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Abstract

In this paper we prove the +-main conjecture formulated by Kobayashi for elliptic curves
with supersingular reduction at p such that a, = 0, using a completely new idea of reducing
it to another Iwasawa-Greenberg main conjecture which is more accessible. We also prove as a
corollary the p-part of the BSD formula at supersingular primes when the analytic rank is 0. The
argument uses in an essential way the recent study on explicit reciprocity law for Beilinson-Flach
elements by Kings-Loeffler-Zerbes.

1 Introduction

Let p be an odd prime. Iwasawa theory studies relations between special values of L-functions and
arithmetic objects such as class numbers of number fields or more generally p-adic Seliner groups.
The central problem for this study is the Iwasawa main conjecture, which roughly speaking, says
that the size (or more precisely the characteristic ideal) of certain module parameterizing the p-adic
families of Selmer groups is controlled by the so called p-adic L-function, which interpolates p-adic
families of the algebraic parts of the corresponding special L-values. Iwasawa main conjecture is
also a useful tool in proving the refined Birch-Swinnerton-Dyer (BSD) formula for elliptic curves.

Earlier work on Iwasawa main conjecture includes the work of Mazur-Wiles [42], Wiles [71] for p-adic
families of Hecke characters of totally real fields using the Fisenstein congruence on GLs, Rubin
[52] for characters for quadratic imaginary fields using Euler systems of elliptic units, the work of
Hida-Tilouine for anticyclotomic characters of general CM fields [I8], the work of E.Urban [65] on
symmetric square £ functions, the work of Bertolini-Darmon [3] for anticyclotomic main conjecture
for modular forms, and the recent work of Kato [25] and Skinner-Urban [61] which proves the
Iwasawa main conjecture for ordinary elliptic curves E//Q (and this list is not complete). We briefly
recall the formulation of [61]. Let Qs be the cyclotomic Z, extension of Q with the Galois group
denoted as I'g. Write Ag := Z,[[I'g]]. There is a p-adic L-function Lg interpolating the central
critical values of the L-function for E. We define the Selmer group by

Selg : ligker{Hl(Qn,TE ® Qp/Zp) — HHI(IvaTE ® Qp/Zyp) x HHI(@LWTE/TE ® Qp/Zp)}

vip vlp

where Tg is a rank one submodule of Tg stable under G, such that the G,-action is unramified
on Tg/ Tg . The dual Selmer group Xg being the Pontryagin dual of Selg. The Iwasawa main
conjecture states that Xg is a torsion Ag-module and the characteristic ideal of Xg as a module
over Ag is generated by L. In fact Kato proves one divisibility by constructing an Euler system



while Skinner-Urban ([61]) proves the other divisibility using Eisenstein congruences on the larger
unitary group U(2,2).

Now let us turn to the supersingular elliptic curve case. By Taniyama-Shimura conjecture proved by
Wiles [72] and Breuil-Conrad-Diamond-Taylor [2] we know there is a normalized cuspidal eigenform
[ =7, anq™ associated to E. Suppose ap = 0. (This is automatically true if p > 5). For a
supersingular elliptic curve E/Q, Kobayashi ([33]) reformulated Kato’s result in terms of the +
p-adic L-functions ij and £-Selmer groups (we recall in the text). The Iwasawa main conjecture

for supersingular elliptic curves is

Conjecture 1.1. The +-dual Selmer group XjEt is torsion over Ag and the characteristic ideal of
X;;t 15 generated by E% as ideals of Ag.

Here we define the characteristic ideal as follows

Definition 1.2. Let A be a Noetherian normal domain and M a finitely generated A-module. Then
the characteristic ideal charo(M) of M is defined to be

{x € Alordp(x) > Length 4, Mp, for any height one prime P of A}.
If M is not A-torsion then we define it to be zero.

Before this work the only result for £-main conjecture is due to Pollack-Rubin ([49]) for CM elliptic
curves. However the proof in loc.cit does not generalize to all supersingular elliptic curves. It is
also a natural attempt to adapt the argument of [61] to the supersingular case. To make this work
we similarly take an auxiliary quadratic imaginary field I such that p splits as vovg. However
this turns out to be quite hard since we do not see any ways to pick up the £-part of the Selmer
groups from Skinner-Urban’s construction. Another possibility would be trying to prove the for-
muation of the main conjecture of Pottharst [47], which, instead of using the + theory, studies one
(unbounded) p-adic L-function for an Up-eigenvector and the corresponding Selmer group. Then
it is reasonable to believe that one needs to construct families of triangulations for the family of
Galois representations on the eigenvariety of U(2,2). However it is not clear whether there are such
families of triangulations at all points we need to study (see [37]). Moreover it seems hard to get
the main conjecture before inverting p by this method. Finally the construction of the Eisenstein
families and the study of the Fourier-Jacobi expansion in this case both require completely new ideas.

After some unsuccessful tries, a different idea came into our consideration. We first give some
backgrounds on Greenberg’s work on Iwasawa theory. At the moment suppose T is a geometric
(i.e. potentially semistable) Z,-Galois representation of Gg and V := T ® Q,. Then we have the
Hodge-Tate decomposition

V ®C, = &;Cp(i)

where Cp(i) is the i-th Tate twist and h; is the multiplicity. Let d be the dimension of T" and let
d* be the dimensions of the subspaces whose eigenvalues of the complex conjugation ¢ is +1. We
assume

o dt =30 hi



This is put by Greenberg as a p-adic version of the assumption that L(7',0) (in favorable situations
when this makes sense) is critical in the sense of Deligne. Assume moreover the following Panchishkin
condition

e There is a d-dimensional Qp-subspace VT of V which is stable under the action of the
decomposition group G, at p such that V* ® C, = EBi>oC;,”.

Write T := VT NT. Under this Panchishkin condition Greenberg defined the following local Selmer
condition

V)T
vt

In other words under the Panchishkin condition the local Selmer condition above is very analogous
to the ordinary case, thus making the corresponding Iwasawa main conjecture (when an appropriate
p-adic L-function is available) accessible to proof (especially the “lattice construction” discussed in
[61, Chapter 4]). The following example is crucial for this paper.

H(Qp, V/T) = Ker{H'(Q,,V/T) = H'(Qp,

Example 1.3. Let f be a cuspidal eigenform of weight k and g be a CM form of weight k' with
respect to a quadratic imaginary field K such that p splits. Then g is ordinary at p by definition.
Assume k + k' is an odd number. We consider critical values for Rankin-Selberg products L(f,g,1)
(which means L(pr @ pg(—i),0) if we write py and pgy for the corresponding Galois representations).
We consider two posstbilities:

1. If k > K, then the Panchishkin’s condition is true if f is ordinary;

2. If k' > k, then the Panchishkin’s condition is always true, regardless of whether f is ordinary or
not. This can be seen as follows: we have d* = 2, ps and py have Hodge-Tate weights (0,k — 1)
and (0,k" — 1) respectively. The L-values are critical when k —1 <i <k’ —1. So for those i above
P ® pg(—i) has two positive Hodge-Tate weights. On the other hand py as a Gg,-representation is
the direct sum of two characters. Thus the Panchishkin condition is easily seen.

In the case when f is nearly ordinary the result is proved in [67]. The first thing we do in this
paper is prove this Greenberg main conjecture when f corresponds to the supersingular elliptic curve
E (this is proved in Theorem [5.3). This theorem in itself has independent interest and has other
arithmetic applications. As in [67], the p-adic L-function here appears as the constant of certain
Klingen Eisenstein series on the group U(3,1) and we make use of the Eisenstein congruences of
them with cusp forms. The following new ingredients are important in our argument

e The construction in [9] of families of Klingen Eisenstein series from f and a CM character.
This family is semi-ordinary in the sense that some (not all) U, operators have p-adic units
as eigenvalues.

e The above family sits in a two dimensional subspace of the three dimensional weight space
for U(3,1). The theory of families of semi-ordinary forms that we develop in Section on
this two dimensional space is essentially a “Hida theory” which are over the two dimensional
Iwasawa algebra (instead of over a small affinoid disc as the Colman-Mazur theory. This
observation is crucial since the Iwasawa main conjectures are formulated over the Iwasawa
algebra.

Now let us go back to the proof of the + main conjecture. We call the +-main conjecture (as
extended by B.D. Kim to a two variable one) case one and the “Greenberg type” main conjectures



case two. A surprising fact is, these ostensibly different main conjectures are actually equivalent
(note that conjecture two does not involve any + theory at all)! The Beilinson-Flach elements
can be used to build a bridge between case one and case two. In fact the explicit reciprocity law
(studied by Kings-Loeffler-Zerbes and Bertolini-Darmon-Rotger) enables us to reformulate the main
conjectures in both cases in terms of Beilinson-Flach elements and in fact the new formulations for
the two cases are the same. This means we can reduce the proof of one case to the other one.
We note here that unlike Kato’s zeta elements which are by definition in the bounded Iwasawa
cohomology group, the Beilinson-Flach elements form an unbounded family in the non-ordinary
case. Therefore we need to construct a bounded “4” Beilinson-Flach element from the unbounded
Beilinson-Flach classes constructed by Lei-Loeffler-Zerbes, in the similar flavor as Pollack’s work on
constructing the + p-adic L-functions. This is the very reason why a £-type main conjecture can
be equivalent to a Greenberg type one. This finishes the proof of the lower bound for Selmer group
in B.D. Kim’s main conjecture. The conjecture of Kobayashi (cyclotomic main conjecture) follows
from B.D. Kim’s via an easy control theorem of Selmer groups. Our main result is

Theorem 1.4. Suppose E has square-free conductor N, supersingular reduction at p and a, = 0.
Then Congecture is true.

The square-free conductor assumption is put in [67] (can be removed if we would like to do some
technical triple product computations). The assumption for a, = 0 is primarily made for simplicity
and we expect the same idea to work to prove the conjecture by F. Sprung [60] when a, # 0. We
also remark that although we work with supersingular case, however, even in the ordinary case,
with the same idea we can deduce new cases of the two variable main conjectures considered in
[61] (there the global sign is assumed to be +1 while we no longer need this assumption). Finally
in the two variable case the upper bound for Selmer group is still missing since there are some
technical obstacles (about level raising) to construct the Beilinson-Flach element Euler system in
our context. Luckily such upper bound in one variable case is already provided by the work of Kato
and Kobayashi.

In the text we will also prove the p-part of the refined BSD formula in the analytic rank 0 case as
a corollary (Corollary [8.8). Therefore our result combined with the results in [61] and [59] gives
the full refined BSD formula up to powers of 2, for a large class of semi-stable elliptic curves (when
analytic rank is 0). The two-variable main conjecture we prove can also be used to deduce the
anti-cyclotomic main conjecture of Darmon-Tovita ([6]). We leave this to industrious reader.

In the argument we prove the result for the 4-main conjecture since the —-main conjecture is
equivalent (by [33, Theorem 7.4]. This paper is organized as follows: in Section 2 we recall some
backgrounds for automorphic forms and p-adic automorphic forms. In Section 3 we develop the
theory of semi-ordinary forms and families, following ideas of [64] and arguments in [19], Section 4].
In Section 4 we construct the families of Klingen Eisenstein series using the calculations in [9] with
some modifications. In Section 5 we make use of the calculations in [67], and then deduce the main
conjecture for Rankin-Selberg products. In Section 6 we develop some local theory and recall the
precise formulation of the B.D. Kim’s two variable main conjecture. In Section 7 we recall the work
of D. Loeffler et al on Beilinson-Flach elements, especially the explicit reciprocity law. We reinter-
pret these reciprocity laws in terms of the local theory in Section 6. In Secion 8 we put everything
together and prove the main result using Poitou-Tate exact sequence. To treat powers of p we use



a trick which appeals to Rubin’s work on main conjecture for CM fields, and Hida-Tilouine’s idea
of constructing anti-cyclotomic Selmer group from congruence modules.

Notations:
We let E be an elliptic curve over Q and let f be the weight two cuspidal normalized eigenform
associated to it by the Shimura-Taniyama conjecture of conductor N. Write

00
[ = Z ang"”
n=1

with a, = 0. Let T be the Tate module of ' and V' = T'®z, Q). Let a = \/—p. Then there
are two eigenforms f,, f_q of level Np for Up-operator in the automorphic representation of f with
eigenvalues a, —a. Let K be a quadratic imaginary field in which p splits as vovg. Let dx be the
absolute different of K£/Q. We fix once for all an isomorphism ¢, : C >~ C,, and suppose vy is induced
by ¢p.

Let Ko be the unique Zg—extension of K with Gal(K/K) denoted as T'x. Let A = A =
Zy[[Tk]]- We assume vy splits into p' different primes in K. Let Ky be the cyclotomic Z,
extension of K. We write I' for the Galois group of the cyclotomic Z,-extension of Q, and U the
Galois group of the unramified Zy-extension of Q,. We fix topological generators v and u of them
with u being the arithmetic Frobenius. Let I'), = I'/p"I" and Uy, = U/p™U. Let I', C I'c be the
decomposition group of v in I'x. Then [I'x : I'] = pt. We also define the maximal sub-extension A%
of K4 such that 7y is unramified and define K similarly but switching the roles played by vy and
vo. We define Ty, as Gal(Koo/K™) and Ty, as Gal(Koo/K™). Let 7y, and 75, be their topological
generator. We also identify U = Uy, = Uy, = Gal(Koso vy/Keyey)- Let I'™ = Gal(Koo/Keye) and
7~ be a topological generator. Let W be the character Gx — 'k — Ag and let € be ¥ composed
with the reciprocity map in class field theory (normalized by the geometric Frobenius). Define Ak
as the Pontryagin dual of Ax. Define ng~ as the completion of the Zj,-unramified extension of Z,.
(In the literature it usually means the completion of the maximal unramified extension of Z,. But
the Z, is enough for our purposes).

We write @,,,(X) = Zg’:—ll XP" " for the p™-th cyclotomic polynomial. Our «, 8 will be denoting
any elements in the set {£,/—p}. Sometimes we will precisely indicate that o = \/—p, f = —\/—p.
Fix a compatible system of roots of unity (,» such that an = (pn-1. For a character w of Q) we
define a e factor of it as in [38], Page 8]: we define e(w) = 1 if it is unramified and

e(w):/ w(z"H\(z)dx
Q

otherwise. Here X is an additive character of QQ, such that the kernel is Z, and )\(pl—n) = (pn.
We can also define the e factors for Galois characters via class field theory (p is mapped to the
geometric Frobenius). For a primitive character of I'/I';, we also define the Gauss sum g(w) :=
Z’yGF/Fn W(W)C;n-

We often write ¥ for a finite set of primes containing all bad primes. If D is a quaternion
algebra, we will sometimes write [D*] for D*(Q)\D* (Ag). We similarly write [U(2)], [GU(2,0)],
etc. We also define S,,(R) to be the set of n x n Hermitian matrices with entries in Ox ®z R.
Finally we define G,, = GU(n,n) for the unitary similitude group for the skew-Hermitian matrix

1 . . .
(_1 n) and U(n,n) for the corresponding unitary groups. We write ey = [], e, where for
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each place v of Q and e, is the usual exponential map at v. We refer to [19] for the discussion of
the CM period Qo and the p-adic period €,. For two automorphic forms fi, fo on U(2) we write
(fr, f2) = f[U(2)] f1(g)f2(g)dg (we use Shimura’s convention for the Haar measures).

Acknowledgement We thank Henri Darmon, Ruochuan Liu, David Loeffler, Toby Gee, Christopher
Skinner, Richard Taylor, Eric Urban, and Wei Zhang for helpful communications.

2 Backgrounds

2.1 Greenberg’s Main Conjecture

As remarked in the introduction our first step is to prove a Greenberg type main conjecture, which we
formulate here. (This will be proved in Section. We will take a holomorphic cuspidal automorphic
representation 7 of GLy/Q with even weight and a CM character £ of K*\AZ with infinite type
(k/2,—k/2) for some even number x > 6. Let f € 7 be the normalized newform and ps the Galois
representation of Gg associated to it. (We will not assume 7 has weight two until Section . We
first define the characteristic ideals and the Fitting ideals. We let A be a Noetherian ring. We write
Fitt 4 (X) for the Fitting ideal in A of a finitely generated A-module X. This is the ideal generated
by the determinant of the r x r minors of the matrix giving the first arrow in a given presentation
of X:
A5 A" - X — 0.

If X is not a torsion A-module then Fitt4(X) = 0.

Fitting ideals behave well with respect to base change. For I C A an ideal, then:
Fitt 47 (X/1X) = Fitt4(X) mod I

Now suppose A is a Krull domain (a domain which is Noetherian and normal), then the character-
istic ideal is defined by:

charg(X) := {z € A:ordg(x) > length(X) for any @Q a height one prime of A},
Again if X is not torsion then we define char4(X) = 0.
We consider the Galois representation:
Vike = pfag-ceél_TH ® A (V).
Define the Selmer group to be:

Sely i := ker{ H' (K, Ty xo.e®OL[[T*) = H' (Tny, Ty c@OL(Tk)]) < [ [ H (o, Tri.e@OL[[Tk]*)}
vip
where * means Pontryagin dual Homgz, (—,Q,/Z,) and the X-primitive Selmer groups:

Sel ¢ := ker{H" (K, Ty ce@OL[Tk]]") = H' (Ing, Ty c@OL[[Nk)) x [ [ H' (10, Ty i e@OLTk])}
vgE



and
X]%]C,f = (Sel?”Cyg)*

We are going to define the p-adic L-functions L x ¢ and E? k¢ (which are elements in Frac(O7"[['c]]))
in section 4] The two-variable Iwasawa main conjecture and its >-imprimitive version is the following
(see [11]).

Conjecture 2.1.
chargurr 1 Xrxe = (Lrie),

charoyr(re) X e = (Lfxc.e)-

2.2 Groups

Let 6 € K be a totally imaginary element such that —id is positive. Let d = Nm(d) which we
assume to be a p-adic unit. Let U(2) = U(2,0) (resp. GU(2) = GU(2,0)) be the unitary group
(resp. unitary similitude group) associated to the skew-Hermitian matrix { = 50 5) for some
s € Z4 prime to p. More precisely GU(2) is the group scheme over Z defined by: for any Z algebra

A

Y

GU(2)(4) = {g € GL2(A @2 Ox)['5¢g = Mg)¢, Ag) € A}

The map pu : GU(2) = Gy, g — A(g) is called the similitude character and U(2) € GU(2) is
the kernel of u. Let W be the corresponding Hermitian space over K and fix a lattice L C W
over O such that Tri (L, L) C Z. Let G = GU(3,1) (resp. U(3,1)) be the similarly defined
unitary similitude group (resp. unitary group) over Z associated to the skew-Hermitian matrix
1
¢ . We write its corresponding Hermitian space as V = Xx & W & Yx where W is
—1
the Hermitian space for GU(2) and Xx and Yx are one dimensional KC-spaces with standard basis
z! and y'. Let XV = o'z and Y = Oy and we call X¥ @ L &Y the standard lattice of V.
Let P C G be the parabolic subgroup of GU(3,1) consisting of those matrices in G of the form
X X X X
X X

w x . Let Np be the unipotent radical of P. Then

X X X

Mp := GL(Xx) x GU(2) = GU(V), (a, 1) ~ diag(a, g1, pu(g1)a ")

is the Levi subgroup. Let Gp := GU(2)(C Mp) — diag(1, g1, 1(g)). Let ép be the modulus char-
acter for P. We usually use a more convenient character § such that 62 = dp.

Since p splits as vt in K, GLy(Ox ® Z,) — GL4(Ok,,) x GL4(Ok,, ). Here U(3,1)(Zp) it
GL4(Ok,, ) = GL4(Zp) with the projection onto the first factor. Let B and N be the upper triangu-
lar Borel subgroup of G and its unipotent radical, respectively. Let K, = GU(3,1)(Z,) ~ GL4(Zp),
and for any n > 1 let Kj be the subgroup of K consisting of matrices upper-triangular modulo p".
Let K7 C K§ be the subgroup of matrices whose diagonal elements are 1 modulo p".



The group GU(2) is closely related to a division algebra. Put

D = {g € Mx(K)|g'@g = det(g)(},

then D is a definite quaternion algebra over Q with local invariants inv, (D) = (—s, =Dy /g)v (the
Hilbert symbol). The relation between GU(2) and D is explained by

GU(2) = D* XGm RGSK/QGm.

For each finite place v we write D} for the set of elements g, € DX such that |Nm(g,)|, = 1, where
Nm is the reduced norm.

Let 3 be a finite set of primes containing all the primes at which I/Q or 7 or £ is ramified, the
primes dividing s, the primes such that U(2)(Q,) is compact and the prime 2. Let X! and %2,
respectively be the set of non-split primes in ¥ such that U(2)(Q,) is non-compact, and compact.

We define G,, = GU(n, n) for the unitary similitude group for the skew-Hermitian matrix < 1 ”)
—in

and U(n,n) for the corresponding unitary groups.

2.3 Hermitian Spaces and Automorphic Forms

Let (r,s) = (3,3) or (3,1) or (2,0). Then the unbounded Hermitian symmetric domain for GU(r, s)
is

Xt =X, ,={r= (;) |z € Ms(C),y € M(T,S)XS((C),i(x* —x) > iy*g‘*ly}.

We use xg to denote the Hermitian symmetric domain for GU(2), which is just a point. We have
the following embedding of Hermitian symmetric domains:

L X371 X X270 — X373

(7-7 .730) — Z’m

where Z,; = (x ?) for m = (x>
Yy 3 Y

Let G(r,s) = GU(r,s) and H = H, s = GL, x GL;. Let G, s(R)" be the subgroup of elements of
Gy s(R) whose similitude factors are positive. If s # 0 we define a cocycle:

J:Gry(R)Y x Xt = H,,(C)

a b c

by J(a,7) = (k(e, T), (e, 7)), where for 7 = <§> and @« = [ g e f ] (blocks matrix with
h 1 d

respect to the partition (s + (r — s) + s)),

hlz +d hly +1¢

on) = (L' ) e Goieg) W) =



in the GU(3,1) case and B )
k(a,7) = bz +d, p(o,7) = he +d

in the GU(3,3) case. Let ¢ € X be the point <z(1)5> Let K1 be the compact subgroup of
U(r, s)(R) stabilizing ¢ and let K, be the groups generated by K1 and diag(1l,4+s, —15). Then
KL — H(C), koo — J(koo,1)
defines an algebraic representation of K1.
Definition 2.2. A weight k is defined to be an (r + s)-tuple
k= (a1, -+ ,a;;b1,--- ,bs) € Z"F*

with ay > -+ > a, > —by > -+ — bs.

We refer to [19, Section 3.1| for the definition of the algebraic representation Lj(C) of H with
the action denoted by py (note the different index for weight) and define a model LE(C) of the
representation H(C) with the highest weight k as follows. The underlying space of LE(C) is L(C)
and the group action is defined by

pE(h) = pu(h ™), h € H(C).

We also note that if each k = (0, ...,0; , ..., &) then L%(C) is one dimensional.
For a weight k, define || k|| = ||k|| by:
|kl :=a1 + - +ar +by + -+ + bs
and |k| by:
Here I is the set of embeddings L < C and o is the Archimedean place of K determined by our fixed
embedding K <— C. Let x be a Hecke character of IC with infinite type |k|, i.e. the Archimedean
part of x is given by:
Xoo(2) = (zBrHtbe) . zH(arttar))

Definition 2.3. Let U be an open compact subgroup in G(Ay). We denote by M (U,C) the space
of holomorphic LE(C)-valued functions f on X+ x G(Ay) such that for 7 € X, a € G(Q)" and
u € U we have:

flar, agu) = u(a) W T(a, 7)) f(7, 9).

Now we consider automorphic forms on unitary groups in the adelic language. The space of
automorphic forms of weight £ and level U with central character x consists of smooth and slowly
increasing functions F : G(A) — Ly(C) such that for every (a, koo, u, 2) € G(Q) x KL x U x Z(A),

F(zagkset) = p*(J (ko, 1)) F(g)x " (2)-
We can associate a Lg-valued function on X+ x G(Ay)/U by

£(.9) = x5 (1(9))PE(J (950, 1)) F (o, 9))

where goo € G(R) such that goo(i) = 7. If this function is holomorphic then we say that the
automorphic form F' is holomorphic.



2.4 (alois representations Associated to Cuspidal Representations

In this section we follow [58] to state the result of associating Galois representations to cuspidal
automorphic representations on GU(r,1)(Ar). Let n = r + 1. First of all let us fix the notations.
Let K be the algebraic closure of K and let G := Gal(K/K). For each finite place v of K let K, be
an algebraic closure of IC, and fix an embedding KC < K,. The latter identifies G, := Gal(K,/Ky)
with a decomposition group for v in Gk and hence the Weil group Wi, C Gx, with a subgroup
of Gx. Let m be a holomorphic cuspidal irreducible representation of GU(r,1)(Ar) with weight
k = (a1, - ,ar;b1,--+ ,bs) and central character xr. Let X(w) be a finite set of primes of F
containing all the primes at which 7 is ramified and all the primes dividing p. Then for some L
finite over Q,, there is a Galois representation (by [56], [40] and [58]):

Ry (m) : Gx — GL,(L)

such that:

(a)Rpy(m)¢ ~ Ry(m)¥ ® pp7x7lr+cel_", Ppyire denotes the associated Galois character by class field
theory and e is the cyclotomic character.

(b)Ry(m) is unramified at all finite places not above primes in ¥(7) U { primes dividing p), and for
such a place w:

1-n._,4

det(1 — Ry(m)(frobugy,”)) = L(BO(m)w & X s + —5—)

Here the frob,, is the geometric Frobenius and BC means the base change from U(r,1) to GL,41.
We write V for the representation space and it is possible to take a Galois stable Oy, lattice which
we denote as 7. One subtle point here is that Skinner only proved the result for automorphic
forms of regular weight. We use a simple trick here to deduce it for all cohomological weights. As
explained in [5§], there is a “very weak base change” of m to GL, /K in the sense that outside a
finite set of primes S containing all bad primes, its local component is the local base change of 7.
The terminology “very weak” means that the S might be strictly larger than the set of bad primes
(i.e primes where K or 7 is ramified). It suffices to show that the very weak base change is actually
locally the base change at all good primes. We use the method of eigenvarieties to deduce this. For
any good prime ¢ which is in .S, we take an auxiliary split prime g outside S and deform 7 in an
r-dimensional finite slope g-adic family (i.e. over the whole weight space) of cuspidal eigenforms F
over some rigid analytic affinoid X. This can be achieved by applying the result in [45], and the
construction for unitary group is done in [46]. The family F' interpolates a Zariski dense set Z of
cuspidal eigenforms on GU(r, 1) of regular weight (the classicality at sufficiently regular weight is
proved in [46]). Moreover by [I, Lemma 7.8.11|, by passing to a finite cover of X followed by a
blow up, the rigid space carries a rigid analytic family M of g-adic Galois representations of G
which interpolates the Galois representations associated to the forms corresponding to points in Z.
The Galois representation p, associated to 7 is the one associated to the very weak base change,
and is also the one obtained from specializing M to the point corresponding to . From the latter
interpretation we see pr restricting to Gy, is unramified and corresponds to the base change of m
under the local Langlands correspondence (this is seen by using the local-global compatibility at
regular weights, and the Zariski density of Z). But this also corresponds to the very weak base
change of 7 at £ under the local Langlands correspondence. These imply what we need.
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3 Hida Theory for Semi-Ordinary Forms

3.1 Shimura varieties for Unitary Similitude Groups

We will be brief in the following and refer the details to [19] Section 2, 3| (see also [9], Section 2|). Now
we consider the group GU(3,1). For any open compact subgroup K = K,KP? of GU(3,1)(Af) whose
p-component is K, = GU(3,1)(Z,), we refer to [19, Section 2.1] for the definition and arithmetic
models of the associated Shimura variety, which we denote as S (K)o, (v Lhe scheme Sa(K)
represents the following functor: for any O (,,)-algebra R, A(R) = {(A, N\, 1,7P)} where A is
an abelian scheme over R with CM by O given by ¢, A is an orbit of prime-to-p polarizations
and 7P is an orbit of prime-to-p level structures. There is also a theory of compactifications of
Sc(K) developed in [35]. We denote Si(K) the toroidal compactification and S} (K) the minimal
compactification. We refer to [I9, Section 2.7] for details. The boundary components of S&(K) is
in one-to-one correspondence with the set of cusp labels defined below. For K = K,K? as above
we define the set of cusp labels to be:

C(K) == (GL(Xx) x Gp(Ay))Np(Ap)\G(Ay)/K.

This is a finite set. We denote by [g] the class represented by g € G(Ayf). For each such g whose
p-component is 1 we define K§, = Gp(Ay) NgKg~" and denote Sj; := Sg, (K7) the corresponding
Shimura variety for the group Gp with level group K7. By strong approximation we can choose a
set C(K) of representatives of C'(K) consisting of elements g = pk® for p € P(A;E)) and k% € K°
for K the maximal compact subgroup of G(Ay) defined in [19, Section 1.10].

3.2 Igusa varieties and p-adic automorphic forms

Now we recall briefly the notion of Igusa varieties in [19 Section 2.3]. Let M be the standard lattice
of V and M, = M ®z Z,. Let Pol, = {N~1, N} be a polarization of M,. Recall that this means
that if N=! and N are maximal isotropic Ox ® Zy-submodules in M), that they are dual to each
other with respect to the Hermitian metric on V, and also that:

rankZpNv = rankZpNO =3, rankZpr = rankZpNO =

We mainly follow [19, Section 2.3] in this subsection. The Igusa variety of level p" is the scheme
over Ok (y) Tepresenting the quadruple A(R) = {(A4,A,¢,7”)} for Shimura variety of GU(3,1) as
above, together with an injection of group schemes

3 ppn @z N° — A]p"]

over R which is compatible with the Ok-action on both hand sides. Note that the existence of j
implies that A must be ordinary along the special fiber. There is also a theory of Igusa varieties
over Sg(K). As in loc.cit let H,1 € HO(Sg(K)/F,det(g)p_l) be the Hasse invariant. Over the
minimal compactification some power (say the tth) of the Hasse invariant can be lifted to O,,. We
denote such a lift by E. By the Koecher principle we can regard F as in H(Sg(K), det(w!®1)).
Let O, = Ok /D" Ok iy - Set Tom = Sa(K )[1/E}/O For any positive integer n define T}, p, :=
Ic(K"),0,, and Teom = lm Tym. Then Ty, is a Galois cover over Ty, with Galois group
H ~ GL3(Z,) x GL1(Z)). Let N C H be the upper triangular unipotent radical. Define:

Vnm :H ( nm;OTnm)

11



Let Voom = h_n)ln Vam and Vag oo = l'glm Vso,m be the space of p-adic automorphic forms on GU(3, 1)
with level K. We also define W,,,,, = YN Woom = VN and W = hgln %ﬂm Wym. We define

n,m» oo,m
VO

ms €tc, to be the cuspidal part of the corresponding spaces.

We can make similar definitions for the definite unitary similitude groups Gp as well and define
Vn,m,PaVoo,m,Py Voo,oo7P; V,fmJDa Wep, etc.
Let K{' and K} be the subgroup of H consisting of matrices which are in B3 x By or N3 x ‘N
modulo p™. (These notations are already used for level groups of automorphic forms. The reason for
using the same notation here is that automorphic forms with level group K7 are p-adic automorphic
forms of level group K7'). We sometimes denote I(K}) = Ig(K™)X1 and Ig(Kg) = Ig(K™)%o.

We can define the Igusa varieties for Gp as well. For e = 0,1 we let K%7 := gKl'g™' N Gp(Ay)

and let Ij(KY) := [GP(K]%::L) be the corresponding Igusa variety over Si;. We denote A@] the

coordinate ring of I;5)(KT). Let A[O;} = lim A?g] and let fl[o;] be the p-adic completion of A‘[’go]. This

is the space of p-adic automorphic forms for the group GU(2,0) of level group gKg~!' N Gp(Ay).

For Unitary Groups

Assume the tame level group K is neat. For any c an element in Q\Ag ;/u(K), we refer to [19,
2.5] for the notion of c-Igusa schemes 18(2)(1(, ¢) for the unitary groups U(2,0) (not the similitude
group). It parameterizes quintuples (A, A, ¢, ﬁ(p), J) /s similar to the Igusa schemes for unitary simil-
itude groups but requires A to be a prime to p c-polarization of A such that (A,S\,L,ﬁ(p),j) is a
quintuple as in the definition of Shimura varieties for GU(2). Let g. be such that u(g.) € Aa is
in the class of ¢. Let °K = g.Kg.; ' NU(2)(Ag,r). Then the space 18(2)(1(, ¢) is isomorphic to the

space of forms on 18(2) (°K, 1) (see loc.cit).

Embedding of Igusa Schemes
In order to use the pullback formula algebraically we need a map from the Igusa scheme of U(3,1) x
U(0,2) to that of U(3,3) (or from the Igusa scheme of U(2,0) x U(0, 2) to that of U(2,2)) given by:

i([(Ah)\lthnIl)Klajl)]a [(A27)‘27L2777}27K27j2)]) = [(Al X A27>\1 X A271’171‘27 (77%_3 X ng)K37j1 X jQ)]

We define an element T € U(3,3)(Qp) such that T, = S; ' and T} = 5’1,_01’/. Similar to [19], we
know that under the complex uniformization, taking the change of polarization into consideration

the above map is given by
i([T, 9]7 [.%‘0, h]) = [ZT, (97 h)T]

(see [19, Section 2.6].)

Fourier-Jacobi Expansions
0
1y
GU(3,1) we refer to [9, Section 2.8| for the notion of analytic Fourier-Jacobi expansions

Define N}, := {(}< )} x {1} € H. For an automorphic form or p-adic automorphic form F' on

FJp(g,f) =aolg. f)+ > _as(y.g, f)d’
B
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at g € GU(3,1)(Ag) for ag(—, g, f) : C* — Li(C) being theta functions with complex multiplication,
and algebraic Fourier-Jacobi expansion

Py =D aly(B,1)g
B

at a p-adic cusp ([g],h), and ah ( f) € Lg(A NL ®4y, HO(Z[OQ],E(B)). We define the Siegel
operator to be taking the 0-th Fourler J acobi coegﬁment as in loc.cit. Over C the analytic Fourier-
Jacobi expansion for a holomorphic automorphic form f is given by:

1 n

FJﬁ(f,g)z/Q\Af( 1o 9)ea(—pBn)dn

3.3 Semi-Ordinary Forms
3.3.1 Definitions

In this subsection we develop a theory for families of “semi-ordinary” forms over a two dimensional
weight space (the whole weight space for U(3,1) is three dimensional). The idea goes back to the
work of Hida [16] (also [64]) where they defined the concept of being ordinary with respect to dif-
ferent parabolic subgroups (the usual definition of ordinary is with respect to the Borel subgroup),
except that we are working with coherent cohomology while Hida and Tilouine-Urban used group
cohomology. In our case it means being ordinary with respect to the parabolic subgroup of GlL4

x ok ok %
consisting of matrices of the form . x| The crucial point is, our families are over the
*

two dimensional Iwasawa algebra, which is similar to Hida theory for ordinary forms (instead of
Coleman-Mazur theory for finite slope forms). Our argument here will mostly be an adaption of the
argument in the ordinary case in [19] and we will sometimes be brief and refer to loc.cit for some
computations so as not to introduce too many notations.

We always use the identification U(3,1)(Q,) ~ GL4(Q,). We define a; = diag(l4—i,p - 1;). We
1

let a = 1 and refer to [19), 3.7, 3.8] for the notion of Hida’s U, and U,, operators

p
p?
associated to a or «a;. We define e, = lim, o0 U(’;‘!. We are going to study forms and families
invariant under e, and call them “semi-ordinary” forms. Suppose 7 is an irreducible automorphic

representation on U(3,1) with weight k£ and suppose that 7, is an unramified principal series rep-

resentation. If we write k1 = by and k; = —as_; + 5 — i for 2 < ¢ < 4, then there is a semi-ordinary
vector in 7 if and only if we can re-order the Satake parameters as A1, A9, A3, A4 such that
3 3
Valp()\g) = K3 — §7valp(>\4) = R4 — 5
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Galois Representations

The Galois representations associated to cuspidal automorphic representation 7 in subsection
which is unramified and semi-ordinary at p for e, has the following description when restricting to
Gyt

* % * *
X ok * *
Rp(ﬂ-)|Gv0 = ngE_HQ * (]‘)
fl,vG_”l

where &7 , and &>, are unramified characters and also
* Xk

Rp(m)lGy, =

Yo

*

o I
* K X K

This can be proved by noting that the Newton Polygon and the Hodge Polygon have four out of
five vertices coincide (see [64, Proposition7.1]).

3.3.2 Control Theorems

We define Ky(p,p™) to be the level group with the same components at primes outside p as K
*  x %k %

and, at p, consists of matrices which are of the form . modulo p and are of the
*
* ok ox %
ko ok .
form . s modulo p"”. We are going to prove some control theorems for the level group

*
Ko(p,p™). These will be enough to show that the Eisenstein series constructed in [9] do give families
in the sense here. (See Section 4.) We refer the definition of the automorphic sheaves wy, of weight
k and the subsheaf to [19] section 3.2]. There also defined a wZ in Section 4.1 of loc.cit as follows.
Let D = Sg(K) — Sg(K) be the boundary of the toroidal compactification and w the pullback to
identity of the relative differential of the Raynaud extension of the universal Abelian variety. Let
k" = (a1 —as3,az—a3). Let Bbe the abelian part of the Mumford family of the boundary. Its relative
differential is identified with a subsheaf of w|p. The w} C wy is defined to be {s € wg, s|p € Fp} for

Fp = det(w|p)* ®g%”, where the last term means the automorphic sheaf of weight k" for GU(2,0).

Weight Space

Let H = GL3 x GL; and T be the diagonal torus. Then H = H(Z,). We let A3; = A be the
completed group algebra Zy[[T(1 + Zp)]]. This is a formal power series ring with four variables.
There is an action of T(Z,) given by the action on the j : pyn ®z N® < A[p"]. (see [19, 3.4])
This gives the space of p-adic modular forms a structure of A-algebra. A Q,-point ¢ of SpecA
is call arithmetic if it is determined by a character [k].[¢] of T'(1 + pZ,) where k is a weight and
¢ = (C1,C2,(3;Ca) for §; € ppeo. Here [K] is the character by regarding k as a character of T'(14+7Z,) by
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(k] (t1, to, t3, ta) = (£91132433¢,) and [¢] is the finite order character given by mapping (1+pZ,) to {;
at the corresponding entry t; of T'(Zy,). We often write this point k.. We also define w!k a character
of the torsion part of T(Z,) (isomorphic to (F))?*) given by W (1), tg, t3,14) = w(t91452453¢ 1.

Definition 3.1. We fir k' = (a1, a2) and p = L. Let X, be the set of arithmetic points ¢ € SpecAs
corresponding to weight (a1, a2, as3;b1) such that a1 > as > ag > —by +4. (The (-part being trivial).
Let SpecA = SpecA(a1 as) be the Zariski closure of X,,.

We define for ¢ = 0,b
Vg(Ko(p,pn), Om) = {f € HO(Tn,mawZ)vg : f = [E]W[E]}

(Note the “w”-part of the nebentypus).
As in [19] 3.3] we have a canonical isomorphism given by taking the “p-adic avartar”

HO(Tn,mvwE) =~ Vn,m & Lkvf = f

and By : Vi (KT, Op,) — VN by f+— Br(f) :=lx(f). The following lemma is [19), lemma 4.2].
Lemma 3.2. Let g € {0,0} and let V! (Ko(p,p"), Om) := H (T m, wk)KO( "). Then we have

H°(Ig(KT)[1/E),wf) ® Om = Vi (Ko(p,p"), Om).

In fact in our case for U(3,1) over Q, such base change property is true even for the sheaf wy in
place of w,z. However it is crucial to use wz if working with general totally real fields (see the proof
of [19, Lemma 4.1]), or with unitary groups other than U(r, 1) (see the notion R before [61, Lemma
6.8] for the unitary group U(2,2)). We choose to use w?, here so as to cite results in [L9] directly.
We record a contraction property for the operator U,.

Lemma 3.3. Ifn > 1, then we have
Ua - Vi(Eo(p,p"), Om) C Vi(Ko(p,p" "), Om).

The proof is the same as [19, Proposition 4.4]. The following proposition follows from the
contraction property for eq:

Proposition 3.4.
eaVi (Eo(p,p"), Om) = eaVi(Ko(p), Om).

The following lemma tells us that to study semi-ordinary forms one only needs to look at the
sheaf w;:.

Lemma 3.5. Let n > m > 0, then
ea.VEb(Ko(p,p"), Om) = €q - VEq(KO(papn)) Om)
Proof. Same as [19, lemma 4.10]. O

Similar to the fj we define a more general S, as follows: Let p be the algebraic representation
L, = Ly of GLa with lowest weight —k' = —(a1,a2). We identify Ly with the algebraically induced
representation Indgi‘;ig]ﬁxg]ﬂp ® Xas @ Xb, (Xa means the algebraic character defined by taking
the (—a)-th power). We define the functional [ , taking values in L, by evaluating at identity

(similar to the definition of I},). We define fj, , similar to £, but replacing I by Ui p-
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Proposition 3.6. If n > m > 0, then the morphism
Bk,p : V&(KO(p>pn)> Om) — (Vn,m & LP)KO(p’pn)

is Uq-equivariant, and there is a Hecke-equivariant homomorphism sy, : (Vom ® L,,)Ko(p’pn) —
Vi(Ko(p,p"), Om) such that By, 0 sk, = U and sy p0 B, = UL So the kernel and the cokernel
of Br,p are annihilated by U

Proof. Similar to [19, Proposition 4.7]. Our s, is defined as follows: for (A, j) over a O,,-algebra

R7
sep(@™(A D)= Y D s

Uy €EPR®Xaz @Xby U

Xr, 1 TrRS‘mu/R(f(Aamu'jamu))pﬁ(u)vx

Here the character x,.1 is defined by
Xr,1(diag(ar, az, as;d)) := (alagag)fld.

The v,/’s form a basis of the representation p®xq; ®xp, Which are eigenvectors for the diagonal torus
action with eigenvalues x”’s (the eigenvalues appear with multiplicity one so we use the subscript
X' to denote the corresponding vector). The u runs over a set of representatives of

a "Ny (Zp)a™ N Ny (Zy)\Nu(Zp).

The (A,,,Jou) is a certain pair with A, an abelian variety admitting an isogeny to A of type «
(see [I9] 3.7.1] for details) and R{"/R being the coordinate ring for (A, jau) (see 3.8.1 of loc.cit).
Note that the twisted action of

[)E(Oé_l)vx/ _p—(mEer’)UX/
satisfies pj (o~ 1)v,s = 1 for all the x’ above. Write x for x,,Xxy,. Note also that for any eigenvector
Uy € IndglﬂgiglﬂixGLlp ® x for the torus action such that v,y € p® x, and p € X, (T') (the co-

character group) with u(p) = «, we have (u,k + x’) < 0. By the definition of U = Uym, if
=22\ 9x ®vy, then

: m im 1
Uarn-f(AG) = Y supld™ge(A )+ > p ““*“WTrRamu/R(gx (A, 7)) @pr(u)vy
v, EPBX v, €p®X "

For the notation Ry “ see [19, 3.8.1] for an explanation. So By, © sg,(@™) = Usm and s, ,(a™) o
Br,p = Uqm. Taking sy, , := sp ,(a™) , then we proved the proposition. O

The following proposition follows from the above one as [I9, Proposition 4.9]. Let k and p be
as before.

Proposition 3.7. If n > m > 0, then

ﬁ@,p €q VE(KO(p’pn)7 Om) = ea(vmm & Lp)KO(npn)[E]'

We are going to prove some control theorems and fundamental exact sequence for semi-ordinary
forms along this smaller two-dimensional weight space SpecA. The following proposition follows
from Lemma and Proposition in the same way as [19, Lemma 4.10, Proposition 4.11], noting
that by the contraction property the level group is actually in Ko(p).
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Proposition 3.8. Let e,.Vi(Ko(p,p")) = lim eq - Vi(Ko(p,p"),Om). Then eq.V(Ko(p,p")) is
p-divisible and

ea - Vi(Ko(p,p™")[p™] = e - Vi(Ko(p, p"), Om) = eq - H*(Zg,wy) @ Oy

The following proposition is crucial to prove control theorems for semi-ordinary forms along the
weight space SpecA.

Proposition 3.9. The dimension of eq My(Ko(p,p™),C)’s are uniformly bounded for all k € X,,.

Proof. The uniform bound for group cohomology is proved in [16, Theorem 5.1]. Note that if the
control theorem in loc.cit is true then the uniform boundedness is an easy consequence. However
in loc.cit one assumption (|16, Theorem 5.2 (iii)]) is missing, which we do not know if it is true
in our case. But an argument using commutative algebra similar to the proof of [16l Lemma 5.1],
considering the cohomologies for H', H? and H? altogether still gives the uniform boundedness
without knowing the control theorem. (e.g. one considers the exact sequences

E
0—>?0—>E1—>N0[T1]—>0;
1

E
0—>?1—>E2—>N1[T2]—>0;
2

N
O—>?0—>N1—>H0[T1]—>O,
1

where F;, N; and T; are as in [16, Lemma 5.1| with ¢ = 3 and H,’s are the corresponding modules
for HYs. These modules are finitely generated modules over Iwasawa algebras over O, with 2 — i-
variables. Write A for the Iwasawa algebra over Op, of two variables. Note that if the subscheme
of SpecA defined by T7 = 0 is not contained in the support of the torsion submodule of Ny, then
No[T1] is contained in the submodule of Ny consisting of elements whose stalks are 0 at all points of
codimension at most one. Note also that if A/T1A is an Iwasawa algebra over O, of one variable,
then the Op-rank of %’[Tg] is bounded by the number of generators of the A-module Ny, say,
using the structure theorem of finitely generated modules over the one-variable Iwasawa algebra.
We do not know if this argument can be generalized in other settings. ) The bound for coherent
cohomology follows by the Eichler-Shimura isomorphism. See [19, Theorem 4.18]. O

The following theorem says that all semi-ordinary forms of sufficiently regular weights are clas-
sical, and can be proved in the same way as [19, Theorem 4.19] using Proposition [3.9]

Theorem 3.10. For each weight k = (a1, a2,a3;b1) € X, there is a positive integer A(a) depending
on a = (a1, az,as) such that if by > A(a,n) then the natural restriction map

eaME(KO(p)a O) ® Qp/Zp = éq - VE(KO(p))
s an isomorphism.

For ¢ = 0, ¢ define

Vb == Hom(eq W1, Qp/Zyp) @ns, A
M (K, A) := Homjz (VZ, A).

S0

Thus from the finiteness results and the p-divisibility of the space of semi-ordinary p-adic mod-
ular forms, we get the Hida’s control theorem

17



Theorem 3.11. Let ¢ =0 or ¢. Then
(1) V& is a free A-module of finite rank.
(2) For any k € X, we have M&%(K,A) @ A/Py, ~ e, - M}(K,0).

The proof is same as [19, Theorem 4.21] using Proposition Theorem and Proposi-
tion 3.8

Descent to Prime to p-Level
The following proposition will be used in the proof of Theorem

Proposition 3.12. Suppose k is such that ay = ag = 0, a3 = by = O(mod p — 1), as — az >>
0,a3 4+ b1 >> 0, . Suppose F € e M (Ko(p),C) is an eigenform with trivial nebentypus at p whose
mod p Galois representation (semi-simple) is the same as our Klingen Eisenstein series constructed
in section . Let g be the associated automorphic representation. Then wr ) is unramified principal
series representation.

Proof. Similar to [19, proposition 4.17]. Let f be the GLy cusp form having good supersingular
reduction at p in the introduction. Note that ), has a fixed vector for Ko(p) and pr;lag, is
irreducible by [7]. By the classification of admissible representations with Ky(p)-fixed vector (see
e.g. [B, Theorem 3.7]) we know 7, has to be a subquotient of IndgL“x for ¥ an unramified
character of T,,(Qp). If this induced representation is irreducible then we are done. If not, when
as —as >> 0,a3+b; >> 0, since F' is semi-ordinary, we must have x = x1 ® x2 ® X3 ® x4 such that
(with possibly renumbering) x1 = x2| - | and x3, x4 having p-adic weight k1 = by and k2 = 3 — as.
This implies I is in fact ordinary. But we have pj’ is the direct sum of py with two characters.
This contradicts that pr, ’G@p is irreducible. Thus 7, must by unramified. O

A Definition Using Fourier-Jacobi Expansion

We can define a A-adic Fourier-Jacobi expansion map for families of semi-ordinary families as in
[19, 4.6.1] by taking the A-dual of the Pontryagin dual of the usual Fourier-Jacobi expansion map
(replacing the €’s in loc.cit by e,’s). We also define the Siegel operators @flg]’s by taking the 0-th
Fourier-Jacobi coefficient.

Definition 3.13. Let A be a finite torsion free A-algebra. Let Nyo(K,A) be the set of formal
Fourier-Jacobi expansions:

F={Y a(B,F)¢’ a(B,F) € ADA% ® H(Z5, L(8)) }gex (k)
BeSg)

such that for a Zariski dense set Xp C X, of points ¢ € SpecA such that the induced point in SpecA
is some arithmetic weight k., the specialization Fy of F is the highest weight vector of the Fourier-

Jacobi expansion of a semi-ordinary modular form with tame level K®), weight k and nebentype at
p given by [k][CJw™ ¥ as a character of Ko(p).

Then we have the following
Theorem 3.14.
MSO(K7 A) — '/\/'SO(K7 A)
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The proof is the same as |19, Theorem 4.25|. This theorem is used to show that the construction
in [9] recalled later does give a semi-ordinary family in the sense of this section.

Fundamental Exact Sequence

. . 1
Now we prove a fundamental exact sequence for semi-ordinary forms. Let wf§ =

Lemma 3.15. Let k € X, and F € e My,(Ko(p,p"),R) and R C C. Let Wy = 1 uld

1
be the Weyl group for Gp(Qy). There is a constant A such that for any k € X, such that ay — a3 >

Ajas+ b1 > A, for each g € G(Agcp)), Ppuwg(F) =0 for any w & Wow.

The lemma can be proved using the computations in the proof of [19] lemma 4.14]. Note that
by semi-ordinarity and the contraction property the level group at p for F' is actually Ko(p).

The following is a semi-ordinary version of [19, Theorem 4.16], noting that e, induces identity after
the Siegel operator dws. The proof is also similar (even easier since the level group at p is in fact
in Ky(p) by the contraction property).

Theorem 3.16. For k € X,, we have

U —pd!"3
0 = ea MK, A) = eaMy(K, A) —— Dyeco) My (K(p), A)

18 exact.

The family version of the fundamental exact sequence can be deduced from Theorem [3.10]
as well as the affine-ness of S§(K)(1/E) (See [19, Theorem 4.16]).

Theorem 3.17.

59 _h
0= eaM (K, A) = ea M(K, A) ——— ®ycciy MKy (p), A) — 0.

4 FEisenstein Series and Families

4.1 Klingen Einstein Series

Archimedean Places

Let (7o, Vo) be a finite dimensional representation of DZ. Let ¢ and 7 be characters of C* such
that 1) |gx is the central character of mo. Then there is a unique representation m,; of GU(2)(R)
determined by 7o, and 1 such that the central character is 1/»,. These determine a representation
7y X T of Mp(R) ~ GU(2)(R) x C*. We extend this to a representation p., of P(R) by requiring

Np(R) acts trivially. Let I(Vy) = Indgﬁ;pw (smooth induction) and I(ps) C I(Vx) be the
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subspace of K, -finite vectors. Note that elements of I(Vy) can be realized as functions on K.
For any f € I(V) and z € C* we define a function f, on G(R) by

F-(g) == 6(m) 2+ p(m) f(k), g = mnk € P(R) K.
There is an action o(p, z) on I(Vy) by
((p, 2)(9)) (k) = f2(kg)-

Non-Archimedean Places
Let (7, Vi) be an irreducible admissible representation of D*(Qy) and 7y is unitary and tempered if
D is split at £. Let ¢ and 7 be characters of I, such that 1/)|Q2< is the central character of my. Then

there is a unique irreducible admissible representation 7, of GU(2)(Qy) determined by 7, and 1.

As before we have a representation my, x 7 of Mp(Qy) and extend it to a representation p; of P(Qy)

by requiring Np(Qy) acts trivially. Let I(py) = Indgggg pe be the admissible induction. We similarly

define f, for f € I(pe) and p),1(p)), Alps, 2, f), etc. For v ¢ ¥ we have D*(Qg) ~ GL2(Qy).
Global Picture

Let (7 = ®,m,, V) be an irreducible unitary cuspidal automorphic representation of D*(Ag) we
define I(p) to be the restricted tensor product of ®,1(p,) with respect to the unramified vectors
fgé for some ¢ = ®,¢p, € m. We can define f,, I(p¥) and A(p, z, f) similar to the local case. f,
takes values in V' which can be realized as automorphic forms on D* (Ag). We also write f, for the
scalar-valued functions f.(g) := f.(¢)(1) and define the Klingen Eisenstein series:

E(f,z9)= Y, f(19).
+eP(Q\G(Q)

This is absolutely convergent if Rez >> 0 and has meromorphic continuation to all z € C.

4.2 Siegel Eisenstein Series

Local Picture:

Our discussion in this section follows [61), 11.1-11.3] closely. Let Q@ = @, be the Siegel parabolic

subgroup of GU,, consisting of matrices </(1)q gq
q

block is zero. For a place v of Q and a character 7 of K5 we let I,,(7,) be the space of smooth

K, ,-finite functions (here K, , means the maximal compact subgroup G, (Z,)) f : Kn, — C

such that f(gk) = 7,(det Dy)f(k) for all ¢ € Qn(Q,) N Ky, (we write ¢ as block matrix ¢ =

(%q gq>). For z € C and f € I(7) we also define a function f(z,—) : Gp(Q,) — C by
q

(2, qk) == x(det Dy))| det A, D7 572 £(k), 4 € Qu(Q,) and k € K.

). It consists of matrices whose lower-left n x n

For f € I,,(1,),z € C, and k € K, ,, the intertwining integral is defined by:

M £ = 7m0 [ fwarbyin,

NQn(F’U)

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly, with
the convergence being uniform in k. In this case it is easy to see that M (z, f) € I,(75). A standard
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fact from the theory of Eisenstein series says that this has a continuation to a meromorphic section
on all of C.

Let #4 C C be an open set. By a meromorphic section of I,(7,) on U we mean a function
¢ : U — I,(7,) taking values in a finite dimensional subspace V' C I,,(7,) and such that ¢ : U — V
is meromorphic.

Global Picture
For an idele class character 7 = @7, of A we define a space I,(7) to be the restricted tensor product

defined using the spherical vectors fiP" € I,,(1,) (invariant under K, ,) such that quph(Knyv) =1,
at the finite places v where 7, is unramified.

For f € I,(7) we consider the Eisenstein series

E(f;zg9) = >, [f(z79)
7€Qn(Q\Gr(Q)
This series converges absolutely and uniformly for (z,g) in compact subsets of {Re(z) > n/2} x

Gn(Ag). The defined automorphic form is called Siegel Eisenstein series.

The Eisenstein series E(f;z,g) has a meromorphic continuation in z to all of C in the following
sense. If ¢ : U — I,(7) is a meromorphic section, then we put E(y;z,9) = E(¢(z);2,g). This is
defined at least on the region of absolute convergence and it is well known that it can be meromor-
phically continued to all z € C.

4.3 Pullback Formula

We define some embeddings of a subgroup of GU(3,1) x GU(0,2) into GU(3,3). This will be used
in the doubling method. First we define G(3,3)’ to be the unitary similitude group associated to:

1

and G(Q, 2)/ 0 be associated to
C

Q. {gl X g2 € GU(?’v 1) X GU(O> 2)7/"(91) = /‘(92)} - GU(SvB)/

We define an embedding

and
o :{g1 x g2 € GU(2,0) x GU(0,2), u(g1) = p(g2)} = GU(2,2)’

as a(g1,92) = (91 gz) and o' (g1,¢92) = (91 g2>. We also define isomorphisms:
B:GU(3,3) = GU(3,3), (8 : GU(2,2) = GU(2,2))
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where
1

We define )
i(g1,92) = S~ g1, 92) 5,7 (91, 92) = ' algn, g2) 5.
We recall the pullback formula of Shimura (see [61, Proposition 11.1]. The proof there works in our

situation as well). Let 7 be a unitary idele class character of Ag. Given a cuspform ¢ on GU(2) we
consider

Fo(fizhg) = / £(2. 5 a(g, g1h) S)7(det g19)p(g1h)dan,
U(2)(Ag)

fe3(r),g € GUB 1)(Ag), h € GU(2)(Ag), u(g) = u(h)

or

Fo(f'52,9) =/ (2.8 7/ (9,91h)S")7(det g19)p(g1h)dgy
U(2)(Ag)

f' € I(r),9 € GU(2)(Ag), h € GU(2)(Ag), u(g) = p(h)

This is independent of A. The pullback formulas are the identities in the following proposition.

Proposition 4.1. Let 7 be a unitary idele class character of Ag.
(i) If f' € I(7), then F(f';2,g) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > 1} x GU(2,0)(Aq), and for any h € GU(2)(Aq) such that u(h) = pu(g)

/ E(f'; 2,81/ (g,g1h)S")7(det g1h)@(g1h)dg) = F:O(f'; z,9).
U(2)(@\U(2)(Aqg)

(i) If f € I3(T), then F (f;2,9) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > 3/2} x GU(3,1)(Aq) such that p(h) = p(g)

E(f;2,8 (g, g1h)S)7(det g1h)p(g1h)dg:

= Z F¢(f, 2, 79)7
YeP(@N\GU(3,1)(Q)

/U(2)(Q)\U(2)(A@)

with the series converging absolutely and uniformly for (z,g) in compact subsets of {Re(z) > 3/2} x
GU(3,1)(Aq).
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4.4 p-adic Interpolation

We recall our notations in [9, Section 5.1] and correct some errors in the formulas for parameter-
ization in loc.cit. We define an “Eisenstein datum” D to be a pair (¢, &y) consisting of a cuspidal
eigenform ¢ of prime to p level, trivial character and weight k = (a1, a2),a1 > a2 > 0 on GU(r,0)
and a Hecke character & of K*\Ag such that & - \% is a finite order character. Let o be the
reciprocity map of class field theory K*\AZ — G%’ normalized by the geometric Frobenius. Note
Ik =TT & Ty Let U1 : Gg — I — T — Z,[T{]]* and ¥y : G — I — I — Z,[[Tg,]]*
where the middle arrows are projections with respect to the above direct sum. Then U = Wy - Ws.
We define

r0i= (ol - [5) |
5:250'(\Ij00)5
T:=1-(¥]“00),
Y= Vs,

We define XP® (“pb” stands for pullback) to be the set of Q,-points ¢ € SpecAx o, such that
¢por((1+p,1)) =7((1+p1)),

poT((1,1+p)) = (1+p)*7((1,1+p))

for some integer Ky > 6, Ky = O(mod(p — 2)) and such that the weight (a1, a2,0;K4) is in the
absolutely convergent range for P in the sense of Harris [I4], and such that

m

gpok(y)=(1+p) >

for some non-negative integer mg, and such that the 7,4 (to be defined in a moment) is such that,
under the identification 74 = (71, 72) for K ~ Q) x Q,, we have 71, 72, 7172 all have conductor

P
(p)- B
We denote by X the set of Q,-points ¢ in SpecAx o, such that

por((1,1+p))=1+p)*CG7((1,1+p)),¢or((p+1,1)) =7((p+1,1))

and ¢ o Y (y7) = (2 with (; and (3 being p-power roots of unity. Let X9¢" be the subset of points
such that the ¢; and (3 above are all primitive p roots of unity for some ¢ > 2.

Remark 4.2. We will use the points in XP° for p-adic interpolation of special L-values and Klingen
FEisenstein series, and we will use the points in X to construct a Siegel Eisenstein measure.

For each ¢ € AP’ we define Hecke characters Yy and 74 of K*\AZ by

_ _ — _re
7o(x) = 2ol (poT)(@)ay * - |72,
77l¢ m m7¢ %
qu( ) = xS Too? (¢ Y oo)ry * x5°
Let
§o=1" = T¢1/)¢,
Po = 90®¢¢ .

The weight k, for ¢4 at the arithmetic point ¢ is (a1 + mg, az +my).
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4.5 Explicit Sections

Now we make explicit sections for the Siegel and Klingen Eisenstein series. We choose ¢1,93 €
GU(2)(Ag), g5, 94 € U(2)(Ag) in the same way as [67, subsection 7.4]. Recall their p-components
are 1. We use a slight modification of the sections constructed in [9]. For the Siegel section we use
the construction fgeq = [[, fo in [9; Section 5.1]. Recall that the fs is a vector valued section. In
loc.cit we pullback this section under the embedding v~! and take the corresponding component
for the representation L%+ K L") & (LEs) @ det k) (notations as in loc.cit Section 4). Recall that
in [67, section 7] we constructed a character ¢ of Aé and elements g; € GLa(Ag). Recall we start
with a eigenform f € m new outside p and is an eigenvector for the U,-operator with eigenvalue a.
We extend it to a form on GU(2)(Aqg) using the central character ¢ and as in [67, 5.10] define

=T #(o, )= at@abs

veEX, N
—ay 1 w, ™
o= I > U )fz@’H(a 1> ( 1>)
) Spht EE,’Ufp {aUE ?_thZ( }'u v v v
wy, "UZU

where @y is the conductor of ¥ at v, 77, = (X1, X2,0) (choose any order).

Definition 4.3. Define our ¢ in Subsection to be m(g1) fo.

4.6 Construction of A Measure

We first recall the notion of p-adic L-functions for Dirichlet characters which is needed in the
proposition below. There is an element £z in Ax o, such that at each arithmetic point ¢ € xrb,
(Lr) = L(Ty, kg — 2).Té(p_1)p“¢_29(7‘(;)_1. For more details see [61, 3.4.3].

Constructing Families
The following theorem is proved in [9, Theorem 1.2].

Proposition 4.4. Suppose the unitary automorphic representation m = my generated by the weight
kE form f is such that m, is an unramified principal series representation with distinct Satake pa-
rameters. Let T be the dual representation of w.

(i) There is an element Ly € A;C,@gr such that for any character £, of ', which is the avatar
of a Hecke character of conductor p, infinite type (%"’ +myg, —%“’ —mg) with kg an even integer
which is at least 6, my > %, we have

L(ﬁ', §¢7 H¢—1)Q4m¢+2lﬁ¢ L 2 ~ B
O(Lrx) = Q4£¢+2Hi ™ 9(&2) [T 06 '605) ()
00 =1

C;s is a constant coming from an Archimedean integral.

(it) There is a set of formal q-expansions Eg ¢, := {35 afg] (B)qﬁ}([g],t) for3 s afg] (B € Ak 0w ®z,
Rigl,o0 Where Rig o is some ring to be defined later, ([g],t) are p-adic cusp labels, such that
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for a Zariski dense set of arithmetic points ¢ € Speck o, , ¢(Ey¢,) is the Fourier-Jacobi ex-
pansion of the highest weight vector of the holomorphic Klingen Eisenstein series constructed
by pullback formula which is an eigenvector for Ui+ with non-zero eigenvalue. The weight for
. k— k—
H(Brgy) is (mo — #53%,mg + 552, 0; kg).
(iii) The at ,(0)’s are divisible by E?K EO.E; where L% is the p-adic L-function of a Dirichlet

g] T
character above.

This is simply a translation of the main theorem in [9] to the situation here.

Definition 4.5. We will write Egying later on for this Klingen Eisenstein measure. We also con-
structed a Siegel Eisenstein measure in [9] which we write as Esjeq.

Here at ¢ the weight of the Klingen Eisenstein series constructed is (a1 +mg, as +mg,0; k). We
also remark that the need to extend the scalar from Of, to OF" is due to the fact that in the construc-
tion we need to specify points in the Igusa variety for GU(2) when applying equation (7)), which can
only be defined over OF". To adapt to the situation of section 3, we multiply the family constructed
in (ii) above by 1p(det —) (so that we fix the weight a1, a2 and allow as, by to vary). According to
the control theorems proved in section 3 and Theorem the family constructed thereby comes
from a semi-ordinary family defined there. By an appropriate weight map A — O} [[Ck]] (we omit
the precise formula) this gives a O} [[I'k]]-coefficients family in the sense of section (3.3

The interpolation formula for the p-adic L-function considered above is not satisfying since it involves
non-explicit Archimedean constants. But in fact it also has the following interpolation property if
a1 = ag = 0. For a Zariski dense set of arithmetic points ¢ € SpecAx such that ¢ o £ is the p-adic
avatar of a Hecke character &, of K*\Ag of infinite type (—k — 1 —%) for some k > 6, of conductor

2
(', p") (t > 0) at p, then:

P9 (0 )0(Erxi p)0(EpXg L (7. 0, 0) (k — 1)1 — 202"

¢(£JE‘JC) = (2ri)2r—1Q2% : (2)

Here g is the Gauss sum and x1 p, X2, are characters such that 7(x1,p, x2,p) =~ 7. Note that the
weight a; = ag = 0 is nothing but the weight considered in [69] and the computations carry out
in the same way. Note also the restrictions in [69] on conductors of 7 and £ are put to prove the
pullback formulas for Klingen Eisenstein series and has nothing to do with interpolation formula for
p-adic L-functions. This computation is also done in the forthcoming work [8].) We also remark that
in our situation it is possible to determine the constants C’EWQ% by taking an auxiliary eigenform

ordinary at p and comparing our construction with Hida’s (although we do not need it in this paper).

We can also construct the complete p-adic L-function Ly x ¢ by putting back all the local Euler
factors at primes in ¥. By doing this we only get elements in FracO}"[[I'c]]. In some cases we
can study the integrality of it by comparing with other constructions. There is another way of
constructing this p-adic L-function using Rankin-Selberg method by adapting the construction in
[15]. We let g be the Hida family of normalized ordinary CM forms corresponding to the family of
characters of T'c (thus the specialization of g to weight one is the Eisenstein series corresponding to
1@ xx/o- We apply Hida’s construction to the Rankin-Selberg product of f and specializations of
g of weight higher than 2. Note that although Hida’s construction assumes both forms are nearly
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ordinary, however, it works out in the same way in our situation since in the Rankin-Selberg product
the form with higher weight is the CM form which is ordinary by our assumption that p splits in
KC. The p-adic L-functions of Hida are not integral since he used Petersson inner product as the
period. The ratio of this Petersson Inner product over the CM period is a Katz p-adic L-function
L£Katz . pye by [22](this interpolates the algebraic part of L(x¢x4° 1) where x4 is the CM character
corresponding to the CM form g4. Here hg is the class number for K). Under assumption (1)
of Theorem [5.3] we know the local Hecke algebra corresponding to the CM form g is Gorenstein,
and [22] shows that the congruence module for g is generated by L£X%* . hx. Comparing the
interpolation formula [2| with [I5] Theorem I| we see that if we multiply Hida’s p-adic L-function
by LK@ . hx then we recover our p-adic L-function in Proposition . So under assumption (1)
of Theorem the Lfx¢ is in OF"[[I'k]]. By our discussion in [67, Section 6.4] we know that
under the assumption (1) of Theorem Ly ¢ is co-prime to any height one prime of O} [[I'c]]
which is not a pullback of a height one prime of O¥"[[['t]]. Under assumption (2) of Theorem
we only know Ly i ¢ is in FracO}"[[I'c]] and we call the fractional ideal generated by L ¢ to be
OF[[Tk]] - Lyxe C FracOF [[T'k]]-

4.7 Galois Representations for Klingen Eisenstein Series

We can also associate a reducible Galois representation to the holomorphic Klingen Eisenstein series
constructed with the same recipe as in subsection [2.4] The resulting Galois representation is:

— — _kt2
Orr Oy O Opee > ® pp.osee 2 .

5 Proof of Greenberg’s Main Results

In this section we assume the 7 we start with has weight two so that the Jacquet-Langlands corre-
spondence is trivial representation at co. This is because we can do the computations at arithemtic
points ¢ € X9 and in this case they are largely carried out in [67].

5.1 p-adic Properties of Fourier-Jacobi Coefficients

Our goal here is to prove Proposition which, roughly speaking says that certain Fourier-Jacobi
coefficient of Egy;p, which is a unit.

Interpolating Petersson Inner Products

Recall that in [67, section 6] we made a construction for interpolating Petersson inner products of
forms on definite unitary groups, one invariant under B(Z,) and one invariant under 'B(Z,) (we
use B to denote the upper triangular Borel subgroup of GL2, noting U(2)(Z,) ~ GL2(Z,)): For a
compact open subgroup K = [], K, of U(2)(Ag) which is U(2)(Z,) at p we take {giA}i a set of
representatives for U(2)(Q)\U(2)(Ag)/Ko(p) where we write K(p) also for the open compact group
[1., Ko x Ko(p). Suppose K is sufficiently small so that for all i we have U(2)(Q) ﬁgiAKgiAf1 =1.
For an ordinary Hida family h of eigenforms with some coefficient ring I (whose p-part of level group
is in 'B(Z,) modulo powers of p) we construct a set of bounded I-valued measure p; on N~ (pZj,)
as follows. We only need to specify the measure for sets of the form t~N—(Z,)(t™)"'n where

t1
n € N~ (Z,) and t~ a matrix of the form <p pt2> with to > t1. We assign h(gint=)A(t") ! as

its measure where A(t7) is the Hecke eigenvalue of h for U,~ (which is a unit since h is ordinary).
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This measure is well defined by the expression for Hecke operators U,—. The above set {u;}; can
be viewed as a measure on U(2)(Q)\U(2)(Ag)/K P by requiring it to be invariant under the right
action of B(Z,), which we denote as pp. For an O}"[[['k]]-valued family of forms g on U(2)(Ag), we
can regard it as a continuous function on U(2)(Q)\U(2)(Ag)/K P (giving U(2)(Z,) the topology as
a p-adic Lie group). Thus we can talk about integral of g against the measure uy, which we write
25 Jiu2) 8%

We refer to [67, Section 7.5] for the definition of the theta function #; and a functional Iy, on
the space of p-adic automorphic forms on U(3,1) essentially by taking Fourier-Jacobi coefficients
(viewed as a form on P(Aq)) and pair with the theta function 6;. It maps an O}"[[I'c]]-adic family
of forms on U(3,1) to an O}"[[['k]]-adic family of forms on U(2,0).

In [67, Section 7.3] we constructed three-dimensional families of CM forms h and 6 on U(2)
(both invariant under B(Z,)) associated to families of CM characters xn and xg and we write
their restrictions to the two dimensional SpecA still using the same symbols. The O%[[T'x]]-linear
functional

F— /l91(F)du
(95

/< 1) "
1
P

is defined on the space of O}"[[I'x]]-adic families on U(3,1). As in [67] we have to show that the
image of Eying under this functional is coprime to all height one primes of O}"[[I'x]] except (p).

So we want to study [ lp, (Exing)dp ] . Since Egying is realized as ([ i (Esieg)s P)iow
(W(gé( ) )h)
1

(0:U(@3,1) x U(0,2) = U(3,3) and (, )iow means taking inner product with respect to the U(0, 2)-
factor) by Proposition , we need first to study

Ay = / lg7i " (Esicg)d"™ .
(1 ) "
P

w(m(gh

regarded as a family of p-adic automorphic forms on U(2). Here i~!(s;ey) is a measure of forms
on U(3,1) x U(2) and the lgf,d“p means the functional and integration on the U(3,1) factor in
U(3,1) x U(0,2). Then

A= (A1, 0)u@) = /191 (Ekting)dp .
(m(g (1 ) )h)
P

We remark that A; is invariant under Ko (p).

We do the Fourier-Jacobi coefficients calculations as in [67], in particular Proposition 5.28 and
Corollary 5.29 there at arithmetic points in A9 whose corresponding characters have conductors
p'. This shows that up to multiplying by an element in Q,, the A is interpolating

P O(LELE) /
v@)

Here hy and 64 are specializations of h and 6 at ¢, £§ and E% are defined in [67), subsection 7.5
which are X-primitive p-adic L-functions for certain CM characters. They come from the pullback

(r(dhha) @)0s(o (| 1) (r(an) o)(a)s

p
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integral for h under U(2) x U(2) < U(2,2). By our choices of characters they are some Q)
multiples of a unit in Oy [[[x]]. In [67] we also constructed families hs, 83 in the dual automorphic
representations for h and 6. Let fg € 7 be chosen the same as as in [67, Section 7.5] at primes
outside p. But at p we take it as the stabilization with Up-eigenvalue afl (recall o is the eigenvalue

for the U, action on fy). We consider the expression at arithmetic point ¢

Aoimrt [ sl nta 1)p>w<gg> F1(9)da.

From our previous discussions they are interpolated by an element A € O [[Tk]] @z, Qp. We
are going to calculate A - A using Ichino’s triple product formula. We do this by calculating it at
arithmetic points in A'9¢". This is enough since these points are Zariski dense. We refer to [67,
subsection 7.4| for a summary of the backgrounds of Ichino’s formula. The local calculations are
the same as loc.cit except at the p-adic places where we have different assumptions for ramification.
(In [67] the central character for fy has conductor pt at p while our 7y here is unramified at p.) We
give a lemma for our situation.

Lemma 5.1. Let xpn1, X2, X0,1, X0,2, Xf,15 X f,2 be character of Q; whose product is the trivial char-
acter and such that xn1,X0,1,Xf1,Xf2 ore unramifed and xp2 - Xo,2 15 unramified. Let f, €
m(xf2,Xf1) and by using the induced representation model f is the characteristic function of
KiwKy. Similarly we define f, € W(X;%,X;&). S? f is a Hecke eiqenvector for T, with eigen-
value Xf,l(p) Let hpﬂ-(Xh,lu Xh,2)79p € W(X@,lv X@,Q)a hp € F(X}zlpxgé)v ep(Xg_ja Xe_é) be the th; fxg;
fsns fzo defined in [67, lemma 7.4]. Then the local triple product integral (defined at the beginning
of [67, subsection 7.4[)
L, (hy @ 0 & fp,hp @60, @ fp)
<hpv hp> <9pa 9p> <fp7 fp>

18 .
p(1-p) 1 _ 1
1 1
TP 1= xna@)xoa@)xsa@)p™2 1= xna(@)xo2(p)xsa(p)p 2
Proof. This is an easy consequence of [67, lemma 7.4] and [73, Proposition 3.2]. O

Now as in [67), Section 7.5] by computing at arithmetic points ¢ € X9°" and applying Ichino’s
formula, the local integrals at finite primes are non-zero constants in Q; (fixed throughout the
family). We conclude that up to multiplying by an element in Q; the A - A equals LELEL1Ly
where £ is the p-adic L-function interpolating the algebraic part of L(A\?(xgXn)s, %) (X is the
splitting character of K*\AZ we use to define theta functions, see [67, Section 3]) which we can
choose the Hecke characters properly so that it is a unit in O}"[[I'c]]. (Note that since the CM
character A\? has weight higher than f the result cited in [67, subsection 7.2] of M. Hsieh does not
assume that f is ordinary). The L is the algebraic part of L(f, x§xn, %) € Q, (fixed throughout
the family) which we can choose to be non-zero. (See the calculations in [67) subsection 7.5].) The
LE and LF are also units in OY"[[T'x]] up to multiplying by an element in @; by our choices of the
characters xg and xp.

To sum up we get the following proposition.
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Proposition 5.2. Any height one prime of O} [[T']] containing [ lg, (Exiing)dp 1 must
(g5 (1 ) )h
P

be (p).

Proof. The above discussion implies that A - A=A flel(EKlmg)dM 1 is a unit in
(g% <1 ) )h
p

O}"[[Ck]] times an element in @Zf Thus the proposition follows. O

5.2 Proof of Greenberg’s Main Conjecture

To state our result we need one more definition: suppose g is a cuspidal eigenform on GLg/Q which
is nearly ordinary at p. We have a p-adic Galois representation p, : Go — GL2(Op) for some L/Q,
finite. We say g satisfies:

(irred) If the residual representation p, is absolutely irreducible.

Also it is known that p,|q, is isomorphic to an upper triangular one. We say it satisfies:

(dist) If the Galois characters of G} giving the diagonal actions are distinct modulo the maximal
ideal of Op. Now we prove the following theorem which is one divisibility of Conjecture [2.1

Theorem 5.3. Let w be an irreducible cuspidal automorphic representation of GLa/Q of weight 2,
square free level N and trivial character. Let p; be the associated Galois representation. Assume
is good supersingular with distinct Satake paramters. Suppose also for some odd non-split q, q||N.
Let & be a Hecke character of K*\AZ with infinite type (—%, —3). Suppose (§|\%)|A6 =woNm (w
is the Techimuller character).

(1) Suppose the CM form ge associated to the character £ satisfies (dist) and (irred) defined above
and that for each inert or ramified prime v we have the conductor of &, is not (w,) where w, is a
uniformizer for IC, and that:

1
6(ﬂ_’ua 51)7 5) = X’C/Q,v(_l)
Then we have Lyexc € OF[[Tk]] and (Lyxe) 2 charourrey (Xrxe) as ideals of OF[[I]].

(2) If we drop the conditions (irred) and (dist) and the conditions on the local signs in (1), but
assume that the p-adic avatar of §|.\%(w_1 o Nm) factors through T, then

(Lyxe) 2 charoyr oo, L(Xfk.e)
is true as fractional ideals of OY"[[['k]] ®o, L.

We note that the assumption on the existence of ¢ is to make sure that we can choose the
unitary group Subsection properly so that the Jacquet-Langlands correspondence of f to the
corresponding quaternion algebra D exists.

Proof. We refer to [67), section 8.1] for the definitions for Hecke operators for U(3,1) at unramified
primes. Let Kp be an open compact subgroup of U(3,1)(Ag) maximal at p and all primes outside
> such that the Klingen Eisenstein series we construct is invariant under Kp. We let Tp be the
reduced Hecke algebra generated by the Hecke operators at unramified primes space of the two
variable family of semi-ordinary cusp forms with level group Kp, the U; operator at p, and then
take the reduced quotient. Let the Eisenstein ideal Ip of Tp to be generated by {t — A(t)}+ for ¢ in
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the abstract Hecke algebra and A(t) is the Hecke eigenvalue of ¢ acting on Egjing and let Ep be the
inverse image of Ip in Op[[T'k]] C Tp.

Now the main theorem can be proven in almost the same way as [67, Section 8|, using Proposition
and One uses the fundamental exact sequence Theorem E to show that (L¥) D &p as
in Lemma 8.4 of loc.cit. Then use the lattice construction (Proposition 8.2 there) to show that Ep
contains the characteristic ideal of the dual Selmer group. Note also that to prove part (2) of the
main theorem we need to use Lemma 8.3 of loc.cit. The only difference is to check the condition
(9) in Section 8.3 of loc.cit: We suppose our pseudo-character R = R; + Ro + R3 where R; and
Ry are 1-dimensional and Rjs is 2-dimensional. Then by residual irreducibility we can associate
a 2-dimensional Tp-coefficient Galois representation. Take an arithmetic point = in the absolute
convergence region for Eisenstein series such that as — as >> 0 and a3 + b; >> 0 and consider
the specialization of the Galois representation to x. First of all as in [61, Theorem 7.3.1] a twist
of this descends to a Galois representation of G which we denote as R3 . By our description for
the local Galois representations for semi-ordinary forms at p we know that R3, has Hodge-Tate
weight 0,1 and is crystalline (by the corresponding property for R, = R; + R + R3, note that R,
corresponds to a Galois representation for a classical form unramified at p by Theorem [3.10]
and Proposition . If p is at least 5 then R3, is modular over a solvable totally real field F//Q
by [63, Theorem BJ. If p is 3 then by [28] it must be modular unless the residual representation were

induced from a Galois character for Q(4/ (—1)1)2;1]9). As we noted before py|g, is irreducible by [7].

So the restriction of it to I, has semi-simplification as diag(wé,wgi) where wy is the fundamental
character of level 2 and 4 is some integer. Since p; is crystalline of weight (0,1) the i has to be
congruent to 1 modulo (p —1). But if p; is induced from the ramified quadratic field extension the
7 has to be a multiple of (;)-571)’ a contradiction if p = 3. To sum up in any case R3, is modular over
a solvable totally real field. These implies some solvable base change of R, to a totally real field is

CAP, contradicting the result of [I4] Theorem 2.5.6].

Once we get one divisibility for E?K@ up to height one primes which are pullbacks of height one
primes of O} [[[{]] (coming from local Euler factors at non-split primes in X, by our discussion
in [67, Section 6.4] on p-invariants), the corresponding result for L¢x ¢ also follows by using [13]
Proposition 2.4| as in [67, End of 8.3] (note that K contains the cyclotomic Z,-extension). O

6 The Two Variable + Main Conjectures

6.1 Local Theory and Two-Variable Main Conjecture

In this subsection we develop some local theory. The main goal is to construct two-variable regulator
maps Col™ and LOG™ which are important for our argument. The Col™ is essentially constructed
by Kim [26] and the LOG™ is not in literature.

We note that for any prime v above p the field K, is the composition of the maximal unramified Z,
extension of @, and the cyclotomic Zy,-extension. So it is necessary to study the Galois cohomology
of this composed extension. We have an isomorphism Z,[[I']] ~ Z,[[X]] sending ~ to (1 + X). De-
fine w!(X) = X [Lo<im<n apm Pm(X) and wy (X) = []i << opm Pm(X) (our definition is slightly
different from [33]). We recall some notions from [26] with some modifications. For k/Q, an un-

30



ramified extension of degree d let O, be its integer ring, consider the field k((pn+1) and let mye .y
P

¢ ni1)- Let kp be the Z/p"Z sub-extension of k((yn+1)
P
with my, ,, the maximal ideal of its integer ring. We define

be the maximal ideal of its valuation ring Oj

Et k()] ={z € E(k(upnﬂ))|trk(upn+1)/k(up£+2)(x) € E(k(pye+1)),0 < £ < n, 2|0}

We also define the +-norm subgroup

EF [y )) = {2 € B0 8001002 (8) € B0 1)), 0 < €<, 200}

Let (2n)

S~ (_qynd 2D

log ¢ (X) = Z(—l) —

n=1 p
for f(m) = f" "o " P oo f(X). As in [26], for z € O; we define a point ¢, . € E[mk(cpn)} such
that -

i— —(n+214) i -n
logj;(cn,2) = [2(—1) 1% P 10g pn (277 (G — 1)

where ¢ is the Frobenius on k and f,(z) := (z + z)? — 2P. Then the following lemma is proved in
[26, Page 5].

Lemma 6.1.

k(¢ nt2) /K (Cpnt1) Cnt 2,z = ~Cnye

We also use the same notation c, . for tk(¢n) /b 1Cnz € Mpp—1 S well. Let &k = k™ be
unramified Z/p™Z-extension of Q,. We sometimes write k, ,, for the above defined k, with this
k=Fk™. Let Ay = Zp[Gal(kym/Qp)].

Lemma 6.2. For even n’s one can choose a system {cpm}nm for cnm € ET[my, | such that
trkn,7n+l/kn,mcnvm+1 = Cn7m7

trkn,m/kn72,'mcn7m = _Cn_27m'

Proof. This can be done in the following way: choose d := {d;,}m € lim Opm where the transition
is given by the trace map such that d generates this inverse limit over Z,[[U]] (existence is guaranteed
by the normal basis theorem). If dyy, = > am,;(; where (; are roots of unity and am,; € Zj. Define
Cnym = ) Gm,jCn¢;- We prove the first identity and the second one is a consequence of the above
lemma.

For any z = (; a root of unity whose conductor is prime to p, we have

n 2k—n—1 2k—n—2

2 (Gr — 1)) =f¢ o f? oo ff (2" (G — 1))

2k—n—1 2k—n—2 1-n
T e T o T (T (P (G — 1)

—n —n

2k—n

=2¥ (Cpn72k -1)
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if 2m < n and equals 0 otherwise. So

S027677'1,

o (n+2i) . C (C n—2k — 1)
osptn = T g+ B S 0, S
7 2k<n
_1)k _
— Z ’L 1 ’L CP —(n+21) + Z ( 1) (Cpr’:% 1) (dm)(’kafn.
2k<n p
Thus
i—1 i —(n+2i) (_1)]€(C n—2k — 1) k—n
log gt jmorcnm = D (=17 (ord)” T 4 3 Y (trdm)”
i 2k<n

- - —(n+421 _1 k n— - 1 —n
_ Z(_1)171p1d§j1+2) 4 Z ( ) (Cpk 2k )d;’ifl
i 2k<n p

= 1OgE‘ Cnm—1-

Definition 6.3. Let n be an even number. Define
A;:,m = Amm/er{(X)7
Ay = A/ Xwy, (X).
Lemma 6.4. We have the following exact sequence
0= E(pOym) = AL pcnm & Ay n1.m — BT (my, ) — 0.
The middle term is isomorphic to A}, ® A, .. The cpm generates EA[mkn,m] as a A}, -module.

Proof. The surjectivity to E*(mkn,m) is essentially proved in [26, Proposition 2.6] (compare also to
the computations in the previous lemma). The other parts are easily proven (compare also with
[33, Proposition 8.12]). O

Now we define the two-variable +-Coleman maps

HY (knm, T)/H (knm, T) ~ A,

m,n

where H} (kym,T) is the exact annihilator of E*(ky, m) ® Qp/Z, under the Tate pairing. We define
P by

Cn,m

Z Z (Chm» Z)m,n0-

ceGal(kn,m/Qp)
As is seen in [33, Proposition 8.19] the image of P is contained in w, (X)Ayn if we identify
Zp[T'p] with Zy[X]/w,(X) by sending v to 14 X. We define A}, |, := Apn/wb (X) =~ w, (X) Ay p.
The + Coleman map Colj{,m is defined to make the following diagram commutative.

Colf
HY(kpm, T) — At
1 Jes
P+

H (kpm, T)/HY (knm, T) — Apm
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As is seen in the proof of [26, Theorem 2.7, 2.8] the Col}, is an isomorphism and they group
together to define the following isomorphism.
Definition 6.5.

H' (kpm, T)
+ .1 . T, ~
Col™ : hin lim ~ A.

— H(kym,T)

The +4-Selmer group is defined by

lim H' (kpm, E[p
Sel™ (E/K o )_ker{l_n>qH1(K’ ngw o) ®({@p/z glgﬂl (I,, E[p™))}

and X 7T its Pontryagin dual.

As noted at the end of [26] there are p-adic L-functions constructed by Loeffler, which are
elements in A ®z, Q.
Lt = Lpaa = Lpas = Lppat Lppp
5 4a?log, logg,

L+_ P Lp,a,a + Lp7a76 — vaﬁﬂ)‘ — vaﬂyﬁ
P 4alog,, logd

L= .= Lpoa = Lpap+Lppa—Lpsps
da logj0 logz,

Lpoa+ Lpas+ Lppa~+ Lpsps
4 log;r0 loggo

LZ; =
for Ly o, interpolating
L(E,x,1)
a(x) - |fx| ) QEQE

for x a character of Gal(K/K) and f, its conductor and similarly for the other three. (Here the
roles played by + are switched from [26] and is compatible with [33]). The log, and log;, will be
defined at the beginning of subsection (7.3} The Q are the +-periods of the newform f associated
to the elliptic curve E multiplied by (2m) respectlvely (we refer to [62 9.2, 9.3| for details). In
fact Loeffler used another period factor which he called Qp instead of Q7 -Qp and proved that his
double signed p-adic L-functions are in A. A priory we only know our Lf are in A ®z, Q, because
of different periods. (It is possible to prove they are in A but this is not needed for our argument).
There is another period Q" called the canonical period defined in loc. cit using congruence numbers.
We have the following

Oé—ordv0 Fx o —ordg fy

Lemma 6.6. Up to multiplying by a p-adic unit we have
n__ O+ -
Q" = QF - Q.

Proof. This is just [62, Lemma 9.5]. O

Now we are ready to formulate the two-variable “4+-+" main conjecture.
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Conjecture 6.7. The two variable ++- main conjecture states that X+ is a torsion Axc-module

and the characteristic ideal of X+ is generated by L}'; as an ideal of Ag.

We also refer to the weak version of the above conjecture by requiring that for any height one
prime P of A = Z,[[I' x I'"]] which is not a pullback of a height one prime of Z,[[I'"]], the length
of X5 over Ap is equal to ordpL+.

Now we record a useful lemma.

Lemma 6.8. The lim lim HY(kpm,T) is a free of rank two module over A and H'(kpm,T) is a
free rank two module over Ay, .

Proof. We first note that 7'/pT is an irreducible module over Gg, [7]. Then it follows from the Fu-
ler characteristic formula that H'(Q,,T/pT) is a rank two F, vector space. On the other hand
one can prove that the inverse limit in the lemma has generic rank two over A (see e.g. in
[44], appendix A]). Thus the first statement is true. The other statement is seen by noting that
HY(kpm,T) = lim lim HY(kpm, T) /(™ — 1,u™ — 1) Hm lim HY(kpm, T), which again follows
from the irreducibility of 7'/pT as a Gg,-module and the Galois cohomology long exact sequence. [

For the purpose of later argument we need one more regulator map LOG™. We construct it in an
explicit way. By the freeness of Hl(k:n,m,T) over Ay, and that w™ (X)cpm = 0, we see that for

any even n there is by, € H'(kym, T) such that wy, (X) by m = (—1)nTch,m. It is easily seen that
one can choose the by, »,’s such that trkn,m/kn_l,mbmm =bp—1,m and trkn,m/kn,m_lbn,m =bpm—1-
Lemma 6.9. H}r(kmm,T) is a free Ay m-module of rank one generated by by, .
Proof. For y € E(kym) ® Qp/Zy and © € HY (ky m,T) we can show that
(W, (X)-2,y) =0
from [26, Proposition 2.6] and [33] (8.29)]. Moreover we have for any n’ > 0,
E(kn,m)/pn/E(kn,m) — H' (Fn,m, T/pan)

has Z,/p" Z,-torsion-free cokernel since each term is free Z,/p" Z,-module of finite rank. So E (k)
and E(kym) ® Qp/Z,y, are orthogonal complements of each other under local Tate pairing. So

w, (X) -z € wy (X)H (kpm, T) N Im(E (k) — H (knm, T)).
By Lemma, we have wy, (X)z € Ay mCnm. This proves the lemma. O
Let z = @1” lgnm Tnm € @ln I&Hm H}_(knm, T). If pm = fam - bum for f € Ay, then
ZTEFnXUm x;,m T = fnum ' ZT b:L,m " T.
Definition 6.10. We define LOG™ : gnn h£1m Hi(k7b7m,T) ~Abyx— mn yinm frm-
Now recall that vg splits into p’ primes in Koo /K. We take a set of representatives {y1,- -+, vt}

of T'xc/T',. Write
H' (Kuy, T ® Axc) = &iH' (Ko, T ® Zp[[Tp]]) - i

We define
Coltz = Z% - (Col™z;) € Ax.

2

We define LOG™ similarly on H1 (Ky,,T ® Ax). The following proposition will be useful.
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Proposition 6.11. Let ¢ be a finite order character of I' x U such that ¢(7y) and ¢(u) are primitive
p", p"-th roots of unity. Then for integer m and even n,

71 A o
3o logpal,, - élo) = (—1)"F - ¢ (fnm) > logp 7 ()

- —1
o€ xUn wn (971)

Y logg(enm)7d(0) = a(dlr) - d(w) - > G(u)dy,. (4)

o€l xUm 'U/eUnL
Cn o Z log (¢ ) - U)(Z exp*(27) - o). (5)
g

Proof. Straightforward computation. The third identity used the description of the Tate pairing in
[38, Page 5]. O
6.2 The One Variable Main Conjecture of Kobayashi

Now we briefly recall Kobayashi’s one variable (cyclotomic) main conjecture. On the analytic side
there is a 4+ p-adic L-function Eg 0 such that

o yme p" - L(E,x,1)
LoalC =D =0 e o Tilos

if x is a character of I" with conductor p™, 2|n > 0 and x(v) = ¢. On the other hand we define the
+-Selmer group

Selj; g.n = ker{H" (Qyn, E H = QQ::L,® oIz HHl I, E[p™])}.

Define XJJEF,Q = (hﬂn SelJEr’Qm)*. This is a module over Ag.

Conjecture 6.12. Kobayashi’s main conjecture states that X £ 8 a lorsion Ag-module and the
characteristic ideal of XEQ s generated by E B 08 ideals of Ag.

Kobayashi proved one containment (EE,Q) C chary, (XEQ) in [33], using results of Kato [25].

6.3 Special Case of Greenberg’s Main Conjecture

We apply Theorem to a special case that we will use to deduce the +-main conjecture. We
change the notations a little. On the arithmetic side we defined

Sel ; =ker{H'(K,T ® A*(¥)) = [[ H' (Ko, T @ A*(¥)) x H' (Kg,, T ® A*(T)).
utp
X’%,f = (Sel%chf)*
On the analytic side there is a corresponding p-adic L-function E%K € Frac(W (F,))[[k]]) (taking

the character £ to be trivial character. The W (R) means the Witt vector for R), which is the Lfx 1
we constructed in Section [4] with the following interpolation property. For a Zariski dense set of
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arithmetic points ¢ € SpecA such that £y := ¢ o W is the avatar of a Hecke character of infinite type
(%, —%) with kK > 6 we have

27 2
PV X pXap (P 1)8(60, X1 )8(E0 pXa ) LK, 77, €5, 5 — 3) (5 — 1!k — 2)105F
(2mi)26—10)28 .

$(Lix) =C

Here €2 and €, are the CM periods and p-adic periods for . The C'is a constant in @;, X1,ps X2,p
is such that the unitary representation 7 ~ m(x1,p, X2,p) With val,(x1,(p)) = —%, val(x2,p(p)) = %
This case corresponds to part (2) of Theorem [5.3] This p-adic L-function can also be constructed
by Rankin-Selberg method as in [I5]. See [67, Remark 7.2] for a detailed discussion. In fact Hida’s
construction gives an element in FrfiC(Ajc) and the above [Z%,C is obtained by multiplying Hida’s by
a Katz p-adic L-function £ € Zu"[[[c]] and the class number h of K. The L interpolates
algebraic part of special L-values L(O,X(z,x(;c) where x4 are CM characters of I'c (see [22]). The
denominator of Hida’s p-adic L-function is related to certain congruence modules, which we are
going to study in Section |8 using Rubin’s work on CM main conjecture. (In fact one can show that
this £7  is in W (F,)[[x]].)

Recall we have chosen d = @m dm € gn(’),:m where the transition map is the trace map. We
define Fyo € Zg’[[UH as

im 3 dy -t

m uGUv/mev
Then the discussion in [38, Section 6.4] on Katz p-adic L-functions (see also the discussion in Section
3.2 of loc.cit) implies that LK% /F, 5 is actually an element in Z,[[I'c]]\{0} (Note the coefficients).
This can be seen as follows: as remarked at the end of [38] Section 6.4] the Katz p-adic L-function
is obtained by applying the two-variable regulator map there to the image of the elliptic units in
the Iwasawa cohomology. On the other hand from the construction of this regulator map in [38|
Definition 4.6], noting that since y — x — xx~ ¢ induces square map on anticyclotomic characters,
Fy 2 is a generator of the Yager module Su, there (this is the S@;T/Qp in Section as a free rank
one Zy[[U]]-module. Thus LE=/F, 4 is a Z,-coefficient power series. So there is an L’ i € FracAg
such that

Ly Faa= L

We have the following Straightforward consequence of part (2) of Theorem [5.3]

Theorem 6.13. Assume E has square-free conductor N and there is at least one prime {|N where
K is non-split. Suppose moreover that Ep||c, is absolutely irreducible. Then the characteristic
ideal of X,Qc,f is contained in the fractional ideal generated by E/f,lc as ideals of A ®z, Qp.

We similarly have a weak verston of this theorem by requiring the inequality for any height one
prime P of Ax which is not a pullback of a height one prime of Z,[[I'"]] instead of for all height
one primes.

7 Beilinson-Flach Elements

7.1 Some Preliminaries

We write Z,[[I'7]] = Zp[[T]],7~ = 1+ T. Recall g be the Hida family of normalized CM forms
attached to characters of I'x with the coefficient ring Ag := Zp[[T]] (the trivial character of I' is a
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specialization of this family). We write Lg for the fraction ring of Ag. As in [30] let M (f)* (M(g)*)
be the part of the cohomology of the modular curves which is the Galois representation associated
to f (g). The corresponding coefficients for M (f)* and M(g)* is Q, and Lg. (Note that the Hida
family g is not quite a Hida family considered in loc.cit. It plays the role of a branch a there). Note
also that g is cuspidal (which is called “generically non-Eisenstein” in an earlier version) in the sense
of [32]. We have M(g)* is a rank two Lg vector space and, there is a short exact sequence of Lg
vector spaces with G@p action:
0= F5 = M) — F; =0

with ﬂgi being rank one Lg vector spaces such that the Galois action on 9; is unramified. Since g
is a CM family with p splits in K, the above exact sequence in fact splits as Gg,. For an arithmetic
specialization g4 of g the Galois representation M (f)* ® M(gg)* is the induced representation
from Gi to Gg of M(f)" ® &g, where &g, is the Hecke character corresponding to gg. This
identification will be used implicitly later. We also write Dyg(f) = (M(f)* @ Bqr)“%. We will
write Hi (Koo, —) := yinlcgcfgcw H'(K',—). The transition map is given by co-restriction. For f
let Dar(f) be the Dieudonne module for M(f)* and let n{ be any basis of Fil’Dyr(f). Let wy be

a basis of #ﬁ(}ﬂ such that (w},wy) = 1.

7.2 Yager modules

We mainly follow [38] to present the theory of Yager modules. Let K/Q, be a finite unramified
extension. For x € Ok we define yr/,(2) = > ccax/q,) 2°l0] € Ox[Gal(K/Qp)] (note our
convention is slightly different from [38]). Let Q;"/Q, be an unramified Zy-extension with Galois
group U. Then the above map induces an isomorphism of Ay, (U)-modules

Yopr/q, + Bm  Op >~ Sgurjq, ={f € Zu([U]) : f = [l £}
QpCKCQyr

for any uw € U a topological generator. Here the superscript means u acting on the coefficient ring
while [u] means multiplying by the group-like element u~!. The module S@;r /q, is called the Yager
module. It is explained in [loc.cit that the SQ;)LT/QP is a free rank one module over Z,. Let F be

a representation of U then they defined a map p : Zgr[[U]] — Aut(F ® Zgr) by mapping u to its
action on F and extend linearly. As is noted in loc.cit the image of elements in the Yager module
isin (F® Z;T')G@P. Recall also that

d = lm dm S lm O]:/.('rn
o
defined in the proof of Lemma is a generator of the Yager module for Q,. Then we can define

p(d) and let p(d)Y be the element in Zgr[[U]] which is the inverse of Jm 37 cry/my d7, - o=t We
have the following

[on
m

Lemma 7.1. (1)
1

: €S,
gnm ZJGU/me dfrTTL 4 !
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(2)
lim > dyo’e(lim Y dy o) ZU]

m geU/pm™U m eeU/pmU

Proof. Straightforward computation on the Galois action. O

7.3 Beilinson-Flach elements

Unlike Kato’s zeta element, the Beilinson-Flach elements constructed in [30] are not in the Iwasawa
cohomology (in fact they are unbounded classes). So we need to construct from them a bounded
family of classes. Our construction can be viewed as a Galois cohomology analogue of Pollack’s
construction of the + p-adic L-function.

We first define

_ 1 o Popq(1+ X
lng(X) :EH—Q 1; )

Y

m=1
1 m(1+ X
Ing ]; H )

Write Xy, = Yo, — 1 and Xg, = 75, — 1. We write log% for logp (Xy,) and logy for log;)t(XvO) as
elements of A = Q,[[I"y, X U]] = Q,[[I'y, x U]]. We use Zy[[U]] ~ Z,[[Y]] mapping u to 1 + Y.

1
Definition 7.2. Let r = % and define H,(X) to be power serie in Qp[[X]] of growth O(logg) consist-

ing of > o2 o an X" such that max{pf[%g(")] |an|p}n < 0o where £(n) is the smallest integer m such that
p™ >n (see [38]). This is equipped with a norm on it: > >°  an X" has norm max{p’[%e(”)]]aﬂp}n,
Our H, is the Mellin Transform
/ (1+ X)'du
teZp

of r-admissible distributions dp defined in loc.cit. Let M, = Zp[[Y]] @ Hr(Xy,). We also define
Ho,r to be the completed tensor product Z,[[Y]|@H, (Xs,) with respect to the obvious norm on Zy[[X]]
and the norm of H, mentioned above (note that the definitions for H,o and Ho, are not symmetric).

We see that log, € H.o and log;, € Ho,. In [36] the authors defined Beilinson-Flach elements
BF, and BF_, for f, and f_,, as elements in H, o ® H} (Qoo, M(f)* ® M(g)*). It is easily seen
that the module H} (Qoo, M(f)* ® M(g)*) can be identified with H{. (Koo, M(f)*).

Now we recall some notations in [43]. Let ES,(Dx) := lim HY(X1(Dkp") ® Q,Z,) and
GES,(Dx) : = lim _ HY(Y1(Dxp") ® Q, Z,) which are modules equipped with Galois action of Gg.
Here X1 (Dxp") and Y1(Dxp") are corresponding compact and non-compact modular curves. Recall
in loc.cit there is an ordinary idempotent e* associated to the covariant Hecke operator U,. Let
A, = e*ESy(Di)r = e*GES,(Dx)» (see the Theorem in loc.cit). Let B, (B%,) be the quotient
of e*ES,(Dx) (e*GESy(Dx)) over 2%,

In an earlier version of [32] the authors defined elements wy € (ZF (xg') ® ZZT)GQP and 7y €
(Fg ® Z;”)G@P. Here the xg is the central character for g. We brleﬂy recall the definitions since
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they are more convenient for our use (these notions are replaced by their dual in the current version
of [32]). In the natural isomorphism

A, ®z,pry Ly [[T)) =~ Homy,, (S (D, xc, 23y [[T1)), Zy" [[T1))

(see the proof of [43] Corollary 2.3.6], the wg is corresponds to the functional which maps each
normalized eigenform to 1. On the other hand 7y is defined to be the element in B, which, under
the pairing in [43] Theorem 2.3.5], pairs with wgv to the product of local root numbers at prime to
p places of g. This product moves p-adic analytically and is a unit.

Let v1,v2 be a A basis of H'(Ky,, M(f)* @ A(—¥)). Then there are fi, fo € Hr(Xy,) ([ Xy ]

Zp|[ Xy, T]] and some fy € Frac(Zy[[T]])\{0} such that BF,, — BF_, = «a - fo(fiv1 + favz). Let
L= E\G/f : Hl(GQp7 M(f>* ® A(_\IJ)) — @fil(HO,r ® Dcris(vf)) Y

be the regulator map defined in [38, Theorem 4.7]. (We know L(v;) € Ho, by [38, Proposition
4.8]). We write Pr* and Pr™® for the projection map from Degis(Vy) to the o or —a eigenspace
for Frobenius action ¢ (as numbers, with respect to the basis given by the image of the Neron
differential wg in the +a-eigenspaces of Deyis(Vy)). Let

Pr¢+Pr—¢

oL, LT=—— oL

- Pr¢ — Pr ¢
- 2

Then by Proposition in the following, we have

£+

fohiL¥ (v1) + fofol* (v2) = logy, logg, L7,

fof1£7(v1) + fof2L7 (v2) = logy, logs, L
We need the following

Lemma 7.3. The L?; and L;; are not identically zero.

Proof. We just need to know that the Lic(E,x,1) is non zero for some character x of I'c whose
conductor at vg is a even power of p and whose conductor at vy is an odd power of p. This is just
[51, Theorem 2. O

We have the following
Lemma 7.4. We have f1, f2 € log, -Frac(Z[[Xy,, T1])-

£+ (Ul) ,C+ (UQ)

Proof. We first claim that det <£_(U1) £ (vs)

> is not identically zero. Suppose it is not the case.
Then we have

logg, L;{; L7 (v1) — logy L;{; LT (v1) =0,
V0

logg, L}r; - L (vg) — logj L;{; LT (vg) = 0.

Let (1, , (s be the zeros of log, such that X3, — ¢; is a divisor of L;{; (easily seen to be a finite
set since L;f; is not identically zero). Then for any other root ¢ of log,,, L (v1) restricts to the zero
function at the line X3, = ¢. If we expand £ (v1) as a power series in X3, and U, then by Weierstrass
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preparation theorem (see [7(J, Theorem 7.3]), the coefficient for U™ (any m) is logg, /(X% — &)
times some element in Z,[[Xg]] ®z, Q, whose coefficients are uniformly bounded (bound also
independent of m). (See [48, Proof of Theorem 5.1]). Thus £¥(v;1) € logy, -Frac(Z,[[Xs,, U]]) We
can apply the same argument to all £¥(v;) and get

cr (UZ) € loggo 'FraC(Zp[[Xﬁov UH),

L7 (v;) € logy Frac(Zy[[ Xz, U]]).

E+ (1)1) ,C+ (1)2)
But det (ﬁ(’ul) £ (v)
[38, Proposition 4.11].

> = 0. This contradicts the fact that £ is injective, which is proved in

Now let us return to the proof of the lemma. Fix &k =1 or 2. If f is identically 0 then nothing is
needed. If not, recall we fixed representatives ~1,--- ,7y,t of I'x/I',. Then from the claim there is
an a € Cp, |al, < 1 such that

t
07 filxay=a € O11 108y, Frac(Zy[[Xun])) - 7: (6)

It is possible to write fi, = > fi;j(Xvg)grj(Xoy, T') (finite sum) where fi;(Xo,) € Hr(Xuy)®z,(1x,,]
Frac(Zp[[Xv,]]) and grj(Xv,),T) € Zp[[Xy,, T]] such that either fr1(Xy,) € log,, -Frac(Z,[[Xy,]])
or {log, } U {fx;} forms a linearly independent set over Frac(Zy[[Xy,]]). Then @ implies we must
have j =1 and fi1(Xy,) € log,, -Frac(Z,[[Xy,]]). Thus the lemma is true. O

So there is an element 0 # h € Zy[[X,,, Y]] such that h - f; € log, -A. We define the bounded
cohomology class
h h
DYt S22y €l (Kee M) )

Vo

BFT .= — 1
2log,, 2log

It follows from that the Galois cohomology image of Beilinson-Flach element is geometric that the
BF* maps to H} (Gyy, M(f)*@A(—=V)) C HY(Gyy, M(f)*@A(—T)), since for any arithmetic point
¢ such that log, |4 # 0, the class is in the finite part H}(GUO, —).

We take basis v* of .Zg with respect to which wy and ) are p(d)Yv" and p(d)v™ (see the
discussion for Yager Modules). We use this basis to give Ag-integral structure for M (g)*. With this
integral structure we can talk about specializing BF'™ to arithmetic points ¢, provided we remove
the set of ¢’s in a lower dimensional subspace (the zeroes of the denominator for BF'T with respect
to the basis). The following propositions are proved in [30]. Let Wg be the Ag-valued Galois char-
acter of G corresponding to the Galois representation associated to g (i.e. Indgg\I/g = M(g)").
Since p splits as vovp in K, there is a canonical identification (Indgg‘llg)\g% o~ \Ilg|G,CvO @ ‘l’g’G/cﬁO
and can take a Ag-basis of the right side as {v, c- v} where c is the complex conjugation. (Note that
there are two choices for the Wg and we choose the one so that \Ijg‘Gmo corresponds to Fg ).
Convention: we use the basis {v™,c-v"} to identify the Galois representation of g with the induced
representation Inde\Ilg.

In the following we define ¢ in a generic set of arithmetic points corresponding to a finite order
character of I'x to mean all such ¢ outside a proper closed sub-scheme of SpecA.
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Proposition 7.5. For some Hy € @; and ¢ in a generic set of arithmetic points corresponding
to a primitive character of Ty, X Uy, with n an even number (as local Galois group at vg), for any

a, B € {+/-p},

¢(Lp.op)e(x,")

s )
Here Pr® and n]Yﬁ denote projecting to the (B-eigenspace of Dyr(f), exp® is the Bloch-Kato dual
exponential map. The x4 means composing U with ¢. By class field theory the x4 can be considered
as a character of Q. For the Pr‘*g;, we recall that M (g)* is split as the direct sum of ﬂg and Fg
as Galois modules which are rank one vector spaces over Lg. So if we exclude the set of ¢’s in a lower
dimensional space it makes sense to talk about projection to (Fg ®Zgr)G@p or (Z4 (xg') ®ZZT)G@I’
components at ¢.

Hy - Pr7% PrB(exp™(¢(BFy))) =

Proof. It follows from the explicit reciprocity law in [30, Theorem 7.1.4, Theorem 7.1.5] together with
the interpolation property of the big regulator map [38, Theorem 4.15|. Note that o = " = (—p )2
and that the f,4 in loc.cit corresponds to the y4(u)" part (u being the arithmetic Frobenius) of

e(xy")- O
The proposition has the following corollary using Proposition
Corollary 7.6. We use the convention before Proposition . Then for some Hy € Q; we have
Colf (BFT)=h-Hy-L™".
(the h is defined in (7).
Proof. First recall that wy is the p(d)Yv™ for the basis v* we have chosen. If we take H; to be

+o- _
Q<E%E times some element in Q' (recall n]Y is defined up to a scalar). Then the corollary follows. [

Proposition 7.7. There is a non-zero element 0 # Hy € Z}jr[[T]], such that for ¢ in a generic set
of arithmetic points corresponding to a primitive character of T'y, X Uy, (as Galois group at vo) with
n an even number and for a € {£/—p},

1

Wﬁb(ﬁ?‘,l& : 5(X;1)W}/ ® p(ng)-

Here log,, is the Bloch-Kato logarithm map at vo.

Proof. This again follows from [30, Theorem 7.1.4, Theorem 7.1.5]. Note that the arithmetic points
at which the interpolation formulas are proved there are not quite the ¢’s considered here. In fact
those points in loc.cit correspond to the product of a finite order character of I" and some character
of U which is not of finite order. We may use the lemma below to get the result we need. We
also need to compare the p-adic L-function in loc.cit with the one in [67]. In [67] we used the X-
primitive p-adic L-function which is in A for X a finite set of primes. The original p-adic L-function
is obtained by putting back the Euler factors at X. We only know a priory it is in the fraction field
of A. There is another construction of this p-adic L-function EU”’“" € A ®), Lg by E.Urban [66]
using Rankin-Selberg method. This is the p-adic L-function used in [30]. However the period there
is the Petersson inner product of the normalized eigenforms in g instead of the CM period. The
ratio of these periods is given by hi - LB € Z;fr[[TH (see [22]). So we may choose hyx - LE* times
some constant in Q) as the Hy. The proposition follows. O

¢(Hy)Pr”e log, ¢(BF,) =
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Recall F), is the unramified extension of Q, of degree p".

Lemma 7.8. Let x be a primitive character of I'/p"T'y, and let K, be the field obtained from Q, by
joining in the coefficient ring of x. We let

K
Dag (T)

CwrRX(T) =wpy, € ———
2 / Ix Fil' D5 (T)

Tel'/pnT

®Qp KX'

The lim | H}(Fr_“ T(x)) is free of'mnk one over Ok, [[U]]. Moreover if im H}(Fn, T(x)) — ann Op,-
Wiy) ®z, Qp is a homomorphism of Ok, [[U]]-modules and for a Zariski dense set points ¢ €
SpecOx., [[U]] with the associated unramified Galois character denoted as pg, the specialization to
¢ : Ok, [[U]] = C, of this map is the Bloch-Kato logarithm map

Dar(T (xpg))
Fil’ Dar (T (xpg))”

Ifroof. Let K, be the composed field of Fj, and K, and let K, o, be the union of all K, , and
Ok,... be the p-adic completion of the integer ring of K, . We first observe that there is an integer

Hp(Qp, T(xpy)) —

m” such that the image of (’A)Kxﬁn -wy under the Bloch-Kato exponential map lies in p ™ HK, o0, T).

This follows from the explicit formula for the logarithm map of the formal group F of E. From this
we know there is an integer m’ with

exp: Op, - wpy — p ™ H (Foo, T(X))- (8)

and
lim Op, - wyy = p~ ™ lim H'(F,, T(x)).
n n

Suppose p is an unramified character of Gg, with p(u) = 1+ m so that |m|, < 1 is in a finite
extension L/Q,. Recall that d € im O, and p(d) = lim > oeu/pnu P(0)d7. Define

Wexp i= p(d) Wy = @Zd% Wiy ® p(o) € (m OFH)Wf Xz, OLX
for L, = K, (m). Then the boundedness implies

pld)-wpn = lim S p(e)exp(d] - wry)
" oeU/pnU

gives the Bloch-Kato exponential map for V(xp). Now it follows from the fact that the exponential
mpa, for V(xp) is an isomorphism from Quwy ., ®q, Ly to H}(QP, V(xp)) and some elementary
theory of O, [[U]]-module structures that there is an integer m such that

exp(l.gl OFn : wva)

is p"™ times a rank one Of, [[U]]-direct summand of the free rank two O, [[U]] module Hm HY(F,, T(x)).
These altogether give the lemma. O
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Corollary 7.9. We use the convention before Proposition . Then for some 0 # H3 € FracAg we

have
LOG/, (BF*) =h-Hs- (L} ).
Proof. Take Hs as —H% - 2= and use Proposition . O

Remark 7.10. Both Hy and — are elements in the fraction field of Ag. In the nexl section we
are going to carefully study them to get a refined main theorem. In particular we will use Rubin’s

work on CM main conjecture to prove that 1/Hs is “almost” integral.

8 Proof of Main Results

In this section we first prove a weak version of the two-variable ++ main conjecture, which can be
used to deduce the one variable main conjecture of Kobayashi after inverting p. To take care of

IAY
powers of p, we need to study the ratio C;;vg (c € G is the complex conjugation, will make precise

definition for the c-action later on), which boils down to studying certain congruence modules.
Our idea is appeal to the main conjecture for CM fields proved by Rubin, and an argument of
Hida-Tilouine [I8] constructing elements in certain anticyclotomic Selmer groups from congruence
modules.

8.1 The Two Variable Main Conjecture

We first prove the weak version of one side (lower bound for Selmer groups) of Conjecture . We
define a couple of Selmer groups

H3(IC, M(f)* ® A (—0)) :=

HY(Guy, M(f)* ® Axc(—T))
HY (G, M(f)* ® A (=)

ker{ H' (K, M(f)* ® Axc(=)) = [[ H' (1o, M(f)* ® Ac(—¥)) x
ufp

|2

and
Selug,+ = lim  ker{H"(K', M(f)* ® Ax(¥) ® (Ax)*) = [[H 1, M(f)" @ Ac(T) @ (Ak)*)
KCK'CKoo vip

Hl(va M(f)* ® AIC(\II) ® (AIC)*)
ET(K,) @ Qp/Zy

X H'(Gooy M(f)" % Ac(¥) @ (M) ")},
Xvo,-i- = Sel:07+.
Recall that BFT is in Hi (K, M(f) ® Ak).
Conjecture 8.1. For any height one prime P of Ax we have the length of
Hj (K, M(f) ® Ax)/Ax - BFF

at Ap is the same as that of Xy, +. We also make the weak version and “one divisibility” version of
the above conjecture. (We will see in the proof of next theorem that Hi (K, M(f)® Ax) is a torsion
free rank one Ax-module).
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Theorem 8.2. The weak version of both Conjecture and the main conjecture in [67] are equiv-

alent to the conjecture above. Moreover the inequality lengthPXJj',C > ordpL}';)F 1s true under the

assumption of Theorem [6.13

Proof. Note that Hi(Gx, Ty @ Ac(—")) is torsion-free of rank one over Ax. This can be seen as
follows: the torsion-freeness is obvious. If the rank is at least two, then the kernel of the map from

LGy _
H3(Gr, Tr @ Ac(—7)) to gﬁgi‘;ggﬁiii?ﬁ has rank at least one, thus not torsion. Specialize to

the cyclotomic line v~ — 1 = 0, we see this is impossible by [33] Theorem 7.3 (i)]. So the rank has to
be at most one. Now recall that by Corollaries and , the image of BF'T by Col%r0 and LOG:{O

are certain p-adic L-functions which are not identically zero. It then follows that the kernels of

HY (G, Ty @A (— ¥
H} (G, Ty @ A (—)) — Hi((cﬁE,ch@Ai((w)))) and HY (G, Ty @ Ax(=0)) = HL(Gop, Tr ® Axc(— 1))
must be 0.

The above discussion gives the following exact sequences (Poitou-Tate long exact sequence):

H' (G, Ty @ Ac(=9))
Hi(GTJ()? Tf ® AK(_\I/»

0 — H3(Gx, Ty @ Ac(—=¥)) — — X" 5 Xpor =0

and
0 — H3 (G, Tf @ Ac(=0)) = Hi (G, Ty @ Ac(—V)) = Xy — Koo+ — 0.

We know XE@ is torsion by [33]. So the control theorem Proposition in the following implies

that X is torsion over Ax. So the rank of Hi (K, T ® Ax(—¥)) must be one. Then the argument
is the same as [33], Theorem 7.4|, using Corollaries and and the above exact sequences. [

Note that at the moment we can only treat height one primes of A which are not pullbacks of
height one primes of Ag and thus can only prove the weak version of the theorem. In order to get a
refined result we need to study the relations between v+ and c¢- v~ we discussed before Proposition
[7.5] In fact we can prove the strong version of Conjecture by applying Rubin’s work on the main
conjecture for K. We first study certain Eisenstein components of the modular curve cohomology.
Let T be the Hecke algebra generated by T’s for ¢ f pDx and Up’s for ¢|pDy, acting on the space
of ordinary cuspidal forms with tame level group I'1(Dg). Let Ty, be the localization of T at the
maximal ideal corresponding to g. These Hecke algebras are reduced since cond(xx) = Dx and the
nebentypus of forms congruent to g must be congruent to xx modulo p and thus conductor must
be Dx as well. Then the family g is a component of it. We write the non-CM component Ty for
the quotient of Ty, corresponding to Spec(Tw,) with all irreducible components corresponding to
families of K-CM forms deleted. Let Copr C Tycon be the congruence ideal generated by {t —tg}s’s
for t running over all Hecke operators (including the U, operator) and tg is the Hecke eigenvalue
for ¢ on g. Then the map Ag — Tnoanr/Ceon is surjective. We let Iops be the kernel of this map.

Proposition 8.3. We have ordpLE > Lengthp(Ag/Icns) for any height one prime P of Mg,
unless P is the pullback to Ax = Z,[[I' x I'"]] of the augmentation ideal (v — 1)Zpy[[I'7]] of Z,[[I'"]]
(we call these primes “exceptional”).

Proof. We note that each irreducible component B of Tycas the Galois representation pp : Gg —
GLa(Frac(B)) has irreducible restriction to Gi. This is because there exists classical specialization
at that component which is not a CM form with respect to K. Let

Xem = H}(’CaAg(XgX;) Dng Ag)”
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where xg denotes the family of CM character corresponding to the family of CM form g. The
Selmer condition “f” is defined by restricting trivially to H!(I,,—) at all primes v # vg. Then the
“lattice construction” (see [I8), Corollary 3.3.6], and see [68] for the construction in the situation
here) gives that for any non-exceptional height one prime P of Ag,

lengthAg,P (Ag/ICM)p <ordpXcm.

This construction works unless P corresponds to the pullback of the augmentation ideal in the
anticyclotomic line (these cases do not satisfy the [I8, (SEP.P)] on page 32 of loc.cit). On the other
hand, Rubin [52], [53] proved that we have (LE%/F;) = char(Xca) (note that Fy is a unit in
Zg’”[[T ]])- In fact Rubin proved a two-variable main conjecture and we easily have that the two
variable dual Selmer group specializes exactly to the one variable anticyclotomic dual Selmer group
here. These together imply the proposition. O

Recall we defined basis v* of ﬁgi. Let ¢ be the complex conjugation in Gg. Recall that
wg = p(d)" -v*. If c € Gg is the complex conjugation we define

\VA \2 + - Zur\G
c-wg =p(d)’(c-vT) € (Fg RL,)7%.

We have the following

Lemma 8.4. We have

Y%
W

ordpLEY* 4 ordp vg >0
g

for any height one prime P which is not (p) and not “exceptional” as defined in Proposition .
(Note that we have to exclude the prime (p) due to CM components other than g.)

Proof. There is a Hecke operator 1g in Ty, ®a, Fa,, the non-integral Hecke operator which cuts off
the g-part of any Hida family (See [61] 12.2] for details. Note also that g is generically non-Eisentein
meaning that the generic specialization of it is cuspidal). From [43, Theorem and Corollary 2.3.6]
we know B ® Zg’” ~ S‘”’d(I‘l(ch),Zg”[[T]]) (the space of Zg”[[T]]—coefﬁcient ordinary families
with tame level Dx) as Hecke modules under which ngv maps to the normalized eigenform g (See
the choice for them in [32] Theorem 7.4.10]). Note that p(d) and p(d)" are invertible elements in
Zg"[[T]]. Note also that ¢-w) is in the cuspidal part B ® ZZT C B ® Zgr of the cohomology. So

g
we just need to prove that for any F € S°"4(I'1(Dx), Ag),

ly - F
ordpﬁgatz g

+ ordp >0 (9)

for any non-exceptional primes P # (p). This follows from Proposition first of all, the K-CM
components other than g corresponds to characters of the Hilbert class group of . So it is easy
to see that there is a ¢y € Ty, such that t1g = ay, - g for az; being the product of an element
in Q) and an element of Z,[[T]]*, and such that #; kills -CM components of Ty, other than g.
Proposition implies that there is an fg € T, such that ¢,y - F' = ag for a € A and (g - g = bg

with ordﬁ,lé‘m > ordpb. But t1lgF = t1lglgF' = 11015 F = a4, ag. So ordpb + ordp% > 0 and we

get @ O

Now we are ready to prove our theorem.
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Theorem 8.5. For any height one prime P # (p) of Ax which is not exceptional, we have
lengthpX /¢ > ordpL} . (10)

Proof. Completely the same as the proof of Theorem except that we also take Lemma into
consideration (see proof of Proposition for where LK% plays a role). O

To take care of the prime (p) we use the following proposition of Pollack-Weston.

Proposition 8.6. Suppose N is square-free, a, = 0. Suppose moreover that any prime divisor of
N either splits in IC or is inert. Assume for any such inert prime q we have p|g, is ramified and
there are odd number of such inert primes. Then

ord(p) L}:; S 0.

Proof. We may assume that L;{; € A. By [50] the anticyclotomic u-invariant for the specialization
of LJT;L to anticyclotomic line is 0. Note that the period used in [50] is Q°*" which, up to multiplying
by a p-adic unit is QEQE Note also that in loc.cit they assumed moreover that

° Im(G@) = Aut(TE).
e The anticyclotomic Z,-extension of K is totally ramified at p.

But these assumptions are not necessary: the surjectivity of the Galois representation can be re-
placed by irreducibility (See [29]). The second assumption is needed only for the vanishing of the
algebraic p-invariant and not needed for the analytic p-invariant. (We thank Chan-Ho Kim for
discussing these with us). O

Now we prove the lower bound for Selmer groups in Conjecture Note that the pullback of
the augmentation ideal of the anticyclotomic line does not contain LT since the specialization of
the latter to the cyclotomic line is not identically zero. We conclude that under the assumption of
Theorem and Proposition the full one-side inequality for is true.

8.2 Kobayashi’s Main Conjecture

Now we prove a control theorem for Selmer groups and deduce Kobayashi’s one-variable main
conjecture from the two variable one.

Proposition 8.7. Let P be the prime of A generated by T — 1 then
++ ~ Y+
X @ A/P > X,

where the last term is the + dual Selmer group of E over Keye defined similar as X .

Proof. This theorem is proved in the same way as [33, Theorem 9.3]. One first proves that E(m,, )
has no p-power torsion points as in [33, Proposition 8.7]. This implies that

lim im H (ki T) = H' (king,ng, T)
m n
is surjective. Then the control theorem follows in the same way as Proposition 9.2 of loc.cit. O
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Proof. (of Theorem The above proposition implies the cyclotomic main conjecture over K under
the assumption of Proposition Note that since N is square-free, there must be a prime ¢ such
that E[p]|q, is ramified (since otherwise by Ribet’s level lowering there will be a weight two cuspidal
eigenform with level 1, which can not exist). To prove Theorem , we just need to choose the
auxiliary K. We take K such that p and all prime divisors of IV except ¢ are split in IC while ¢ is inert.
This main conjecture over K together with one divisibility over Q proved in [33] gives the proof of
the main Theorem. Note that in [25] it is assumed that the image of Gg is Aut(Tr) = GL2(Z,).
However under our assumption that N is square-free it is enough to assume E[p]|q, is absolutely
irreducible, as explained in [59, Page 15-16]. The irreducibility of E[p]|cg, is proved in [7]. O

Finally we prove the following refined BSD formula.

Corollary 8.8. Suppose E is an elliptic curve with square-free conductor N and supersingular
reduction at p such that a, = 0. If L(E,1) # 0 then we have the following refined BSD formula

L(E1)
=t gq - [[ e
Qp N

up to a p-adic unit. Here cp is the Tamagawa number of E at £. Note that by irreducibility of the
Galois representation we know the p-part of the Mordell-Weil group is trivial.

Proof. This is proved as in [I2] Theorem 4.1], replacing the argument for the prime p by [33]
Proposition 9.2] for LCEQ. (In fact, all we need to do is to show that the p-adic component of the
map ¢, in the commutative diagram on top of [33, Page 27| is injective, which follows from that
(9.33) of loc.cit is injective. This is nothing but the Pontryagin dual of Proposition 9.2 there). We
use the interpolation formula [33] (3.6)] on the analytic side. Note also the fact that the Iwasawa
module of dual Selmer group has no non-trivial subgroup of finite cardinality is also deduced within
the proof of [12, Theorem 4.1] and can be obtained in the same way in our situation. This argument
is also given in details in [27].

O
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