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Abstract

In this paper we prove the ±-main conjecture formulated by Kobayashi for elliptic curves

with supersingular reduction at p such that ap = 0, using a completely new idea of reducing

it to another Iwasawa-Greenberg main conjecture which is more accessible. We also prove as a

corollary the p-part of the BSD formula at supersingular primes when the analytic rank is 0. The
argument uses in an essential way the recent study on explicit reciprocity law for Beilinson-Flach

elements by Kings-Loe�er-Zerbes.

1 Introduction

Let p be an odd prime. Iwasawa theory studies relations between special values of L-functions and
arithmetic objects such as class numbers of number �elds or more generally p-adic Selmer groups.
The central problem for this study is the Iwasawa main conjecture, which roughly speaking, says
that the size (or more precisely the characteristic ideal) of certain module parameterizing the p-adic
families of Selmer groups is controlled by the so called p-adic L-function, which interpolates p-adic
families of the algebraic parts of the corresponding special L-values. Iwasawa main conjecture is
also a useful tool in proving the re�ned Birch-Swinnerton-Dyer (BSD) formula for elliptic curves.

Earlier work on Iwasawa main conjecture includes the work of Mazur-Wiles [42], Wiles [71] for p-adic
families of Hecke characters of totally real �elds using the Eisenstein congruence on GL2, Rubin
[52] for characters for quadratic imaginary �elds using Euler systems of elliptic units, the work of
Hida-Tilouine for anticyclotomic characters of general CM �elds [18], the work of E.Urban [65] on
symmetric square L functions, the work of Bertolini-Darmon [3] for anticyclotomic main conjecture
for modular forms, and the recent work of Kato [25] and Skinner-Urban [61] which proves the
Iwasawa main conjecture for ordinary elliptic curves E/Q (and this list is not complete). We brie�y
recall the formulation of [61]. Let Q∞ be the cyclotomic Zp extension of Q with the Galois group
denoted as ΓQ. Write ΛQ := Zp[[ΓQ]]. There is a p-adic L-function LE interpolating the central
critical values of the L-function for E. We de�ne the Selmer group by

SelE : lim−→
n

ker{H1(Qn, TE ⊗Qp/Zp)→
∏
v-p

H1(Iv, TE ⊗Qp/Zp)×
∏
v|p

H1(Qv, TE/T
+
E ⊗Qp/Zp)}

where T+
E is a rank one submodule of TE stable under Gv such that the Gv-action is unrami�ed

on TE/T
+
E . The dual Selmer group XE being the Pontryagin dual of SelE . The Iwasawa main

conjecture states that XE is a torsion ΛQ-module and the characteristic ideal of XE as a module
over ΛQ is generated by LE . In fact Kato proves one divisibility by constructing an Euler system
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while Skinner-Urban ([61]) proves the other divisibility using Eisenstein congruences on the larger
unitary group U(2, 2).

Now let us turn to the supersingular elliptic curve case. By Taniyama-Shimura conjecture proved by
Wiles [72] and Breuil-Conrad-Diamond-Taylor [2] we know there is a normalized cuspidal eigenform
f =

∑∞
n=1 anq

n associated to E. Suppose ap = 0. (This is automatically true if p ≥ 5). For a
supersingular elliptic curve E/Q, Kobayashi ([33]) reformulated Kato's result in terms of the ±
p-adic L-functions L±E and ±-Selmer groups (we recall in the text). The Iwasawa main conjecture
for supersingular elliptic curves is

Conjecture 1.1. The ±-dual Selmer group X±E is torsion over ΛQ and the characteristic ideal of
X±E is generated by L±E as ideals of ΛQ.

Here we de�ne the characteristic ideal as follows

De�nition 1.2. Let A be a Noetherian normal domain and M a �nitely generated A-module. Then
the characteristic ideal charA(M) of M is de�ned to be

{x ∈ A|ordP (x) ≥ LengthAPMP , for any height one prime P of A}.

If M is not A-torsion then we de�ne it to be zero.

Before this work the only result for ±-main conjecture is due to Pollack-Rubin ([49]) for CM elliptic
curves. However the proof in loc.cit does not generalize to all supersingular elliptic curves. It is
also a natural attempt to adapt the argument of [61] to the supersingular case. To make this work
we similarly take an auxiliary quadratic imaginary �eld K such that p splits as v0v̄0. However
this turns out to be quite hard since we do not see any ways to pick up the ±-part of the Selmer
groups from Skinner-Urban's construction. Another possibility would be trying to prove the for-
muation of the main conjecture of Pottharst [47], which, instead of using the ± theory, studies one
(unbounded) p-adic L-function for an Up-eigenvector and the corresponding Selmer group. Then
it is reasonable to believe that one needs to construct families of triangulations for the family of
Galois representations on the eigenvariety of U(2, 2). However it is not clear whether there are such
families of triangulations at all points we need to study (see [37]). Moreover it seems hard to get
the main conjecture before inverting p by this method. Finally the construction of the Eisenstein
families and the study of the Fourier-Jacobi expansion in this case both require completely new ideas.

After some unsuccessful tries, a di�erent idea came into our consideration. We �rst give some
backgrounds on Greenberg's work on Iwasawa theory. At the moment suppose T is a geometric
(i.e. potentially semistable) Zp-Galois representation of GQ and V := T ⊗ Qp. Then we have the
Hodge-Tate decomposition

V ⊗ Cp = ⊕iCp(i)hi

where Cp(i) is the i-th Tate twist and hi is the multiplicity. Let d be the dimension of T and let
d± be the dimensions of the subspaces whose eigenvalues of the complex conjugation c is ±1. We
assume

• d+ =
∑

i>0 hi.
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This is put by Greenberg as a p-adic version of the assumption that L(T, 0) (in favorable situations
when this makes sense) is critical in the sense of Deligne. Assume moreover the following Panchishkin
condition

• There is a d+-dimensional Qp-subspace V + of V which is stable under the action of the
decomposition group Gp at p such that V + ⊗ Cp = ⊕i>0Chip .

Write T+ := V +∩T . Under this Panchishkin condition Greenberg de�ned the following local Selmer
condition

H1
f (Qp, V/T ) = Ker{H1(Qp, V/T )→ H1(Qp,

V/T

V +/T+
)}.

In other words under the Panchishkin condition the local Selmer condition above is very analogous
to the ordinary case, thus making the corresponding Iwasawa main conjecture (when an appropriate
p-adic L-function is available) accessible to proof (especially the �lattice construction� discussed in
[61, Chapter 4]). The following example is crucial for this paper.

Example 1.3. Let f be a cuspidal eigenform of weight k and g be a CM form of weight k′ with
respect to a quadratic imaginary �eld K such that p splits. Then g is ordinary at p by de�nition.
Assume k + k′ is an odd number. We consider critical values for Rankin-Selberg products L(f, g, i)
(which means L(ρf ⊗ρg(−i), 0) if we write ρf and ρg for the corresponding Galois representations).
We consider two possibilities:
1. If k > k′, then the Panchishkin's condition is true if f is ordinary;
2. If k′ > k, then the Panchishkin's condition is always true, regardless of whether f is ordinary or
not. This can be seen as follows: we have d± = 2, ρf and ρg have Hodge-Tate weights (0, k − 1)
and (0, k′ − 1) respectively. The L-values are critical when k − 1 ≤ i ≤ k′ − 1. So for those i above
ρf ⊗ ρg(−i) has two positive Hodge-Tate weights. On the other hand ρg as a GQp-representation is
the direct sum of two characters. Thus the Panchishkin condition is easily seen.

In the case when f is nearly ordinary the result is proved in [67]. The �rst thing we do in this
paper is prove this Greenberg main conjecture when f corresponds to the supersingular elliptic curve
E (this is proved in Theorem 5.3). This theorem in itself has independent interest and has other
arithmetic applications. As in [67], the p-adic L-function here appears as the constant of certain
Klingen Eisenstein series on the group U(3, 1) and we make use of the Eisenstein congruences of
them with cusp forms. The following new ingredients are important in our argument

• The construction in [9] of families of Klingen Eisenstein series from f and a CM character.
This family is semi-ordinary in the sense that some (not all) Up operators have p-adic units
as eigenvalues.

• The above family sits in a two dimensional subspace of the three dimensional weight space
for U(3, 1). The theory of families of semi-ordinary forms that we develop in Section 3.3 on
this two dimensional space is essentially a �Hida theory� which are over the two dimensional
Iwasawa algebra (instead of over a small a�noid disc as the Colman-Mazur theory. This
observation is crucial since the Iwasawa main conjectures are formulated over the Iwasawa
algebra.

Now let us go back to the proof of the ± main conjecture. We call the ±-main conjecture (as
extended by B.D. Kim to a two variable one) case one and the �Greenberg type� main conjectures

3



case two. A surprising fact is, these ostensibly di�erent main conjectures are actually equivalent
(note that conjecture two does not involve any ± theory at all)! The Beilinson-Flach elements
can be used to build a bridge between case one and case two. In fact the explicit reciprocity law
(studied by Kings-Loe�er-Zerbes and Bertolini-Darmon-Rotger) enables us to reformulate the main
conjectures in both cases in terms of Beilinson-Flach elements and in fact the new formulations for
the two cases are the same. This means we can reduce the proof of one case to the other one.
We note here that unlike Kato's zeta elements which are by de�nition in the bounded Iwasawa
cohomology group, the Beilinson-Flach elements form an unbounded family in the non-ordinary
case. Therefore we need to construct a bounded �+� Beilinson-Flach element from the unbounded
Beilinson-Flach classes constructed by Lei-Loe�er-Zerbes, in the similar �avor as Pollack's work on
constructing the ± p-adic L-functions. This is the very reason why a ±-type main conjecture can
be equivalent to a Greenberg type one. This �nishes the proof of the lower bound for Selmer group
in B.D. Kim's main conjecture. The conjecture of Kobayashi (cyclotomic main conjecture) follows
from B.D. Kim's via an easy control theorem of Selmer groups. Our main result is

Theorem 1.4. Suppose E has square-free conductor N , supersingular reduction at p and ap = 0.
Then Conjecture 1.1 is true.

The square-free conductor assumption is put in [67] (can be removed if we would like to do some
technical triple product computations). The assumption for ap = 0 is primarily made for simplicity
and we expect the same idea to work to prove the conjecture by F. Sprung [60] when ap 6= 0. We
also remark that although we work with supersingular case, however, even in the ordinary case,
with the same idea we can deduce new cases of the two variable main conjectures considered in
[61] (there the global sign is assumed to be +1 while we no longer need this assumption). Finally
in the two variable case the upper bound for Selmer group is still missing since there are some
technical obstacles (about level raising) to construct the Beilinson-Flach element Euler system in
our context. Luckily such upper bound in one variable case is already provided by the work of Kato
and Kobayashi.

In the text we will also prove the p-part of the re�ned BSD formula in the analytic rank 0 case as
a corollary (Corollary 8.8). Therefore our result combined with the results in [61] and [59] gives
the full re�ned BSD formula up to powers of 2, for a large class of semi-stable elliptic curves (when
analytic rank is 0). The two-variable main conjecture we prove can also be used to deduce the
anti-cyclotomic main conjecture of Darmon-Iovita ([6]). We leave this to industrious reader.

In the argument we prove the result for the +-main conjecture since the −-main conjecture is
equivalent (by [33, Theorem 7.4]. This paper is organized as follows: in Section 2 we recall some
backgrounds for automorphic forms and p-adic automorphic forms. In Section 3 we develop the
theory of semi-ordinary forms and families, following ideas of [64] and arguments in [19, Section 4].
In Section 4 we construct the families of Klingen Eisenstein series using the calculations in [9] with
some modi�cations. In Section 5 we make use of the calculations in [67], and then deduce the main
conjecture for Rankin-Selberg products. In Section 6 we develop some local theory and recall the
precise formulation of the B.D. Kim's two variable main conjecture. In Section 7 we recall the work
of D. Loe�er et al on Beilinson-Flach elements, especially the explicit reciprocity law. We reinter-
pret these reciprocity laws in terms of the local theory in Section 6. In Secion 8 we put everything
together and prove the main result using Poitou-Tate exact sequence. To treat powers of p we use
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a trick which appeals to Rubin's work on main conjecture for CM �elds, and Hida-Tilouine's idea
of constructing anti-cyclotomic Selmer group from congruence modules.

Notations:
We let E be an elliptic curve over Q and let f be the weight two cuspidal normalized eigenform
associated to it by the Shimura-Taniyama conjecture of conductor N . Write

f =
∞∑
n=1

anq
n

with ap = 0. Let T be the Tate module of E and V = T ⊗Zp Qp. Let α =
√
−p. Then there

are two eigenforms fα, f−α of level Np for Up-operator in the automorphic representation of f with
eigenvalues α,−α. Let K be a quadratic imaginary �eld in which p splits as v0v̄0. Let dK be the
absolute di�erent of K/Q. We �x once for all an isomorphism ιp : C ' Cp and suppose v0 is induced
by ιp.

Let K∞ be the unique Z2
p-extension of K with Gal(K∞/K) denoted as ΓK. Let Λ = ΛK =

Zp[[ΓK]]. We assume v0 splits into pt di�erent primes in K∞. Let Kcyc be the cyclotomic Zp
extension of K. We write Γ for the Galois group of the cyclotomic Zp-extension of Qp and U the
Galois group of the unrami�ed Zp-extension of Qp. We �x topological generators γ and u of them
with u being the arithmetic Frobenius. Let Γn = Γ/pnΓ and Um = U/pmU . Let Γp ⊆ ΓK be the
decomposition group of v0 in ΓK. Then [ΓK : Γp] = pt. We also de�ne the maximal sub-extensionKv0

of K∞ such that v̄0 is unrami�ed and de�ne Kv̄0 similarly but switching the roles played by v0 and
v̄0. We de�ne Γv0 as Gal(K∞/Kv̄0) and Γv̄0 as Gal(K∞/Kv0). Let γv0 and γv̄0 be their topological
generator. We also identify U = Uv0 = Uv̄0 = Gal(K∞,v0/Kcyc,v0). Let Γ− = Gal(K∞/Kcyc) and
γ− be a topological generator. Let Ψ be the character GK → ΓK → Λ×K and let E be Ψ composed
with the reciprocity map in class �eld theory (normalized by the geometric Frobenius). De�ne Λ∗K
as the Pontryagin dual of ΛK. De�ne Ẑurp as the completion of the Zp-unrami�ed extension of Zp.
(In the literature it usually means the completion of the maximal unrami�ed extension of Zp. But
the Zp is enough for our purposes).

We write Φm(X) =
∑p−1

i=1 X
pm−1i for the pm-th cyclotomic polynomial. Our α, β will be denoting

any elements in the set {±
√
−p}. Sometimes we will precisely indicate that α =

√
−p, β = −

√
−p.

Fix a compatible system of roots of unity ζpn such that ζppn = ζpn−1 . For a character ω of Q×p we
de�ne a ε factor of it as in [38, Page 8]: we de�ne ε(ω) = 1 if it is unrami�ed and

ε(ω) =

∫
Q×p

ω(x−1)λ(x)dx

otherwise. Here λ is an additive character of Qp such that the kernel is Zp and λ( 1
pn ) = ζpn .

We can also de�ne the ε factors for Galois characters via class �eld theory (p is mapped to the
geometric Frobenius). For a primitive character of Γ/Γn we also de�ne the Gauss sum g(ω) :=∑

γ∈Γ/Γn
ω(γ)ζγpn .

We often write Σ for a �nite set of primes containing all bad primes. If D is a quaternion
algebra, we will sometimes write [D×] for D×(Q)\D×(AQ). We similarly write [U(2)], [GU(2, 0)],
etc. We also de�ne Sn(R) to be the set of n × n Hermitian matrices with entries in OK ⊗Z R.
Finally we de�ne Gn = GU(n, n) for the unitary similitude group for the skew-Hermitian matrix(

1n
−1n

)
and U(n, n) for the corresponding unitary groups. We write eA =

∏
v ev where for
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each place v of Q and ev is the usual exponential map at v. We refer to [19] for the discussion of
the CM period Ω∞ and the p-adic period Ωp. For two automorphic forms f1, f2 on U(2) we write
〈f1, f2〉 =

∫
[U(2)] f1(g)f2(g)dg (we use Shimura's convention for the Haar measures).

Acknowledgement We thank Henri Darmon, Ruochuan Liu, David Loe�er, Toby Gee, Christopher
Skinner, Richard Taylor, Eric Urban, and Wei Zhang for helpful communications.

2 Backgrounds

2.1 Greenberg's Main Conjecture

As remarked in the introduction our �rst step is to prove a Greenberg type main conjecture, which we
formulate here. (This will be proved in Section 5). We will take a holomorphic cuspidal automorphic
representation π of GL2/Q with even weight and a CM character ξ of K×\A×K with in�nite type
(κ/2,−κ/2) for some even number κ ≥ 6. Let f ∈ π be the normalized newform and ρf the Galois
representation of GQ associated to it. (We will not assume π has weight two until Section 5). We
�rst de�ne the characteristic ideals and the Fitting ideals. We let A be a Noetherian ring. We write
FittA(X) for the Fitting ideal in A of a �nitely generated A-module X. This is the ideal generated
by the determinant of the r × r minors of the matrix giving the �rst arrow in a given presentation
of X:

As → Ar → X → 0.

If X is not a torsion A-module then FittA(X) = 0.

Fitting ideals behave well with respect to base change. For I ⊂ A an ideal, then:

FittA/I(X/IX) = FittA(X) mod I

Now suppose A is a Krull domain (a domain which is Noetherian and normal), then the character-
istic ideal is de�ned by:

charA(X) := {x ∈ A : ordQ(x) ≥ lengthQ(X) for any Q a height one prime of A},

Again if X is not torsion then we de�ne charA(X) = 0.

We consider the Galois representation:

Vf,K,ξ := ρfσξ̄cε
4−κ

2 ⊗ ΛK(Ψ−cK ).

De�ne the Selmer group to be:

Self,K,ξ := ker{H1(K, Tf,K,ξ⊗OL[[ΓK]]∗)→ H1(Iv̄0 , Tf,K,ξ⊗OL[[ΓK]]∗)×
∏
v-p

H1(Iv, Tf,K,ξ⊗OL[[ΓK]]∗)}

where ∗ means Pontryagin dual HomZp(−,Qp/Zp) and the Σ-primitive Selmer groups:

SelΣf,K,ξ := ker{H1(K, Tf,K,ξ⊗OL[[ΓK]]∗)→ H1(Iv̄0 , Tf,K,ξ⊗OL[[ΓK]]∗)×
∏
v 6∈Σ

H1(Iv, Tf,K,ξ⊗OL[[ΓK]]∗)}
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and
XΣ
f,K,ξ := (SelΣf,K,ξ)

∗.

We are going to de�ne the p-adic L-functions Lf,K,ξ and LΣ
f,K,ξ (which are elements in Frac(OurL [[ΓK]]))

in section 4. The two-variable Iwasawa main conjecture and its Σ-imprimitive version is the following
(see [11]).

Conjecture 2.1.

charOurL [[ΓK]]Xf,K,ξ = (Lf,K,ξ),

charOurL [[ΓK]]X
Σ
f,K,ξ = (LΣ

f,K,ξ).

2.2 Groups

Let δ ∈ K be a totally imaginary element such that −iδ is positive. Let d = Nm(δ) which we
assume to be a p-adic unit. Let U(2) = U(2, 0) (resp. GU(2) = GU(2, 0)) be the unitary group

(resp. unitary similitude group) associated to the skew-Hermitian matrix ζ =

(
sδ

δ

)
for some

s ∈ Z+ prime to p. More precisely GU(2) is the group scheme over Z de�ned by: for any Z algebra
A,

GU(2)(A) = {g ∈ GL2(A⊗Z OK)|tḡζg = λ(g)ζ, λ(g) ∈ A×.}

The map µ : GU(2) → Gm, g 7→ λ(g) is called the similitude character and U(2) ⊆ GU(2) is
the kernel of µ. Let W be the corresponding Hermitian space over K and �x a lattice L ⊂ W
over OK such that TrK/Q〈L,L〉 ⊂ Z. Let G = GU(3, 1) (resp. U(3, 1)) be the similarly de�ned
unitary similitude group (resp. unitary group) over Z associated to the skew-Hermitian matrix 1

ζ
−1

. We write its corresponding Hermitian space as V = XK ⊕ W ⊕ YK where W is

the Hermitian space for GU(2) and XK and YK are one dimensional K-spaces with standard basis
x1 and y1. Let X∨ = d−1

K x1 and Y = OKy1 and we call X∨ ⊕ L ⊕ Y the standard lattice of V .
Let P ⊆ G be the parabolic subgroup of GU(3, 1) consisting of those matrices in G of the form
× × × ×
× × ×
× × ×

×

. Let NP be the unipotent radical of P . Then

MP := GL(XK)×GU(2) ↪→ GU(V ), (a, g1) 7→ diag(a, g1, µ(g1)ā−1)

is the Levi subgroup. Let GP := GU(2)(⊆ MP ) 7→ diag(1, g1, µ(g)). Let δP be the modulus char-
acter for P . We usually use a more convenient character δ such that δ3 = δP .

Since p splits as v0v̄0 in K, GL4(OK ⊗ Zp)
∼→ GL4(OKv0 ) × GL4(OKv̄0 ). Here U(3, 1)(Zp)

∼→
GL4(OKv0 ) = GL4(Zp) with the projection onto the �rst factor. Let B and N be the upper triangu-
lar Borel subgroup of G and its unipotent radical, respectively. Let Kp = GU(3, 1)(Zp) ' GL4(Zp),
and for any n ≥ 1 let Kn

0 be the subgroup of K consisting of matrices upper-triangular modulo pn.
Let Kn

1 ⊂ Kn
0 be the subgroup of matrices whose diagonal elements are 1 modulo pn.
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The group GU(2) is closely related to a division algebra. Put

D = {g ∈M2(K)|gtζḡ = det(g)ζ},

then D is a de�nite quaternion algebra over Q with local invariants invv(D) = (−s,−DK/Q)v (the
Hilbert symbol). The relation between GU(2) and D is explained by

GU(2) = D× ×Gm ResK/QGm.

For each �nite place v we write D1
v for the set of elements gv ∈ D×v such that |Nm(gv)|v = 1, where

Nm is the reduced norm.

Let Σ be a �nite set of primes containing all the primes at which K/Q or π or ξ is rami�ed, the
primes dividing s, the primes such that U(2)(Qv) is compact and the prime 2. Let Σ1 and Σ2,
respectively be the set of non-split primes in Σ such that U(2)(Qv) is non-compact, and compact.

We de�neGn = GU(n, n) for the unitary similitude group for the skew-Hermitian matrix
(

1n
−1n

)
and U(n, n) for the corresponding unitary groups.

2.3 Hermitian Spaces and Automorphic Forms

Let (r, s) = (3, 3) or (3, 1) or (2, 0). Then the unbounded Hermitian symmetric domain for GU(r, s)
is

X+ = Xr,s = {τ =

(
x
y

)
|x ∈Ms(C), y ∈M(r−s)×s(C), i(x∗ − x) > iy∗ζ−1y}.

We use x0 to denote the Hermitian symmetric domain for GU(2), which is just a point. We have
the following embedding of Hermitian symmetric domains:

ι : X3,1 ×X2,0 ↪→ X3,3

(τ, x0) ↪→ Zτ ,

where Zτ =

(
x 0

y ζ
2

)
for τ =

(
x
y

)
.

Let G(r, s) = GU(r, s) and H = Hr,s = GLr × GLs. Let Gr,s(R)+ be the subgroup of elements of
Gr,s(R) whose similitude factors are positive. If s 6= 0 we de�ne a cocycle:

J : Gr,s(R)+ ×X+ → Hr,s(C)

by J(α, τ) = (κ(α, τ), µ(α, τ)), where for τ =

(
x
y

)
and α =

a b c
g e f
h l d

 (blocks matrix with

respect to the partition (s+ (r − s) + s)),

κ(α, τ) =

(
h̄tx+ d̄ h̄ty + lζ̄

−ζ̄−1(ḡtx+ f̄) −ζ̄−1ḡty + ζ̄−1ēζ̄

)
, µ(α, τ) = hx+ ly + d
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in the GU(3, 1) case and
κ(α, τ) = h̄tx+ d̄, µ(α, τ) = hx+ d

in the GU(3, 3) case. Let i ∈ X+ be the point
(
i1s
0

)
. Let K+

∞ be the compact subgroup of

U(r, s)(R) stabilizing i and let K∞ be the groups generated by K+
∞ and diag(1r+s,−1s). Then

K+
∞ → H(C), k∞ 7→ J(k∞, i)

de�nes an algebraic representation of K+
∞.

De�nition 2.2. A weight k is de�ned to be an (r + s)-tuple

k = (a1, · · · , ar; b1, · · · , bs) ∈ Zr+s

with a1 ≥ · · · ≥ ar ≥ −b1 ≥ · · · − bs.

We refer to [19, Section 3.1] for the de�nition of the algebraic representation Lk(C) of H with
the action denoted by ρk (note the di�erent index for weight) and de�ne a model Lk(C) of the
representation H(C) with the highest weight k as follows. The underlying space of Lk(C) is Lk(C)
and the group action is de�ned by

ρk(h) = ρk(
th−1), h ∈ H(C).

We also note that if each k = (0, ..., 0;κ, ..., κ) then Lk(C) is one dimensional.
For a weight k, de�ne ‖k‖ = ‖k‖ by:

‖k‖ := a1 + · · ·+ ar + b1 + · · ·+ bs

and |k| by:
|k| = (b1 + · · ·+ bs) · σ + (a1 + · · ·+ ar) · σc ∈ ZI .

Here I is the set of embeddings K ↪→ C and σ is the Archimedean place of K determined by our �xed
embedding K ↪→ C. Let χ be a Hecke character of K with in�nite type |k|, i.e. the Archimedean
part of χ is given by:

χ∞(z) = (z(b1+···+bs) · z̄+(a1+···+ar)).

De�nition 2.3. Let U be an open compact subgroup in G(Af ). We denote by Mk(U,C) the space
of holomorphic Lk(C)-valued functions f on X+ × G(Af ) such that for τ ∈ X+, α ∈ G(Q)+ and
u ∈ U we have:

f(ατ, αgu) = µ(α)−‖k‖ρk(J(α, τ))f(τ, g).

Now we consider automorphic forms on unitary groups in the adelic language. The space of
automorphic forms of weight k and level U with central character χ consists of smooth and slowly
increasing functions F : G(A)→ Lk(C) such that for every (α, k∞, u, z) ∈ G(Q)×K+

∞×U ×Z(A),

F (zαgk∞u) = ρk(J(k∞, i)
−1)F (g)χ−1(z).

We can associate a Lk-valued function on X+ ×G(Af )/U by

f(τ, g) := χf (µ(g))ρk(J(g∞, i))F ((f∞, g))

where g∞ ∈ G(R) such that g∞(i) = τ . If this function is holomorphic then we say that the
automorphic form F is holomorphic.
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2.4 Galois representations Associated to Cuspidal Representations

In this section we follow [58] to state the result of associating Galois representations to cuspidal
automorphic representations on GU(r, 1)(AF ). Let n = r + 1. First of all let us �x the notations.
Let K̄ be the algebraic closure of K and let GK := Gal(K̄/K). For each �nite place v of K let K̄v be
an algebraic closure of Kv and �x an embedding K̄ ↪→ K̄v. The latter identi�es GKv := Gal(K̄v/Kv)
with a decomposition group for v in GK and hence the Weil group WKv ⊂ GKv with a subgroup
of GK. Let π be a holomorphic cuspidal irreducible representation of GU(r, 1)(AF ) with weight
k = (a1, · · · , ar; b1, · · · , bs) and central character χπ. Let Σ(π) be a �nite set of primes of F
containing all the primes at which π is rami�ed and all the primes dividing p. Then for some L
�nite over Qp, there is a Galois representation (by [56], [40] and [58]):

Rp(π) : GK → GLn(L)

such that:
(a)Rp(π)c ' Rp(π)∨ ⊗ ρp,χ1+c

π
ε1−n, ρp,χ1+c

π
denotes the associated Galois character by class �eld

theory and ε is the cyclotomic character.
(b)Rp(π) is unrami�ed at all �nite places not above primes in Σ(π) ∪ { primes dividing p), and for
such a place w:

det(1−Rp(π)(frobwq
−s
w )) = L(BC(π)w ⊗ χcπ,w, s+

1− n
2

)−1

Here the frobw is the geometric Frobenius and BC means the base change from U(r, 1) to GLr+1.
We write V for the representation space and it is possible to take a Galois stable OL lattice which
we denote as T . One subtle point here is that Skinner only proved the result for automorphic
forms of regular weight. We use a simple trick here to deduce it for all cohomological weights. As
explained in [58], there is a �very weak base change� of π to GLn/K in the sense that outside a
�nite set of primes S containing all bad primes, its local component is the local base change of π.
The terminology �very weak� means that the S might be strictly larger than the set of bad primes
(i.e primes where K or π is rami�ed). It su�ces to show that the very weak base change is actually
locally the base change at all good primes. We use the method of eigenvarieties to deduce this. For
any good prime ` which is in S, we take an auxiliary split prime q outside S and deform π in an
r-dimensional �nite slope q-adic family (i.e. over the whole weight space) of cuspidal eigenforms F
over some rigid analytic a�noid X. This can be achieved by applying the result in [45], and the
construction for unitary group is done in [46]. The family F interpolates a Zariski dense set Z of
cuspidal eigenforms on GU(r, 1) of regular weight (the classicality at su�ciently regular weight is
proved in [46]). Moreover by [1, Lemma 7.8.11], by passing to a �nite cover of X followed by a
blow up, the rigid space carries a rigid analytic family M of q-adic Galois representations of GK
which interpolates the Galois representations associated to the forms corresponding to points in Z.
The Galois representation ρπ associated to π is the one associated to the very weak base change,
and is also the one obtained from specializingM to the point corresponding to π. From the latter
interpretation we see ρπ restricting to GK` is unrami�ed and corresponds to the base change of π`
under the local Langlands correspondence (this is seen by using the local-global compatibility at
regular weights, and the Zariski density of Z). But this also corresponds to the very weak base
change of π at ` under the local Langlands correspondence. These imply what we need.
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3 Hida Theory for Semi-Ordinary Forms

3.1 Shimura varieties for Unitary Similitude Groups

We will be brief in the following and refer the details to [19, Section 2, 3] (see also [9, Section 2]). Now
we consider the group GU(3, 1). For any open compact subgroup K = KpK

p of GU(3, 1)(Af ) whose
p-component is Kp = GU(3, 1)(Zp), we refer to [19, Section 2.1] for the de�nition and arithmetic
models of the associated Shimura variety, which we denote as SG(K)/OK,(v0)

. The scheme SG(K)

represents the following functor: for any OK,(v0)-algebra R, A(R) = {(A, λ̄, ι, η̄p)} where A is
an abelian scheme over R with CM by OK given by ι, λ̄ is an orbit of prime-to-p polarizations
and η̄p is an orbit of prime-to-p level structures. There is also a theory of compacti�cations of
SG(K) developed in [35]. We denote S̄G(K) the toroidal compacti�cation and S∗G(K) the minimal
compacti�cation. We refer to [19, Section 2.7] for details. The boundary components of S∗G(K) is
in one-to-one correspondence with the set of cusp labels de�ned below. For K = KpK

p as above
we de�ne the set of cusp labels to be:

C(K) := (GL(XK)×GP (Af ))NP (Af )\G(Af )/K.

This is a �nite set. We denote by [g] the class represented by g ∈ G(Af ). For each such g whose
p-component is 1 we de�ne Kg

P = GP (Af )∩ gKg−1 and denote S[g] := SGP (Kg
P ) the corresponding

Shimura variety for the group GP with level group Kg
P . By strong approximation we can choose a

set C(K) of representatives of C(K) consisting of elements g = pk0 for p ∈ P (A(Σ)
f ) and k0 ∈ K0

for K0 the maximal compact subgroup of G(Af ) de�ned in [19, Section 1.10].

3.2 Igusa varieties and p-adic automorphic forms

Now we recall brie�y the notion of Igusa varieties in [19, Section 2.3]. LetM be the standard lattice
of V and Mp = M ⊗Z Zp. Let Polp = {N−1, N0} be a polarization of Mp. Recall that this means
that if N−1 and N0 are maximal isotropic OK ⊗ Zp-submodules in Mp, that they are dual to each
other with respect to the Hermitian metric on V , and also that:

rankZpN
−1
v0

= rankZpN
0
v̄o = 3, rankZpN

−1
v̄0

= rankZpN
0
v0

= 1.

We mainly follow [19, Section 2.3] in this subsection. The Igusa variety of level pn is the scheme
over OK,(v0) representing the quadruple A(R) = {(A, λ̄, ι, η̄p)} for Shimura variety of GU(3, 1) as
above, together with an injection of group schemes

j : µpn ⊗Z N
0 ↪→ A[pn]

over R which is compatible with the OK-action on both hand sides. Note that the existence of j
implies that A must be ordinary along the special �ber. There is also a theory of Igusa varieties
over S̄G(K). As in loc.cit let H̄p−1 ∈ H0(SG(K)/F̄,det(ω)p−1) be the Hasse invariant. Over the
minimal compacti�cation some power (say the tth) of the Hasse invariant can be lifted to Ov0 . We
denote such a lift by E. By the Koecher principle we can regard E as in H0(S̄G(K),det(ωt(p−1))).
Let Om := OK,v0/p

mOK,v0 . Set T0,m := S̄G(K)[1/E]/Om . For any positive integer n de�ne Tn,m :=
IG(Kn)/Om and T∞,m = lim←−n Tn,m. Then T∞,m is a Galois cover over T0,m with Galois group
H ' GL3(Zp)×GL1(Zp). Let N ⊂ H be the upper triangular unipotent radical. De�ne:

Vn,m = H0(Tn,m,OTn,m).

11



Let V∞,m = lim−→n
Vn,m and V∞,∞ = lim←−m V∞,m be the space of p-adic automorphic forms on GU(3, 1)

with level K. We also de�ne Wn,m = V N
n,m, W∞,m = V N

∞,m and W = lim−→n
lim−→m

Wn,m. We de�ne
V 0
n,m, etc, to be the cuspidal part of the corresponding spaces.

We can make similar de�nitions for the de�nite unitary similitude groups GP as well and de�ne
Vn,m,P ,V∞,m,P , V∞,∞,P , V N

n,m,P , WP , etc.

Let Kn
0 and Kn

1 be the subgroup of H consisting of matrices which are in B3 × tB1 or N3 × tN1

modulo pn. (These notations are already used for level groups of automorphic forms. The reason for
using the same notation here is that automorphic forms with level group Kn

• are p-adic automorphic
forms of level group Kn

• ). We sometimes denote IG(Kn
1 ) = IG(Kn)K

n
1 and IG(Kn

0 ) = IG(Kn)K
n
0 .

We can de�ne the Igusa varieties for GP as well. For • = 0, 1 we let Kg,n
P,• := gKn

• g
−1 ∩ GP (Af )

and let I[g](K
n
• ) := IGP (Kg,n

P,•) be the corresponding Igusa variety over S[g]. We denote An[g] the

coordinate ring of I[g](K
n
1 ). Let A∞[g] = lim−→n

An[g] and let Â∞[g] be the p-adic completion of A∞[g]. This

is the space of p-adic automorphic forms for the group GU(2, 0) of level group gKg−1 ∩GP (Af ).

For Unitary Groups
Assume the tame level group K is neat. For any c an element in Q+\A×Q,f/µ(K), we refer to [19,
2.5] for the notion of c-Igusa schemes I0

U(2)(K, c) for the unitary groups U(2, 0) (not the similitude

group). It parameterizes quintuples (A, λ, ι, η̄(p), j)/S similar to the Igusa schemes for unitary simil-
itude groups but requires λ to be a prime to p c-polarization of A such that (A, λ̄, ι, η̄(p), j) is a
quintuple as in the de�nition of Shimura varieties for GU(2). Let gc be such that µ(gc) ∈ A×Q is
in the class of c. Let cK = gcKg

−1
c ∩ U(2)(AQ,f ). Then the space I0

U(2)(K, c) is isomorphic to the

space of forms on I0
U(2)(

cK, 1) (see loc.cit).

Embedding of Igusa Schemes
In order to use the pullback formula algebraically we need a map from the Igusa scheme of U(3, 1)×
U(0, 2) to that of U(3, 3) (or from the Igusa scheme of U(2, 0)×U(0, 2) to that of U(2, 2)) given by:

i([(A1, λ1, ι1, η
p
1K1, j1)], [(A2, λ2, ι2, η

p
2K2, j2)]) = [(A1 ×A2, λ1 × λ2, ι1, ι2, (η

p
1 × η

p
2)K3, j1 × j2)].

We de�ne an element Υ ∈ U(3, 3)(Qp) such that Υv0 = S−1
v0

and Υ′v0
= S−1,′

v0 . Similar to [19], we
know that under the complex uniformization, taking the change of polarization into consideration
the above map is given by

i([τ, g], [x0, h]) = [Zτ , (g, h)Υ]

(see [19, Section 2.6].)
Fourier-Jacobi Expansions

De�ne N1
H := {

(
1 0
∗ 12

)
} × {1} ⊂ H. For an automorphic form or p-adic automorphic form F on

GU(3, 1) we refer to [9, Section 2.8] for the notion of analytic Fourier-Jacobi expansions

FJP (g, f) = a0(g, f) +
∑
β

aβ(y, g, f)qβ
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at g ∈ GU(3, 1)(AQ) for aβ(−, g, f) : C2 → Lk(C) being theta functions with complex multiplication,
and algebraic Fourier-Jacobi expansion

FJh[g](f)N1
H

=
∑
β

ah[g](β, f)qβ,

at a p-adic cusp ([g], h), and ah[g](β, f) ∈ Lk(A
∞
[g])N1

H
⊗A[g]

H0(Z◦[g],L(β)). We de�ne the Siegel
operator to be taking the 0-th Fourier-Jacobi coe�cient as in loc.cit. Over C the analytic Fourier-
Jacobi expansion for a holomorphic automorphic form f is given by:

FJβ(f, g) =

∫
Q\A

f(

1 n
12

1

 g)eA(−βn)dn.

3.3 Semi-Ordinary Forms

3.3.1 De�nitions

In this subsection we develop a theory for families of �semi-ordinary� forms over a two dimensional
weight space (the whole weight space for U(3, 1) is three dimensional). The idea goes back to the
work of Hida [16] (also [64]) where they de�ned the concept of being ordinary with respect to dif-
ferent parabolic subgroups (the usual de�nition of ordinary is with respect to the Borel subgroup),
except that we are working with coherent cohomology while Hida and Tilouine-Urban used group
cohomology. In our case it means being ordinary with respect to the parabolic subgroup of GL4

consisting of matrices of the form


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

. The crucial point is, our families are over the

two dimensional Iwasawa algebra, which is similar to Hida theory for ordinary forms (instead of
Coleman-Mazur theory for �nite slope forms). Our argument here will mostly be an adaption of the
argument in the ordinary case in [19] and we will sometimes be brief and refer to loc.cit for some
computations so as not to introduce too many notations.

We always use the identi�cation U(3, 1)(Qv) ' GL4(Qp). We de�ne αi = diag(14−i, p · 1i). We

let α =


1

1
p

p2

 and refer to [19, 3.7, 3.8] for the notion of Hida's Uα and Uαi operators

associated to α or αi. We de�ne eα = limn→∞ U
n!
α . We are going to study forms and families

invariant under eα and call them �semi-ordinary� forms. Suppose π is an irreducible automorphic
representation on U(3, 1) with weight k and suppose that πp is an unrami�ed principal series rep-
resentation. If we write κ1 = b1 and κi = −a5−i + 5− i for 2 ≤ i ≤ 4, then there is a semi-ordinary
vector in π if and only if we can re-order the Satake parameters as λ1, λ2, λ3, λ4 such that

valp(λ3) = κ3 −
3

2
, valp(λ4) = κ4 −

3

2
.
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Galois Representations
The Galois representations associated to cuspidal automorphic representation π in subsection 2.4
which is unrami�ed and semi-ordinary at p for eα has the following description when restricting to
Gv0 :

Rp(π)|Gv0 '


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ξ2,vε
−κ2 ∗

ξ1,vε
−κ1

 (1)

where ξ1,v and ξ2,v are unrami�ed characters and also

Rp(π)|Gv̄0 '


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

 .

This can be proved by noting that the Newton Polygon and the Hodge Polygon have four out of
�ve vertices coincide (see [64, Proposition7.1]).

3.3.2 Control Theorems

We de�ne K0(p, pn) to be the level group with the same components at primes outside p as K

and, at p, consists of matrices which are of the form


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 modulo p and are of the

form


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

 modulo pn. We are going to prove some control theorems for the level group

K0(p, pn). These will be enough to show that the Eisenstein series constructed in [9] do give families
in the sense here. (See Section 4.) We refer the de�nition of the automorphic sheaves ωk of weight
k and the subsheaf to [19, section 3.2]. There also de�ned a ω[k in Section 4.1 of loc.cit as follows.
Let D = S̄G(K) − SG(K) be the boundary of the toroidal compacti�cation and ω the pullback to
identity of the relative di�erential of the Raynaud extension of the universal Abelian variety. Let
k′′ = (a1−a3, a2−a3). Let B be the abelian part of the Mumford family of the boundary. Its relative
di�erential is identi�ed with a subsheaf of ω|D. The ω[k ⊂ ωk is de�ned to be {s ∈ ωk, s|D ∈ FD} for
FD := det(ω|D)a3⊗ωk

′′

B , where the last term means the automorphic sheaf of weight k′′ for GU(2, 0).

Weight Space
Let H = GL3 × GL1 and T be the diagonal torus. Then H = H(Zp). We let Λ3,1 = Λ be the
completed group algebra Zp[[T (1 + Zp)]]. This is a formal power series ring with four variables.
There is an action of T (Zp) given by the action on the j : µpn ⊗Z N

0 ↪→ A[pn]. (see [19, 3.4])
This gives the space of p-adic modular forms a structure of Λ-algebra. A Q̄p-point φ of SpecΛ
is call arithmetic if it is determined by a character [k].[ζ] of T (1 + pZp) where k is a weight and
ζ = (ζ1, ζ2, ζ3; ζ4) for ζi ∈ µp∞ . Here [k] is the character by regarding k as a character of T (1+Zp) by
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[k](t1, t2, t3, t4) = (ta1
1 t

a2
2 t

a3
3 t
−b1
4 ) and [ζ] is the �nite order character given by mapping (1+pZp) to ζi

at the corresponding entry ti of T (Zp). We often write this point kζ . We also de�ne ω[k] a character

of the torsion part of T (Zp) (isomorphic to (F×p )4) given by ω[k](t1, t2, t3, t4) = ω(ta1
1 t

a2
2 t

a3
3 t
−b1
4 ).

De�nition 3.1. We �x k′ = (a1, a2) and ρ = Lk′. Let Xρ be the set of arithmetic points φ ∈ SpecΛ3,1

corresponding to weight (a1, a2, a3; b1) such that a1 ≥ a2 ≥ a3 ≥ −b1 + 4. (The ζ-part being trivial).
Let SpecΛ̃ = SpecΛ̃(a1,a2) be the Zariski closure of Xρ.

We de�ne for q = 0, [

V q
k (K0(p, pn),Om) := {f ∈ H0(Tn,m, ω

q
k), g · f = [k]ω[k]}.

(Note the �ω�-part of the nebentypus).
As in [19, 3.3] we have a canonical isomorphism given by taking the �p-adic avartar�

H0(Tn,m, ωk) ' Vn,m ⊗ Lk, f 7→ f̂

and βk : Vk(K
n
1 ,Om)→ V N

n,m by f 7→ βk(f) := lk(f̂). The following lemma is [19, lemma 4.2].

Lemma 3.2. Let q ∈ {0, [} and let V q
k (K0(p, pn),Om) := H0(Tn,m, ω

q
k)
K0(p,pn). Then we have

H0(IG(Kn
1 )[1/E], ωqk)⊗Om = V q

k (K0(p, pn),Om).

In fact in our case for U(3, 1) over Q, such base change property is true even for the sheaf ωk in
place of ω[k. However it is crucial to use ω

[
k if working with general totally real �elds (see the proof

of [19, Lemma 4.1]), or with unitary groups other than U(r, 1) (see the notion R̄ before [61, Lemma
6.8] for the unitary group U(2, 2)). We choose to use ω[k here so as to cite results in [19] directly.
We record a contraction property for the operator Uα.

Lemma 3.3. If n > 1, then we have

Uα · Vk(K0(p, pn),Om) ⊂ Vk(K0(p, pn−1),Om).

The proof is the same as [19, Proposition 4.4]. The following proposition follows from the
contraction property for eα:

Proposition 3.4.

eαV
q
k (K0(p, pn),Om) = eαVk(K0(p),Om).

The following lemma tells us that to study semi-ordinary forms one only needs to look at the
sheaf ω[k.

Lemma 3.5. Let n ≥ m > 0, then

eα.V
[
k (K0(p, pn),Om) = eα · V q

k (K0(p, pn),Om).

Proof. Same as [19, lemma 4.10].

Similar to the βk we de�ne a more general βk,ρ as follows: Let ρ be the algebraic representation
Lρ = Lk′ of GL2 with lowest weight −k′ = −(a1, a2). We identify Lk with the algebraically induced

representation IndGL3×GL1
GL2×GL1×GL1

ρ ⊗ χa3 ⊗ χb1 (χa means the algebraic character de�ned by taking
the (−a)-th power). We de�ne the functional lk,ρ taking values in Lk′ by evaluating at identity
(similar to the de�nition of lk). We de�ne βk,ρ similar to βk but replacing lk by lk,ρ.
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Proposition 3.6. If n ≥ m > 0, then the morphism

βk,ρ : Vk(K0(p, pn),Om)→ (Vn,m ⊗ Lρ)K0(p,pn)

is Uα-equivariant, and there is a Hecke-equivariant homomorphism sk,ρ : (Vn,m ⊗ Lρ)
K0(p,pn) →

Vk(K0(p, pn),Om) such that βk,ρ ◦ sk,ρ = Umα and sk,ρ ◦ βk,ρ = Umα . So the kernel and the cokernel
of βk,ρ are annihilated by Umα .

Proof. Similar to [19, Proposition 4.7]. Our sk,ρ is de�ned as follows: for (A, j̄) over a Om-algebra
R,

sk,ρ(α
m)(A, j̄) :=

∑
vχ′∈ρ⊗χa3⊗χb1

∑
u

1

χr,1(αm)
· TrRαmu0 /R(f(Aαmu.jαmu))ρk(u)vχ′ .

Here the character χr,1 is de�ned by

χr,1(diag(a1, a2, a3; d)) := (a1a2a3)−1d.

The vχ′ 's form a basis of the representation ρ⊗χa3⊗χb1 which are eigenvectors for the diagonal torus
action with eigenvalues χ′'s (the eigenvalues appear with multiplicity one so we use the subscript
χ′ to denote the corresponding vector). The u runs over a set of representatives of

α−mNH(Zp)αm ∩NH(Zp)\NH(Zp).

The (Aαu, jαu) is a certain pair with Aαu an abelian variety admitting an isogeny to A of type α
(see [19, 3.7.1] for details) and Rαu0 /R being the coordinate ring for (Aαu, jαu) (see 3.8.1 of loc.cit).
Note that the twisted action of

ρ̃k(α
−1)vχ′ := p−〈µ,k+χ′〉vχ′

satis�es ρ̃k(α−1)vχ′ = 1 for all the χ′ above. Write χ for χa3�χb1 . Note also that for any eigenvector
vχ′ ∈ IndGL3×GL1

GL2×GL1×GL1
ρ ⊗ χ for the torus action such that vχ′ 6∈ ρ ⊗ χ, and µ ∈ X∗(T ) (the co-

character group) with µ(p) = α, we have 〈µ, k + χ′〉 < 0. By the de�nition of Umα = Uαm , if
f =

∑
χ gχ ⊗ vχ, then

Uαm ·f(A, j) =
∑

vχ′∈ρ⊗χ
sk,ρ(α

m)gχ′(A, j)+
∑

vχ′ 6∈ρ⊗χ
p−〈mµ,k+χ′〉 1

χr,1(αm)
TrRαmu0 /R(gχ′(Aαmu, j))⊗ρk(u)vχ′ .

For the notation Rα
mu

0 see [19, 3.8.1] for an explanation. So βk,ρ ◦ sk,ρ(αm) = Uαm and sk,ρ(αm) ◦
βk,ρ = Uαm . Taking sk,ρ := sk,ρ(α

m) , then we proved the proposition.

The following proposition follows from the above one as [19, Proposition 4.9]. Let k and ρ be
as before.

Proposition 3.7. If n ≥ m > 0, then

βk,ρ : eα · Vk(K0(p, pn),Om) ' eα(Vn,m ⊗ Lρ)K0(p,pn)[k].

We are going to prove some control theorems and fundamental exact sequence for semi-ordinary
forms along this smaller two-dimensional weight space SpecΛ̃. The following proposition follows
from Lemma 3.2 and Proposition 3.4 in the same way as [19, Lemma 4.10, Proposition 4.11], noting
that by the contraction property the level group is actually in K0(p).
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Proposition 3.8. Let eα.Vk(K0(p, pn)) := lim−→m
eα · Vk(K0(p, pn),Om). Then eα.V(K0(p, pn)) is

p-divisible and

eα · Vk(K0(p, pn))[pm] = e · Vk(K0(p, pn),Om) = eα ·H0(IS , ωk)⊗Om.

The following proposition is crucial to prove control theorems for semi-ordinary forms along the
weight space SpecΛ̃.

Proposition 3.9. The dimension of eαMk(K0(p, pn),C)'s are uniformly bounded for all k ∈ Xρ.

Proof. The uniform bound for group cohomology is proved in [16, Theorem 5.1]. Note that if the
control theorem in loc.cit is true then the uniform boundedness is an easy consequence. However
in loc.cit one assumption ([16, Theorem 5.2 (iii)]) is missing, which we do not know if it is true
in our case. But an argument using commutative algebra similar to the proof of [16, Lemma 5.1],
considering the cohomologies for H1, H2 and H3 altogether still gives the uniform boundedness
without knowing the control theorem. (e.g. one considers the exact sequences

0→ E0

T1
→ E1 → N0[T1]→ 0;

0→ E1

T2
→ E2 → N1[T2]→ 0;

0→ N0

T1
→ N1 → H0[T1]→ 0,

where Ei, Ni and Ti are as in [16, Lemma 5.1] with q = 3 and Hi's are the corresponding modules
for H1's. These modules are �nitely generated modules over Iwasawa algebras over OL with 2− i-
variables. Write Λ for the Iwasawa algebra over OL of two variables. Note that if the subscheme
of SpecΛ de�ned by T1 = 0 is not contained in the support of the torsion submodule of N0, then
N0[T1] is contained in the submodule of N0 consisting of elements whose stalks are 0 at all points of
codimension at most one. Note also that if Λ/T1Λ is an Iwasawa algebra over OL of one variable,
then the OL-rank of N0

T1
[T2] is bounded by the number of generators of the Λ-module N0, say,

using the structure theorem of �nitely generated modules over the one-variable Iwasawa algebra.
We do not know if this argument can be generalized in other settings. ) The bound for coherent
cohomology follows by the Eichler-Shimura isomorphism. See [19, Theorem 4.18].

The following theorem says that all semi-ordinary forms of su�ciently regular weights are clas-
sical, and can be proved in the same way as [19, Theorem 4.19] using Proposition 3.9.

Theorem 3.10. For each weight k = (a1, a2, a3; b1) ∈ Xρ, there is a positive integer A(a) depending
on a = (a1, a2, a3) such that if b1 > A(a, n) then the natural restriction map

eαMk(K0(p),O)⊗Qp/Zp ' eα · Vk(K0(p))

is an isomorphism.

For q = 0, φ de�ne
V q

so := Hom(eα.Wq,Qp/Zp)⊗Λ3,1 Λ̃

Mq
so(K, Λ̃) := HomΛ̃(V q

so, Λ̃).

Thus from the �niteness results and the p-divisibility of the space of semi-ordinary p-adic mod-
ular forms, we get the Hida's control theorem
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Theorem 3.11. Let q = 0 or φ. Then

(1) V q
so is a free Λ̃-module of �nite rank.

(2) For any k ∈ Xρ we haveMq
so(K, Λ̃)⊗ Λ̃/Pk ' eα ·M q

k (K,O).

The proof is same as [19, Theorem 4.21] using Proposition 3.4, 3.7, Theorem 3.10 and Proposi-
tion 3.8.

Descent to Prime to p-Level
The following proposition will be used in the proof of Theorem 5.3.

Proposition 3.12. Suppose k is such that a1 = a2 = 0, a3 ≡ b1 ≡ 0(mod p − 1), a2 − a3 >>
0, a3 + b1 >> 0, . Suppose F ∈ eαM0

k (K0(p),C) is an eigenform with trivial nebentypus at p whose
mod p Galois representation (semi-simple) is the same as our Klingen Eisenstein series constructed
in section 4. Let πF be the associated automorphic representation. Then πF,p is unrami�ed principal
series representation.

Proof. Similar to [19, proposition 4.17]. Let f be the GL2 cusp form having good supersingular
reduction at p in the introduction. Note that πF,p has a �xed vector for K0(p) and ρ̄πf |GQp is
irreducible by [7]. By the classi�cation of admissible representations with K0(p)-�xed vector (see
e.g. [5, Theorem 3.7]) we know πF,p has to be a subquotient of IndGL4

B χ for χ an unrami�ed
character of Tn(Qp). If this induced representation is irreducible then we are done. If not, when
a2−a3 >> 0, a3 + b1 >> 0, since F is semi-ordinary, we must have χ = χ1⊗χ2⊗χ3⊗χ4 such that
(with possibly renumbering) χ1 = χ2| · | and χ3, χ4 having p-adic weight κ1 = b1 and κ2 = 3− a3.
This implies F is in fact ordinary. But we have ρ̄ssF is the direct sum of ρ̄f with two characters.
This contradicts that ρ̄πf |GQp is irreducible. Thus πF,p must by unrami�ed.

A De�nition Using Fourier-Jacobi Expansion
We can de�ne a Λ̃-adic Fourier-Jacobi expansion map for families of semi-ordinary families as in
[19, 4.6.1] by taking the Λ̃-dual of the Pontryagin dual of the usual Fourier-Jacobi expansion map
(replacing the e's in loc.cit by eα's). We also de�ne the Siegel operators Φh

[g]'s by taking the 0-th
Fourier-Jacobi coe�cient.

De�nition 3.13. Let A be a �nite torsion free Λ-algebra. Let Nso(K,A) be the set of formal
Fourier-Jacobi expansions:

F = {
∑
β∈S[g]

a(β, F )qβ, a(β, F ) ∈ A⊗̂Â∞[g] ⊗H
0(Z◦[g],L(β))}g∈X(K)

such that for a Zariski dense set XF ⊆ Xρ of points φ ∈ SpecA such that the induced point in SpecΛ
is some arithmetic weight kζ , the specialization Fφ of F is the highest weight vector of the Fourier-

Jacobi expansion of a semi-ordinary modular form with tame level K(p), weight k and nebentype at
p given by [k][ζ]ω−[k] as a character of K0(p).

Then we have the following

Theorem 3.14.

Mso(K,A) = Nso(K,A).
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The proof is the same as [19, Theorem 4.25]. This theorem is used to show that the construction
in [9] recalled later does give a semi-ordinary family in the sense of this section.

Fundamental Exact Sequence

Now we prove a fundamental exact sequence for semi-ordinary forms. Let w′3 =


1

1
1

1

.

Lemma 3.15. Let k ∈ Xρ and F ∈ eαMk(K0(p, pn), R) and R ⊂ C. Let W2 =


1

1
1

1

∪ Id

be the Weyl group for GP (Qp). There is a constant A such that for any k ∈ Xρ such that a2 − a3 >

A, a3 + b1 > A, for each g ∈ G(A(p)
f ), ΦP,wg(F ) = 0 for any w 6∈W2w

′
3.

The lemma can be proved using the computations in the proof of [19, lemma 4.14]. Note that
by semi-ordinarity and the contraction property the level group at p for F is actually K0(p).

The following is a semi-ordinary version of [19, Theorem 4.16], noting that eα induces identity after
the Siegel operator Φ̂w′3 . The proof is also similar (even easier since the level group at p is in fact
in K0(p) by the contraction property).

Theorem 3.16. For k ∈ Xρ, we have

0→ eαM0
k(K,A)→ eαMk(K,A)

Φ̂w
′
3=⊕Φ̂

w′3
[g]−−−−−−−→ ⊕g∈C(K)Mk′(K

g
P,0(p), A)

is exact.

The family version of the fundamental exact sequence can be deduced from Theorem 3.10, 3.11,
3.16, as well as the a�ne-ness of S∗G(K)(1/E) (See [19, Theorem 4.16]).

Theorem 3.17.

0→ eαM0(K,A)→ eαM(K,A)
Φ̂w
′
3=⊕Φ̂

w′3
[g]−−−−−−−→ ⊕g∈C(K)M(Kg

P,0(p), A)→ 0.

4 Eisenstein Series and Families

4.1 Klingen Einstein Series

Archimedean Places
Let (π∞, V∞) be a �nite dimensional representation ofD×∞. Let ψ∞ and τ∞ be characters of C× such
that ψ∞|R× is the central character of π∞. Then there is a unique representation πψ of GU(2)(R)
determined by π∞ and ψ∞ such that the central character is ψ∞. These determine a representation
πψ × τ of MP (R) ' GU(2)(R)× C×. We extend this to a representation ρ∞ of P (R) by requiring

NP (R) acts trivially. Let I(V∞) = Ind
G(R)
P (R)ρ∞ (smooth induction) and I(ρ∞) ⊂ I(V∞) be the
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subspace of K∞ -�nite vectors. Note that elements of I(V∞) can be realized as functions on K∞.
For any f ∈ I(V ) and z ∈ C× we de�ne a function fz on G(R) by

fz(g) := δ(m)
3
2

+zρ(m)f(k), g = mnk ∈ P (R)K∞.

There is an action σ(ρ, z) on I(V∞) by

(σ(ρ, z)(g))(k) = fz(kg).

Non-Archimedean Places
Let (π`, V`) be an irreducible admissible representation of D×(Q`) and π` is unitary and tempered if
D is split at `. Let ψ and τ be characters of K×` such that ψ|Q×` is the central character of π`. Then

there is a unique irreducible admissible representation πψ of GU(2)(Q`) determined by π` and ψ`.
As before we have a representation πψ × τ of MP (Q`) and extend it to a representation ρ` of P (Q`)

by requiring NP (Q`) acts trivially. Let I(ρ`) = Ind
G(Q`)
P (Q`)

ρ` be the admissible induction. We similarly

de�ne fz for f ∈ I(ρ`) and ρ∨` , I(ρ∨` ), A(ρ`, z, f), etc. For v 6∈ Σ we have D×(Q`) ' GL2(Q`).
Global Picture
Let (π = ⊗vπv, V ) be an irreducible unitary cuspidal automorphic representation of D×(AQ) we
de�ne I(ρ) to be the restricted tensor product of ⊗vI(ρv) with respect to the unrami�ed vectors
f0
ϕ`

for some ϕ = ⊗vφv ∈ π. We can de�ne fz, I(ρ∨) and A(ρ, z, f) similar to the local case. fz
takes values in V which can be realized as automorphic forms on D×(AQ). We also write fz for the
scalar-valued functions fz(g) := fz(g)(1) and de�ne the Klingen Eisenstein series:

E(f, z, g) :=
∑

γ∈P (Q)\G(Q)

fz(γg).

This is absolutely convergent if Rez >> 0 and has meromorphic continuation to all z ∈ C.

4.2 Siegel Eisenstein Series

Local Picture:
Our discussion in this section follows [61, 11.1-11.3] closely. Let Q = Qn be the Siegel parabolic

subgroup of GUn consisting of matrices
(
Aq Bq
0 Dq

)
. It consists of matrices whose lower-left n × n

block is zero. For a place v of Q and a character τ of K×v we let In(τv) be the space of smooth
Kn,v-�nite functions (here Kn,v means the maximal compact subgroup Gn(Zv)) f : Kn,v → C
such that f(qk) = τv(detDq)f(k) for all q ∈ Qn(Qv) ∩ Kn,v (we write q as block matrix q =(
Aq Bq
0 Dq

)
). For z ∈ C and f ∈ I(τ) we also de�ne a function f(z,−) : Gn(Qv) → C by

f(z, qk) := χ(detDq))|detAqD
−1
q |

z+n/2
v f(k), q ∈ Qn(Qv) and k ∈ Kn,v.

For f ∈ In(τv), z ∈ C, and k ∈ Kn,v, the intertwining integral is de�ned by:

M(z, f)(k) := τ̄nv (µn(k))

∫
NQn (Fv)

f(z, wnrk)dr.

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly, with
the convergence being uniform in k. In this case it is easy to see that M(z, f) ∈ In(τ̄ cv ). A standard
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fact from the theory of Eisenstein series says that this has a continuation to a meromorphic section
on all of C.
Let U ⊆ C be an open set. By a meromorphic section of In(τv) on U we mean a function
ϕ : U 7→ In(τv) taking values in a �nite dimensional subspace V ⊂ In(τv) and such that ϕ : U → V
is meromorphic.

Global Picture
For an idele class character τ = ⊗τv of A×K we de�ne a space In(τ) to be the restricted tensor product
de�ned using the spherical vectors fsphv ∈ In(τv) (invariant under Kn,v) such that fsphv (Kn,v) = 1,
at the �nite places v where τv is unrami�ed.

For f ∈ In(τ) we consider the Eisenstein series

E(f ; z, g) :=
∑

γ∈Qn(Q)\Gn(Q)

f(z, γg).

This series converges absolutely and uniformly for (z, g) in compact subsets of {Re(z) > n/2} ×
Gn(AQ). The de�ned automorphic form is called Siegel Eisenstein series.

The Eisenstein series E(f ; z, g) has a meromorphic continuation in z to all of C in the following
sense. If ϕ : U → In(τ) is a meromorphic section, then we put E(ϕ; z, g) = E(ϕ(z); z, g). This is
de�ned at least on the region of absolute convergence and it is well known that it can be meromor-
phically continued to all z ∈ C.

4.3 Pullback Formula

We de�ne some embeddings of a subgroup of GU(3, 1)×GU(0, 2) into GU(3, 3). This will be used
in the doubling method. First we de�ne G(3, 3)′ to be the unitary similitude group associated to:

1
ζ

−1
−ζ


and G(2, 2)′ to be associated to (

ζ
−ζ

)
.

We de�ne an embedding

α : {g1 × g2 ∈ GU(3, 1)×GU(0, 2), µ(g1) = µ(g2)} → GU(3, 3)′

and
α′ : {g1 × g2 ∈ GU(2, 0)×GU(0, 2), µ(g1) = µ(g2)} → GU(2, 2)′

as α(g1, g2) =

(
g1

g2

)
and α′(g1, g2) =

(
g1

g2

)
. We also de�ne isomorphisms:

β : GU(3, 3)′
∼−→ GU(3, 3), (β′ : GU(2, 2)′

∼−→ GU(2, 2))
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by:
g 7→ S−1gS, (g 7→ S′−1gS′)

where

S =


1

1 − ζ
2

1

−1 − ζ
2

 , S′ =

(
1 − ζ

2

−1 − ζ
2

)
.

We de�ne
i(g1, g2) = S−1α(g1, g2)S, i′(g1, g2) = S′

−1
α(g1, g2)S′.

We recall the pullback formula of Shimura (see [61, Proposition 11.1]. The proof there works in our
situation as well). Let τ be a unitary idele class character of A×K. Given a cuspform ϕ on GU(2) we
consider

Fϕ(f ; z, g) :=

∫
U(2)(AQ)

f(z, S−1α(g, g1h)S)τ̄(det g1g)ϕ(g1h)dg1,

f ∈ I3(τ), g ∈ GU(3, 1)(AQ), h ∈ GU(2)(AQ), µ(g) = µ(h)

or

F ′ϕ(f ′; z, g) =

∫
U(2)(AQ)

f ′(z, S
′−1α′(g, g1h)S′)τ̄(det g1g)ϕ(g1h)dg1

f ′ ∈ I2(τ), g ∈ GU(2)(AQ), h ∈ GU(2)(AQ), µ(g) = µ(h)

This is independent of h. The pullback formulas are the identities in the following proposition.

Proposition 4.1. Let τ be a unitary idele class character of A×K.
(i) If f ′ ∈ I2(τ), then F ′ϕ(f ′; z, g) converges absolutely and uniformly for (z, g) in compact sets of
{Re(z) > 1} ×GU(2, 0)(AQ), and for any h ∈ GU(2)(AQ) such that µ(h) = µ(g)∫

U(2)(Q)\U(2)(AQ)
E(f ′; z, S′−1α′(g, g1h)S′)τ̄(det g1h)ϕ(g1h)dg1 = F ′ϕ(f ′; z, g).

(ii) If f ∈ I3(τ), then Fϕ(f ; z, g) converges absolutely and uniformly for (z, g) in compact sets of
{Re(z) > 3/2} ×GU(3, 1)(AQ) such that µ(h) = µ(g)∫

U(2)(Q)\U(2)(AQ)
E(f ; z, S−1α(g, g1h)S)τ̄(det g1h)ϕ(g1h)dg1

=
∑

γ∈P (Q)\GU(3,1)(Q)

Fϕ(f ; z, γg),

with the series converging absolutely and uniformly for (z, g) in compact subsets of {Re(z) > 3/2}×
GU(3, 1)(AQ).
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4.4 p-adic Interpolation

We recall our notations in [9, Section 5.1] and correct some errors in the formulas for parameter-
ization in loc.cit. We de�ne an �Eisenstein datum� D to be a pair (ϕ, ξ0) consisting of a cuspidal
eigenform ϕ of prime to p level, trivial character and weight k = (a1, a2), a1 ≥ a2 ≥ 0 on GU(r, 0)

and a Hecke character ξ0 of K×\A×K such that ξ0| · |
1
2 is a �nite order character. Let σ be the

reciprocity map of class �eld theory K×\A×K → GabK normalized by the geometric Frobenius. Note
ΓK = Γ+ ⊕ Γv̄0 . Let Ψ1 : GK � ΓK → Γ+ ↪→ Zp[[Γ+

K]]× and Ψ2 : GK � ΓK → Γv̄0 ↪→ Zp[[Γv̄0 ]]×

where the middle arrows are projections with respect to the above direct sum. Then ΨK = Ψ1 ·Ψ2.
We de�ne

τ0 := (ξ0| · |
1
2 )
c

,

ξ := ξ0 · (Ψ ◦ σ),

τ := τ0 · (Ψ−c1 ◦ σ),

ψK := Ψ2.

We de�ne X pb (�pb� stands for pullback) to be the set of Q̄p-points φ ∈ SpecΛK,OL such that
φ ◦ τ ((1 + p, 1)) = τ0((1 + p, 1)),

φ ◦ τ ((1, 1 + p)) = (1 + p)κφτ0((1, 1 + p))

for some integer κφ > 6, κφ ≡ 0(mod(p − 2)) and such that the weight (a1, a2, 0;κφ) is in the
absolutely convergent range for P in the sense of Harris [14], and such that

φ ◦ ψK(γ−) = (1 + p)
mφ
2

for some non-negative integer mφ, and such that the τφ (to be de�ned in a moment) is such that,
under the identi�cation τφ = (τ1, τ2) for K×p ' Q×p × Q×p , we have τ1, τ2, τ1τ2 all have conductor
(p).

We denote by X the set of Q̄p-points φ in SpecΛK,OL such that

φ ◦ τ ((1, 1 + p)) = (1 + p)κφζ1τ0((1, 1 + p)), φ ◦ τ ((p+ 1, 1)) = τ0((p+ 1, 1))

and φ ◦ ψK(γ−) = ζ2 with ζ1 and ζ2 being p-power roots of unity. Let X gen be the subset of points
such that the ζ1 and ζ2 above are all primitive pt roots of unity for some t ≥ 2.

Remark 4.2. We will use the points in X pb for p-adic interpolation of special L-values and Klingen
Eisenstein series, and we will use the points in X to construct a Siegel Eisenstein measure.

For each φ ∈ X pb, we de�ne Hecke characters ψφ and τφ of K×\A×K by

τ̄ cφ(x) := x̄
κφ
∞ (φ ◦ τ )(x)x

−κφ
v̄ · | · |−

κφ
2 ,

ψφ(x) := x
mφ
2∞ x̄
−
mφ
2∞ (φ ◦ ψK ◦ σ)x

−
mφ
2

v x
mφ
2
v̄ .

Let

ξφ = | · |
κφ−1

2 τ̄ cφψφ,

ϕφ = ϕ⊗ ψ−1
φ .

The weight kφ for ϕφ at the arithmetic point φ is (a1 +mφ, a2 +mφ).
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4.5 Explicit Sections

Now we make explicit sections for the Siegel and Klingen Eisenstein series. We choose g1, g3 ∈
GU(2)(AQ), g′2, g

′
4 ∈ U(2)(AQ) in the same way as [67, subsection 7.4]. Recall their p-components

are 1. We use a slight modi�cation of the sections constructed in [9]. For the Siegel section we use
the construction fsieg =

∏
v fv in [9, Section 5.1]. Recall that the f∞ is a vector valued section. In

loc.cit we pullback this section under the embedding γ−1 and take the corresponding component
for the representation L(kφ,0) �L(κ) � (L(kφ)⊗ detκ) (notations as in loc.cit Section 4). Recall that
in [67, section 7] we constructed a character ϑ of A×Q and elements g1 ∈ GL2(AQ). Recall we start
with a eigenform f ∈ π new outside p and is an eigenvector for the Up-operator with eigenvalue α1.
We extend it to a form on GU(2)(AQ) using the central character ψ and as in [67, 5.10] de�ne

fΣ = (
∏

v∈Σ,v-N

π(

(
1

$v

)
)− χ1,v($v)q

1
2
v )f,

fϑ(g) =
∏

v split ∈Σ,v-p

∑
{av∈ $vZ×v

$
1+sv
v Zv

}v

ϑ(
−av
$v

)fΣ(g
∏
v

(
1
a 1

)
v

(
$−svv

1

)
v

)

where $sv
v is the conductor of ϑ at v, πf,v = π(χ1,v, χ2,v) (choose any order).

De�nition 4.3. De�ne our ϕ in Subsection 4.3 to be π(g1)fϑ.

4.6 Construction of A Measure

We �rst recall the notion of p-adic L-functions for Dirichlet characters which is needed in the
proposition below. There is an element Lτ̄ ′ in ΛK,OL such that at each arithmetic point φ ∈ X pb,
φ(Lτ̄ ′) = L(τ̄ ′φ, κφ − 2).τ ′φ(p−1)pκφ−2g(τ̄ ′φ)−1. For more details see [61, 3.4.3].

Constructing Families
The following theorem is proved in [9, Theorem 1.2].

Proposition 4.4. Suppose the unitary automorphic representation π = πf generated by the weight
k form f is such that πp is an unrami�ed principal series representation with distinct Satake pa-
rameters. Let π̃ be the dual representation of π.

(i) There is an element Lf,K ∈ ΛK,OurL such that for any character ξφ of ΓK, which is the avatar

of a Hecke character of conductor p, in�nite type (
κφ
2 +mφ,−

κφ
2 −mφ) with κφ an even integer

which is at least 6, mφ ≥ k−2
2 , we have

φ(Lf,K) =
L(π̃, ξφ,

κφ−1
2 )Ω

4mφ+2κφ
p

Ω
4mφ+2κφ
∞

c′φ.p
κφ−3g(ξφ,2)2

2∏
i=1

(χ−1
i ξ−1

φ,2)(p)

c′φ is a constant coming from an Archimedean integral.

(ii) There is a set of formal q-expansions Ef,ξ0 := {
∑

β a
t
[g](β)qβ}([g],t) for

∑
β a

t
[g](β)qβ ∈ ΛK,OurL ⊗Zp

R[g],∞ where R[g],∞ is some ring to be de�ned later, ([g], t) are p-adic cusp labels, such that
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for a Zariski dense set of arithmetic points φ ∈ SpecK,OL , φ(Ef,ξ0) is the Fourier-Jacobi ex-
pansion of the highest weight vector of the holomorphic Klingen Eisenstein series constructed
by pullback formula which is an eigenvector for Ut+ with non-zero eigenvalue. The weight for
φ(Ef,ξ0) is (mφ − k−2

2 ,mφ + k−2
2 , 0;κφ).

(iii) The at[g](0)'s are divisible by LΣ
f,K,ξ0 .L

Σ
τ̄ ′ where LΣ

τ̄ ′ is the p-adic L-function of a Dirichlet
character above.

This is simply a translation of the main theorem in [9] to the situation here.

De�nition 4.5. We will write EKling later on for this Klingen Eisenstein measure. We also con-
structed a Siegel Eisenstein measure in [9] which we write as Esieg.

Here at φ the weight of the Klingen Eisenstein series constructed is (a1 +mφ, a2 +mφ, 0;κ). We
also remark that the need to extend the scalar from OL to OurL is due to the fact that in the construc-
tion we need to specify points in the Igusa variety for GU(2) when applying equation (7), which can
only be de�ned over OurL . To adapt to the situation of section 3, we multiply the family constructed
in (ii) above by ψ(det−) (so that we �x the weight a1, a2 and allow a3, b1 to vary). According to
the control theorems proved in section 3 and Theorem 3.14 the family constructed thereby comes
from a semi-ordinary family de�ned there. By an appropriate weight map Λ̃→ OurL [[ΓK]] (we omit
the precise formula) this gives a OurL [[ΓK]]-coe�cients family in the sense of section 3.3.

The interpolation formula for the p-adic L-function considered above is not satisfying since it involves
non-explicit Archimedean constants. But in fact it also has the following interpolation property if
a1 = a2 = 0. For a Zariski dense set of arithmetic points φ ∈ SpecΛK such that φ ◦ ξ is the p-adic
avatar of a Hecke character ξφ of K×\A×K of in�nite type (−κ− 1

2 ,−
1
2) for some κ ≥ 6, of conductor

(pt, pt) (t > 0) at p, then:

φ(LΣ
f,K) =

p(κ−3)tξ2
1,p(p

−t)g(ξ1,pχ
−1
1,p)g(ξ1,pχ

−1
2,p)L

Σ(π̃, ξφ, 0)(κ− 1)!(κ− 2)!Ω2κ
p

(2πi)2κ−1Ω2κ
∞

. (2)

Here g is the Gauss sum and χ1,p, χ2,p are characters such that π(χ1,p, χ2,p) ' πf,p. Note that the
weight a1 = a2 = 0 is nothing but the weight considered in [69] and the computations carry out
in the same way. Note also the restrictions in [69] on conductors of π and ξ are put to prove the
pullback formulas for Klingen Eisenstein series and has nothing to do with interpolation formula for
p-adic L-functions. This computation is also done in the forthcoming work [8].) We also remark that
in our situation it is possible to determine the constants c′kφ,0,κφ by taking an auxiliary eigenform

ordinary at p and comparing our construction with Hida's (although we do not need it in this paper).

We can also construct the complete p-adic L-function Lf,K,ξ by putting back all the local Euler
factors at primes in Σ. By doing this we only get elements in FracOurL [[ΓK]]. In some cases we
can study the integrality of it by comparing with other constructions. There is another way of
constructing this p-adic L-function using Rankin-Selberg method by adapting the construction in
[15]. We let g be the Hida family of normalized ordinary CM forms corresponding to the family of
characters of ΓK (thus the specialization of g to weight one is the Eisenstein series corresponding to
1⊕ χK/Q. We apply Hida's construction to the Rankin-Selberg product of f and specializations of
g of weight higher than 2. Note that although Hida's construction assumes both forms are nearly
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ordinary, however, it works out in the same way in our situation since in the Rankin-Selberg product
the form with higher weight is the CM form which is ordinary by our assumption that p splits in
K. The p-adic L-functions of Hida are not integral since he used Petersson inner product as the
period. The ratio of this Petersson Inner product over the CM period is a Katz p-adic L-function
LKatz · hK by [22](this interpolates the algebraic part of L(χφχ

−c
φ , 1) where χφ is the CM character

corresponding to the CM form gφ. Here hK is the class number for K). Under assumption (1)
of Theorem 5.3, we know the local Hecke algebra corresponding to the CM form g is Gorenstein,
and [22] shows that the congruence module for g is generated by LKatz · hK. Comparing the
interpolation formula 2 with [15, Theorem I] we see that if we multiply Hida's p-adic L-function
by LKatz · hK then we recover our p-adic L-function in Proposition 4.4. So under assumption (1)
of Theorem 5.3 the Lf,K,ξ is in OurL [[ΓK]]. By our discussion in [67, Section 6.4] we know that
under the assumption (1) of Theorem 5.3 Lf,K,ξ is co-prime to any height one prime of OurL [[ΓK]]
which is not a pullback of a height one prime of OurL [[Γ+]]. Under assumption (2) of Theorem 5.3
we only know Lf,K,ξ is in FracOurL [[ΓK]] and we call the fractional ideal generated by Lf,K,ξ to be
OurL [[ΓK]] · Lf,K,ξ ⊂ FracOurL [[ΓK]].

4.7 Galois Representations for Klingen Eisenstein Series

We can also associate a reducible Galois representation to the holomorphic Klingen Eisenstein series
constructed with the same recipe as in subsection 2.4. The resulting Galois representation is:

στ ′σψcε
−κ ⊕ σψcε−3 ⊕ ρf .στcε−

κ+2
2 .

5 Proof of Greenberg's Main Results

In this section we assume the π we start with has weight two so that the Jacquet-Langlands corre-
spondence is trivial representation at∞. This is because we can do the computations at arithemtic
points φ ∈ X gen and in this case they are largely carried out in [67].

5.1 p-adic Properties of Fourier-Jacobi Coe�cients

Our goal here is to prove Proposition 5.2 which, roughly speaking says that certain Fourier-Jacobi
coe�cient of EKling which is a unit.
Interpolating Petersson Inner Products
Recall that in [67, section 6] we made a construction for interpolating Petersson inner products of
forms on de�nite unitary groups, one invariant under B(Zp) and one invariant under tB(Zp) (we
use B to denote the upper triangular Borel subgroup of GL2, noting U(2)(Zp) ' GL2(Zp)): For a
compact open subgroup K =

∏
vKv of U(2)(AQ) which is U(2)(Zp) at p we take {g4i }i a set of

representatives for U(2)(Q)\U(2)(AQ)/K0(p) where we write K0(p) also for the open compact group∏
v-pKv×K0(p). Suppose K is su�ciently small so that for all i we have U(2)(Q)∩ g4i Kg

4−1
i = 1.

For an ordinary Hida family h of eigenforms with some coe�cient ring I (whose p-part of level group
is in tB(Zp) modulo powers of p) we construct a set of bounded I-valued measure µi on N−(pZp)
as follows. We only need to specify the measure for sets of the form t−N−(Zp)(t−)−1n where

n ∈ N−(Zp) and t− a matrix of the form
(
pt1

pt2

)
with t2 > t1. We assign h(gint

−)λ(t−)−1 as

its measure where λ(t−) is the Hecke eigenvalue of h for Ut− (which is a unit since h is ordinary).
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This measure is well de�ned by the expression for Hecke operators Ut− . The above set {µi}i can
be viewed as a measure on U(2)(Q)\U(2)(AQ)/K(p) by requiring it to be invariant under the right
action of B(Zp), which we denote as µh. For an OurL [[ΓK]]-valued family of forms g on U(2)(AQ), we
can regard it as a continuous function on U(2)(Q)\U(2)(AQ)/K(p) (giving U(2)(Zp) the topology as
a p-adic Lie group). Thus we can talk about integral of g against the measure µh, which we write
as
∫

[U(2)] gdµh .
We refer to [67, Section 7.5] for the de�nition of the theta function θ1 and a functional lθ1 on

the space of p-adic automorphic forms on U(3, 1) essentially by taking Fourier-Jacobi coe�cients
(viewed as a form on P (AQ)) and pair with the theta function θ1. It maps an OurL [[ΓK]]-adic family
of forms on U(3, 1) to an OurL [[ΓK]]-adic family of forms on U(2, 0).

In [67, Section 7.3] we constructed three-dimensional families of CM forms h and θ on U(2)
(both invariant under B(Zp)) associated to families of CM characters χh and χθ and we write
their restrictions to the two dimensional SpecΛ̃ still using the same symbols. The OurL [[ΓK]]-linear
functional

F 7→
∫
lθ1(F )dµ

π(g′2

 1
1


p

)h

is de�ned on the space of OurL [[ΓK]]-adic families on U(3, 1). As in [67] we have to show that the
image of EKling under this functional is coprime to all height one primes of OurL [[ΓK]] except (p).
So we want to study

∫
lθ1(EKling)dµ

(π(g′2

 1
1


p

)h)

. Since EKling is realized as 〈
∫
i−1(Esieg), ϕ〉low

(i : U(3, 1)× U(0, 2) ↪→ U(3, 3) and 〈, 〉low means taking inner product with respect to the U(0, 2)-
factor) by Proposition 4.1, we need �rst to study

A1 :=

∫
lupθ1 i
−1(Esieg)dup

µ(π(g′2

 1
1


p

)h)

regarded as a family of p-adic automorphic forms on U(2). Here i−1(Esieg) is a measure of forms
on U(3, 1) × U(2) and the lupθ1 , d

up means the functional and integration on the U(3, 1) factor in
U(3, 1)×U(0, 2). Then

A := 〈A1, ϕ〉U(2) =

∫
lθ1(EKling)dµ

(π(g′2

 1
1


p

)h)

We remark that A1 is invariant under tK0(p).

We do the Fourier-Jacobi coe�cients calculations as in [67], in particular Proposition 5.28 and
Corollary 5.29 there at arithmetic points in X gen whose corresponding characters have conductors
pt. This shows that up to multiplying by an element in Q×p , the A is interpolating

ptφ(LΣ
5 LΣ

6 )

∫
[U(2)]

(π(g′2)hφ)(g)θφ(g

(
1

1

)
p

)(π(g1)fϑ)(g)dg.

Here hφ and θφ are specializations of h and θ at φ, LΣ
5 and LΣ

6 are de�ned in [67, subsection 7.5]
which are Σ-primitive p-adic L-functions for certain CM characters. They come from the pullback
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integral for h under U(2) × U(2) ↪→ U(2, 2). By our choices of characters they are some Q̄×p
multiples of a unit in OL[[ΓK]]. In [67] we also constructed families h̃3, θ̃3 in the dual automorphic
representations for h and θ. Let f̃ϑ̃ ∈ π̃ be chosen the same as as in [67, Section 7.5] at primes
outside p. But at p we take it as the stabilization with Up-eigenvalue α−1

1 (recall α1 is the eigenvalue
for the Up action on fϑ). We consider the expression at arithmetic point φ

Ãφ := pt
∫

[U(2)]
π(g′4)h̃3,φ(g)θ̃3,φ(g

(
1

1

)
p

)π(g3)f̃ϑ̃(g)dg.

From our previous discussions they are interpolated by an element Ã ∈ OurL [[ΓK]] ⊗Zp Qp. We
are going to calculate A · Ã using Ichino's triple product formula. We do this by calculating it at
arithmetic points in X gen. This is enough since these points are Zariski dense. We refer to [67,
subsection 7.4] for a summary of the backgrounds of Ichino's formula. The local calculations are
the same as loc.cit except at the p-adic places where we have di�erent assumptions for rami�cation.
(In [67] the central character for fφ has conductor pt at p while our πf here is unrami�ed at p.) We
give a lemma for our situation.

Lemma 5.1. Let χh,1, χh,2, χθ,1, χθ,2, χf,1, χf,2 be character of Q×p whose product is the trivial char-
acter and such that χh,1, χθ,1, χf,1, χf,2 are unramifed and χh,2 · χθ,2 is unrami�ed. Let fp ∈
π(χf,2, χf,1) and by using the induced representation model f is the characteristic function of
K1wK1. Similarly we de�ne f̃p ∈ π(χ−1

f,2, χ
−1
f,1). So f is a Hecke eigenvector for Tp with eigen-

value χf,1(p). Let hpπ(χh,1, χh,2), θp ∈ π(χθ,1, χθ,2), h̃p ∈ π(χ−1
h,1, χ

−1
h,2), θ̃p(χ

−1
θ,1, χ

−1
θ,2) be the fχh, fχθ ,

f̃χ̃h, f̃χ̃θ de�ned in [67, lemma 7.4]. Then the local triple product integral (de�ned at the beginning
of [67, subsection 7.4])

Ip(hp ⊗ θp ⊗ fp, h̃p ⊗ θ̃p ⊗ f̃p)
〈hp, h̃p〉〈θp, θ̃p〉〈fp, f̃p〉

is
p−t(1− p)

1 + p
· 1

1− χh,1(p)χθ,1(p)χf,1(p)p−
1
2

· 1

1− χh,1(p)χθ,2(p)χf,1(p)p−
1
2

.

Proof. This is an easy consequence of [67, lemma 7.4] and [73, Proposition 3.2].

Now as in [67, Section 7.5] by computing at arithmetic points φ ∈ X gen and applying Ichino's
formula, the local integrals at �nite primes are non-zero constants in Q̄×p (�xed throughout the
family). We conclude that up to multiplying by an element in Q̄×p the A · Ã equals LΣ

5 LΣ
6 L1L2

where L1 is the p-adic L-function interpolating the algebraic part of L(λ2(χθχh)φ,
1
2) (λ is the

splitting character of K×\A×K we use to de�ne theta functions, see [67, Section 3]) which we can
choose the Hecke characters properly so that it is a unit in OurL [[ΓK]]. (Note that since the CM
character λ2 has weight higher than f the result cited in [67, subsection 7.2] of M. Hsieh does not
assume that f is ordinary). The L2 is the algebraic part of L(f, χcθχh,

1
2) ∈ Q̄p (�xed throughout

the family) which we can choose to be non-zero. (See the calculations in [67, subsection 7.5].) The
LΣ

5 and LΣ
6 are also units in OurL [[ΓK]] up to multiplying by an element in Q̄×p by our choices of the

characters χθ and χh.
To sum up we get the following proposition.
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Proposition 5.2. Any height one prime of OurL [[ΓK]] containing
∫
lθ1(EKling)dµ

π(g′2

 1
1


p

)h

must

be (p).

Proof. The above discussion implies that A · Ã = Ã ·
∫
lθ1(EKling)dµ

π(g′2

 1
1


p

)h

is a unit in

OurL [[ΓK]] times an element in Q̄×p . Thus the proposition follows.

5.2 Proof of Greenberg's Main Conjecture

To state our result we need one more de�nition: suppose g is a cuspidal eigenform on GL2/Q which
is nearly ordinary at p. We have a p-adic Galois representation ρg : GQ → GL2(OL) for some L/Qp

�nite. We say g satis�es:
(irred) If the residual representation ρ̄g is absolutely irreducible.
Also it is known that ρg|Gp is isomorphic to an upper triangular one. We say it satis�es:
(dist) If the Galois characters of Gp giving the diagonal actions are distinct modulo the maximal
ideal of OL. Now we prove the following theorem which is one divisibility of Conjecture 2.1.

Theorem 5.3. Let π be an irreducible cuspidal automorphic representation of GL2/Q of weight 2,
square free level N and trivial character. Let ρπ be the associated Galois representation. Assume πp
is good supersingular with distinct Satake paramters. Suppose also for some odd non-split q, q||N .

Let ξ be a Hecke character of K×\A×K with in�nite type (−1
2 ,−

1
2). Suppose (ξ|.|

1
2 )|A×Q = ω ◦Nm (ω

is the Techimuller character).
(1) Suppose the CM form gξ associated to the character ξ satis�es (dist) and (irred) de�ned above
and that for each inert or rami�ed prime v we have the conductor of ξv is not ($v) where $v is a
uniformizer for Kv and that:

ε(πv, ξv,
1

2
) = χK/Q,v(−1).

Then we have Lf,ξ,K ∈ OurL [[ΓK]] and (Lf,K,ξ) ⊇ charOurL [[ΓK]](Xf,K,ξ) as ideals of OurL [[ΓK]].
(2) If we drop the conditions (irred) and (dist) and the conditions on the local signs in (1), but

assume that the p-adic avatar of ξ|.|
1
2 (ω−1 ◦Nm) factors through ΓK, then

(Lf,K,ξ) ⊇ charOurL [[ΓK]]⊗OLL
(Xf,K,ξ)

is true as fractional ideals of OurL [[ΓK]]⊗OL L.

We note that the assumption on the existence of q is to make sure that we can choose the
unitary group Subsection 2.2 properly so that the Jacquet-Langlands correspondence of f to the
corresponding quaternion algebra D exists.

Proof. We refer to [67, section 8.1] for the de�nitions for Hecke operators for U(3, 1) at unrami�ed
primes. Let KD be an open compact subgroup of U(3, 1)(AQ) maximal at p and all primes outside
Σ such that the Klingen Eisenstein series we construct is invariant under KD. We let TD be the
reduced Hecke algebra generated by the Hecke operators at unrami�ed primes space of the two
variable family of semi-ordinary cusp forms with level group KD, the Ui operator at p, and then
take the reduced quotient. Let the Eisenstein ideal ID of TD to be generated by {t− λ(t)}t for t in
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the abstract Hecke algebra and λ(t) is the Hecke eigenvalue of t acting on EKling and let ED be the
inverse image of ID in OL[[ΓK]] ⊂ TD.

Now the main theorem can be proven in almost the same way as [67, Section 8], using Proposition
5.2 and 4.4. One uses the fundamental exact sequence Theorem 3.17 to show that (LΣ) ⊇ ED as
in Lemma 8.4 of loc.cit. Then use the lattice construction (Proposition 8.2 there) to show that ED
contains the characteristic ideal of the dual Selmer group. Note also that to prove part (2) of the
main theorem we need to use Lemma 8.3 of loc.cit. The only di�erence is to check the condition
(9) in Section 8.3 of loc.cit : We suppose our pseudo-character R = R1 + R2 + R3 where R1 and
R2 are 1-dimensional and R3 is 2-dimensional. Then by residual irreducibility we can associate
a 2-dimensional TD-coe�cient Galois representation. Take an arithmetic point x in the absolute
convergence region for Eisenstein series such that a2 − a3 >> 0 and a3 + b1 >> 0 and consider
the specialization of the Galois representation to x. First of all as in [61, Theorem 7.3.1] a twist
of this descends to a Galois representation of GQ which we denote as R3,x. By our description for
the local Galois representations for semi-ordinary forms at p we know that R3,x has Hodge-Tate
weight 0, 1 and is crystalline (by the corresponding property for Rx = R1 +R2 +R3, note that Rx
corresponds to a Galois representation for a classical form unrami�ed at p by Theorem 3.10, 3.11
and Proposition 3.12). If p is at least 5 then R3,x is modular over a solvable totally real �eld F/Q
by [63, Theorem B]. If p is 3 then by [28] it must be modular unless the residual representation were

induced from a Galois character for Q(

√
(−1)

p−1
2 p). As we noted before ρ̄f |Gp is irreducible by [7].

So the restriction of it to Ip has semi-simpli�cation as diag(ωi2, ω
pi
2 ) where ω2 is the fundamental

character of level 2 and i is some integer. Since ρf is crystalline of weight (0, 1) the i has to be
congruent to 1 modulo (p− 1). But if ρ̄f is induced from the rami�ed quadratic �eld extension the

i has to be a multiple of (p+1)
2 , a contradiction if p = 3. To sum up in any case R3,x is modular over

a solvable totally real �eld. These implies some solvable base change of Rx to a totally real �eld is
CAP, contradicting the result of [14, Theorem 2.5.6].

Once we get one divisibility for LΣ
f,K,ξ, up to height one primes which are pullbacks of height one

primes of OurL [[Γ+
K]] (coming from local Euler factors at non-split primes in Σ, by our discussion

in [67, Section 6.4] on µ-invariants), the corresponding result for Lf,K,ξ also follows by using [13,
Proposition 2.4] as in [67, End of 8.3] (note that K∞ contains the cyclotomic Zp-extension).

6 The Two Variable ± Main Conjectures

6.1 Local Theory and Two-Variable Main Conjecture

In this subsection we develop some local theory. The main goal is to construct two-variable regulator
maps Col+ and LOG+ which are important for our argument. The Col+ is essentially constructed
by Kim [26] and the LOG+ is not in literature.

We note that for any prime v above p the �eld Kv is the composition of the maximal unrami�ed Zp
extension of Qp and the cyclotomic Zp-extension. So it is necessary to study the Galois cohomology
of this composed extension. We have an isomorphism Zp[[Γ]] ' Zp[[X]] sending γ to (1 +X). De-
�ne ω+

n (X) := X
∏

2≤m≤n,2|m Φm(X) and ω−n (X) :=
∏

1≤m≤n,2-m Φm(X) (our de�nition is slightly
di�erent from [33]). We recall some notions from [26] with some modi�cations. For k/Qp an un-
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rami�ed extension of degree d let Ok be its integer ring, consider the �eld k(ζpn+1) and let mk(ζpn+1 )

be the maximal ideal of its valuation ring Ok(ζpn+1 ). Let kn be the Z/pnZ sub-extension of k(ζpn+1)

with mk,n the maximal ideal of its integer ring. We de�ne

E+[k(µpn+1)] = {x ∈ E(k(µpn+1))|trk(µpn+1 )/k(µ
p`+2 )(x) ∈ E(k(µp`+1)), 0 ≤ ` < n, 2|`}.

We also de�ne the +-norm subgroup

Ê+[mk(µpn+1 )] = {x ∈ Ê(mk(µpn+1 ))|trk(µpn+1 )/k(µ
p`+2 )(x) ∈ Ê(mk(µ

p`+1 )), 0 ≤ ` < n, 2|`}.

Let

logf (X) =
∞∑
n=1

(−1)n
f (2n)(X)

pn

for f (n) = fϕ
n−1 ◦ fϕn−2 ◦ · · · f(X). As in [26], for z ∈ O×k we de�ne a point cn,z ∈ Ê[mk(ζpn )] such

that

logÊ(cn,z) = [
∞∑
i=1

(−1)i−1zϕ
−(n+2i) · pi] + log

fϕ
−n

z
(zϕ

−n · (ζpn − 1))

where ϕ is the Frobenius on k and fz(x) := (x + z)p − zp. Then the following lemma is proved in
[26, Page 5].

Lemma 6.1.

trk(ζpn+2 )/k(ζpn+1 )cn+2,z = −cn,z.

We also use the same notation cn,z for trk(ζpn )/kn−1
cn,z ∈ mk,n−1 as well. Let k = km be

unrami�ed Z/pmZ-extension of Qp. We sometimes write kn,m for the above de�ned kn with this
k = km. Let Λn,m = Zp[Gal(kn,m/Qp)].

Lemma 6.2. For even n's one can choose a system {cn,m}n,m for cn,m ∈ Ê+[mkn,m ] such that

trkn,m+1/kn,mcn,m+1 = cn,m,

trkn,m/kn−2,m
cn,m = −cn−2,m.

Proof. This can be done in the following way: choose d := {dm}m ∈ lim←−mOkm where the transition
is given by the trace map such that d generates this inverse limit over Zp[[U ]] (existence is guaranteed
by the normal basis theorem). If dm =

∑
j am,jζj where ζj are roots of unity and am,j ∈ Zp. De�ne

cn,m =
∑
am,jcn,ζj . We prove the �rst identity and the second one is a consequence of the above

lemma.
For any z = ζj a root of unity whose conductor is prime to p, we have

fϕ
−n

z (zϕ
−n

(ζpn − 1)) = fϕ
2k−n−1

z ◦ fϕ2k−n−2

z ◦ · · · ◦ fϕ−nz (zϕ
−n

(ζpn − 1))

= fϕ
2k−n−1

z ◦ fϕ2k−n−2

z ◦ · · · ◦ fϕ1−n
z (zϕ

−n
(zϕ

−n
(ζpn−1 − 1))

= · · ·

= zϕ
2k−n

(ζpn−2k − 1)

31



if 2m < n and equals 0 otherwise. So

logÊ cn,m =
∑
i,j

(−1)i−1 · am,jζϕ
−(n+2i)

j · pi +
∑
j

∑
2k<n

(−1)kam,j
ζϕ

2k−n

j (ζpn−2k − 1)

pk

=
∑
i

(−1)i−1pi(dm)ϕ
−(n+2i)

+
∑

2k<n

(−1)k(ζpn−2k − 1)

pk
(dm)ϕ

2k−n
.

Thus

logÊ trm/m−1cn,m =
∑
i

(−1)i−1pi(trdm)ϕ
−(n+2i)

+
∑

2k<n

(−1)k(ζpn−2k − 1)

pk
(trdm)ϕ

2k−n

=
∑
i

(−1)i−1pidϕ
−(n+2i)

m−1 +
∑

2k<n

(−1)k(ζpn−2k − 1)

pk
dϕ

2k−n

m−1

= logÊ cn,m−1.

De�nition 6.3. Let n be an even number. De�ne

Λ+
n,m = Λn,m/ω

+
n (X),

Λ−n,m = Λn,m/Xω
−
n (X).

Lemma 6.4. We have the following exact sequence

0→ Ê(pOkm)→ Λ+
n,mcn,m ⊕ Λ−n,mcn−1,m → Ê+(mkn,m)→ 0.

The middle term is isomorphic to Λ+
n,m ⊕ Λ−n,m. The cn,m generates Ê[mkn,m ] as a Λ+

n,m-module.

Proof. The surjectivity to Ê+(mkn,m) is essentially proved in [26, Proposition 2.6] (compare also to
the computations in the previous lemma). The other parts are easily proven (compare also with
[33, Proposition 8.12]).

Now we de�ne the two-variable +-Coleman maps

H1(kn,m, T )/H1
+(kn,m, T ) ' Λ+

m,n

where H1
+(kn,m, T ) is the exact annihilator of E+(kn,m)⊗Qp/Zp under the Tate pairing. We de�ne

P+
cn,m by

z 7→
∑

σ∈Gal(kn,m/Qp)

(cσn,m, z)m,nσ.

As is seen in [33, Proposition 8.19] the image of P+
cn,m is contained in ω−n (X)Λm,n if we identify

Zp[Γn] with Zp[X]/ωn(X) by sending γ to 1 +X. We de�ne Λ+
m,n := Λm,n/ω

+
n (X) ' ω−n (X)Λm,n.

The + Coleman map Col+n,m is de�ned to make the following diagram commutative.

H1(kn,m, T )
Col+n,m−−−−→ Λ+

n,my y×ω−n
H1(kn,m, T )/H1

+(kn,m, T )
P+
cn,m−−−−→ Λn,m
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As is seen in the proof of [26, Theorem 2.7, 2.8] the Col+m,n is an isomorphism and they group
together to de�ne the following isomorphism.

De�nition 6.5.

Col+ : lim←−
n

lim←−
m

H1(kn,m, T )

H1
+(kn,m, T )

' Λ.

The ++-Selmer group is de�ned by

Sel++(E/K∞) := ker{lim−→
K′

H1(K ′, E[p∞])→
∏
v|p

lim−→H1(kn,m, E[p∞])

lim−→E+(kn,m)⊗Qp/Zp
×
∏
v-p

lim−→H1(Iv, E[p∞])}

and X++ its Pontryagin dual.

As noted at the end of [26] there are p-adic L-functions constructed by Loe�er, which are
elements in Λ⊗Zp Qp.

L++
f,p :=

Lp,α,α − Lp,α,β − Lp,β,α + Lp,β,β

4α2 log−v0
log−v̄0

L+−
f,p :=

Lp,α,α + Lp,α,β − Lp,β,α − Lp,β,β
4α log−v0

log+
v̄0

L−+
f,p :=

Lp,α,α − Lp,α,β + Lp,β,α − Lp,β,β
4α log+

v0
log−v̄0

L−−f,p :=
Lp,α,α + Lp,α,β + Lp,β,α + Lp,β,β

4 log+
v0

log+
v̄0

for Lp,α,α interpolating

α−ordv0 fχα−ordv̄0 fχ
L(E,χ, 1)

g(χ) · |fχ| · Ω+
EΩ−E

for χ a character of Gal(K∞/K) and fχ its conductor and similarly for the other three. (Here the
roles played by ± are switched from [26] and is compatible with [33]). The log−v0

and log−v̄0
will be

de�ned at the beginning of subsection 7.3. The Ω±E are the ±-periods of the newform f associated
to the elliptic curve E multiplied by (2πi), respectively (we refer to [62, 9.2, 9.3] for details). In
fact Loe�er used another period factor which he called ΩΠ instead of Ω+

E ·Ω
−
E and proved that his

double signed p-adic L-functions are in Λ. A priory we only know our L±±f,p are in Λ⊗Zp Qp because
of di�erent periods. (It is possible to prove they are in Λ but this is not needed for our argument).
There is another period Ωcan called the canonical period de�ned in loc.cit using congruence numbers.
We have the following

Lemma 6.6. Up to multiplying by a p-adic unit we have

Ωcan = Ω+
E · Ω

−
E .

Proof. This is just [62, Lemma 9.5].

Now we are ready to formulate the two-variable �++� main conjecture.
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Conjecture 6.7. The two variable ++- main conjecture states that X++ is a torsion ΛK-module
and the characteristic ideal of X++ is generated by L++

f,p as an ideal of ΛK.

We also refer to the weak version of the above conjecture by requiring that for any height one
prime P of Λ = Zp[[Γ × Γ−]] which is not a pullback of a height one prime of Zp[[Γ−]], the length
of X++

P over ΛP is equal to ordPL
++
p .

Now we record a useful lemma.

Lemma 6.8. The lim←−n lim←−mH
1(kn,m, T ) is a free of rank two module over Λ and H1(kn,m, T ) is a

free rank two module over Λn,m.

Proof. We �rst note that T/pT is an irreducible module over GQp [7]. Then it follows from the Eu-
ler characteristic formula that H1(Qp, T/pT ) is a rank two Fp vector space. On the other hand
one can prove that the inverse limit in the lemma has generic rank two over Λ (see e.g. in
[44, appendix A]). Thus the �rst statement is true. The other statement is seen by noting that
H1(kn,m, T ) = lim←−n lim←−mH

1(kn,m, T )/(γn − 1, um − 1) lim←−n lim←−mH
1(kn,m, T ), which again follows

from the irreducibility of T/pT as aGQp-module and the Galois cohomology long exact sequence.

For the purpose of later argument we need one more regulator map LOG+. We construct it in an
explicit way. By the freeness of H1(kn,m, T ) over Λn,m and that ω+(X)cn,m = 0, we see that for

any even n there is bn,m ∈ H1(kn,m, T ) such that ω−n (X) · bn,m = (−1)
n+2

2 cn,m. It is easily seen that
one can choose the bn,m's such that trkn,m/kn−1,m

bn,m = bn−1,m and trkn,m/kn,m−1
bn,m = bn,m−1.

Lemma 6.9. H1
+(kn,m, T ) is a free Λn,m-module of rank one generated by bn,m.

Proof. For y ∈ E(kn,m)⊗Qp/Zp and x ∈ H1
+(kn,m, T ) we can show that

〈ω−n (X) · x, y〉 = 0

from [26, Proposition 2.6] and [33, (8.29)]. Moreover we have for any n′ > 0,

E(kn,m)/pn
′
E(kn,m) ↪→ H1(kn,m, T/p

n′T )

has Zp/pn
′Zp-torsion-free cokernel since each term is free Zp/pn

′Zp-module of �nite rank. So E(kn,m)
and E(kn,m)⊗Qp/Zp are orthogonal complements of each other under local Tate pairing. So

ω−n (X) · x ∈ ω−n (X)H1(kn,m, T ) ∩ Im(E(kn,m)→ H1(kn,m, T )).

By Lemma 6.4 we have ω−n (X)x ∈ Λn,mcn,m. This proves the lemma.

Let x = lim←−n lim←−m xn,m ∈ lim←−n lim←−mH
1
+(kn,m, T ). If xn,m = fn,m · bn,m for f ∈ Λn,m then∑

τ∈Γn×Um x
τ
n,m · τ = fn,m ·

∑
τ b

τ
n,m · τ .

De�nition 6.10. We de�ne LOG+ : lim←−n lim←−mH
1
+(kn,m, T ) ' Λ by x→ lim←−n lim←−m fn,m.

Now recall that v0 splits into pt primes in K∞/K. We take a set of representatives {γ1, · · · , γpt}
of ΓK/Γp. Write

H1(Kv0 , T ⊗ ΛK) = ⊕iH1(Kv0 , T ⊗ Zp[[Γp]]) · γi.
We de�ne

Col+x =
∑
i

γi · (Col+xi) ∈ ΛK.

We de�ne LOG+ similarly on H1
+(Kv0 , T ⊗ ΛK). The following proposition will be useful.
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Proposition 6.11. Let φ be a �nite order character of Γ×U such that φ(γ) and φ(u) are primitive
pn, pm-th roots of unity. Then for integer m and even n,

∑
σ∈Γn×Um

logÊ x
σ
n,m · φ(σ) = (−1)

n+2
2 ·

φ−1(fn,m)
∑

logÊ c
σ
n,mφ(σ)

ω−n (φ−1)
. (3)

∑
σ∈Γn×Um

logÊ(cn,m)σφ(σ) = g(φ|Γ) · φ(u)n ·
∑
u′∈Um

φ(u′)du
′
m. (4)

P+
cn,m(z) = (

∑
σ

logÊ(cσn,m) · σ)(
∑
σ

exp∗(zσ) · σ−1). (5)

Proof. Straightforward computation. The third identity used the description of the Tate pairing in
[38, Page 5].

6.2 The One Variable Main Conjecture of Kobayashi

Now we brie�y recall Kobayashi's one variable (cyclotomic) main conjecture. On the analytic side
there is a + p-adic L-function L+

E,Q such that

L+
E,Q(ζ − 1) = (−1)

n+2
2

pn · L(E,χ, 1)

ω−n (ζ)g(χ) · |fχ|ΩE

if χ is a character of Γ with conductor pn, 2|n > 0 and χ(γ) = ζ. On the other hand we de�ne the
+-Selmer group

Sel+E,Q,n := ker{H1(Qp,n, E[p∞])→
∏
v|p

H1(Qp,n, E[p∞])

E+(Qp,n)⊗Qp/Zp
×
∏
v-p

H1(Iv, E[p∞])}.

De�ne X+
E,Q := (lim−→n

Sel+E,Q,n)∗. This is a module over ΛQ.

Conjecture 6.12. Kobayashi's main conjecture states that X+
E,Q is a torsion ΛQ-module and the

characteristic ideal of X+
E,Q is generated by L+

E,Q as ideals of ΛQ.

Kobayashi proved one containment (L+
E,Q) ⊆ charΛQ(X+

E,Q) in [33], using results of Kato [25].

6.3 Special Case of Greenberg's Main Conjecture

We apply Theorem 5.3 to a special case that we will use to deduce the ±-main conjecture. We
change the notations a little. On the arithmetic side we de�ned

Sel2K,f = ker{H1(K, T ⊗ Λ∗(Ψ))→
∏
v-p

H1(Kv, T ⊗ Λ∗(Ψ))×H1(Kv̄0 , T ⊗ Λ∗(Ψ)).

X2
K,f := (Sel2K,f )∗.

On the analytic side there is a corresponding p-adic L-function L2
f,K ∈ Frac(W (F̄p))[[ΓK]]) (taking

the character ξ to be trivial character. The W (R) means the Witt vector for R), which is the Lf,K,1
we constructed in Section 4, with the following interpolation property. For a Zariski dense set of
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arithmetic points φ ∈ SpecΛ such that ξφ := φ◦Ψ is the avatar of a Hecke character of in�nite type
(κ2 ,−

κ
2 ) with κ ≥ 6 we have

φ(L2
f,K) = C

p(κ−3)tξ−2
2,pχ

−1
1,pχ

−1
2,p(p

−t)g(ξ−1
2,pχ

−1
1,p)g(ξ−1

2,pχ
−1
2,p)L(K, πf , ξ̄cφ,

κ
2 −

1
2)(κ− 1)!(κ− 2)!Ω2κ

p

(2πi)2κ−1Ω2κ
∞

.

Here Ω∞ and Ωp are the CM periods and p-adic periods for K. The C is a constant in Q̄×p , χ1,p, χ2,p

is such that the unitary representation πf ' π(χ1,p, χ2,p) with valp(χ1,p(p)) = −1
2 , val(χ2,p(p)) = 1

2 .
This case corresponds to part (2) of Theorem 5.3. This p-adic L-function can also be constructed
by Rankin-Selberg method as in [15]. See [67, Remark 7.2] for a detailed discussion. In fact Hida's
construction gives an element in Frac(ΛK) and the above L2

f,K is obtained by multiplying Hida's by

a Katz p-adic L-function LKatzK ∈ Ẑurp [[ΓK]] and the class number hK of K. The LKatzK interpolates
algebraic part of special L-values L(0, χφχ

−c
φ ) where χφ are CM characters of ΓK (see [22]). The

denominator of Hida's p-adic L-function is related to certain congruence modules, which we are
going to study in Section 8 using Rubin's work on CM main conjecture. (In fact one can show that
this L2

f,K is in W (F̄p)[[ΓK]].)
Recall we have chosen d = lim←−m dm ∈ lim←−O

×
km where the transition map is the trace map. We

de�ne Fd,2 ∈ Ẑurp [[U ]] as

lim←−
m

∑
u∈Uv/pmUv

dum · u2.

Then the discussion in [38, Section 6.4] on Katz p-adic L-functions (see also the discussion in Section
3.2 of loc.cit) implies that LKatzK /Fd,2 is actually an element in Zp[[ΓK]]\{0} (Note the coe�cients).
This can be seen as follows: as remarked at the end of [38, Section 6.4] the Katz p-adic L-function
is obtained by applying the two-variable regulator map there to the image of the elliptic units in
the Iwasawa cohomology. On the other hand from the construction of this regulator map in [38,
De�nition 4.6], noting that since χ 7→ χ 7→ χχ−c induces square map on anticyclotomic characters,
Fd,2 is a generator of the Yager module S∞ there (this is the SQurp /Qp in Section 7.2) as a free rank

one Zp[[U ]]-module. Thus LKatzK /Fd,2 is a Zp-coe�cient power series. So there is an L′f,K ∈ FracΛK
such that

L′f,K · Fd,2 = L2
f,K.

We have the following Straightforward consequence of part (2) of Theorem 5.3.

Theorem 6.13. Assume E has square-free conductor N and there is at least one prime `|N where
K is non-split. Suppose moreover that E[p]|GK is absolutely irreducible. Then the characteristic
ideal of X2

K,f is contained in the fractional ideal generated by L′f,K as ideals of Λ⊗Zp Qp.

We similarly have a weak version of this theorem by requiring the inequality for any height one
prime P of ΛK which is not a pullback of a height one prime of Zp[[Γ−]] instead of for all height
one primes.

7 Beilinson-Flach Elements

7.1 Some Preliminaries

We write Zp[[Γ−]] = Zp[[T ]], γ− 7→ 1 + T . Recall g be the Hida family of normalized CM forms
attached to characters of ΓK with the coe�cient ring Λg := Zp[[T ]] (the trivial character of ΓK is a
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specialization of this family). We write Lg for the fraction ring of Λg. As in [30] letM(f)∗ (M(g)∗)
be the part of the cohomology of the modular curves which is the Galois representation associated
to f (g). The corresponding coe�cients for M(f)∗ and M(g)∗ is Qp and Lg. (Note that the Hida
family g is not quite a Hida family considered in loc.cit. It plays the role of a branch a there). Note
also that g is cuspidal (which is called �generically non-Eisenstein� in an earlier version) in the sense
of [32]. We have M(g)∗ is a rank two Lg vector space and, there is a short exact sequence of Lg
vector spaces with GQp action:

0→ F+
g →M(g)∗ → F−g → 0

with F±g being rank one Lg vector spaces such that the Galois action on F−g is unrami�ed. Since g
is a CM family with p splits in K, the above exact sequence in fact splits as GQp . For an arithmetic
specialization gφ of g the Galois representation M(f)∗ ⊗ M(gφ)∗ is the induced representation
from GK to GQ of M(f)∗ ⊗ ξgφ where ξgφ is the Hecke character corresponding to gφ. This
identi�cation will be used implicitly later. We also write DdR(f) = (M(f)∗ ⊗ BdR)GQp . We will
write H1

Iw(K∞,−) := lim←−K⊆K′⊆K∞ H
1(K′,−). The transition map is given by co-restriction. For f

let DdR(f) be the Dieudonne module for M(f)∗ and let η∨f be any basis of Fil0DdR(f). Let ω∨f be

a basis of DdR(f)

Fil0DdR(f)
such that 〈ω∨f , ωf 〉 = 1.

7.2 Yager modules

We mainly follow [38] to present the theory of Yager modules. Let K/Qp be a �nite unrami�ed
extension. For x ∈ OK we de�ne yK/Qp(x) =

∑
σ∈Gal(K/Qp) x

σ[σ] ∈ OK[Gal(K/Qp)] (note our
convention is slightly di�erent from [38]). Let Qur

p /Qp be an unrami�ed Zp-extension with Galois
group U . Then the above map induces an isomorphism of ΛOF (U)-modules

yQurp /Qp : lim←−
Qp⊆K⊆Qurp

OF ' SQurp /Qp = {f ∈ Ẑurp [[U ]] : fu = [u]f}

for any u ∈ U a topological generator. Here the superscript means u acting on the coe�cient ring
while [u] means multiplying by the group-like element u−1. The module SQurp /Qp is called the Yager
module. It is explained in loc.cit that the SQurp /Qp is a free rank one module over Zp. Let F be

a representation of U then they de�ned a map ρ : Ẑurp [[U ]] → Aut(F ⊗ Ẑurp ) by mapping u to its
action on F and extend linearly. As is noted in loc.cit the image of elements in the Yager module
is in (F ⊗ Ẑurp )GQp . Recall also that

d := lim←−
m

dm ∈ lim←−
m

O×km

de�ned in the proof of Lemma 6.2 is a generator of the Yager module for Qp. Then we can de�ne
ρ(d) and let ρ(d)∨ be the element in Ẑurp [[U ]] which is the inverse of lim←−m

∑
σ∈U/pmU d

σ
m · σ−1. We

have the following

Lemma 7.1. (1)
1

lim←−m
∑

σ∈U/pmU d
σ
m · σ−1

∈ S∞.
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(2)

lim←−
m

∑
σ∈U/pmU

dσm · σ2 ∈ (lim←−
m

∑
σ∈U/pmU

dσm · σ)2 · Zp[[U ]]×.

Proof. Straightforward computation on the Galois action.

7.3 Beilinson-Flach elements

Unlike Kato's zeta element, the Beilinson-Flach elements constructed in [30] are not in the Iwasawa
cohomology (in fact they are unbounded classes). So we need to construct from them a bounded
family of classes. Our construction can be viewed as a Galois cohomology analogue of Pollack's
construction of the ± p-adic L-function.

We �rst de�ne

log−p (X) :=
1

p

∞∏
m=1

Φ2m−1(1 +X)

p
,

log+
p (X) :=

1

p

∞∏
m=1

Φ2m(1 +X)

p
.

Write Xv0 = γv0 − 1 and Xv̄0 = γv̄0 − 1. We write log±v̄0
for log±p (Xv̄0) and log±v0

for log±p (Xv0) as
elements of Λ = Qp[[Γv0 × U ]] = Qp[[Γv̄0 × U ]]. We use Zp[[U ]] ' Zp[[Y ]] mapping u to 1 + Y .

De�nition 7.2. Let r = 1
2 and de�ne Hr(X) to be power serie in Qp[[X]] of growth O(log

1
2
p ) consist-

ing of
∑∞

n=0 anX
n such that max{p−[ 1

2
`(n)]|an|p}n <∞ where `(n) is the smallest integerm such that

pm > n (see [38]). This is equipped with a norm on it:
∑∞

n=0 anX
n has norm max{p−[ 1

2
`(n)]|an|p}n.

Our Hr is the Mellin Transform ∫
t∈Zp

(1 +X)tdµ

of r-admissible distributions dµ de�ned in loc.cit. Let Hr,0 := Zp[[Y ]] ⊗ Hr(Xv0). We also de�ne
H0,r to be the completed tensor product Zp[[Y ]]⊗̂Hr(Xv̄0) with respect to the obvious norm on Zp[[X]]
and the norm of Hr mentioned above (note that the de�nitions for Hr,0 and H0,r are not symmetric).

We see that log−v0
∈ Hr,0 and log−v̄0

∈ H0,r. In [36] the authors de�ned Beilinson-Flach elements
BFα and BF−α for fα and f−α, as elements in Hr,0 ⊗H1

Iw(Q∞,M(f)∗ ⊗M(g)∗). It is easily seen
that the module H1

Iw(Q∞,M(f)∗ ⊗M(g)∗) can be identi�ed with H1
Iw(K∞,M(f)∗).

Now we recall some notations in [43]. Let ESp(DK) := lim←−rH
1(X1(DKp

r) ⊗ Q̄,Zp) and
GESp(DK) := lim←−rH

1(Y1(DKp
r) ⊗ Q̄,Zp) which are modules equipped with Galois action of GQ.

Here X1(DKp
r) and Y1(DKpr) are corresponding compact and non-compact modular curves. Recall

in loc.cit there is an ordinary idempotent e∗ associated to the covariant Hecke operator Up. Let
A∗∞ = e∗ESp(DK)Ip = e∗GESp(DK)Ip (see the Theorem in loc.cit). Let B∗∞ (B̃∗∞) be the quotient
of e∗ESp(DK) (e∗GESp(DK)) over A∗∞.

In an earlier version of [32] the authors de�ned elements ω∨g ∈ (F+
g (χ−1

g ) ⊗ Ẑurp )GQp and η∨g ∈
(F−g ⊗ Ẑurp )GQp . Here the χg is the central character for g. We brie�y recall the de�nitions since
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they are more convenient for our use (these notions are replaced by their dual in the current version
of [32]). In the natural isomorphism

A∗∞ ⊗Zp[[T ]] Ẑurp [[T ]] ' HomẐurp
(Sord(DK, χK, Ẑurp [[T ]]), Ẑurp [[T ]])

(see the proof of [43, Corollary 2.3.6], the ω∨g is corresponds to the functional which maps each
normalized eigenform to 1. On the other hand η∨g is de�ned to be the element in B∗∞ which, under
the pairing in [43, Theorem 2.3.5], pairs with ω∨g to the product of local root numbers at prime to
p places of g. This product moves p-adic analytically and is a unit.

Let v1, v2 be a Λ basis of H1(Kv̄0 ,M(f)∗ ⊗ Λ(−Ψ)). Then there are f1, f2 ∈ Hr(Xv0)⊗Zp[[Xv0 ]]

Zp[[Xv0 , T ]] and some f0 ∈ Frac(Zp[[T ]])\{0} such that BFα −BF−α = α · f0(f1v1 + f2v2). Let

L = LGVf : H1(GQp ,M(f)∗ ⊗ Λ(−Ψ))→ ⊕p
t

i=1(H0,r ⊗Dcris(Vf )) · γi

be the regulator map de�ned in [38, Theorem 4.7]. (We know L(vi) ∈ H0,r by [38, Proposition
4.8]). We write Prα and Pr−α for the projection map from Dcris(Vf ) to the α or −α eigenspace
for Frobenius action ϕ (as numbers, with respect to the basis given by the image of the Neron
di�erential ωE in the ±α-eigenspaces of Dcris(Vf )). Let

L+ =
Prα − Pr−α

2α
◦ L, L+ =

Prα + Pr−α

2
◦ L.

Then by Proposition 7.5 in the following, we have

f0f1L+(v1) + f0f2L+(v2) = log−v0
log−v̄0

L++
f,p ,

f0f1L−(v1) + f0f2L−(v2) = log−v0
log+

v̄0
L+−
f,p .

We need the following

Lemma 7.3. The L+−
f,p and L−+

f,p are not identically zero.

Proof. We just need to know that the LK(E,χ, 1) is non zero for some character χ of ΓK whose
conductor at v0 is a even power of p and whose conductor at v̄0 is an odd power of p. This is just
[51, Theorem 2].

We have the following

Lemma 7.4. We have f1, f2 ∈ log−v0
·Frac(Zp[[Xv0 , T ]]).

Proof. We �rst claim that det

(
L+(v1) L+(v2)
L−(v1) L−(v2)

)
is not identically zero. Suppose it is not the case.

Then we have
log−v̄0

L++
f,p · L

−(v1)− log+
v̄0
L+−
f,p · L

+(v1) = 0,

log−v̄0
L++
f,p · L

−(v2)− log+
v̄0
L+−
f,p · L

+(v2) = 0.

Let ζ1, · · · , ζs be the zeros of log−p such that Xv̄0 − ζi is a divisor of L+−
f,p (easily seen to be a �nite

set since L+−
f,p is not identically zero). Then for any other root ζ of log−p , L+(v1) restricts to the zero

function at the lineXv̄0 = ζ. If we expand L+(v1) as a power series inXv̄0 and U , then byWeierstrass
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preparation theorem (see [70, Theorem 7.3]), the coe�cient for Um (any m) is log−v̄0
/
∏

(Xv̄0 − ζi)
times some element in Zp[[Xv̄0 ]] ⊗Zp Qp whose coe�cients are uniformly bounded (bound also
independent of m). (See [48, Proof of Theorem 5.1]). Thus L+(v1) ∈ log−v̄0

·Frac(Zp[[Xv̄0 , U ]]) We
can apply the same argument to all L±(vi) and get

L+(vi) ∈ log−v̄0
·Frac(Zp[[Xv̄0 , U ]]),

L−(vi) ∈ log+
v̄0
·Frac(Zp[[Xv̄0 , U ]]).

But det

(
L+(v1) L+(v2)
L−(v1) L−(v2)

)
= 0. This contradicts the fact that L is injective, which is proved in

[38, Proposition 4.11].

Now let us return to the proof of the lemma. Fix k = 1 or 2. If fk is identically 0 then nothing is
needed. If not, recall we �xed representatives γ1, · · · , γpt of ΓK/Γp. Then from the claim there is
an a ∈ Cp, |a|p < 1 such that

0 6= fk|Xv̄0=a ∈ ⊕p
t

i=1 log−v0
·Frac(Zp[[Xv0 ]]) · γi. (6)

It is possible to write fk =
∑

j fkj(Xv0)·gkj(Xv0 , T ) (�nite sum) where fkj(Xv0) ∈ Hr(Xv0)⊗Zp[[Xv0 ]]

Frac(Zp[[Xv0 ]]) and gkj(Xv0), T ) ∈ Zp[[Xv0 , T ]] such that either fk1(Xv0) ∈ log−v0
·Frac(Zp[[Xv0 ]])

or {log−v0
} ∪ {fkj} forms a linearly independent set over Frac(Zp[[Xv0 ]]). Then (6) implies we must

have j = 1 and fk1(Xv0) ∈ log−v0
·Frac(Zp[[Xv0 ]]). Thus the lemma is true.

So there is an element 0 6= h ∈ Zp[[Xv0 , Y ]] such that h · fi ∈ log−v0
·Λ. We de�ne the bounded

cohomology class

BF+ :=
f1h

2 log−v0

v1 +
f2h

2 log−v0

v2 ∈ H1
Iw(K∞,M(f)∗) (7)

It follows from that the Galois cohomology image of Beilinson-Flach element is geometric that the
BF+ maps to H1

+(Gv0 ,M(f)∗⊗Λ(−Ψ)) ⊆ H1(Gv0 ,M(f)∗⊗Λ(−Ψ)), since for any arithmetic point
φ such that log−v0

|φ 6= 0, the class is in the �nite part H1
f (Gv0 ,−).

We take basis v± of F±g with respect to which ω∨g and η∨g are ρ(d)∨v+ and ρ(d)v− (see the
discussion for Yager Modules). We use this basis to give Λg-integral structure forM(g)∗. With this
integral structure we can talk about specializing BF+ to arithmetic points φ, provided we remove
the set of φ's in a lower dimensional subspace (the zeroes of the denominator for BF+ with respect
to the basis). The following propositions are proved in [30]. Let Ψg be the Λg-valued Galois char-
acter of GK corresponding to the Galois representation associated to g (i.e. IndGKGQ

Ψg = M(g)∗).

Since p splits as v0v̄0 in K, there is a canonical identi�cation (IndGKGQ
Ψg)|GQp ' Ψg|GKv0 ⊕Ψg|GKv̄0

and can take a Λg-basis of the right side as {v, c ·v} where c is the complex conjugation. (Note that
there are two choices for the Ψg and we choose the one so that Ψg|GKv0 corresponds to F−g ).

Convention: we use the basis {v+, c ·v+} to identify the Galois representation of g with the induced
representation IndKGQ

Ψg.
In the following we de�ne φ in a generic set of arithmetic points corresponding to a �nite order

character of ΓK to mean all such φ outside a proper closed sub-scheme of SpecΛ.
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Proposition 7.5. For some H0 ∈ Q̄×p and φ in a generic set of arithmetic points corresponding
to a primitive character of Γn × Um with n an even number (as local Galois group at v̄0), for any
α, β ∈ {±

√
−p},

H0 · PrF+
g Prβ(exp∗(φ(BFα))) =

φ(Lp,α,β)ε(χ−1
φ )

(−p)
n
2

η∨f,β ⊗ φ(ω∨g ).

Here Prβ and η∨f,β denote projecting to the β-eigenspace of DdR(f), exp∗ is the Bloch-Kato dual
exponential map. The χφ means composing Ψ with φ. By class �eld theory the χφ can be considered

as a character of Q×p . For the PrF+
g , we recall that M(g)∗ is split as the direct sum of F+

g and F−g
as Galois modules which are rank one vector spaces over Lg. So if we exclude the set of φ's in a lower

dimensional space it makes sense to talk about projection to (F−g ⊗ Ẑurp )GQp or (F+
g (χ−1

g )⊗ Ẑurp )GQp

components at φ.

Proof. It follows from the explicit reciprocity law in [30, Theorem 7.1.4, Theorem 7.1.5] together with
the interpolation property of the big regulator map [38, Theorem 4.15]. Note that αn = βn = (−p)

n
2

and that the βg in loc.cit corresponds to the χφ(u)n part (u being the arithmetic Frobenius) of
ε(χ−1

φ ).

The proposition has the following corollary using Proposition 6.11.

Corollary 7.6. We use the convention before Proposition 7.5. Then for some H1 ∈ Q×p we have

Col+v̄0
(BF+) = h ·H1 · L++

p .

(the h is de�ned in (7)).

Proof. First recall that ω∨g is the ρ(d)∨v+ for the basis v± we have chosen. If we take H1 to be
Ω+
EΩ−E
〈f,f〉 times some element in Q̄×p (recall η∨f is de�ned up to a scalar). Then the corollary follows.

Proposition 7.7. There is a non-zero element 0 6= H2 ∈ Ẑurp [[T ]], such that for φ in a generic set
of arithmetic points corresponding to a primitive character of Γn×Um (as Galois group at v0) with
n an even number and for α ∈ {±

√
−p},

φ(H2)PrF−g logv0
φ(BFα) =

1

α · (−p)
n
2

φ(L2
f,K) · ε(χ−1

φ )ω∨f ⊗ φ(η∨g ).

Here logv0
is the Bloch-Kato logarithm map at v0.

Proof. This again follows from [30, Theorem 7.1.4, Theorem 7.1.5]. Note that the arithmetic points
at which the interpolation formulas are proved there are not quite the φ's considered here. In fact
those points in loc.cit correspond to the product of a �nite order character of Γ and some character
of U which is not of �nite order. We may use the lemma below to get the result we need. We
also need to compare the p-adic L-function in loc.cit with the one in [67]. In [67] we used the Σ-
primitive p-adic L-function which is in Λ for Σ a �nite set of primes. The original p-adic L-function
is obtained by putting back the Euler factors at Σ. We only know a priory it is in the fraction �eld
of Λ. There is another construction of this p-adic L-function LUrbanf,K ∈ Λ ⊗Λg Lg by E.Urban [66]
using Rankin-Selberg method. This is the p-adic L-function used in [30]. However the period there
is the Petersson inner product of the normalized eigenforms in g instead of the CM period. The
ratio of these periods is given by hK ·LKatzK ∈ Ẑurp [[T ]] (see [22]). So we may choose hK ·LKatzK times
some constant in Q̄×p as the H2. The proposition follows.
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Recall Fn is the unrami�ed extension of Qp of degree pn.

Lemma 7.8. Let χ be a primitive character of Γ/pnΓn and let Kχ be the �eld obtained from Qp by
joining in the coe�cient ring of χ. We let

∑
τ∈Γ/pnΓ

ζτωf ⊗ χ(τ) := ωf,χ ∈
D
Kχ
dR (T )

Fil0D
Kχ
dR (T )

⊗Qp Kχ.

The lim←−nH
1
f (Fn, T (χ)) is free of rank one over OKχ [[U ]]. Moreover if lim←−nH

1
f (Fn, T (χ))→ (lim←−nOFn ·

ωf,χ) ⊗Zp Qp is a homomorphism of OKχ [[U ]]-modules and for a Zariski dense set points φ ∈
SpecOKχ [[U ]] with the associated unrami�ed Galois character denoted as ρφ, the specialization to
φ : OKχ [[U ]]→ Cp of this map is the Bloch-Kato logarithm map

H1
f (Qp, T (χρφ))→

DdR(T (χρφ))

Fil0DdR(T (χρφ))
.

Proof. Let Kχ,n be the composed �eld of Fn and Kχ and let Kχ,∞ be the union of all Kχ,n and
ÔKχ,∞ be the p-adic completion of the integer ring of Kχ,∞. We �rst observe that there is an integer
m′′ such that the image of ÔKχ,n ·ωf under the Bloch-Kato exponential map lies in p−m

′′
H(Kχ,∞, T ).

This follows from the explicit formula for the logarithm map of the formal group E of Ê. From this
we know there is an integer m′ with

exp : ÔF∞ · ωf,χ → p−m
′
H1(F∞, T (χ)). (8)

and
lim←−
n

OFn · ωf,χ → p−m
′
lim←−
n

H1(Fn, T (χ)).

Suppose ρ is an unrami�ed character of GQp with ρ(u) = 1 + m so that |m|p < 1 is in a �nite
extension L/Qp. Recall that d ∈ lim←−nOFn and ρ(d) := lim←−n

∑
σ∈U/pnU ρ(σ)dσn. De�ne

ωf,χρ := ρ(d) · ωf,χ = lim←−
n

∑
σ

dσn · ωf,χ ⊗ ρ(σ) ∈ (lim←−
n

OFn)ωf ⊗Zp OLχ

for Lχ = Kχ(m). Then the boundedness (8) implies

ρ(d) · ωf,χ → lim←−
n

∑
σ∈U/pnU

ρ(σ) exp(dσn · ωf,χ)

gives the Bloch-Kato exponential map for V (χρ). Now it follows from the fact that the exponential
mpa for V (χρ) is an isomorphism from Qpωf,χρ ⊗Qp Lχ to H1

f (Qp, V (χρ)) and some elementary
theory of OKχ [[U ]]-module structures that there is an integer m such that

exp(lim←−
n

OFn · ωf,χ)

is pm times a rank oneOKχ [[U ]]-direct summand of the free rank twoOKχ [[U ]] module lim←−nH
1(Fn, T (χ)).

These altogether give the lemma.

42



Corollary 7.9. We use the convention before Proposition 7.5. Then for some 0 6= H3 ∈ FracΛg we
have

LOG+
v0

(BF+) = h ·H3 · (L2
f,K).

Proof. Take H3 as − 1
H2
· v−
c·v+ and use Proposition 6.11.

Remark 7.10. Both H2 and v−

c·v+ are elements in the fraction �eld of Λg. In the next section we
are going to carefully study them to get a re�ned main theorem. In particular we will use Rubin's
work on CM main conjecture to prove that 1/H3 is �almost� integral.

8 Proof of Main Results

In this section we �rst prove a weak version of the two-variable ++ main conjecture, which can be
used to deduce the one variable main conjecture of Kobayashi after inverting p. To take care of

powers of p, we need to study the ratio
c·ω∨g
η∨g

(c ∈ GQ is the complex conjugation, will make precise

de�nition for the c-action later on), which boils down to studying certain congruence modules.
Our idea is appeal to the main conjecture for CM �elds proved by Rubin, and an argument of
Hida-Tilouine [18] constructing elements in certain anticyclotomic Selmer groups from congruence
modules.

8.1 The Two Variable Main Conjecture

We �rst prove the weak version of one side (lower bound for Selmer groups) of Conjecture 6.7. We
de�ne a couple of Selmer groups

H1
3 (K,M(f)∗ ⊗ ΛK(−Ψ)) :=

ker{H1(K,M(f)∗ ⊗ ΛK(−Ψ))→
∏
v-p

H1(Iv,M(f)∗ ⊗ ΛK(−Ψ))× H1(Gv0 ,M(f)∗ ⊗ ΛK(−Ψ))

H1
+(Gv0 ,M(f)∗ ⊗ ΛK(−Ψ))

},

and

Selv0,+ := lim−→
K⊆K′⊆K∞

ker{H1(K′,M(f)∗ ⊗ ΛK(Ψ)⊗ (ΛK)∗)→
∏
v-p

H1(Iv,M(f)∗ ⊗ ΛK(Ψ)⊗ (ΛK)∗)

× H1(Gv0 ,M(f)∗ ⊗ ΛK(Ψ)⊗ (ΛK)∗)

E+(K′v0
)⊗Qp/Zp

×H1(Gv̄0 ,M(f)∗ × ΛK(Ψ)⊗ (ΛK)∗)},

Xv0,+ := Sel∗v0,+.

Recall that BF+ is in H1
3 (K,M(f)⊗ ΛK).

Conjecture 8.1. For any height one prime P of ΛK we have the length of

H1
3 (K,M(f)⊗ ΛK)/ΛK ·BF+

at ΛP is the same as that of Xv0,+. We also make the weak version and �one divisibility� version of
the above conjecture. (We will see in the proof of next theorem that H1

3 (K,M(f)⊗ΛK) is a torsion
free rank one ΛK-module).
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Theorem 8.2. The weak version of both Conjecture 6.7 and the main conjecture in [67] are equiv-
alent to the conjecture above. Moreover the inequality lengthPX

+
f,K ≥ ordPL

++
f,p is true under the

assumption of Theorem 6.13.

Proof. Note that H1
3 (GK, Tf ⊗ ΛK(−Ψ)) is torsion-free of rank one over ΛK. This can be seen as

follows: the torsion-freeness is obvious. If the rank is at least two, then the kernel of the map from

H1
3 (GK, Tf ⊗ ΛK(−Ψ)) to H1(Gv̄0 ,Tf⊗ΛK(−Ψ))

H1
+(Gv̄0 ,Tf⊗ΛK(−Ψ))

has rank at least one, thus not torsion. Specialize to

the cyclotomic line γ−−1 = 0, we see this is impossible by [33, Theorem 7.3 (i)]. So the rank has to
be at most one. Now recall that by Corollaries 7.6 and 7.9, the image of BF+ by Col+v̄0

and LOG+
v0

are certain p-adic L-functions which are not identically zero. It then follows that the kernels of

H1
3 (GK, Tf ⊗ΛK(−Ψ))→ H1(Gv̄0 ,Tf⊗ΛK(−Ψ))

H1
+(Gv̄0 ,Tf⊗ΛK(−Ψ))

and H1
3 (GK, Tf ⊗ΛK(−Ψ))→ H1

+(Gv0 , Tf ⊗ΛK(−Ψ))

must be 0.
The above discussion gives the following exact sequences (Poitou-Tate long exact sequence):

0→ H1
3 (GK, Tf ⊗ ΛK(−Ψ))→

H1(Gv̄0 , Tf ⊗ ΛK(−Ψ))

H1
+(Gv̄0 , Tf ⊗ ΛK(−Ψ))

→ X++ → Xv0,+ → 0

and
0→ H1

3 (GK, Tf ⊗ ΛK(−Ψ))→ H1
+(Gv0 , Tf ⊗ ΛK(−Ψ))→ Xv0 → Xv0,+ → 0.

We know X+
E,Q is torsion by [33]. So the control theorem Proposition 8.7 in the following implies

that X++ is torsion over ΛK. So the rank of H1
3 (K, Tf ⊗ΛK(−Ψ)) must be one. Then the argument

is the same as [33, Theorem 7.4], using Corollaries 7.6 and 7.9 and the above exact sequences.

Note that at the moment we can only treat height one primes of Λ which are not pullbacks of
height one primes of Λg and thus can only prove the weak version of the theorem. In order to get a
re�ned result we need to study the relations between v+ and c · v− we discussed before Proposition
7.5. In fact we can prove the strong version of Conjecture 6.7 by applying Rubin's work on the main
conjecture for K. We �rst study certain Eisenstein components of the modular curve cohomology.
Let T be the Hecke algebra generated by T`'s for ` - pDK and U`'s for `|pDK, acting on the space
of ordinary cuspidal forms with tame level group Γ1(DK). Let Tmg be the localization of T at the
maximal ideal corresponding to g. These Hecke algebras are reduced since cond(χK) = DK and the
nebentypus of forms congruent to g must be congruent to χK modulo p and thus conductor must
be DK as well. Then the family g is a component of it. We write the non-CM component TNCM for
the quotient of Tmg corresponding to Spec(Tmg) with all irreducible components corresponding to
families of K-CM forms deleted. Let CCM ⊂ TNCM be the congruence ideal generated by {t− tg}t's
for t running over all Hecke operators (including the Up operator) and tg is the Hecke eigenvalue
for t on g. Then the map Λg → TNCM/CCM is surjective. We let ICM be the kernel of this map.

Proposition 8.3. We have ordPLKatzK ≥ LengthP (Λg/ICM ) for any height one prime P of ΛK,
unless P is the pullback to ΛK = Zp[[Γ× Γ−]] of the augmentation ideal (γ − 1)Zp[[Γ−]] of Zp[[Γ−]]
(we call these primes �exceptional�).

Proof. We note that each irreducible component B of TNCM the Galois representation ρB : GQ →
GL2(Frac(B)) has irreducible restriction to GK. This is because there exists classical specialization
at that component which is not a CM form with respect to K. Let

XCM := H1
f (K,Λg(χgχ

−c
g )⊗Λg Λ∗g)∗
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where χg denotes the family of CM character corresponding to the family of CM form g. The
Selmer condition �f � is de�ned by restricting trivially to H1(Iv,−) at all primes v 6= v0. Then the
�lattice construction� (see [18, Corollary 3.3.6], and see [68] for the construction in the situation
here) gives that for any non-exceptional height one prime P of Λg,

lengthΛg,P
(Λg/ICM )P ≤ ordPXCM .

This construction works unless P corresponds to the pullback of the augmentation ideal in the
anticyclotomic line (these cases do not satisfy the [18, (SEP.P)] on page 32 of loc.cit). On the other
hand, Rubin [52], [53] proved that we have (LKatzK /Fd) = char(XCM ) (note that Fd is a unit in
Ẑurp [[T ]]). In fact Rubin proved a two-variable main conjecture and we easily have that the two
variable dual Selmer group specializes exactly to the one variable anticyclotomic dual Selmer group
here. These together imply the proposition.

Recall we de�ned basis v± of F±g . Let c be the complex conjugation in GQ. Recall that
ω∨g = ρ(d)∨ · v+. If c ∈ GQ is the complex conjugation we de�ne

c · ω∨g = ρ(d)∨(c · v+) ∈ (F−g ⊗ Ẑurp )GQp .

We have the following

Lemma 8.4. We have

ordPLKatzK + ordP
c · ω∨g
η∨g

≥ 0

for any height one prime P which is not (p) and not �exceptional� as de�ned in Proposition 8.3.
(Note that we have to exclude the prime (p) due to CM components other than g.)

Proof. There is a Hecke operator 1g in Tmg ⊗Λg FΛg , the non-integral Hecke operator which cuts o�
the g-part of any Hida family (See [61, 12.2] for details. Note also that g is generically non-Eisentein
meaning that the generic specialization of it is cuspidal). From [43, Theorem and Corollary 2.3.6]
we know B∗∞ ⊗ Ẑurp ' Sord(Γ1(DK), Ẑurp [[T ]]) (the space of Ẑurp [[T ]]-coe�cient ordinary families
with tame level DK) as Hecke modules under which η∨g maps to the normalized eigenform g (See
the choice for them in [32, Theorem 7.4.10]). Note that ρ(d) and ρ(d)∨ are invertible elements in
Ẑurp [[T ]]. Note also that c ·ω∨g is in the cuspidal part B∗∞⊗ Ẑurp ⊂ B̂∗∞⊗ Ẑurp of the cohomology. So
we just need to prove that for any F ∈ Sord(Γ1(DK),Λg),

ordPLKatzK + ordP
1g · F
g
≥ 0 (9)

for any non-exceptional primes P 6= (p). This follows from Proposition 8.3: �rst of all, the K-CM
components other than g corresponds to characters of the Hilbert class group of K. So it is easy
to see that there is a t1 ∈ Tmg such that t1g = at1 · g for at1 being the product of an element
in Q̄×p and an element of Zp[[T ]]×, and such that t1 kills K-CM components of Tmg other than g.
Proposition 8.3 implies that there is an `g ∈ Tmg such that t1`g · F = ag for a ∈ Λ and `g · g = bg

with ordLKatzK ≥ ordP b. But t1`gF = t1`g1gF = t1b1gF = at1ag. So ordP b+ ordP
1gF
g ≥ 0 and we

get (9).

Now we are ready to prove our theorem.
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Theorem 8.5. For any height one prime P 6= (p) of ΛK which is not exceptional, we have

lengthPX
++
f,K ≥ ordPL

++
f,p . (10)

Proof. Completely the same as the proof of Theorem 8.2 except that we also take Lemma 8.4 into
consideration (see proof of Proposition 7.7 for where LKatzK plays a role).

To take care of the prime (p) we use the following proposition of Pollack-Weston.

Proposition 8.6. Suppose N is square-free, ap = 0. Suppose moreover that any prime divisor of
N either splits in K or is inert. Assume for any such inert prime q we have ρ̄|Gq is rami�ed and
there are odd number of such inert primes. Then

ord(p)L
++
f,p ≤ 0.

Proof. We may assume that L++
f,p ∈ Λ. By [50] the anticyclotomic µ-invariant for the specialization

of L++
f,p to anticyclotomic line is 0. Note that the period used in [50] is Ωcan which, up to multiplying

by a p-adic unit is Ω+
EΩ−E . Note also that in loc.cit they assumed moreover that

• Im(GQ) = Aut(TE).

• The anticyclotomic Zp-extension of K is totally rami�ed at p.

But these assumptions are not necessary: the surjectivity of the Galois representation can be re-
placed by irreducibility (See [29]). The second assumption is needed only for the vanishing of the
algebraic µ-invariant and not needed for the analytic µ-invariant. (We thank Chan-Ho Kim for
discussing these with us).

Now we prove the lower bound for Selmer groups in Conjecture 6.7. Note that the pullback of
the augmentation ideal of the anticyclotomic line does not contain L++

f,p since the specialization of
the latter to the cyclotomic line is not identically zero. We conclude that under the assumption of
Theorem 8.5 and Proposition 8.6 the full one-side inequality for (10) is true.

8.2 Kobayashi's Main Conjecture

Now we prove a control theorem for Selmer groups and deduce Kobayashi's one-variable main
conjecture from the two variable one.

Proposition 8.7. Let P be the prime of ΛK generated by T − 1 then

X++ ⊗ ΛK/P ' X+
E,Kcyc

where the last term is the + dual Selmer group of E over Kcyc de�ned similar as X++.

Proof. This theorem is proved in the same way as [33, Theorem 9.3]. One �rst proves that Ê(mm,n)
has no p-power torsion points as in [33, Proposition 8.7]. This implies that

lim←−
m

lim←−
n

H1(km,n, T )→ H1(km0,n0 , T )

is surjective. Then the control theorem follows in the same way as Proposition 9.2 of loc.cit.
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Proof. (of Theorem 1.4) The above proposition implies the cyclotomic main conjecture over K under
the assumption of Proposition 8.6. Note that since N is square-free, there must be a prime q such
that E[p]|Gq is rami�ed (since otherwise by Ribet's level lowering there will be a weight two cuspidal
eigenform with level 1, which can not exist). To prove Theorem 1.4, we just need to choose the
auxiliary K. We take K such that p and all prime divisors of N except q are split in K while q is inert.
This main conjecture over K together with one divisibility over Q proved in [33] gives the proof of
the main Theorem. Note that in [25] it is assumed that the image of GQ is Aut(TE) = GL2(Zp).
However under our assumption that N is square-free it is enough to assume E[p]|GQ is absolutely
irreducible, as explained in [59, Page 15-16]. The irreducibility of E[p]|GQp is proved in [7].

Finally we prove the following re�ned BSD formula.

Corollary 8.8. Suppose E is an elliptic curve with square-free conductor N and supersingular
reduction at p such that ap = 0. If L(E, 1) 6= 0 then we have the following re�ned BSD formula

L(E, 1)

ΩE
= ]XE/Q ·

∏
`|N

c`

up to a p-adic unit. Here c` is the Tamagawa number of E at `. Note that by irreducibility of the
Galois representation we know the p-part of the Mordell-Weil group is trivial.

Proof. This is proved as in [12, Theorem 4.1], replacing the argument for the prime p by [33,
Proposition 9.2] for L+

E,Q. (In fact, all we need to do is to show that the p-adic component of the
map gn in the commutative diagram on top of [33, Page 27] is injective, which follows from that
(9.33) of loc.cit is injective. This is nothing but the Pontryagin dual of Proposition 9.2 there). We
use the interpolation formula [33, (3.6)] on the analytic side. Note also the fact that the Iwasawa
module of dual Selmer group has no non-trivial subgroup of �nite cardinality is also deduced within
the proof of [12, Theorem 4.1] and can be obtained in the same way in our situation. This argument
is also given in details in [27].
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