. We deduce that8 Ker1 ⊇ Ker[g] and
g : Ker2 → Ker2 is injective. Moreover, we have

0→ Ker1 /gKer1 → Ker /gKer→ Ker2 /gKer2 → 0.

We claim that Ker2 = 0. Since g : Ker2 → Ker2 is injective, it is equivalent to show
Ker2 /gKer2 = 0 by Nakayama’s lemma. But if not, the same argument with h applied to
(4.8) shows that h : Ker2 /gKer2 → Ker2 /gKer2 is injective and Ker2 /(g, h) Ker2 is non-zero
by Nakayama’s lemma again. This shows that g, h is a Ker2-sequence, so δ(Ker2) = 3 by
Proposition 2.3 and Theorem 3.1. This is impossible because Ker2 is torsion by Proposition
3.20.

8In fact we have equality Ker1 = Ker[g], because Ker1 is a semi-simple module, hence is annihilated by g. But
we don’t need this stronger fact.
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The claim implies an exact sequence

0→ Ker1 /(g, h) Ker1 → (m/(g, h))⊗E P →M/(g, h)M → 0.

Since Ker1
∼= (Sp∨)m for some m ≥ 0 and since m/(g, h) has finite length, we conclude by

Proposition 3.34 as in (i). �

The next result implies in particular Theorem 4.1.

Theorem 4.18. Let M ∈ C and assume it is finitely generated of rank s as a Λ-module.
Then for some constant c > 0 depending on M ,

(4.9) dimFMT1(pn) ≤ s|K1 : T1(pn)|+ c · npn

(4.10) dimFHi(T1(pn)/Z1,M) ≤ c · npn, i ≥ 1.

Proof. (i) The proof of (4.9) is similar to the proof of (26) in [19, §3.2] but using Proposition
4.17 as the main input. Since the rank function is additive with respect to short exact
sequences, using Lemma 4.3 we may assume M is a quotient of Pπ∨ with π∨ ∈ C irreducible.
The proof proceeds by induction on s. If s = 0, then it follows from Theorem 4.1. Assume
s ≥ 1 and (4.9) holds for objects of rank ≤ s− 1.

Let Mtor be the torsion part of M (as a Λ-module) and Mtf be the quotient M/Mtor. Then
Mtor is stable under the action of G, so that Theorem 4.1 applies to Mtor (it is also finitely
generated over Λ because M is and Λ is noetherian). So by Theorem 4.1, we may assume M
is torsion-free of rank s.

If up to twist π /∈ {Sp, πα}, then M is already a free Λ-module by Proposition 4.17, so the
result is obvious. Assume π = Sp. We must have HomC(P1∨G

,M) 6= 0, otherwise M would

be torsion by (3.9). Choose a non-zero morphism P1∨G
→ M with M ′ being its image and

M ′′ := M/M ′. Since M is torsion-free, so is M ′, hence M ′ is actually a free Λ-module by
Proposition 4.17. Since the rank of M ′′ is ≤ s−1, we conclude by induction. The case π = πα
is proven in a similar way.

(ii) To prove (4.10), again we may assume M is a quotient of Pπ∨ for some irreducible
π∨ ∈ C, and further a quotient of P where P is a finite free Λ-module by Theorem 3.23.9

Letting N be the kernel, we have a short exact sequence 0→ N → P →M → 0 which induces

(4.11) 0→ H1(T1(pn)/Z1,M)→ NT1(pn) → PT1(pn) →MT1(pn) → 0

(4.12) Hi(T1(pn)/Z1,M) ∼= Hi−1(T1(pn)/Z1, N), i ≥ 2.

From (4.11) and using (4.9) we obtain for some constant c > 0

dimFH1(T1(pn)/Z1,M) + dimF PT1(pn) ≤ (s+ s′)|K1 : K1(pn)|+ c · npn

where s′ denotes the Λ-rank of N . Since P is free of rank s+ s′, we have

dimF PT1(pn) = (s+ s′)|K1 : T1(pn)|,

proving the result for i = 1. Finally, the estimation for higher i follows from (4.12) by
induction. �

9Alternatively we may also apply [6, Cor. 9.11].
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4.5. GL2(Qp) vs SL2(Qp). For the application in Section 6, we need to consider smooth
admissible F-representations of SL2(Qp) and their Pontryagin duals. It is easy to translate
the results above to SL2(Qp) case. If H is a subgroup of GL2(Qp), we denote by H ′ the
intersection H ∩ SL2(Qp).

Lemma 4.19. Let Π be a smooth admissible F-representation of SL2(Qp). Then for all i ≥ 0,

dimFH
i(T1(pn)′,Π)� npn.

Proof. Write Id for the identity matrix of SL2(Qp). The center of SL2(Qp) is {±Id} and we
have an isomorphism SL2(Qp)/{±Id} ∼= GL2(Qp)/Z. Depending on the action of −Id, Π
decomposes as Π+ ⊕Π−, where −Id acts on Π± via ±1. Up to twist, we only need treat Π+.
But then we may view Π+ as a representation of GL2(Qp) with a trivial central character and
conclude by Theorem 4.1. �

5. Generalization

For application in §6, we need generalize Theorem 4.1 to representations of a finite product
of GL2(Qp). Although the main result (Theorem 5.1) we will prove below is similar to [19,
Prop. 4], the proof is quite different. The reason is that to carry out the inductive step as in
[19, §3.1], one need a stronger statement than Theorem 4.1; cf. [19, Prop. 7]. Instead, we use
a direct generalization of the proof of Theorem 4.1, at the cost of obtaining a weaker result.10

See also Remark 6.2.

We let G = GL2(Qp), K = GL2(Zp) and other subgroups of G are defined as in the previous
sections. Given r ≥ 1, we let

G =

r∏
i=1

G, K =

r∏
i=1

K, K1 =

r∏
i=1

K1

Z1 =

r∏
i=1

Z1, Λ = F[[K1/Z1]] ∼= ⊗̂ri=1F[[K1/Z1]].

That is, G is a product of r copies of G, and so on. If n = (n1, ..., nr) ∈ (Z≥1)r, let

T1(pn) =

r∏
i=1

T1(pni), Kn =

r∏
i=1

Kni .

The aim of this section is to prove the following result.

Theorem 5.1. Let M ∈ C(G) and assume it is finitely generated of rank s as a Λ-module.
Then for some constant c > 0 depending on M ,

dimFMT1(pn) ≤ s|K1 : T1(pn)|+ c · κ(n)rp(2r−1)κ(n)

dimFHi(T1(pn)/Z1,M) ≤ c · κ(n)rp(2r−1)κ(n), ∀i ≥ 1.

where κ(n) := maxi{ni}.

In §5.1 we establish some results generalizing the case r = 1. We give the proof of Theorem
5.1 in §5.2, and in §5.3 translate it into a form adapted for application.

5.1. Preliminaries.

10we mean the appearance of κ(n) in Theorem 5.1
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5.1.1. Irreducible representations. For 1 ≤ i ≤ r, let πi ∈ C(G) be (absolutely) irreducible.

Lemma 5.2. (i) The tensor product π1 ⊗ · · · ⊗ πr is an irreducible admissible representation
of G and each irreducible admissible representation of G is of this form.

(ii) Let π = π1⊗· · ·⊗πr be as in (i). Then δΛ(π∨) is equal to the cardinality of i ∈ {1, ..., r}
such that πi is infinite dimensional. Moreover, π∨ is a Cohen-Macaulay Λ-module.

(iii) Let π = ⊗ri=1πi and π′ = ⊗ri=1π
′
i be irreducible representations of G. Then π ∼ π′ (i.e.

in the same block) if and only if πi ∼ π′i for all i.

Proof. (i) it is standard; see [29, Prop. 9.2] for a proof.

(ii) is a direct consequence of Theorems 3.1 and 3.2.

(iii) It follows from the fact that: Ext1
G(π, π′) 6= 0 if and only if there exists 1 ≤ i ≤ r such

that Ext1
G(πi, π

′
i) 6= 0 and πj ∼= π′j for all j 6= i. �

Let Pπ∨i be a projective envelope of π∨i in C(G) and set Eπ∨i = EndC(G)(Pπ∨i ). Write

P = ⊗̂ri=1Pπ∨i , E = ⊗̂ri=1Eπ∨i ,

where ⊗̂ denotes the completed tensor product (always over F). Let R = Z(E) be the center
of E.

Lemma 5.3. (i) P is a projective envelope of π∨1 ⊗ · · · ⊗ π∨r in C(G) and EndC(G)(P ) ∼= E.

(ii) R = Z(E) is a complete local noetherian integral domain, and is Cohen-Macaulay of
Krull dimension 3r.

Proof. (i) is obvious and (ii) follows from Theorem 3.5. �

Lemma 5.4. (i) F⊗E P (resp. F⊗R P ) has finite length in C(G).

(ii) If πi /∈ {Sp, πα} (up to twist) for any i, then F⊗EP (resp. F⊗RP ) is Cohen-Macaulay.

Proof. Both assertions follow from Proposition 3.7. �

Lemma 5.5. Assume δΛ(π∨) = r. Let M ∈ C be a non-zero coadmissible quotient of P = Pπ∨ .
Then M has finite length if and only if δΛ(M) = r.

Proof. Since any irreducible object in C(G) has canonical dimension ≤ r and π∨ occurs as the
G-cosocle of M , the “only if” part is obvious.

Assume δΛ(M) = r. Consider the natural filtration of M given by miEM , i ≥ 0. Let ni
denote the F-dimension of miE/m

i+1
E . Then each of the grade pieces miEM/mi+1

E M is a quotient
of (M/mEM)⊕ni , hence of finite length by Lemma 5.4(i). Since the cosocle of M/mEM is
isomorphic to π∨, we see that if miEM/mi+1

E M 6= 0 then it has canonical dimension r. However,
as in the proof of Theorem 3.1, there are only a finite number of irreducible subquotients of
M which have canonical dimension r. This shows that miEM/mi+1

E M = 0 for i � 0, hence
miEM = 0 by Nakayama’s lemma. �

Remark 5.6. In general, it is not true that δΛ(M) ≤ r implies M has finite length. For
example, if r ≥ 2, M = ⊗̂iMi with δF[[K1/Z1]](M1) = 2 and Mi = 1∨G for 2 ≤ i ≤ r, then
δΛ(M) = 2 but M is not of finite length.

The next result is a weaker generalization of Theorem 3.1.

Lemma 5.7. If M ∈ C(G) has finite length, then dimFMT1(pn) �
∏r
i=1 ni.

Proof. We may assume M is irreducible so M ∼= ⊗ri=1π
∨
i with πi irreducible. The result then

follows from the case r = 1, see Theorem 4.4. �
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5.1.2. Serre weights. Similar to Lemma 5.2, an irreducible representation of K is of the form
σ = ⊗ri=1σi with each σi ∈ RepF(K) irreducible. We have the obvious notion of Serre weights
for π = ⊗ri=1πi. Clearly, σ ∈ D(π) if and only if σi ∈ D(πi) for each i. The following lemma
is a direct generalization of Corollary 3.11.

Lemma 5.8. Let σ = ⊗ri=1σi ∈ RepF(K) be irreducible. Whenever non-zero, HomK(P, σ∨)∨

is a Cohen-Macaulay E-module of Krull dimension r. Moreover, if σ = ⊗iσi and σ′ = ⊗iσ′i
are two weights such that σi = σ′i whenever πi is supersingular, then

HomK(P, σ∨)∨ ∼= HomK(P, σ′∨)∨

as E-modules when they are both non-zero.

Lemma 5.9. Let M ∈ C(G) be a coadmissible quotient of P . Then HomC(G)(P,M) ⊗E P is
also coadmissible.

Proof. Write m = HomC(G)(P,M) and let Ker be the kernel of the surjective morphism

ev : m⊗EP �M.

As in the proof of Proposition 3.20, we have HomC(G)(P,Ker) = 0, that is π∨ does not occur
in Ker.

We need to show that HomK(m⊗EP, σ∨) is finite dimensional for any irreducible σ ∈
RepF(K). Since

HomK(m⊗EP, σ∨)∨ ∼= m⊗E HomK(P, σ∨)∨

it suffices to consider those σ such that HomK(P, σ∨)∨ 6= 0, or equivalently HomK(Pπ∨i , σ
∨
i )∨ 6=

0 for all i. The rest of the proof is identical to the proof of Proposition 3.20, using Lemma
5.8. �

Proposition 5.10. Let M ∈ C(G) be a coadmissible quotient of P = Pπ∨ . Then there exist
f1, ..., fr ∈ mR such that

(i) f1, ..., fr is an R-sequence and also a P -sequence;
(ii) M is a quotient of P/(f1, ..., fr)P ;
(iii) P/(f1, ..., fr)P is a finite free Λ-module.

Proof. By Lemma 5.9(i), we may assume M = m⊗EP , where m = HomC(G)(P,M). The
projectivity of P implies that m is a cyclic E-module; let a be the annihilator.

Let σ̃ = ⊕σσ where the sum is taken for all the irreducible σ ∈ RepF(K) such that
HomK(P, σ∨) 6= 0. Then we have

HomK(M, σ̃∨)∨ ∼= m⊗E HomK(P, σ̃∨)∨.

By Lemma 5.8, HomK(P, σ̃∨)∨ is a Cohen-Macaulay E-module of dimension s. Since M is
coadmissible, HomK(M, σ̃∨)∨ is finite dimensional. So we may find f1, ..., fr ∈ a which form
a regular sequence for HomK(P, σ̃∨)∨. As in the proof of Theorem 3.23 we may modify fi so
that they all lie in a∩R. Using repeatedly Proposition 3.13 we obtain the condition (iii) and
that f1, ..., fr is a P -sequence.

We are left to check that f1, ..., fr is an R-sequence. When r = 1, this is trivial because
f1 6= 0 and R is an integral domain. In general case, we first observe that for any 1 ≤ i ≤ r
there is a natural isomorphism

(5.1) E/(f1, ..., fi) ∼= EndC(G)(P/(f1, ..., fi)).

Indeed, since f1, ..., fr lie in the center of E, the proof of [15, Lem. 7.11] shows that any
morphism P → P/(f1, ..., fi−1) factors through P/(f1, ..., fi−1)→ P/(f1, ..., fi−1). Since P is
projective, the exact sequence

0→ P/(f1, ..., fi−1)
fi→ P/(f1, ..., fi−1)→ P/(f1, ..., fi)→ 0
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induces an isomorphism EndC(G)

(
P/(f1, ..., fi−1)

)
/fi ∼= EndC(G)(P/(f1, ..., fi)). An obvious

induction then implies (5.1). In particular, E/(f1, ..., fi) acts faithfully on P/(f1, ..., fi). This
implies (i) because f1, ..., fr is a P -sequence. �

Corollary 5.11. Let M ∈ C(G) be coadmissible. Then there exists a resolution of M

P• →M → 0

where Pi ∈ C(G) are finite free Λ-modules.

Proof. Since M is coadmissible, the proof of Lemma 4.3 implies that it admits a finite filtration
such that each of the graded pieces is a (coadmissible) quotient of Pπ∨ for some irreducible
π ∈ RepF(G). By the horseshoe lemma in homological algebra, we may assume M is just a
coadmissible quotient of Pπ∨ , in which case we conclude (inductively) by Proposition 5.10. �

Remark 5.12. The above result can be viewed as a generalization (in a weak form) of the
construction of Breuil-Paškūnas [6]. Note that when r ≥ 2 it is not clear (to the author) how
to generalize the construction to G.

5.1.3. Generalized key lemma. The next lemma generalizes the key Lemma 4.15. It is where
the quantity κ(n) = maxi{ni} comes.

Lemma 5.13. Let M be a finitely generated maxi{ni}Lambda-module and φ ∈ EndΛ(M).
Assume that

⋂
n≥1 φ

n(M) = 0.

(i) If φ is nilpotent, then dimFMT1(pn) ∼ dimF
(
M/φ(M)

)
T1(pn)

.

(ii) If φ is not nilpotent, then for k0 � 1,

dimFMT1(pn) � max

{
dimF

(
M/φ(M)

)
T1(pn)

, pκ(n) dimF
(
φk0(M)/φk0+1(M)

)
T1(pn)

}
where κ(n) := maxi{ni}.

Proof. The proof is identical to that of Lemma 4.15, except that we need k ≥ 3pκ(n) to
guarantee that Jk is contained in the two-sided ideal of Λ generated by the maximal ideal of
F[[T1(pn)/Z1]]. Here J denotes the maximal ideal of Λ. �

5.1.4. Principal series.

Definition 5.14. Let S be a subset of {1, ..., r}. Given irreducible πi ∈ RepF(G) for each
i /∈ S and a character ηi ∈ RepF(T ) for each i ∈ S, we define P (πi, ηi, S) ∈ C(G) by

P (πi, ηi, S) =
(
⊗̂i/∈SPπ∨i )⊗̂

(
⊗̂i∈SMη∨i

)
.

Denote by ES the ring EndC(G)(P (πi, ηi, S)). Then

ES ∼=
(
⊗̂i/∈SEπ∨i )⊗̂

(
⊗̂i∈SEη∨i

)
.

If i ∈ S, let πi := socGπηi and let Pπ∨i be a projective envelope of πi so that Mη∨i
becomes

naturally a quotient of Pπ∨i . Set P = ⊗̂iPπ∨i , E = ⊗̂iEπ∨i and R = Z(E). Then ES is

naturally a quotient of E. Let RS be the image of R in ES (note that RS might be smaller
that the center of ES .) Then RS is Cohen-Macaulay of Krull dimension 3r − |S|. Moreover,
if σ = ⊗iσi ∈ D(⊗iπi), then

HomK(P, σ∨)∨ ∼= HomK(P (πi, ηi, S), σ∨)∨

which is a cyclic ES-module and a Cohen-Macaulay ES-module of Krull dimension r by
Corollary 3.11.

Lemma 5.15. With the above notation, if f1, ..., fr ∈ R is a regular sequence for HomK(P, σ∨)∨,
then they are RS-regular.
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Proof. Although it is possible to prove the result using a similar argument as in Proposition
5.10, we instead do it via a commutative algebra argument based on the following observation.
Let J ′σ ⊂ RS be the annihilator of HomK(P, σ∨)∨ (viewed as an RS-module). Then J ′σ is a
prime ideal of height 2r − |S|. If we can find a sequence of elements g1, ..., g2r−|S| ∈ J ′σ such
that

J ′σ/(g1, ..., g2r−|S|)

has finite length, then we are done. Indeed, the latter condition implies that (we still use fi
to denote its image in RS)

g1, ..., g2r−|S|, f1, ..., fr

form a system of parameters of RS . Since RS is Cohen-Macaulay of dimension 3r − |S|, the
sequence is in particular RS-regular, hence f1, ..., fr is also RS-regular. Finally, it is easy to
construct such elements gi by Lemma 3.12. �

Proposition 5.16. Let M be a coadmissible quotient of P (πi, ηi, S). Then M is torsion over
Λ and

dimFMT1(pn) � κ(n)rp(2r−|S|)κ(n).

Proof. We may view M as a coadmissible quotient of P , hence by Proposition 5.10 we find an
R-sequence f1, ..., fr which annihilate M . As in the proof of Lemma 5.15, we may complete
f1, ..., fr by g1, ..., g2r−|S| to obtain a system of parameters of RS . Since M/(g1, ..., g2r−|S|)
has finite length, we conclude by Lemma 5.13 and Lemma 5.7. �

Lemma 5.17. Let M ∈ C(G) be a coadmissible quotient of P . If M is torsion, then so is
HomC(G)(P,M)⊗EP .

Proof. Let Ker be the kernel of the natural surjection

HomC(G)(P,M)⊗EP �M.

Then HomC(G)(P,Ker) = 0, i.e. π∨ does not occur in Ker. If all the Bi are of type (I) or
(III), then this implies Ker = 0. Let S be the indices i such that Bi is of type (II) or (IV).

As in the proof of Proposition 3.20(ii), it is enough to show the following:

Claim: For i ∈ S, let π′i ∈ Bi be distinct with πi and let Q′i be the maximal quotient of
Pπ′∨i none of whose irreducible subquotients is isomorphic to π∨i . Then

Q′i⊗̂
(
⊗̂j∈S,j 6=iPπ′∨j

)
⊗̂
(
⊗̂j /∈SPπ∨j

)
is torsion.

By Remark 3.21, each Q′i has a finite filtration with graded pieces being subquotients of
Mη∨ . The claim then follows from Proposition 5.16. �

5.1.5. Torsion free vs free. We fix an irreducible representation π = ⊗iπi ∈ RepF(G) and let
B (resp. Bi) be the block of π (resp. πi). Let P = ⊗̂iPπ∨i , E = ⊗̂iEπ∨i .

In the rest, we make the following assumption:

(H) if Bi is of type (IV), then πi ∼= 1G.

Definition 5.18. Let M ∈ C(G)B. We say M is of Cohen-Macaulay type (abbr. CM-type)
if M admits an exhaustive decreasing filtration

M = Fil0M ) Fil1M ) · · · ) FilkM ) · · ·
such that each of the graded pieces is of the shape ⊗ri=1λi, where λi ∈ C(G)Bi and

– either λi is irreducible, not of type (IV),
– or λi ∈ {Sp∨, κ∨}, where we recall that κ is defined in (3.15).
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By definition, if M is CM-type, then M = lim←−kMk with Mk being quotients of finite length

and CM-type.

Lemma 5.19. Let λ = ⊗ri=1λi be a graded piece as in Definition 5.18. Let Sκ ⊂ {1, ..., r} be
the set of indices i such that λi = κ∨. Then the G-socle (resp. G-cosocle) of λ is(

⊗i/∈Sκ λi
)
⊗
(
⊗i∈Sκ π∨α

)
,
(
resp.

(
⊗i/∈Sκ λi

)
⊗
(
⊗i∈Sκ 1∨G

))
.

Proof. This is clear from the definition of κ. �

Lemma 5.20. Let M ∈ C(G)B be non-zero, of finite length and CM-type. Then as a Λ-module
M is Cohen-Macaulay of projective dimension 2r.

Proof. We may assume M is of the form ⊗ri=1λi with notation in Definition 5.18, in which
case the result follows from Theorem 3.2 and the fact that κ∨ is Cohen-Macaulay, see the
proof of Proposition 3.34. �

Lemma 5.21. Let M ∈ C(G)B be of finite length and CM-type, and let M ′ be any submodule
of M . Let h1(M ′) (resp. hα(M ′)) denote the number of Jordan-Hölder factors of M ′ which
are of the form ⊗iπ′∨i with π′i /∈ {πα} (resp. π′i /∈ {1G}). Then hα(M ′) ≥ h1(M ′). Moreover,
the equality holds if and only if M ′ is CM-type, in which case M/M ′ is CM-type too.

Proof. Take a CM-type filtration {FilkM, k ≥ 0} of M as in Definition 5.18. It is enough to
check the inequality for each graded piece ⊗iλi. This follows from Lemma 5.19. Moreover, if
M ′ is CM-type, then the equality holds.

Now assume hα(M ′) = h1(M ′). We need to show M ′ is CM-type. Consider the induced

filtration FilkM ′ := M ′ ∩ FilkM of M ′. Each graded piece grkM ′ is a submodule of grkM .
Since hα(M ′) = h1(M ′), Lemma 5.19 shows that either grkM ′ = 0 or grkM ′ = grkM . That

is, {FilkM ′, k ≥ 0} can be refined to be a CM-type filtration of M ′ and the quotient filtration
of M/M ′ is also CM-type. �

Lemma 5.22. (i) Being of CM type is stable under extensions.

(ii) Let M,M ′ ∈ C(G)B be CM-type and φ : M → M ′ be a morphism in C(G). Then
Ker(φ), Im(φ), Coker(φ) are CM-type.

Proof. (i) is obvious.

(ii) We may choose CM-type quotients of finite length Mi (resp. M ′i) of M (resp. M ′) such
that M = lim←−iMi (resp. M ′ = lim←−iM

′
i) and that φ is induced from compatible morphisms

Mi →M ′i . Hence it suffices to prove the result for M,M ′ both of finite length. Consider the
exact sequence 0→ Ker(φ)→M → Im(φ)→ 0. By Lemma 5.21, we have

hα(Im(φ)) ≥ h1(Im(φ)), hα(M) = h1(M), hα(Ker(φ)) ≥ h1(Ker(φ)),

hence hα(Im(φ)) = h1(Im(φ)) and hα(Ker(φ)) = h1(Ker(φ)). Applying the same lemma gives
the result. �

Lemma 5.23. Let π ∈ RepF(G) be irreducible satisfying (H) and m be a finitely generated

E-module. Then for any i ≥ 0, TorEi (m, Pπ∨) is CM-type.

Proof. We first treat the case when m is of finite length. By induction on the length of m
and using Lemma 5.22, it suffices to show TorEi (F, P ) are CM-type. This follows from the
Künneth formula and Propositions 3.30 and 3.33 (under the assumption (H)).

For general m, we note that m ∼= lim←−k m/mkE where mE is the maximal ideal of E. Therefore,

m⊗E P is isomorphic to lim←−k
(
(m/mkE)⊗E P

)
, hence is CM-type. The result for i ≥ 1 follows

from a dimension-shifting argument. �
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Proposition 5.24. Let π = ⊗iπi be irreducible satisfying (H). Let M ∈ C be a non-zero
coadmissible quotient of P . If M is torsion-free as a Λ-module then M is free.

Proof. The proof is similar to that of Proposition 4.17. By assumption jΛ(M) = 0, so to prove
M is free is equivalent to prove M is a Cohen-Macaulay Λ-module. Since M is coadmissible,
there exist f1, ..., fr ∈ mR as in Proposition 5.10. We complete them by g1, ..., g2r ∈ mR to
obtain a system of parameters. As in the proof of Proposition 4.17, g1, ..., g2r form a regular
sequence for M , so by Lemma 2.5 we are left to show M/(g1, ..., g2r)M is Cohen-Macaulay,

or even M/(gk1
1 , ..., gk2r

2r )M is Cohen-Macaulay for some ki ≥ 1.

Letting m := HomC(G)(P,M), we have an exact sequence induced by the evaluation mor-
phism (with Ker being the kernel)

(5.2) 0→ Ker→ m⊗EP
ev→M → 0.

By Lemma 5.17, Ker is a torsion Λ-module.

Consider the action of g1 on Ker. Let Ker[g∞1 ] be the submodule of elements on which g1

acts nilpotently; this is an object in C(G). Since Ker is coadmissible, so is Ker[g∞1 ], so we may
find k1 � 0 such that

Ker[g∞1 ] = Ker[gk1
1 ].

Consider the following commutative diagram

0 // Ker //

g
k1
1

��

m⊗EP //

g
k1
1

��

M //
_�

g
k1
1

��

0

0 // Ker // m⊗EP // M // 0

which implies by the Snake lemma that Ker[gk1
1 ] ∼= (m⊗EP )[gk1

1 ] and an exact sequence

(5.3) 0→ Ker /gk1
1 Ker→ (m/gk1

1 )⊗EP →M/gk1
1 M → 0.

Observe that m⊗EP is CM-type by Lemma 5.23. Hence so is (m⊗EP )[gk1
1 ] by Lemma 5.22.

We have the following two possibilities:

(1) g1 is nilpotent on Ker, i.e. gk1
1 = 0 on Ker. Then Ker = Ker[gk1

1 ] is CM-type, so (5.3)

implies that M/gk1
1 M is CM-type using Lemma 5.22 and Lemma 5.23. By Lemma

5.22 again, M/(gk1
1 , g2, ..., g2r)M is also CM-type. However, M/(gk1

1 , ..., g2r)M is of

finite length because gk1
1 , ..., g2r form an M -sequence, so it is a Cohen-Macaulay Λ-

module by Lemma 5.20. As remarked above, we deduce that M is a free Λ-module
by Lemma 2.5.

(2) g1 is not nilpotent on Ker. In this case, the induced morphism

gk1
1 : Ker /Ker[gk1

1 ]→ Ker /Ker[gk1
1 ]

is injective and we let Ker1 be its cokernel. Similarly, let Σ1 be the cokernel of

gk1
1 : m⊗EP/(m⊗EP )[gk1

1 ]→ m⊗EP/(m⊗EP )[gk1
1 ].

Then we have the following facts:
– δΛ(Ker1) ≤ δΛ(Ker)− 1,
– Σ1 is CM-type by Lemma 5.22,
– setting M1 := M/gk1

1 M , (5.3) induces an exact sequence

0→ Ker1 → Σ1 →M1 → 0.

Recall that it is enough to show M1 is a Cohen-Macaulay Λ-module. Continue the
above argument, that is, consider the action of g2 on Ker1, and so on. Then, provided
that gi does not act nilpotently on Keri−1, we obtain an exact sequence

0→ Keri → Σi →Mi → 0
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with δΛ(Keri) ≤ δΛ(Keri−1) − 1. However, since Ker is torsion, we eventually arrive
at some i such that gi acts nilpotently on Keri−1 and conclude as in (1).

�

5.2. The proof.

Theorem 5.25. Let π = ⊗ri=1πi ∈ RepF(G) be irreducible with δΛ(π∨) = r. Let P = Pπ∨

and M ∈ C(G) be a non-zero coadmissible quotient of P . Then

dimFMT1(pn) � κ(n)rp(δΛ(M)−r)κ(n).

Proof. Being non-zero, M admits π∨ as its G-cosocle, so we have δΛ(M) ≥ r. We do induction
on δΛ(M). If δΛ(M) = r, then Lemma 5.5 implies that M has finite length and the result
follows from Lemma 5.7. Assume the result is proven for all M of canonical dimension ≤ t
and treat the case δΛ(M) = t+ 1 below.

We know that R is a Cohen-Macaulay local ring of Krull dimension 3r by Theorem 3.5.
Since M is coadmissible, there exist f1, ..., fr ∈ mR as in Proposition 5.10. We complete them
by g1, ..., g2r ∈ mR to obtain a system of parameters.

For i ≥ 1, set Mi := M/(g1, ..., gi)M and consider the endomorphism gi : Mi−1 → Mi−1,
where M0 := M . If g1 : M → M is nilpotent, then by Proposition 2.3 and Lemma 5.13 we
have

δΛ(M) = δΛ(M1), dimFMT1(pn) ∼ dimF(M1)T1(pn)

so it suffices to prove the result for M1. For this reason we assume, without loss of generality,
that we are in the following setting: there exist g1, ..., gr′ ∈ R (with 1 ≤ r′ ≤ 2r) such that
M/(g1, ..., gr′)M ∈ C(G) is of finite length and that g1 is not nilpotent on M .

By Proposition 2.3, there exists k0 � 1 such that

δΛ(M) = max{δΛ(M1), δΛ(gk0
1 M/gk0+1

1 M) + 1}.

In particular, δΛ(gk0
1 M/gk0+1

1 M) ≤ δΛ(M) − 1 = t. The inductive hypothesis then implies

that dimF(gk0
1 M/gk0+1

1 M)T1(pn) � κ(n)rp(t−r)κ(n), and by Lemma 5.13

dimF(gk0
1 M)T1(pn) � κ(n)rp(t+1−r)κ(n).

Therefore, to prove the result it suffices to show

(M1)T1(pn) � κ(n)rp(t+1−r)κ(n).

If δΛ(M1) = t, it follows from the inductive hypothesis. If δΛ(M1) = t + 1, we consider
the action of g2, ..., gr′ on M1 and conclude by an induction on r′ (i.e. the length of the
sequence). �

Remark 5.26. If we let M = P/(f1, ..., fr, g1, ..., gr′)P with 1 ≤ r′ ≤ 2r, then δΛ(M) = 3r−r′
(for this we don’t need assume δΛ(π∨) = r because δΛ(F⊗R P ) is always equal to r). Assume
moreover that n is parallel, i.e. n = (n, ..., n). The bound established in Theorem 5.25 is tight
in the sense that we have the following lower bound:

dimFMT1(pn) �ε p
(δ(M)−r)n−ε = p(2r−r′)n−ε, ∀ε > 0.

Indeed, otherwise Lemma 5.13 would imply for some ε0 > 0

dimF
(
P/(f1, ..., fr)P

)
T1(pn)

� p2r−ε0 ,

which is not the case because P/(f1, ..., fr)P is a finite free Λ-module.

We are ready to prove Theorem 5.1 whose statement we recall.
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Theorem 5.27. Let M ∈ C(G) and assume it is finitely generated of rank s as a Λ-module.
Then for some constant c > 0 depending on M ,

(5.4) dimFMT1(pn) ≤ s|K1 : T1(pn)|+ c · κ(n)rp(2r−1)κ(n)

(5.5) dimFHi(T1(pn)/Z1,M)� κ(n)rp(2r−1)κ(n).

where κ(n) := maxi{ni}.

Proof. (i) We first assume M is torsion. Since dimG = 3r, we get δΛ(M) ≤ 3r − 1. As in
Lemma 4.3, we may assume M is a (coadmissible) quotient of P = Pπ∨ for some irreducible
π ∈ RepF(G). If δΛ(π∨) = r, then the result is a special case of Theorem 5.25.

Assume in the rest δΛ(π∨) < r. This amounts to saying that the subset S ⊂ {1, ..., r} of
indices i such that πi is one-dimensional is non-empty; indeed, we have δΛ(π∨) = r − |S| by
Lemma 5.2(ii). Up to twist by a suitable central character, we may assume πi = 1G for i ∈ S.
We do induction on |S|. Assume 1 ∈ S without loss of generality. Define P ′ = ⊗̂iP ′i by

P ′1 = Pπ∨α and P ′i = Pπ∨i , i 6= 1.

Then we have a natural inclusion P ′ ↪→ P by (3.7), with quotient isomorphic to P (πi, α, {1}),
see Definition 5.14. This allows to divide M into two parts: a submodule M ′ being image of
P ′ and the corresponding quotient M ′′ = M/M ′. We obtain the required bound by Theorem
5.25, Proposition 5.16 and the inductive hypothesis.

Now we prove (5.4) in general. We may assume M is torsion-free. Let S′ ⊂ Σ be the set of
indices i such that πi ∈ {Sp, πα}. We do induction on the quantity s + |S′|. The case when
S′ = ∅ follows from Proposition 5.24 which implies that M is a free Λ-module. If S′ 6= ∅, say
1 ∈ S′ without loss of generality, then we may divide M into

0→M ′ →M →M ′′ → 0

in such a way that

– M ′ is a quotient of P ′ = ⊗̂iP ′i where

P ′1 = P1∨G
and P ′i = Pπ∨i , i 6= 1,

and the inductive hypothesis implies that (5.4) holds for M ′;
– M ′′ has rank < s, hence also verifies (5.4) by induction (remark that M ′′ is not

necessarily torsion-free, in which case we split it as 0→M ′′tor →M ′′ →M ′′tf → 0 and
apply the inductive hypothesis to M ′′tf).

This completes the proof of (5.4).

(ii) Finally, using Corollary 5.11, (5.5) is proved by the same argument as in Theorem
4.18. �

5.3. Change of groups. We keep the notation in the previous subsection. For n ≥ 1, let

K1(pn) := K1 ∩K0(pnK1(pn)) =

(
1 + pZp pZp
pnZp 1 + pZp

)
.

These groups are closely related to the T1(pn) in the sense that letting D =
( 1 0

0 pbn/2c
)

and

n′ = bn/2c+ 1, we have

(5.6) D−1K1(pn)D < T1(pn
′
), |T1(pn

′
) : D−1K1(pn)D| ≤ p, |n′ − n/2| ≤ 1.

On the other hand, using (essentially) the fact K1/K1(pn) ∼= pZ/pnZ, Marshall proved the
following interesting result ([19, Cor. 14]).
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Lemma 5.28. Let L ⊂ F[K1/K1(pn)] be a submodule of dimension d, and let the base p
expansion of d be written as

d =

l∑
i=1

pα(i)

where α(i) is a non-increasing sequence of non-negative integers. Then there exists a filtration
0 = L0 ⊂ · · · ⊂ Ll = L of L by submodules Li such that Li/Li−1

∼= F[K1/K1(pα(i)+1)].

If n = (n1, ..., nr) ∈ (Z≥1)r, let

K1(pn) =

r∏
i=1

K1(pni).

Theorem 5.29. Let M ∈ C(G) be coadmissible and torsion, and let L be any sub-representation
of F[K1/K1(pn)] which factorizes as ⊗ri=1Li with Li ⊂ F[K1/K1(pni)]. Then for i ≥ 0 we
have

dimFHi(K1/Z1,M ⊗ L)� κ(n)2rp(r− 1
2 )κ(n).

In particular, if n = (n, ..., n) is parallel, then

dimFHi(K1/Z1,M ⊗ L)� n2rp(r− 1
2 )n.

Proof. The proof goes as in that of [19, Lem. 19]. We explain this briefly. First, if L =
F[K1/K1(pm)] for some m ∈ (Z≥1)r, we apply Shapiro’s lemma to obtain

(5.7) Hi(K1/Z1,M ⊗ L) ∼= Hi(K1(pm)/Z1,M).

Using a diagonal element of G, precisely

D =

((
1 0
0 pbm1c/2

)
, . . . ,

(
1 0
0 pbmr/2c

))
we obtain by (5.6) that for some m′:

D−1K1(pm)D ≤ T1(pm
′
), |T1(pm

′
) : D−1K1(pm)D| ≤ pr, |m′i −mi/2| ≤ 1.

Since M carries a compatible action of G, we have natural isomorphisms

Hi(K1(pm)/Z1,M) ∼= Hi(D
−1K1(pm)D/Z1,M).

Hence we deduce from [19, Lem. 20] that

dimFHi(K1(pm)/Z1,M) ≤ pr dimFHi(T1(pm
′
)/Z1,M)

and the result follows from Theorem 5.1.

For general L, Lemma 5.28 provides a filtration of L

L = F0 ⊃ F1 ⊃ · · ·

such that every quotient Fi/Fi+1 is isomorphic to F[K1/K1(pm)] for some m ≤ n and each
isomorphism class of quotient occurs at most pr times. We then deduce from the first case
that

dimFHi(K1,M ⊗ L) ≤ pr
∑

m≤n
dimFHi(K1(pm)/Z1,M)

�
∑

m≤n
κ(m)rp(r− 1

2 )κ(m)

� κ(n)2rp(r− 1
2 )κ(n).

Here we use the fact that the cardinality of the set {m : m ≤ n} is
∏r
i=1 ni, hence bounded

by κ(n)r. �
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6. Application

Let F be a number field of degree r, and r1 (resp. 2r2) be the number of real (resp.
complex) embeddings. Let F∞ = F ⊗Q R, so that SL2(F∞) = SL2(R)r1 × SL2(C)r2 . Let K∞
be the standard maximal compact subgroup of SL2(F∞).

Let {σ1, ..., σr} be the set of complex embeddings of F and let d ∈ (Z≥1)r be an r-tuple
indexed by the σi such that di = dj when σi and σj are complex conjugates. Let Wd be the
representation of SL2(F∞) obtained by forming the tensor product( ⊗

σi real

SymdiC2
)⊗( ⊗

{σi,σj} complex

SymdiC2 ⊗ Sym
djC2

)
.

Theorem 6.1. Let Y = SL2(F )\SL2(A)/KfK∞ for some compact open subgroup Kf ⊂
SL2(Af ). If F is not totally real and d = (d1, ..., dr) as above, then

dimCHi(Y,Wd)�ε κ(d)r−1/2+ε

where κ(d) = maxi{di}.

Proof. The proof follows closely the one presented in [19]. We content ourselves with briefly
explaining the main ingredients. Below we abuse the notation by letting the same letters to
denote subgroups of SL2 obtained by intersection from GL2.

(1) By [19, Lem. 18], there exists a p-adic local system Vd defined over O = W (F), such
that

dimCHi(Y,Wd) = dimLHi(Y, Vd).

This need to choose a bijection between the set of complex places and p-adic places
of F .

(2) Emerton’s theory of complete homology gives a bound ([19, §6, (34),(35)])

dimHq(Y, Vd) ≤
∑
i+j=q

dimHi(K1/Z1, H̃j,Qp ⊗ Vd)

where H̃j is the j-th completed homology of Emerton with (trivial) coefficients in O,

and H̃j,Qp = H̃j ⊗Zp Qp. Note that H̃j is a coadmissible module over O[[K1]] and

carries a natural compatible action of
∏r
i=1 SL2(Qp).

(3) Let n = (n1, ..., nr) where ni is the smallest integer such that pni ≥ di (resp. pni ≥
di/2) if σi is real (resp. complex). By [19, Lem. 17] we may choose lattice Vdi ⊂ Vdi
such that Vdi/p ⊂ F[[K1/K1(pki)]]. Let Ld be the reduction mod p of ⊗ri=1Vdi .

(4) Let Mj be the reduction modulo p of the image of H̃j → H̃j,Qp . We then have

dimLHi(K1/Z1, H̃j,Qp ⊗ Vd) ≤ dimFHi(K1/Z1,Mj ⊗ Ld).

(5) Because SL2(C) does not admit discrete series, the assumption that F is not totally

real implies that H̃j,Qp is a torsion O[[K1]] ⊗Zp Qp-module, see [8, Thm. 3.4]. So
by Lemma 2.6, Mj is a torsion Λ-module. Therefore our Theorem 5.29 applies, via
Lemma 4.19, and shows that

dimFHi(K1,Mj ⊗ Ld)� κ(n)2rp(r− 1
2 )κ(n) �ε κ(d)r−

1
2 +ε.

�

Remark 6.2. In [19], Marshall considered a more general setting, allowing a subset of the
weights di to be fixed and letting the others vary. We have restricted ourselves for two reasons.
On the one hand, Theorem 6.1 provides interesting bounds only when all weights vary in a
uniform way (because of the appearance of κ(d)), for example, when d is parallel. On the
other hand, this already includes the most interesting cases: for example, when F is imaginary
quadratic, we do have d1 = d2.
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Now we change our notation. Let Z∞ be the centre of GL2(F∞), Kf be a compact open
subgroup of GL2(Af ) and let

X = GL2(F )\GL2(A)/KfZ∞.

If d = (d1, ..., dr1+r2) is an (r1 + r2)-tuple of positive even integers, let Sd(Kf ) denote the
space of cusp forms on X which are of cohomological type with weight d. Then using the
Eichler-Shimura isomorphism, see [19, §2.1], Theorem 6.1 can be restated as follows.

Theorem 6.3. If F is not totally real then for any fixed Kf and d = (d1, ..., dr1+r2) as above,
we have

dimC Sd(Kf )�ε κ(d)r−1/2+ε.

In particular, when d = (d, ..., d) is parallel, we obtain

dimC Sd(Kf )�ε d
r−1/2+ε

which strengthens Corollary 2 of [19] by a power d1/6.
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