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The Birch and Swinnerton-Dyer formula for elliptic
curves of analytic rank one
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Let E/Q be a semistable elliptic curve such that ords=1L(E, s) = 1.
We prove the p-part of the Birch and Swinnerton-Dyer formula for
E/Q for each prime p ≥ 5 of good reduction such that E[p] is
irreducible:

ordp

(
L′(E, 1)

ΩE · Reg(E/Q)

)
= ordp

⎛⎝#X(E/Q)
∏
�≤∞

c�(E/Q)

⎞⎠ .

This formula also holds for p = 3 provided ap(E) = 0 if E has
supersingular reduction at p.

1. Introduction

1.1. The Birch and Swinnerton-Dyer conjecture

Let E/Q be an elliptic curve. The Birch and Swinnerton-Dyer Conjecture

for E, as stated by Tate [50, Conj. 4] (see also [49] and [4, (I)-(IV)]) is the

following:

Conjecture 1.1.1 (Birch and Swinnerton-Dyer Conjecture).

(a) The order of the zero at s = 1 of the Hasse–Weil L-function L(E, s)

is equal to the rank r of the Mordell–Weil group E(Q).
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(b) Let Reg(E/Q) be the regulator of E(Q) (the discriminant of the Néron-
Tate height-pairing on E(Q)), X(E/Q) the Tate-Shafarevich group of
E, c�(E/Q) the Tamagawa number of E at a prime �, and ΩE =∫
E(R) |ωE | for ωE a Néron differential (a Z-basis for the differentials

of the Néron model of E over Z). Then

(1.1.a)
L(r)(E, 1)

r! · ΩE · Reg(E/Q)
=

#X(E/Q)

(#E(Q)tor)2

∏
�

c�(E/Q),

We call the formula (1.1.a) in (b) the BSD formula for E.

1.2. Main result

Let E/Q be a semistable elliptic curve of conductor N (so N is square-free).
Let p ≥ 3 be a prime of good reduction (i.e., p � N) such that the mod p
Galois representation ρE,p : Gal(Q/Q) → Aut(E[p]) is irreducible. Suppose
that ords=1L(E/Q, s) = 1. In this case the work of Gross and Zagier [18]
and of Kolyvagin [29, 30, 31] (see also [19]) implies that rkZE(Q) = 1 and
#X(E/Q) < ∞. In particular, part (a) of Conjecture 1.1.1 holds for E. In
this paper we prove that the p-part of the BSD formula (1.1.a) holds for E:

Theorem 1.2.1 (p-part of the Birch and Swinnerton-Dyer formula). If
p ≥ 5, then

(1.2.a) ordp

(
L′(E, 1)

Reg(E/Q) · ΩE

)
= ordp

⎛⎝#X(E/Q)
∏
��∞

c�(E/Q)

⎞⎠ .

If p = 3, then (1.2.a) holds provided ap(E) = 0 when E has supersingular
reduction at p.

It is a consequence of the Gross–Zagier formula that L′(E/Q,1)
Reg(E/Q)·ΩE

∈ Q×

(see [18, Thm.7.3]), so the p-adic valuation of the left-hand side of (1.2.a)
makes sense.

Particular cases of Theorem 1.2.1 have been obtained by Zhang [58] and
by Berti, Bertolini, and Venerucci [2], for p ≥ 5 a prime of good ordinary
reduction. In particular, [58, Thm. 7.3] also has the extra assumption that
for any � || N for which � ≡ ±1 mod p, ρE,p is ramified at � (equivalently,
that p � c�(E/Q)), and [2, Thm. A] also assumes that p is not anomalous
(that is, p � #E(Fp)) and that p does not divide any of the Tamagawa factors
c�(E/Q). In contrast, Theorem 1.2.1 is general – including both the ordinary
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and supersingular cases, as well as the cases where there are Tamagawa
numbers divisible by p – aside from the extra hypothesis that ap(E) = 0
when E has supersingular reduction at p if p = 3.

If p is a prime of supersingular reduction for E and ap(E) = 0 (which
is always the case for supersingular p ≥ 5), then the conclusion of Theo-
rem 1.2.1 follows from combining the work of Kobayashi on the p-adic Gross–
Zagier formula and the non-vanishing of the p-adic height of the Heegner
point [28, Thm. 1.1 and Cor. 4.9] with Wan’s recent work on Kobayashi’s
supersingular variant of the Iwasawa main conjecture for E [53]; cf. [28,
Cor. 1.3]. This argument does not apply in the case where E has ordinary
reduction at p as the p-adic height of the Heegner point is then not known
to be non-zero. The proof of Theorem 1.2.1 in this paper treats the ordi-
nary and supersingular cases the same and also applies to GL2-type modular
abelian varieties.

If E has complex multiplication (in which case E is not semistable and
N is not square-free), the equality (1.2.a) similarly follows from the p-adic
Gross–Zagier formula together with the non-vanishing of the p-adic height of
the Heegner point and the Iwasawa main conjectures for E; see [28, Cor. 1.4].

When ords=1L(E, s) = 0 (that is, L(E, 1) �= 0) then the p-part of the
Birch and Swinnerton-Dyer conjectural formula is also known. In fact, the
equality in this case is an important ingredient in our proof of Theorem 1.2.1
as well as the proofs of all the results described above. For more on what is
known in this case see Theorem 7.2.1 below.

1.3. Outline of the proof

Theorem 1.2.1 is proved in this paper by separately establishing the upper
and lower bounds predicted by (1.1.a) for the order #X(E/Q)[p∞] of the
p-primary part of the Tate–Shafarevich group.

To prove the exact lower bounds we use anticyclotomic Iwasawa the-
ory. For a suitable imaginary quadratic field K′ = Q(

√
D′) of discriminant

D′ < 0, using arguments similar to [16, §4] we prove a control theorem, The-
orem 3.3.1, that compares a specialization of a certain Λ-cotorsion Selmer
group (here Λ = Zp[[Gal(K′

∞/K′)]] is the Iwasawa algebra for the anticyclo-
tomic Zp-extension K′

∞ of K′) to a certain Zp-cotorsion Selmer group that is
closely related to the p-primary part X(E/K′)[p∞] of the Tate–Shafarevich
group. This comparison is stated as an explicit formula involving the Tam-
agawa numbers of E at primes that split in K′. The Λ-cotorsion Selmer
group is the Selmer group related via an anticyclotomic main conjecture to
a p-adic L-function recently constructed for modular curves by Bertolini,
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Darmon and Prasanna [3] and extended to Shimura curves by Brooks [7]
and Liu, Zhang, and Zhang [32]. This p-adic L-function is also a specializa-
tion of a two-variable p-adic L-function constructed by Hida, as explained
in Section 5. We note that the anticyclotomic main conjecture that we use
is different from the classical anticyclotomic main conjecture of Perrin-Riou
formulated in [38] (see also [23, p.3]): the p-adic L-functions in the two cases
have different ranges of interpolation. Using an extension of the methods of
[46], Wan [52, 53] has proved that this p-adic L-function divides the charac-
teristic ideal of the Λ-cotorsion Selmer group up to a power of p (see Section 5
for the definitions of the relevant p-adic L-functions and Section 6 for the
precise statement of the main conjecture). To extend this to an unambigu-
ous divisibility in Λ and to pass from this divisibility to lower bounds on
#X(E/K′)[p∞] in terms of the index of a suitable Heegner point, we need
two key ingredients: 1) a recent result of Burungale [8] on the vanishing of
the corresponding analytic μ-invariant, and 2) a central value formula due
to Brooks [7, Thm.1.1] generalizing a recent formula of Bertolini, Darmon
and Prasanna relating the p-adic L-function at a point outside of the range
of interpolation to the p-adic logarithm of a Heegner point zK′ ∈ E(K′). The
result is the inequality
(1.3.a)

ordp(#X(E/K′)[p∞]) ≥ ordp

⎛⎜⎝[E(K′) : Z · zK′ ]2
∏
w|N

w a split prime of K′

cw(E/K′)

⎞⎟⎠
The Heegner point zK′ appearing in this formula (and also appearing in
the formula of Brooks) comes from a parametrization of E by a Shimura
curve XN+,N− , N+N− = N , of level N+ attached to a quaternion algebra
B = BN− of discriminant N−. In order to appeal to the known results about
the anticyclotomic main conjecture of interest, it is necessary to takeN− > 1
(so this is not the classical Heegner point setting). To pass from the inequal-
ity (1.3.a) to one where the right-hand side is replaced with an L-value, we
combine the inequality with the general Gross–Zagier formula for the point
z′K, due to Zhang [56] and Yuan, Zhang, and Zhang [55]. The result is the ex-
act lower bound for #X(E/K′)[p∞] predicted by the BSD formula for E/K′

(see Conjecture 7.1.1). We note that the Tamagawa numbers at the non-split
primes of K′ now appear, coming into the Gross–Zagier formula as the ratio
of the degree of the usual modular parametrization and the degree of the
Shimura curve parametrization (this is essentially due to Ribet and Taka-
hashi [40]). Finally, to obtain the expected lower bound on #X(E/Q)[p∞]
we express both sides of the resulting inequality for #X(E/K′)[p∞] in terms
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of E/Q and its K′-twist ED′
/Q. We then exploit the fact that Kato has

proved that the predicted upper bound holds for #X(ED′
/Q)[p∞] (as K′ is

chosen so that L(ED′
, 1) �= 0).

Upper bounds on #X(E/Q)[p∞] are typically achieved by an Euler
system argument via the method developed by Kolyvagin [29], which applies
since E/Q is assumed to have analytic rank one. Kolyvagin’s method uses
the Euler system constructed from Heegner points that are the images of CM
moduli via the usual modular parametrization X0(N) → E. As explained
in [26], this has a drawback in the sense that it will only give the precise
upper bounds on the p-primary part of the Tate-Shafarevich group (for E
over a suitable imaginary quadratic field) if at most one Tamagawa number
of E is divisible by p. To get around this problem we again consider a
parametrization of E by a general Shimura curve XN+,N− , N+N− = N . As
explained in Section 7.4.2, it is possible to choose this parametrization so
that no Tamagawa number at a prime dividing N+ is divisible by p. We then
choose an imaginary quadratic field K′′ = Q(

√
D′′), D′′ < 0, such that each

prime dividing N+ splits in K′′ and each prime dividing N− is inert in K′′

(this will generally be a different field than the K′ used to establish the lower
bound). Kolyvagin’s method applied to the Heegner points obtained from
the parametrization by XN+,N− and the field K′′ then yields an inequality
in the direction opposite of (1.3.a):

(1.3.b) ordp(#X(E/K′′)[p∞]) ≤ ordp
(
[E(K′′) : Z · zK′′ ]2

)
.

Appealing to the general Gross–Zagier formula for zK′′ we then get the upper
bound on #X(E/K′′)[p∞] predicted by the BSD formula for E/K′′. To pass
from this to the expected upper bound for #X(E/Q)[p∞] we make use of
the fact that the predicted lower bound for #X(ED′′

/Q)[p∞] is known. This
lower bound follows from the proved cases of the cyclotomic main conjectures
for ED′′

(see [46, Thm.2(a)] and [45, Thm.C] for the ordinary case and [54,
Thm.1.3] for the supersingular case).

It is only at the final step, where we invoke the p-part of the BSD formula
for L(ED′′

, 1), that we need to assume that ap(E) = 0 if E has supersingular
reduction at p, which is only a real condition when p = 3. Furthermore, most
of our arguments apply more generally to the situation where E is replaced
by a newform of weight 2, square-free level, and trivial character (see also
Section 7.4.4 for additional comments on the general case).

1.4. Organization of the paper

In section 2 we recall some relevant background on Galois representations,
local conditions and Selmer modules (generalizations of classical Selmer
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groups), as well as the specific cases arising from newforms and modular

abelian varieties. In Section 3 we prove the control theorems for the rel-

evant anticyclotomic Selmer groups. In Section 4 we include the relevant

background on quaternion algebras, Shimura curves, CM points, and the

Kolyvagin system coming from a Shimura curve, and we recall the upper

bounds on #X(E/K)[p∞] obtained from Kolyvagin’s argument in the set-

ting of Shimura curves. Section 5 is about p-adic L-functions and various

comparisons. In it we recall the p-adic anticyclotomic L-function constructed

by Brooks [7] and compare it to a specialization of Hida’s two variable p-adic

L-function [22]. Section 5 also includes the statement of Burungale’s result

on the vanishing of the analytic anticyclotomic μ-invariants and the state-

ment of Brooks’ result expressing a certain value of the anticyclotomic p-adic

L-function in terms of a p-adic logarithm of a Heegner point. In Section 6

we discuss the relevant anticyclotomic main conjectures and recent progress

on proving them. We complete the proof of our main result, Theorem 1.2.1,

in Section 7.

2. Preliminaries

Let Q ⊂ C be the algebraic closure of Q. For any number field F ⊂ Q, let

GF = Gal(Q/F ). For each place v of F , fix an algebraic closure F v of Fv and

an F -embedding ιv : Q ↪→ F v to get an identification of GFv
= Gal(F v/Fv)

with a decomposition group for v in GF . For each finite place v, let Iv ⊂ GFv

be the inertia subgroup and Frobv ∈ GFv
/Iv a geometric1 Frobenius element.

Let Fv be the residue field of v and Fv an algebraic closure of Fv. Then there

is a canonical identification GFv
/Iv = Gal(Fv/Fv).

Throughout, let p ≥ 3 be a fixed prime and let ε : GQ → Z×
p be the

p-adic cyclotomic character.

2.1. Galois representations

Let F be a number field (for much of this paper F will be either Q or an

imaginary quadratic field K). By a p-adic Galois representation of GF we will

always mean a finite-dimensional vector space V over a finite extension L/Qp

that is equipped with a continuous L-linear GF -action. Such a representation

1Throughout this paper we take geometric normalizations (e.g., for Frobenius
elements, for the reciprocity maps of class field theory, for Hodge–Tate weights, for
L-functions of Galois representations).
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V will be understood to come with a scalar field L. We will always assume
that

(geom) V is geometric

in the sense introduced by Fontaine and Mazur [13]: V is unramified away
from a finite set of places and potentially semistable at all places w | p of
F . We will further assume that

(pure) V is pure.

In particular, this means that there is some integer m such that for any
finite place w of F at which V is unramified, all the eigenvalues of Frobw
are Weil numbers of absolute value (#Fw)

m/2. More generally, (pure) means
that for all finite places w, the Frobenius semi-simplification of the Weil–
Deligne representation WDw(V ) associated2 with V |GFw

is pure of weight
m in the sense defined by Taylor and Yoshida [51].

Let O ⊂ L be the ring of integers of L. We will generally choose a
GF -stable O-lattice T ⊂ V and let W = V/T . The latter is a discrete O-
divisible GF -module; it is canonically identified with T ⊗O L/O. Note that
the isomorphism class of T , and hence also that of W , is not necessarily
uniquely determined. In what follows we will often fix such a triple (V, T,W ).

Let m ⊂ O be the maximal ideal and κ = O/m the residue field. Let V
be the semi-simplification of the finite-dimensional κ-representation T/mT .
Then V is uniquely-determined up to isomorphism; it is independent of the
choice of T . Furthermore, if V is irreducible, then all lattices T ⊂ V are
homothetic (and so the isomorphism class of T is unique). Note that while
our definition of V commutes with extension of the scalars κ, the property
of being irreducible may not.

2For w | p this was defined by Fontaine via p-adic Hodge theory: Let

Dpst(V ) =
⋃

E/Fw

(V ⊗Bst)
GE ,

with E running over all finite extensions of Fw and Bst being Fontaine’s ring
of semistable p-adic periods. This is a free L ⊗Qp F ur

w -module of rank two with
an induced action of the monodromy operator N and Frobenius ϕ of Bst. The
Weil-Deligne representation associated to V |GFw

by Fontaine is WDw(V ) =

Dpst(V ) ⊗L⊗QpF
ur
w

Qp (chose any embedding F ur
w ↪→ Qp) with the induced action

of N . The action of the Weil group WFw ⊂ GFw is defined by twisting its L-linear,
F ur
w -semilinear action rsl on Dpst(V ). An element g ∈ WFw acts on WDw(V ) as

rsl(g)ϕ
ν(g), where ν : WFw → Z is the normalized valuation map.
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2.2. Local conditions

Let F be a number field and let (V, T,W ) be as in Section 2.1. Let M be
an O-module with a continuous GF -action. By a local condition for M at a
place w of F we mean a subgroup of the local cohomology group H1(Fw,M).
We discuss several local conditions that will be used throughout.

2.2.1. The unramified local condition. For a finite place w of F , the
unramified local condition is defined as

H1
ur(Fw,M) = ker{H1(Fw,M) → H1(Iw,M)},

where Iw ⊂ GFw
is the inertia group at w. Note that we also have

H1
ur(Fw,M) = H1(Fw,M

Iw).

2.2.2. The finite local condition. Following Bloch and Kato [5], for a
finite place w of F we define the finite local condition for V to be

H1
f (Fw, V ) =

⎧⎪⎨⎪⎩
H1

ur(Fw, V ) w � p∞
ker{H1(Fw, V ) → H1(Fw, V ⊗Qp

Bcris)} w | p
0 w | ∞.

The finite local condition for V can be propagated to T and W via the
exact sequence 0 → T → V → W → 0. The resulting local conditions are

H1
f (Fw, T ) =preimage of H1

f (Fw, V )

under the map H1(Fw, T ) → H1(Fw, V )

and

H1
f (Fw,W ) = the image of H1

f (Fw, V )

under the map H1(Fw, V ) → H1(Fv,W ).

Note that for w � p we have

H1
ur(Fw, T ) ⊂ H1

f (Fw, T ) and H1
f (Fw,W ) ⊂ H1

ur(Fw,W )

and that neither inclusion need be an equality.
We note for later use that if dimL V = 2 and V is pure of weight dif-

ferent from 0 and 1, then for w � p, H1
f (Fw, V ) = H1

ur(Fw, V ) = 0, and
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so H1
f (Fw,W ) = 0 and H1

f (Fw, T ) = H1(Fw, T )tor. In fact, in this case

we have H0(Fw, V ) = 0 = H0(Fw, V
∨(1)) (here, V ∨ = HomL(V, L)), so

H1(Fw, V ) = 0 (by Tate’s local duality) and hence H1(Fw, T ) and H1(Fw,W )

both have finite order.

2.2.3. The anticyclotomic local condition. Suppose now that F = K
is an imaginary quadratic field. Suppose also that p splits in K as p = vv.

By abuse of notation, if w is a place of K such that the rational prime below

w is split in K (equivalently, if w is of degree one) then we say that w is

split in K. We define the anticyclotomic local condition for V as

H1
ac(Kw, V ) =

⎧⎪⎨⎪⎩
H1(Kv, V ) if w = v,

H1
f (Kw, V ) if w � p∞ is split in K,

0 else.

Note that this definition involves the choice of a prime v of K above p.

We propagate the anticyclotomic local condition via 0 → T → V →
W → 0, getting anticyclotomic local conditions for T and W . In particular,

H1
ac(Kw,W ) =

⎧⎪⎨⎪⎩
H1(Kv,W )div if w = v,

H1
f (Kw,W ) if w � p∞ is split in K,

0 else.

As noted in Section 2.2.2, if dimL V = 2 and V is pure of weight different

from 0 or 1, then the conditions at w � p∞ agree in the split and non-split

cases (the local condition is just 0).

2.3. Selmer structures and Selmer modules

Following [33, Ch.2], a Selmer structure F on M is a choice of a local con-

dition H1
F (Fw,M) ⊆ H1(Fw,M) for each place w of F such that for all but

finitely many w, H1
F (Fw,M) = H1

ur(Fw,M). A Selmer structure F on M

has an associated Selmer module defined as

H1
F (F,M) := ker

{
H1(F,M) →

⊕
w

H1(Fw,M)/H1
F (Fw,M)

}
,

where the sum is taken over all places w of F .
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If F is a Selmer structure onM , then we define the dual Selmer structure
F∗ on

M∗ = Homcont(M,Qp/Zp(1)),

the arithmetic dual of M , as

H1
F∗(Fw,M

∗) = the annihilator of H1
F (Fw,M) via local duality.

For the purpose of this paper, if S and S′ are two finite sets of finite
places of K for which S ∩ S′ = ∅ then FS′

S will denote the Selmer structure
obtained from F by replacing the local conditions at the places in S with
the trivial local conditions and the local conditions at the places in S′ with
the relaxed local conditions (i.e., H1

FS′
S

(Kw,M) = H1(Kw,M) for w ∈ S′ and

H1
FS′

S

(Kw,M) = 0 for w ∈ S).

2.3.1. A consequence of Poitou-Tate duality. If F and G are two
Selmer structures on M , we write F � G if H1

F (Fw,M) ⊆ H1
G(Fw,M) for

every place w of F . If F � G, there is a perfect bilinear pairing

H1
G(Fw,M)

H1
F (Fw,M)

× H1
F∗(Fw,M

∗)

H1
G∗(Fw,M∗)

→ Q/Z

that is induced from the Tate local pairing.
The following theorem is a consequence of the Poitou–Tate global duality

theorem (see [42, Thm.1.7.3], [35, Thm.I.4.10] and [48, Thm.3.1]):

Theorem 2.3.2. Let F � G be two Selmer structures on M and consider
the exact sequences

0 → H1
F (F,M) ↪→ H1

G(F,M)
locGF−−−→

(⊕
w

H1
G(Fw,M)

H1
F (Fw,M)

)

and

0 → H1
G∗(F,M∗) ↪→ H1

F∗(F,M∗)
locF

∗
G∗−−−→
(⊕

w

H1
F∗(Fw,M

∗)

H1
G∗(Fw,M∗)

)
,

where locGF and locF
∗

G∗ are the natural restriction maps and the sum is over

all places w, for which H1
F (Fw,M) � H1

G(Fw,M). The images of locGF and

locF
∗

G∗ are orthogonal complements with respect to the pairing
∑
w

〈−,−〉w

obtained from the local Tate pairings on the local cohomology groups.
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2.3.3. The finite and anticyclotomic Selmer structures. Let (V,

T,W ) be as in Section 2.1 and let M be one of T , V , or W . The finite

(or Bloch-Kato) Selmer structure FBK is defined by the finite local condi-

tions

H1
FBK

(Fw,M) = H1
f (Fw,M).

Note that F∗
BK is just the finite Selmer structure on M∗ (see [5, Prop.3.8]).

If F = K is an imaginary quadratic field in which p splits as p = vv̄, then the

anticyclotomic Selmer structure Fac is defined by the anticyclotomic local

conditions

H1
Fac

(Kw,M) = H1
ac(Kw,M).

2.3.4. Iwasawa-theoretic Selmer structures. Let K be an imaginary

quadratic field and let F∞ denote either the anticyclotomic Zp-extension or

the Z2
p-extension of K. As before, we assume that p splits in K, i.e., p = vv.

Let R = O[[Gal(F∞/K)]] be the associated Iwasawa algebra and consider

the R-module M = T ⊗O R̂ where R̂ = HomO,cont(R,L/O). The module M

is equipped with a GK-action given by ρ ⊗ Ψ−1 where ρ : GK → Aut(T ) is

the representation of GK on T and Ψ: GK → R× is the character naturally

defined by the projection GK � Gal(F∞/K).

We define two Selmer structures Fac and FGr on M that we refer to as

the anticyclotomic and the Greenberg Selmer structures, respectively. The

anticyclotomic Selmer structure H1
Fac

(Kw,M) is defined by

H1
Fac

(Kw,M) =

⎧⎪⎨⎪⎩
H1(Kv,M) if w = v

H1
ur(Kw,M) if w � p∞ is split,

0 else.

The Greenberg Selmer structure is defined by

H1
FGr

(Kw,M) =

{
H1(Kv,M) if w = v̄,

H1
ur(Kw,M) else.

Remark 2.3.5. When F∞ is the anticyclotomic Zp-extension of K, the anti-

cyclotomic Selmer structure gives rise to a global Selmer module H1
Fac

(K,M)

whose Pontrjagin dual Xac(M) = HomO(H
1
Fac

(K,M), L/O) appears in the

statement of the anticyclotomic main conjecture that will be relevant to our

argument (see Section 6.1 for more details).
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Remark 2.3.6. For the particular modules M = T⊗O R̂ that we will consider
later, the GK-module T ⊗O R can be viewed as a p-adic family of motivic
p-adic Galois representations. Moreover, the inductions of these represen-
tations to GQ satisfy the Panchishkin condition at p (see [15, p. 211]). In
this case, the Greenberg Selmer condition above can be identified with a
special case of the Selmer conditions defined by Greenberg [15]. When F∞
is the Z2

p-extension of K, the Iwasawa–Greenberg conjecture [15, Conj. 4.1]

relates the characteristic ideal of XGr(M) = HomO(H
1
Gr(K,M), L/O) to the

two-variable p-adic L-function constructed by Hida [22] (see Section 5.2 for
details).

2.4. Newforms, their Galois representations, and modular
abelian varieties

We introduce notation for and recall basic properties of newforms and their
associated p-adic Galois representations.

2.4.1. Newforms. Let f ∈ S2k(Γ0(N)) be a normalized newform of weight
2k, levelN , and trivial Nebentypus. Let f =

∑∞
n=1 an(f)q

n be its q-expansion
at the cusp ∞. The Fourier coefficients an(f) generate a finite extension
Q(f) ⊂ C of Q. Fix an embedding Q(f) ↪→ Qp and let L ⊂ Qp be a finite
extension of Qp containing the image Q(f). Let O be the ring of integers of
L.

2.4.2. Galois representations associated to newforms. Associated
to f , L and the fixed embedding Q(f) ↪→ L is a two-dimensional L-space Vf

with a continuous, absolutely irreducible L-linear GQ-action that is charac-
terized by the equality of L-functions3:

L(V ∨
f , s) = L(f, s),

where V ∨
f is the L-dual4 of the GQ-representation Vf . This equality of L-

functions can be refined as follows. Let π = ⊗�≤∞π� be the cuspidal automor-
phic representation such that L(π, s − 1/2) = L(f, s). Then the Frobenius-
semisimplification of the Weil–Deligne representation WD�(V

∨
f ) associated

3Following our convention of using geometric normalizations, the Euler factors
of a Galois representation (or a Weil-Deligne representation) are defined via the
action of geometric Frobenius on inertia invariants; Euler factors at p are defined
using the Weil-Deligne representation associated with V ∨

f |GQp
.

4We have adopted the conventions here so if f is associated with an elliptic curve
E/Q, then Vf is just the Qp-Tate module of E (or an extension of scalars thereof).
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with each local Galois representation V ∨
f |GQ�

is, after extending scalars from

L to Qp and fixing a Q(f)-isomorphism C ∼= Qp, the Weil–Deligne represen-

tation associated with π� ⊗ | · |−1/2
� via the local Langlands correspondence.

An important feature of the Galois representation Vf is that it is geometric
and pure of weight 1− 2k.

2.4.3. Modular abelian varieties. Associated to a newform f ∈
S2(Γ0(N)) of weight 2 is an isogeny class of abelian varieties whose en-
domorphism rings contain an order in the ring of integers Z(f) of Q(f). Let
Af be an abelian variety in this isogeny class such that Z(f) ↪→ EndQAf

(such an Af always exists). The p-adic Tate module TpAf is a free Z(f)⊗Zp-
module of rank two. Let p be a prime of Z(f) containing p and let TpAf =
TpAf ⊗Z(f)⊗Zp

Z(f)p; this is the p-adic Tate-module of Af . Let VpAf =
TpAf ⊗Z(f)p Q(f)p. The quotient VpAf/TpAf

∼= TpAf ⊗Z(f)p Q(f)p/Z(f)p is
naturally identified with Af [p

∞]; this identifies Af [p
n] with TpAf/p

nTpAf

for each n ≥ 1. For L = Q(f)p and O = Z(f)p, VpAf is just the Vf of
Section 2.4.2, and (VpAf , TpAf , Af [p

∞]) is an example of a triple (V, T,W )
as in Section 2.1.

2.4.4. Selmer groups of newforms and modular abelian varieties.
Let f ∈ S2k(Γ0(N) be a newform and Vf an associated p-adic Galois repre-
sentation as in Section 2.4.2. Let Tf ⊂ Vf be an GQ-stable O-lattice and let
Wf = Vf/Tf .

For a number field F , let L(V ∨
f /F, s) be the L-function of the GF -

representation V ∨
f . Then L(V ∨

f /Q, s) is just the usual L-function L(f, s),
and more generally L(V ∨

f /F, s) is the value at s − 1/2 of the L-function of
the formal base change to GL2/F of the automorphic representation π of Sec-
tion 2.4.2. The Bloch–Kato conjectures connect the central value L(V ∨

f /F, k)

with the order of the Selmer module5 H1
FBK

(F,Wf (1− k)).
Suppose that f has weight 2 and (Vf , Tf ,Wf ) = (VpAf , TpAf , Af [p

∞]).
Then for any number field F , H1

FBK
(F,Wf ) is just the usual p-adic Selmer

group of Af :

(2.4.a) H1
FBK

(F,Wf ) = Selp(Af/F ) = Selp(Af/F )⊗Z(f)⊗Zp
Z(f)p.

Here Selp(Af/F ) is the usual p-adic Selmer group of Af/F and Selp(Af/F )
is the usual p-adic Selmer group of Af/F .

5Note the Tate-twist: if V = Vf (1 − k), then L(V ∨
f /F, s) = L(V ∗/F, s − k), so

the central critical value is just L(V ∗, 0).
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3. An anticyclotomic control theorem

Let K/Q be an imaginary quadratic field such that p splits in K:

(split) p = vv̄.

Let τ ∈ Gal(K/Q) be the nontrivial automorphism. Let K∞ be the anticy-
clotomic Zp-extension of K and let Γ = Gal(K∞/K).

Let (V, T,W ), and so also L and O, be as in Section 2.1. Let Λ = O[[Γ]]
and put

M = T ⊗O Λ̂, Λ̂ = Homcont(Λ,Qp/Zp).

We equipM with an action of GK via ρ⊗Ψ−1 where the projection Ψ: GK →
Γ is viewed as a continuous Λ×-valued character of GK. Given a finite set Σ
of finite places w � p, let

XΣ
ac(M) = HomO

(
H1

FΣ
ac
(K,M), L/O

)
.

We begin this section by listing a few assumptions on the Galois repre-
sentation V and the related Selmer modules that will be assumed to be in
force in all that follows. Then under these assumptions we relate the order of
the Selmer module H1

Fac
(K,W ) to the order of the Shafarevich–Tate group

XBK(W/K), defined à la Bloch–Kato as

XBK(W/K) = H1
FBK

(K,W )/H1
FBK

(K,W )div.

We then prove a control theorem providing a connection between the order
of H1

Fac
(K,W ) and the characteristic ideal of XΣ

ac(M). The latter is linked
to p-adic L-functions via the anticyclotomic main conjectures discussed in
Section 6. Finally, we deduce some consequences for the Selmer groups as-
sociated with modular forms and modular abelian varieties.

3.1. A few assumptions on (V, T,W )

In addition to (geom) and (pure) we will assume that

(sst) V is semistable as a representation of GKw
for all w | p

and that

(τ -dual) T ∗ ∼= T τ ,
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where T τ denotes the GK-module with same underlying space O-module
structure as T but with the GK-action composed with conjugation by (a lift
of) τ . This last hypothesis forces the weight of V to be −1 (that is, V is
pure of weight −1). To slightly simplify some arguments we will additionally
assume that

(2-dim) dimL V = 2,

that

(HT) no non-zero Hodge-Tate weight of V is ≡ 0 (mod p− 1),

and that

(irredK) V is an irreducible κ-representation of GK.

We assume furthermore that

(corank 1) H1
FBK

(K,W )div ∼= L/O and H1
f (Kw,W ) ∼= L/O, w | p,

and

(sur) H1
FBK

(K,W )div
locw� H1

f (Kw,W ), w | p.

3.2. Relating H1
Fac

(K,W ) to XBK(W/K)

We will prove the following:

Proposition 3.2.1. One has

#H1
Fac

(K,W ) = #XBK(W/K) · (#δv)
2,

where δv = coker{H1
FBK

(K, T )
locv→ H1

f (Kv, T )/H
1(Kv, T )tor}. In particular,

H1
Fac

(K,W ) has finite order.

Proof. Let F = FBK. Consider the exact sequence

(3.2.a) 0 → H1
Fv
(K,W ) → H1

F (K,W ) → H1
f (Kv,W )

and the dual exact sequence

(3.2.b) 0 → H1
F (K,W ∗) → H1

Fv(K,W ∗) → H1(Kv,W
∗)/H1

f (Kv,W
∗).
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By the assumption (sur), (3.2.a) is surjective on the right. It then follows
from Theorem 2.3.2 that the image of the map H1

Fv(K,W ∗) → H1(Kv,W
∗)/

H1
f (Kv,W

∗) in (3.2.b) is 0, and so

(3.2.c) H1
F (K,W ∗) = H1

Fv(K,W ∗).

By (3.2.a) and (sur) we have a map of short exact sequences

0 H1
Fv
(K,W ) ∩H1

F (K,W )div H1
F (K,W )div H1

f (Kv,W )

=

0

0 H1
Fv
(K,W ) H1

F (K,W ) H1
f (Kv,W ) 0

As H1
Fv
(K,W ) ∩ H1

F (K,W )div = ker{H1
F (K,W )div → H1

f (Kv,W )}, by ap-
plying the snake lemma to the preceding diagram we conclude that

#H1
Fv
(K,W ) = #XBK(W/K) ·#ker{H1

F (K,W )div → H1
f (Kv,W )}

= #XBK(W/K) ·#δv.

(3.2.d)

The last equality requires an explanation which we now provide: first,
the hypothesis (corank 1) implies that both

H1
F (K, T )/H1

F (K, T )tors and H1
F (Kv, T )/H

1
F (Kv, T )tors

are free O-modules of rank one, so the localization map

H1
F (K, T )/H1

F (K, T )tors → H1
F (Kv, T )/H

1
F (Kv, T )tors

is injective. Next, hypothesis (sur) implies the short exact sequence

0 → H1
F (K, T )/H1

F (K, T )tor → H1
f (Kv, T )/H

1(Kv, T )tor → δv → 0,

and that δv has finite order. Finally, using that H1
F (K, T ) ⊗ L/O ∼=

H1
F (K,W )div and tensoring the above exact sequence with L/O, we obtain

#ker{H1
F (K,W )div → H1

f (Kv,W )} = #δv.

It now follows from V being pure of weight different from 0 or 1 that we
have an exact sequence

0 → H1
Fv
(K,W ) → H1

Fac
(K,W )

α−→ H1(Kv,W )div/H
1
f (Kv,W )
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(cf. Section 2.2.2) with dual exact sequence

0 → H1
(Fac)∗

(K,W ∗) → H1
Fv(K,W ∗)

β−→ H1
f (Kv,W

∗)/H1(Kv,W
∗)tor.

We then have

(3.2.e) #H1
Fac

(K,W ) = #ker(α) ·#im(α) = #ker(α) ·#coker(β),

where the second equality follows from Theorem 2.3.2. It then follows from

(3.2.c) that

coker(β) = coker{H1
F (K,W ∗) → H1

f (Kv,W
∗)/H1(Kv,W

∗)tor}.

The hypotheses (τ -dual) and (irredK) imply that W ∗ ∼= T τ , so conjugating

by the automorphism τ identifies coker(β) with

coker{H1
F (K, T ) → H1

f (Kv, T )/H
1(Kv, T )tor} = δv.

Hence combining (3.2.d) and (3.2.e) yields

#H1
Fac

(K,W ) = #ker(α) ·#cokerβ = #H1
Fv
(K,W ) ·#δv

= #XBK(W/K) · (#δv)
2.

Since δv has finite order, H1
Fac

(K,W ) has finite order.

Remark 3.2.2. (a) Note that neither of the assumptions (sst) and (HT) is

used in this proof. (b) Clearly, (irredK) is not essential to the proof of the

finiteness of H1
Fac

(K,W ). It is only used to ensure that W ∗ ∼= T τ , so that

δv can be identified with the cokernel coker{H1
F (K,W ∗) → H1

f (Kv,W
∗)/

H1(Kv,W
∗)tor}. Under certain circumstances, such as T = TpAf , we have

W ∗ ∼= T τ without assuming (irredK).

3.3. The anticyclotomic control theorem

Let S be a finite set of places of K including all those at which V is ramified

and let Sp ⊂ S be the subset of those not dividing p. Let Σ ⊂ Sp. Fix

a topological generator γ ∈ Γ. We identify O[[T ]] with Λ = O[[Γ]] via the

continuous O-algebra map sending 1 + T �→ γ. We will prove the following

theorem:
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Theorem 3.3.1 (Anticyclotomic Control Theorem). The Λ-module XΣ
ac(M)

is Λ-torsion, and if fΣ
ac(T ) is a generator of its characteristic Λ-ideal

char(XΣ
ac(M)), then

#O/fΣ
ac(0) = #H1

Fac
(K,W ) · CΣ(W ),

where

CΣ(W ) = #H0(Kv,W ) ·#H0(Kv,W )

·
∏

w∈Sp\Σ
w split

#H1
ur(Kw,W ) ·

∏
w∈Σ

#H1(Kw,W ).

Our proof of Theorem 3.3.1 follows the arguments of Greenberg in [16, §4].

3.3.2. Surjectivity of the localization maps. For a finite set S′ of
finite places of K let

PFac
(M ;S′) =

∏
w∈S′

H1(Kw,M)

H1
Fac

(Kw,M)
and PFac

(W ;S′) =
∏
w∈S′

H1(Kw,W )

H1
Fac

(Kw,W )
.

The key to our result relating H1
FS

ac
(K∞,M)Γ to H1(KS/K,W ) is under-

standing the images of

(3.3.a) H1(KS/K,M)
locS−→ PFac

(M ;S)

and

(3.3.b) H1(KS/K,W )
locS−→ PFac

(W ;S).

Here KS/K is the maximal extension unramified at all finite places not in S.

Proposition 3.3.3. The restriction maps (3.3.a) and (3.3.b) are surjective.

Proof. Note that (τ -dual) implies that the arithmetic dual M∗ of M is just
T ⊗O Λ with GK-action given by ρ⊗Ψ. Recall that

H1
(FS

ac)v̄
(K,M∗) = {c ∈ H1

FS
ac
(K,M∗) : locv̄c = 0}.

By Theorem 2.3.2 the dual of the cokernel of (3.3.a) is identified with a
quotient of H1

(FS
ac)v̄

(K,M∗). Therefore, to prove the desired surjectivity of

(3.3.a), it suffices to show that H1
(FS

ac)v̄
(K,M∗) = 0.
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Note that M∗/(γ − 1)M∗ ∼→ T . We claim that the natural injection

H1(KS/K,M∗)/(γ − 1)H1(KS/K,M∗) ↪→ H1(KS/K, T )

induces an injection

H1
(FS

ac)
∗(KS/K,M∗)/(γ − 1)H1

(FS
ac)

∗(KS/K,M∗) ↪→ H1
(FS

ac)v̄
(K, T ).

For this, suppose c ∈ H1
(FS

ac)
∗(KS/K,M∗) has trivial image in H1

(FS
ac)v̄

(K, T ).

Then c = (γ − 1)d for some d ∈ H1(KS/K,M∗) such that (γ − 1)d = 0 in
H1(Kv̄,M

∗). But the kernel of multiplication by γ− 1 on H1(Kv̄,M
∗) is the

image of H0(Kv̄, T ). The vanishing of the latter follows from H0(Kv̄, V ) = 0
(which is true as V is pure of weight different from 0 or 1: V GKv �= 0 would
imply that 1 was an eigenvalue of Frobenius on WDv̄(V )N=0, which would
contradict purity if the weight is not 0 or 1).

Next we note that the canonical isomorphism T ⊗O L/O ∼= W induces
an injection

H1
(FS

ac)v̄
(K, T )⊗O L/O ↪→ H1

(FS
ac)v̄

(K,W ).

It follows from Proposition 3.2.1 that the right-hand side is finite (reversing
the roles of v and v̄ and using that H1(Kw,W ) is finite for w � p (cf. Section
2.2.2)). As (irredK) implies H1

(FS
ac)v̄

(K, T ) is torsion-free, it follows from the

finiteness of H1
(FS

ac)v̄
(K,W ) that H1

(FS
ac)v̄

(K, T ) = 0. Hence

H1
(FS

ac)v̄
(K,M∗)/(γ − 1)H1

(FS
ac)v̄

(K,M∗) = 0,

and so, by Nakayama’s lemma, H1
(FS

ac)v̄
(K,M∗) = 0. This completes the proof

of the surjectivity of (3.3.a). The proof of the surjectivity of (3.3.b) is similar:
Poitou–Tate duality identifies the cokernel with a quotient of H1

(FS
ac)v̄

(K, T ),
which we have already seen to be 0.

3.3.4. Trivial coinvariants. We now show that H1(KS/K,M)Γ and
H1

FΣ
ac
(K,M)Γ both vanish:

Lemma 3.3.5. We have H1(KS/K,M)Γ = 0 and H1
FΣ

ac
(K,M)Γ = 0.

Proof. The long exact sequence on Galois cohomology associated to the

short exact sequence 0 → W → M
γ−1−−→ M → 0 yields an injection

H1(KS/K,M)Γ ↪→ H2(KS/K,W ). The local cohomology group H2(Kw,W )
is dual to H0(Kw, T ), and the latter is 0; for w | p this was explained in the
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proof of Proposition 3.3.3, and for w � p this was explained in Section 2.2.2.
Consequently (using the notation of [35, §4]),

H2(KS/K,W ) = X2
S(K,W ) = {c ∈ H2(KS/K,W ) : locwc = 0 ∀w ∈ S}.

By Poitou-Tate duality [35, Thm.4.10(a)], this group is dual to

X1
S(K, T ) = {c ∈ H1(KS/K, T ) : locwc = 0 ∀w ∈ S},

and the latter is trivial. Indeed, (irredK) implies that X1
S(K, T ) is torsion-

free while (corank 1) and (sur) imply that X1
S(K, T ) is torsion and thus,

H1(KS/K,M)Γ = 0.
To show that H1

FΣ
ac
(K,M)Γ = 0, consider the exact sequence

0 → H1
FΣ

ac
(K,M) → H1(KS/K,M) → PFac

(M ;S\Σ) → 0.

The exactness on the right is a consequence of Proposition 3.3.3. Multiplying
by γ − 1, we obtain from the snake lemma the exact sequence

H1(KS/K,W ) = H1(KS/K,M)Γ → PFac
(M ;S\Σ)Γ

→ H1
FΣ

ac
(K,M)Γ → H1(KS/K,M)Γ.

The map H1(KS/K,W ) → PFac
(M ;S\Σ)Γ is the composite of the restriction

map H1(KS/K,W ) → PFac
(W ;S\Σ), which is surjective by Proposition

3.3.3, and the map PFac
(W ;S\Σ) → PFac

(M ;S\Σ)Γ, which is also surjective
(as the maps H1(Kw,W ) → H1(Kw,M)Γ are surjective). It follows that
H1

FΣ
ac
(K,M)Γ injects into H1(KS/K,M)Γ. But we have already shown the

latter to be trivial.

3.3.6. Computing #ker(r). We now calculate the order of the kernel
of the map

r : PFac
(W ;S\Σ) → PFac

(M ;S\Σ)Γ.
Proposition 3.3.7. The kernel of r has order

(3.3.c) #ker(r) = #H0(Kv,W ) ·#H0(Kv,W ) ·
∏

w∈Sp\Σ
w split

c(p)w (W ),

where c
(p)
w (W ) := [H1

ur(Kw,W ) : H1
f (Kw,W )] = #H1

ur(Kw,W ) are the p-
parts of the local Tamagawa numbers.
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Proof. Let w be a place of K. By the long exact sequence on Galois coho-
mology associated to the short sequence

0 → W → M
×(γ−1)−−−−−→ M → 0,

the kernel of the restriction map rw : H1(Kw,W ) → H1(Kw,M)Γ is the
image of MGKw/(γ−1)MGKw under the coboundary map. Let � be the prime
below w. Unlike the cyclotomic case over Q treated in [16, §3] where every
prime w is finitely decomposed in the Zp-extension, we need to consider the
cases of � being split or non-split in K separately.

Case 1(a): w � p, W is ramified at w and � is split in K. We have a
commutative diagram

0 H1
ur(Kw,W ) H1(Kw,W ) H1(Iw,W )GKw 0

0 H1
ur(Kw,M) H1(Kw,M) H1(Iw,M)

The kernel of the right-most map is just the image of (M Iw/(γ−1)M Iw)GKw .
Since Ψ is not ramified at w, M Iw is (γ − 1)-divisible, hence this kernel
is trivial. It follows that the map H1(Kw,W )/H1

ur(Kw,W ) → H1(Kw,M)/
H1

ur(Kw,M) is injective and hence that the kernel of the map
rw : H1(Kw,W )/H1

f (Kw,W ) → H1(Kw,M)/H1
ur(Kw,M), is isomorphic to

H1
ur(Kw,W )/H1

f (Kw,W ). But the order of the latter is exactly the p-part

c
(p)
w (W ) of the Tamagawa number at w.

Case 1(b): w � p, W is ramified at w and � is not split in K. In this
case � is inert or ramified in K, and by the definition of the anticyclotomic
Selmer structure both H1

Fac
(Kw,W ) and H1

Fac
(Kw,M) are trivial. Hence

ker(rw) = ker{H1(Kw,W ) � H1(Kw,M)[γ − 1]} and so equals the image
of MGKw/(γ − 1)MGKw ↪→ H1(Kw,W ). However, since w is not split, Ψ
is trivial on GKw

and hence, MGKw is divisible by γ − 1. It follows that
ker(rw) = 0.

Case 2(a): w � p, W is unramified at w and � is split in K. Similarly
to Case 1(a), we obtain ker(rw) ∼= H1

ur(Kw,W )/H1
f (Kw,W ) which is trivial

since the two local conditions coincide (see [42, Lem.I.3.5(iv)]).

Case 2(b): w � p, W is unramified at w and � is not split in K. Exactly
the same argument as employed for Case 1(b) shows that ker(rw) = 0.
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Case 3(a): w = v̄. We have ker(rv) = H1(Kv,W )/H1(Kv,W )div. By Tate
local duality H1(Kv̄,W )/H1(Kv̄,W )div is dual to H1(Kv̄, T )tor, which is just
ker{H1(Kv̄, T ) → H1(Kv̄, V )} ∼= H0(Kv̄,W )/H0(Kv̄,W )div. But H

0(Kv̄, V ) =
0 (as noted in the proof of Proposition 3.3.3, this is a consequence of
being pure of weight different from 0 or 1), so H0(Kv̄,W )div = 0 and
#ker(rv̄) = #H0(Kv̄,W ).

Case 3(b): w = v. In this case the map is rv : H1(Kv,W ) → H1(Kv,M)Γ

and we have

ker(rv) ∼= MGKv /(γ − 1)MGKv ↪→ H1(Kv,W ).

Let Pv = kerΨ|GKv
and Γv = GKv

/Pv ↪→ Γ, where Ψ is as in the beginning
of Section 3. Then Γv has finite index in Γ, and the image of Iv in Γv also has
finite index. Let γv ∈ Γv be a topological generator. Let T∨ = HomZp

(T,Zp)

and let T∨
Pv

be its Pv-coinvariants. Then M = T ⊗O Λ̂ ∼= Homcont(T
∨ ⊗O

Λ,Qp/Zp) and so MPv ∼= Homcont(T
∨
Pv

⊗O Λ,Qp/Zp). If #T∨
P v is finite, then

MGKv is therefore isomorphic to a submodule of HomZp
(T∨

Pv
⊗O Λ/(γp

t

v −
1),Qp/Zp), which has finite order. Here t > 0 is such that γp

t

v acts trivially
on T∨

Pv
. This shows that MGKv has finite order if #T∨

Pv
is finite, in which

case

#MGKv /(γ − 1)MGKv = #MGKv [γ − 1] = #M [γ − 1]GKv = #H0(Kv,W ).

It remains to show that #T∨
Pv

is finite, which we will do by arguing by

contradiction. Assume that #T∨
Pv

is not finite. Then TPv �= 0 and hence

V Pv �= 0. As V is two-dimensional and semistable, there are two cases to
consider: (i) V is crystalline and (ii) V is non-crystalline and hence a non-
split extension of the form 0 → L(εα) → V → L(α) → 0 with α unramified.
In case (i), V Pv would have to be, possibly after a finite extension of scalars,
a sum of one-dimensional crystalline representations of weight −1. Such a
crystalline character must be of the form εaα for some integer a and some
unramified character α, while the condition of being weight −1 means that
α(Frobv) is a Weil number of absolute value p−1/2+a. However, since εaα
factors through a pro-p-group, so must εa|Iv = εaα|Iv . But this only happens
if a ≡ 0 (mod p−1). As a is a Hodge-Tate weight of V , it follows from (HT)
that we must have a = 0. Then α must factor through the quotient of
Γv by the image of Iv. This quotient is finite, so α must have finite order,
contradicting it being a character of weight −1. On the other hand, if V is as
in case (ii), then V |Pv

is also a non-split extension of Pv, and so if V Pv �= 0,
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then again εα, α unramified, must factor through Γv, which we have already
seen to be impossible. This contradiction completes the last case and hence
proves the lemma.

Remark 3.3.8. The proof of Case 3(b) above is the only place where the
hypothesis (HT) is invoked.

3.3.9. An application of the snake lemma. There is a commutative
diagram

0 H1
FΣ

ac
(K,W )

s

H1(KS/K,W )

h

PFac
(W ;S\Σ)

r

0

0 H1
FΣ

ac
(K,M)Γ H1(KS/K,M)Γ PFac

(M ;S\Σ)Γ

(note that exactness of the top row follows from Proposition 3.3.3), and the
snake lemma yields an exact sequence

0 → ker(s) → ker(h) → ker(r) → coker(s) → coker(h) → coker(r).

However, coker(h) = 0 and hence there is an exact sequence

0 → ker(s) → ker(h) → ker(r) → coker(s) → 0.

By Proposition 3.2.1, H1
FΣ

ac
(K,W ) is finite and hence,

#H1
FΣ

ac
(K,M)Γ

#H1
FΣ

ac
(K,W )

=
#coker(s)

#ker(s)
=

#ker(r)

#ker(h)
.

The order of ker(r) was computed in Proposition 3.3.7 while

ker(h) = MGK/(γ − 1)MGK = MGK = H0(K,W )

which vanishes by (irredK). It follows that
(3.3.d)

#H1
FΣ

ac
(K,M)Γ = #H1

FΣ
ac
(K,W )·#H0(Kv,W )·#H0(Kv,W )·

∏
w∈Sp\Σ
w split

c(p)w (W ).

It also follows from the surjectivity of (3.3.b) that there is an exact
sequence

0 → H1
Fac

(K,W ) → H1
FΣ

ac
(K,W ) → PFac

(W ; Σ) → 0.
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As H1
f (Kw,W ) = 0 (see Section 2.2.2), we have

#H1
FΣ

ac
(K,W ) = #H1

Fac
(K,W ) ·

∏
w∈Σ

#H1(Kw,W ).

Combining this with (3.3.d) yields

(3.3.e) #H1
FΣ

ac
(K,M)Γ = #H1

Fac
(K,W ) · CΣ(W ).

3.3.10. Proof of Theorem 3.3.1: torsionness of XΣ
ac(M). Since

H1
FΣ

ac
(K,M)Γ has finite order, so doesXΣ

ac(M)Γ=HomO(H
1
FΣ

ac
(K,M)Γ, L/O).

It follows easily that XΣ
ac(M) must therefore be Λ-torsion.

3.3.11. Proof of Theorem 3.3.1: determining #O/fΣ
ac(0). To com-

plete the proof of the control theorem, we use the relation between
H1

Fac
(K,W ) and H1

FΣ
ac
(K,M)Γ to relate #H1

Fac
(K,W ) to fac(0). The key to

the comparison is the following proposition on the non-existence of pseudo-
null submodules of the Λ-module XΣ

ac(M):

Proposition 3.3.12. The Selmer module H1
FΣ

ac
(K,M) has no proper Λ-

submodule of finite index. Equivalently, the Λ-module XΣ
ac(M) has no non-

trivial pseudo-null Λ-submodule.

Proof. Recall that H1
FΣ

ac
(K,M)Γ = 0 by Lemma 3.3.5. If X ⊂ XΣ

ac(M) is a
Λ-submodule of finite order, then its dual X∗ is a finite order quotient of
H1

FΣ
ac
(K,M), so X∗/(γ− 1)X∗ is a quotient of H1

FΣ
ac
(K,M)Γ and therefore 0.

But X∗ is a finite Λ-module and so, by Nakayama’s Lemma, X∗ = 0 and
hence X = 0.

We can now establish the comparison result:

Lemma 3.3.13. We have

#O/fΣ
ac(0) = #Λ/(T, fΣ

ac(T )) = #H1
Fac

(K,W ) · CΣ(W ).

Proof. Let X = XΣ
ac(M). Then #XΓ = #H1

FΣ
ac
(K,M)Γ. Since X is Λ-

torsion, X is pseudoisomorphic to a Λ-module Y =

r∏
i=1

Λ/(fi) for distin-

guished polynomials fi �= T (the latter restriction being a consequence of
the finiteness of XΓ). By Proposition 3.3.12, X has no pseudo-null submod-
ule so we obtain an exact sequence 0 → X → Y → K → 0, where K
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is a pseudo-null Λ-module. Applying the snake lemma to the commutative
diagram

0 X

γ−1

Y

γ−1

K

γ−1

0

0 X Y K 0,

we obtain

#XΓ = #YΓ =
∏

#Λ/(T, fi(T )) =
∏

#O/(fi(0)) = #Λ/(T, fΣ
ac(T )),

where fΣ
ac(T ) ∼ f1(T ) · · · fr(T ) is a generator of the characteristic ideal of

X. Equation (3.3.e) thus implies that

#O/fΣ
ac(0) = #H1

FΣ
ac
(K,W ) = #H1

Fac
(K,W ) · CΣ(W ),

which proves the claim.

This completes the proof of Theorem 3.3.1.

3.4. Comparison with Selmer groups over Z2
p-extensions

In order to deduce what we will need from the existing theorems in Iwasawa
theory, it is necessary to consider Selmer groups for Galois extensions larger
than K∞/K. Let K∞/K be the composite of all Zp-extensions of K in Q.
Let ΓK = Gal(K∞/K) ∼= Z2

p. The Galois group Gal(K/Q) acts on ΓK, which

decomposes under this action as ΓK = Γ+
K ⊕ Γ−

K with the superscript ±
denoting the subgroup on which τ ∈ Gal(K/Q) acts as ±1; then Γ+

K is the
kernel of the natural surjection ΓK � Γ. Let ΛK = O[[ΓK]]. Let ΨK : GK �
ΓK be the natural surjection; this is also a continuous Λ×

K-valued character

of GK. Let M = T ⊗O Λ̂K with GK-action given by ρ ⊗ Ψ−1
K . Here, Λ̂K =

Homcont(ΛK,Qp/Zp) is the Pontrjagin dual equipped with the structure of

a ΛK-module via (λ · f)(x) = f(λ ·x), ∀ λ, x ∈ ΛK and f ∈ Λ̂K, thus making

Λ̂K into a GK-module. Consider the Selmer module H1
FΣ

Gr
(K,M) and its

Pontrjagin dual XΣ
Gr(M) = HomO(H

1
FΣ

Gr
(K,M), L/O) which is a finite ΛK-

module. Let char
(
XΣ

Gr(M)
)
⊂ ΛK be its ΛK-characteristic ideal. Since ΛK

is a UFD, char
(
XΣ

Gr(M)
)
is a principal ideal, and it is nonzero if and only

if XΣ
Gr(M) is a torsion ΛK-module.
Let γ± ∈ Γ±

K
∼= Zp be fixed topological generators; we assume that

γ− �→ γ under the projection ΓK � Γ. We have M = M[γ+ − 1] and, by
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(irredK),

H1(KS/K,M)
∼→ H1(KS/K,M)[γ+ − 1],

which induces maps

(3.4.a)
H1

FΣ
ac
(K,M) ↪→ H1

FΣ
Gr
(K,M)[γ+ − 1] and

XΣ
Gr(M)/(γ+ − 1)XΣ

Gr(M) → XΣ
ac(M).

Lemma 3.4.1. Suppose Σ contains all the finite places w � p at which
V is ramified. Then the maps in (3.4.a) have finite cokernel and kernel,
respectively.

Proof. The identification M = M[γ+ − 1] yields a short exact sequence

MGKv /(γ+ − 1)MGKv ↪→ H1(Kv,M) � H1(Kv,M)[γ+ − 1].

Since the image of GKv̄
in ΓK has finite index, the argument used in the Case

3(b) of the proof of Proposition 3.3.7 to show that MGKv has finite order
can be easily adapted to prove that MGKv has finite order by replacing Pv

with kerΨK |GKv
. It follows that

#MGKv /(γ+ − 1)MGKv = #MGKv [γ+ − 1] < ∞.

Since the cokernel of the map H1
FΣ

ac
(K,M) ↪→ H1

FΣ
Gr
(K,M)[γ+ − 1] is a quo-

tient of MGKv /(γ+−1)MGKv , it is therefore finite, and so, too, is the kernel
of the dual map.

Corollary 3.4.2. Suppose Σ contains all the finite place w � p at which V
is ramified. Then

char
(
XΣ

ac(M)
)
⊂ char

(
XΣ

Gr(M)
)

mod (γ+ − 1).

Proof. Let FΣ
Gr(M) be the ΛK-fitting ideal of XΣ

Gr(M) and FΣ
ac(M) the Λ-

fitting ideal of XΣ
ac(M). Then FΣ

Gr(M) ⊂ char
(
XΣ

Gr(M)
)
. Since the kernel

of the surjection map XΣ
Gr(M)/(γ+−1)XΣ

Gr(M) � XΣ
ac(M) has finite order

and since the source has Λ-Fitting ideal equal to FΣ
Gr(M) modulo (γ+ − 1),

there is some c > 0 such that FΣ
ac(M)mc

Λ ⊂ FΣ
Gr(M) mod (γ+ − 1), where

mΛ = (γ − 1,m) is the maximal ideal of Λ. It follows that

FΣ
ac(M)mc

Λ ⊂ char
(
XΣ

Gr(M)
)

mod (γ+ − 1).

Since the right-hand side is a principal ideal, it follows that FΣ
ac(M) is

contained in char
(
XΣ

Gr(M)
)

mod (γ+ − 1). And since char
(
XΣ

ac(M)
)
is
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the smallest principal ideal containing FΣ
ac(M), we must also have that

char
(
XΣ

ac(M)
)
is contained in char

(
XΣ

Gr(M)
)

mod (γ+ − 1).

3.5. Applications to newforms and modular abelian varieties Af

We return to the notation of Section 2.4. Let f ∈ S2k(Γ0(N)) be a newform,
and let (Vf , Tf ,Wf ) be as in Section 2.4.4.

Let

(V, T,W ) = (Vf (1− k), Tf (1− k),Wf (1− k)).

Note that V ∗ ∼= V . It is a theorem of Saito [43], building on work of Deligne,
Langlands, Carayol, and others, that V is geometric and pure of weight −1.
So (geom), (pure), (τ -dual), and (2-dim) all hold for V . Furthermore, it
follows that if

(p-sst) ordp(N) ≤ 1,

then V is semistable at p, that is, (sst) also holds. As the Hodge-Tate weights
of V are k − 1 and −k, (HT) holds if and only if neither k nor k − 1 (when
k �= 1) are divisible by p− 1; in particular, (HT) always holds for 2k = 2.

Suppose now that f has weight 2 and that

(V, T,W ) = (Vf , Tf ,Wf ) = (VpAf , TpAf , Af [p
∞])

as in Section 2.4.3. The Mordell–Weil group Af (F ) is a Z(f)-module and

rankZAf (F ) = [Q(f) : Q] · rankO(Af (F )⊗Z(f) O).

Suppose

(rank 1) rankO(Af (K)⊗Z(f) O) = 1

or, equivalently, rankZAf (K) = [Q(f) : Q]. The Tate-Shafarevich group
X(Af/K) is also a Z(f)-module and satisfies X(Af/K)[p∞] ⊗Z(f) O =
X(Af/K)[p∞]. Suppose

(X p-finite) #X(Af/K)[p∞] < ∞.

Note that in this case XBK(Wf/K) = X(Af/K)[p∞]. Under the assump-
tions (rank 1) and (X p-finite), it follows from the exact sequence

(FES) Af (K)⊗Z(f) L/O ↪→ Selp∞(Af/K) � X(Af/K)[p∞],
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that (corank 1) holds for H1
FBK

(K,Wf ) = Selp∞(Af/K) (the equality of the
two Selmer groups is explained in detail in [5, §3, §5]). If furthermore

(p-irred) Af [p] is an irreducible GK-representation,

then

Af (K)⊗Z(f) O
∼→ H1

f (K, T ) ∼= O.

If w | p is a place of K then Af (Kw) is a finitely generated Zp-module
of rank equal to [Kw : Qp] · [Z(f) : Z] (there is a natural Z(f)-injection of
Z(f) ⊗ OKw

into the compact Lie group Af (Kw), with image having finite
index; this is just the exp map from a neighborhood of zero in the tangent
space at the origin). In particular, if p splits in K (so Qp

∼→ Kw), we have
that Af (Kw) ⊗Z(f) L/O ∼= L/O. Furthermore, since Af (K) ⊂ Af (Kw), if
(rank 1) holds, then we also have that

A(K)⊗Z(f) L/O ∼= L/O � A(Kw)⊗Z(f) L/O ∼= L/O.

That is, (sur) also holds. This shows that if (split), (rank 1), (X p-finite),
and (p-irred) hold, then so do (corank 1), (sur), and (irredK).

Still assuming that p splits in K, we also have Af (Kv) ⊗Z(f)⊗Zp
O ∼→

H1
f (Kv, T ) is a finite O-module of rank one. Let Af (Kv)/tor = Af (Kv)/

Af (Kv)tor (this is then a free Z(f)⊗Zp-module), so Af (Kv)/tor⊗Z(f)⊗Zp
O ∼→

H1
f (Kv, T )/H

1(Kv, T )tor. Then

#δv = #coker{H1
f (K, T )

locv→ H1
f (Kv, T )/H

1(Kv, T )tor}
= #[Af (Kv)/tor ⊗Z(f)⊗Zp

O : Af (K)⊗Z(f) O].
(3.5.a)

Let P ∈ Af (K) be any point of infinite order. The O-module O · P ⊂
Af (K)⊗Z(f) O generated by P has finite index, and it follows that

#δv =
[Af (Kv)/tor ⊗Z(f)⊗Zp

O : O · P ]

[Af (K)⊗Z(f) O : O · P ]
.

In particular, it then follows from Proposition 3.2.1 that
(3.5.b)

#H1
Fac

(K,Wf ) = #XBK(Wf/K) ·
[Af (Kv)/tor ⊗Z(f)⊗Zp

O : O · P ]2

[Af (K)⊗Z(f) O : O · P ]2
.

Suppose now that

(good) p � N.
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Then Af has good reduction at p and so extends to an abelian scheme
over Z(p). Let A1

f (Qp) ⊂ Af (Qp) be the kernel of reduction modulo p. Let

Ω1(Af/Zp)
∨ = HomZp

(Ω1(Af/Zp),Zp). The formal group logarithm defines
a Z(f)⊗Zp-isomorphism log : A1

f (Qp) → pΩ1(Af/Zp)
∨, which extends to an

injective Z(f)⊗ Zp-homomorphism log : Af (Qp)/tor ↪→ Ω1(Af/Zp)
∨. Recall

that O = Z(f)p for a chosen prime p | p of Z(f). Let ωf ∈ Ω1(Af/Zp)⊗Zp
O

be an O-basis element such that the action of each α ∈ Z(f) on Af induces
α∗ωf = α ·ωf (multiplication by the scalar α ∈ O). Then composition of log
with evaluation on ωf defines an O-homomorphism

logωf
: Af (Qp)/tor ⊗Zp

O → O

that maps A1
f (Qp) ⊗Zp

O surjectively onto pO. By the choice of ωf , the
map logωf

factors through Af (Qp)/tor ⊗Z(f)⊗Zp
O. The induced homomor-

phism Af (Qp)/tor ⊗Z(f)⊗Zp
O ↪→ O is injective and maps A1

f (Qp) ⊗Z(f)⊗Zp

O isomorphically onto pO; this follows from Af (Qp)/tor ⊗Z(f)⊗Zp
O and

A1
f (Qp) ⊗Z(f)⊗Zp

O both being free O-modules of rank one and the sur-
jective mapping of the latter onto pO. As Kv = Qp (since p splits in K) it
easily follows from this that

[Af (Kv)/tor ⊗Z(f)⊗Zp
O : O · P ]

=
#O/(logωf

P )

#O/(logωf
(Af (Qp)/tor ⊗Zp

O))

=
#O/(logωf

P ) ·#(Af (Qp)/tor/A
1
f (Qp)⊗Z(f)⊗Zp

O)

#O/pO

=
#O/(logωf

P ) ·#(Af (Qp)/A
1
f (Qp)⊗Z(f) O)

#O/pO ·#(Af (Qp)tor ⊗Z(f) O)
.

Since reduction modulo p yields an isomorphism Af (Qp)/A
1
f (Qp)

∼→ Af (Fp),

we have Af (Qp)/A
1
f (Qp)⊗Z(f)O

∼→ Af (Fp)⊗Z(f)O = Af [p
∞](Fp). The latter

group is trivial unless f is ordinary with respect to p (that is, p � ap) in which
case it is isomorphic to O/(1− ap + p). Hence

#Af (Qp)/A
1
f (Qp)⊗Z(f) O = #O/(1− ap + p).

Also, Af (Qp)tor⊗Zp = H0(Qp, Af [p
∞]) so Af (Qp)⊗Z(f)⊗Zp

O = H0(Qp,Wf ),
hence

#Af (Qp)tor ⊗ Zp = #H0(Qp,Wf ),
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Putting this together with the preceding formula for [Af (Kv)/tor⊗Z(f)⊗Zp
O :

O · P ] we find

[Af (Kv)/tor ⊗Z(f)⊗Zp
O : O · P ] =

#O/(logωf
P ) ·#O/(1− ap + p)

#O/pO ·#H0(Kv,Wf )

=
#O/((1−ap+p

p ) logωf
P )

#H0(Kv,Wf )
.

Combining this last equality with (3.5.a) we get

#δv =
#O/((1−ap+p

p ) logωf
P )

[Af (K)⊗Z(f) O : O · P ] ·#H0(Kv,Wf )
,

which, when substituted into (3.5.b), yields

#H1
Fac

(K,Wf )(3.5.c)

= #XBK(Wf/K) ·
(

#O/((1−ap+p
p ) logωf

P )

[Af (K)⊗Z(f) O : O · P ] ·#H0(Kv,Wf )

)2

In the special case that Af = E is an elliptic curve (i.e., f has rational

coefficients), p is a prime of good reduction, O = Zp, and P ∈ E(K) has

infinite order, we can rewrite the formula for #δv as

#δv =
#Zp/((

1−ap(E)+p
p ) logωE

P )

[E(K) : Z · P ]p ·#H0(Kv, E[p∞])
,

where [−,−]p denotes the p-part of the index and we have taken for ωf the

Néron differential ωE ∈ Ω1(E/Z(p)). In this case (3.5.c) then becomes

(3.5.d)

#H1
Fac

(K, E[p∞]) = #X(E/K)[p∞]·
(

#Zp/((
1−ap(E)+p

p ) logωE
P )

[E(K) : Z · P ]p ·#H0(Kv, E[p∞])

)2

.

4. CM points, CM periods and upper bounds on X

In this section we recall the definition of Heegner points on certain Shimura

curves and their Jacobians. The Shimura curves considered are moduli spaces

for false elliptic curves and the Heegner points correspond to false elliptic
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curves with complex multiplication. These Heegner points give rise to coho-
mology classes for the Tate module of an optimal quotient of the Jacobian of
the Shimura curve. The Euler system method of Kolyvagin yields an upper
bound on the order of the Tate–Shafarevich group of this optimal quotient
in terms of the indices of certain of these classes. This upper bound is re-
called in [26]. It is an essential ingredient in our proof of the main theorem
of this paper. For use in comparing p-adic L-functions in Section 5, we also
explain how the complex and p-adic periods of false CM elliptic curves are
identified with complex and p-adic periods of (true) CM elliptic curves.

Let K be an imaginary quadratic field such that (split) holds. Let −DK <
0 be the discriminant of K.

4.1. The Heegner hypothesis

Let N be an integer. We will also assume that N satisfies at least one of the
two Heegner-type hypotheses recalled below. The first of these is:

• N = N+N− with (N+, N−) = 1;

• � | N+ if and only if � splits in K;

• � | N− if and only if � is inert in K;

• N− is squarefree with an even number of prime factors.

(H)

Implicit in these assumptions is that the discriminant −DK < 0 of K satisfies

(coprime) (N,DK) = 1.

If N− = 1, then (H) is just the usual Heegner hypothesis. For some of the
arguments that follow, we also need a more general Heegner-type hypothesis:

• N = N+N− with (N+, N−) = 1;

• � | N+ if and only if � is split or ramified in K;

• � | N− if and only if � is inert in K;

• N− is squarefree with an even number of prime factors.

(gen-H)

Note that the only difference between the hypotheses (H) and (gen-H) is
in the latter the primes dividing N+ are allowed to be ramified in K (so
(coprime) may not hold).

Let f ∈ S2k(Γ0(N) be a newform and π the associated cuspidal repre-
sentation of GL2(A) as in Section 2.4.2. According to [57, §6] (see also [19,
§5] and [57, p.81]), the third and forth assumption of either Heegner-type
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hypothesis implies that the epsilon factor ε(π,K, s) of the base change of π
to GL2(AK) satisfies

(sign −1) ε(π,K, 1/2) = −1.

4.2. The quaternion algebra B and the Shimura curve XN+,N−

Suppose N satisfies (gen-H). Let B be the indefinite quaternion algebra of
discriminant N−. Let OB be a maximal order of B and let R ⊂ OB be an
Eichler order of level N+. Fix an isomorphism of R-algebras

(4.2.a) B ⊗ R ∼→ M2(R)

and an isomorphism of A∞N−
-algebras

(4.2.b) B ⊗ A∞N− ∼→ M2(A∞N−
)

that identifies R⊗ ẐN−
with the order {

(
a b
c d

)
∈ M2(ẐN−

) : N+ | c}. Here,

as usual, A∞N−
(resp. ẐN−

) denotes the restricted product of Q� (resp. the
product of Z�) for � � ∞N−.

In order to compare later statements with results in [7], we assume (with-
out loss of generality) that the isomorphism (4.2.a) and the fixed isomor-
phisms R ⊗ Z�

∼= M2(Z�) for � | N+p all arise from the choice of a real
quadratic field M = Q(

√
p0) ⊂ B, p0 � pNDK, in which the primes � | pN+

split and from an identification

ιM : B ⊗ M
∼→ M2(M ).

In particular, the chosen isomorphisms are induced from ιM by fixing an
inclusion M ↪→ R and a prime of M above each � | pN+. Furthermore, we
fix an idempotent e ∈ OB ⊗OM [ 1

2p0
] as in [7, p.7] such that

ιM (e) = ( 1 0
0 0 ) .

Let G be the algebraic group over Q such that G(S) = (B⊗S)× for each
Q-algebra S. Using the identification (4.2.a) we define a homomorphism,

h0 : ResC/R(Gm) → G/R, x+ iy �→
( x y
−y x

)
,

and let X be the G(R)-conjugacy class of h0. The set X has a natural
complex structure and the map X

∼→ h± := C − R, Ad(g)h0 �→ g(i), is a
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G(R)-equivariant holomorphic isomorphism. The action of G(R) on h± is

via (4.2.a) and the usual action of GL2(R).
Let XN+,N− be the Shimura curve associated with the Shimura datum

(G,X) and the open compact subgroup K = (R ⊗ Ẑ)× ⊂ B̂× = (B ⊗
A∞)× = G(A∞). This curve has a canonical model over Q with complex

uniformization

(4.2.c) XN+,N−(C) = B×\(X × B̂×/K)

It even has the structure of a coarse moduli space [27], [9], [21]; the solution

of the moduli problem yields a smooth regular model over Z[1/N−] which,
in particular, is smooth at p if

(good) p � N

holds.

To describe the moduli problem represented by XN+,N− we recall that a

false elliptic curve over a scheme S is a pair (A, ι) with A an abelian surface

over S and ι : OB ↪→ EndS(A) an injective homomorphism. A full level-

N+ structure on (A, i) is an isomorphism of group schemes t : A[N+]
∼→

OB ⊗ (Z/NZ)S commuting with the OB-action on both sides, and a K-level

structure is a K-equivalence class of such full level N+ structures. Then

XN+,N− represents the course moduli scheme over Z[1/N ] for the moduli

problem classifying isomorphism classes of triples (A, ι, t) where (A, ι) is a

false elliptic curve over S and t is a K-level structure6. In terms of the

complex uniformization, [h, 1], h ∈ X, represents the isomorphism class of

the triple (Ah, ιcan, tcan), where

• Ah = (OB ⊗ R) /OB, where the complex structure onOB⊗R is defined

by right multiplication by h(z), z ∈ C;
• ιcan is the action of OB arising from left multiplication;

• tcan is the K-equivalence class of the canonical isomorphism Ah[N
+] =

1
N+OB/OB.

6When N− = 1 (so B = M2(Q) and G = GL2) the usual moduli interpretation
of the modular curve X1,N = X0(N) classifies elliptic curves E together with a

Γ0(N)-equivalence class of isomorphisms α : E[N ]
∼→ (Z/NZ)2S . The two moduli

problems are isomorphic, with the class of (E,α) being identified with the class
of A = E × E together with the obvious action of OB = M2(Z) and the K-level
structure α× α.
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When N− = 1 (so B = M2(Q)) XN+,N− is not proper, but a proper
model X∗

N+.N− is obtained by adding cusps; this extends to a regular model
over Z(p), which is still smooth if (good) holds. If N− �= 1, then XN+,N− is
already proper, but to unify notation we also write X∗

N+.N− for XN+,N− in
this case.

Let �0 � Npp0 be a prime (to be chosen later). Associated with �0 is the
Hecke correspondence T�0 for X∗

N+,N− . The degree of this correspondence is
�0 + 1, so for any x ∈ X∗

N+,N− the divisor

(T�0 − �0 − 1)[x] ∈ Div0(X∗
N+,N−)

has degree 0.
Let J(X∗

N+,N−)/Q be the Jacobian of X∗
N+,N− . We define a finite mor-

phism

(4.2.d) ιN+,N− : X∗
N+,N− → J(X∗

N+,N−), x �→ (T�0 − �0 − 1)[x].

Remark 4.2.1. To compare with formulas in [10] (and ultimately with those
in [55]), we also consider a different embedding. Let δN+,N− ∈ Pic(X∗

N+,N−)

be defined as follows. If N− = 1, then let m be an integer that annihilates
the cuspidal subgroup of Pic0(X∗

N+,N−) (which is finite by the theorem of
Manin-Drinfeld) and δN+,N− = m[∞], where [∞] is the divisor of the cusp

at infinity. If N− �= 1, then let δN+,N− = ˜ξ(X∗
N+,N−) be the Hodge class

defined in [57, §6.2] and let m ≥ 1 be its degree. In all cases, the action of
any Hecke correspondences on δN+,N− is just multiplication by the degree
of the correspondence (in particular, the action is Eisenstein). We define a
finite morphism (over Q):

(4.2.e) ι̃N+,N− : X∗
N+,N− → J(X∗

N+,N−), x �→ m[x]− δN+,N− .

As δN+,N− is Eisenstein we then have

(4.2.f) (T�0 − �0 − 1) · ι̃N+,N−(x) = m · ιN+,N−(x).

4.3. CM points on X∗
N+,N−

A reference for this section is [37, §1]. Let ιK : K ↪→ B be an optimal em-
bedding with respect to R, in the sense that ιK(K) ∩ R = OK. Each of the
hypotheses (H) and (gen-H) ensures that such an embedding exists.

There exists a unique point h ∈ X such that h ∈ h+ and ιK(K×) fixes h.
Moreover, the subgroup of B× fixing h is just ιK(K×). Replacing the choice of
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ιK with ιK◦τ if necessary (this does not change the point h), we may assume
that the homomorphism h : C → G(R) is such that h(i) = ιK(

√
−DK)⊗ 1√

DK

and that the action of ιK(k), k ∈ K×, on
[
h
1

]
is just multiplication by k.

The set of CM points of X∗
N+,N− is, in terms of the complex uniformiza-

tion (4.2.c),

CM(X∗
N+,N−) = {[h, b] ∈ XN+,N−(C) : b ∈ B̂×}.

This set does not depend on ιK since any two embeddings K ↪→ B are B×-
conjugate. In addition, the fixed optimal embedding ιK induces a bijection

(4.3.a) CM(X∗
N+,N−) � K×\G(A∞)/R̂×.

Shimura’s reciprocity law shows that CM(X∗
N+,N−) ⊂ X∗

N+,N−(Kab) and

that the action of Gal(Kab/K) is described in terms of the reciprocity map

K×\A×
K,f

recK→ Gal(Kab/K) by

recK(t)[h, b] = [h, ιK(t)b].

In particular, since ιK is an optimal embedding, the point x = [h, 1] is defined
over the Hilbert class field H of K. Let

xN
+,N−

K =
∑

σ∈Gal(H/K)

ιN+,N−(x)σ ∈ J(X∗
N+,N−)(K).

Note that xN
+,N−

K depends on the auxiliary prime �0 (to be chosen later).
Let f ∈ S2(Γ0(N)) be a newform. Then the modular abelian variety Af

is a quotient of J(X∗
N+,N−). Let π : J(X∗

N+,N−) → Af be such a quotient
map (in later applications we will choose a π with nice properties at p). We
then obtain a Heegner point

yN
+,N−

K = π(xN
+,N−

K ) ∈ Af (K).

Let p be a prime of Z(f) containing p. Suppose that

(�0-good) p � (a�0(f)− �0 − 1).

Then

zN
+,N−

K =
1

a�0(f)− �0 − 1
yN

+,N−

K ∈ Af (K)⊗Z(f) Z(f)p

is independent of the choice of �0.
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Remark 4.3.1. If (irredK) holds for the residual representation modulo the
prime p, then there is a positive proportion of primes �0 � Npp0 for which
(�0-good) holds.

4.4. Upper bounds on #X(E/K)[p∞]

Suppose now that Af = E is an elliptic curve (equivalenty, that Q(f) = Q).
Here, we recall a consequence of Kolyvagin’s theorem on the structure of
X(E/K)[p∞] extended to the case of elliptic curve quotients of Jacobians of
Shimura curves. The following result is a direct consequence of [37, Thm.3.2]:

Theorem 4.4.1. Suppose that E[p] is an irreducible GQ-representation.
Suppose that hypothesis (H) holds for the imaginary quadratic field K and
the conductor N of E. Then

(4.4.a) #X(E/K)[p∞] ≤ p2m
N+,N−
0 ,

where mN+,N−

0 = ordp[E(K)⊗Z Zp : Zz
N+,N−

K ].

Remark 4.4.2. In fact, one can deduce from the work of [31] (see also [34])
and its generalizations to Shimura curves by Nekovář [37] a more precise
result:

(4.4.b) #X(E/K)[p∞] = p2(m
N+,N−
0 −mN+,N−

∞ ),

where mN+,N−

∞ is the maximal non-negative integer m such that pm divides
all the cohomology classes constructed by Kolyvagin (see [26] for more details
in the case of modular curves).

4.5. Comparisons of CM periods

In the following we recall the complex and p-adic periods of CM elliptic
curves and explain how they can be identified with periods of ‘false’ CM
elliptic curves.

4.5.1. Complex and p-adic periods of CM elliptic curves. Suppose
that p splits in K. LetH/K be the Hilbert class field of K and let F be a finite
extension ofH and let E0/F be an elliptic curve with complex multiplication
(CM) by an order O in the imaginary quadratic field K. We assume that
O⊗Z(p) is a maximal Z(p)-order. Fix a complex uniformization E0(C) ∼= C/a,
where a is a non-zero ideal of O = End(E0). By enlarging F if necessary
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we may assume that E0 has good reduction at all primes above p and so
extends to an elliptic scheme E0/OF,(p). We are interested in Ω1(E0/OF,(p)),
which is a free OF,(p)-module of rank one. Write Ω1(E0/OF,(p)) = OF,(p) ·ωE0

for some differential ωE0
∈ Ω1(E0/OF,(p)).

We define the complex period of E0 as follows. We consider C to be an
F -algebra via the fixed inclusion ι∞ : Q ↪→ C. Then

Ω1(E0/OF,(p))⊗OF,(p)
C = Ω1(E0/C).

As the invariant differential ωC = dz on the complex torus E0(C) ∼= C/a
gives a generator for Ω1(E0/C), there exists a scalar Ω∞ ∈ C× such that
ωE0

= Ω∞ · (2πi) ·ωC. This agrees with the definition of the complex period
of the CM elliptic curve that is given in, e.g., [3, p.1132].

We define the p-adic period of E0 in much the same way, following [3,
p.1134]. Recall that p = vv̄ splits in K. We take the place v to be that
determined by the fixed embedding ιp : Q ↪→ Qp and ιv : Q ↪→ Kv = Qp to
just be ιp. Denote also by v the place of F determined by the embedding
ιv; so ιv identifies Fv with a finite extension of Kv = Qp in Qp. Let F ur

v

be the maximal unramified extension of Fv in Qp and let R be the ring

of integers of F ur
v . Considering the good integral model E0/R, let Ê0 be

the formal completion over the identity section. As we are working over
R, Ê0 is non-canonically isomorphic to Ĝm. We fix such an isomorphism
Ê0 ∼→ Ĝm. The latter is equivalent to fixing an isomorphism of p-divisible
groups E0[p∞]0 = E0[p∞v ] ∼= μp∞ , which is uniquely determined up to the
action of an element of Z×

p . Here pv is the prime ideal of O corresponding to

v. The pullback of dt/t under the fixed isomorphism Ê0 ∼→ Ĝm is an element

ωcan ∈ Ω1(E0/R) = Ω1(E/OF,(p))⊗OF,(p)
R.

We then define the p-adic period Ωp ∈ R× by ωE0
= Ωp · ωcan.

Remark 4.5.2. Both Ω∞ and Ωp depend on the choice of ωE0
. However,

another choice of ωE0
only replaces Ω∞ and Ωp with their multiples by the

same scalar in O×
F,(p). The definition of Ω∞ also depends on the choice of

the complex uniformization. Composing with multiplication by a non-zero
scalar α ∈ C×:

E0(C)
∼→ C/a ∼→ C/αa,

the complex period Ω∞ gets multiplied by the scalar α. Similarly, Ωp also

depends on the choice of the isomorphism Ê0 ∼= Ĝm; changing this isomor-
phism replaces Ωp with a Z×

p -multiple.
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4.5.3. Complex and p-adic periods of “false” CM elliptic curves.
To understand the complex and p-adic periods that appear in the formulas
in [7], let A be a “false elliptic curve” as in Section 4.2. We take A and
its endomorphisms to all be defined over a finite extension F of K con-
taining the real quadratic field M . We assume that A has good reduction
at all places of F over p and we consider a good integral model A/OF,(p).
Then Ω1(A/OF,(p)) is free of rank two over OF,(p). Let e ∈ OB ⊗ OM,(p)

be an idempotent as in Section 4.2 and let ωA be an OF,(p)-generator of
eΩ1(A/OF,(p)), i.e., eΩ

1(A/OF,(p)) = OF,(p) · ωA. To define a complex pe-
riod, consider Ω1(A/C) = Ω1(A/OF,(p)) ⊗OF,(p)

C. If we have a canonical
basis element ωA,C ∈ eΩ1(A/C), we will then be able to compare it against
ωA to define a complex period. We would similarly get a p-adic period from
comparison with a canonical R-basis element of eΩ1(A/R). In the next sec-
tion, we explain how to obtain such canonical elements when A is a false
elliptic curve obtained from a CM elliptic curve via Serre’s tensor product
construction.

Remark 4.5.4. For the above, the only hypotheses on the real quadratic field
M that is needed is that B ⊗ M is split and p splits in M . No additional
hypotheses are needed on the idempotent e. The extra hypotheses imposed
in Section 4.2 are assumed in the construction of Brooks [7] where they are
used to obtain a certain explicit formula for the Maass–Shimura operators;
they follow closely the choices made by Mori [36] and Hashimoto [20]. For the
comparison between periods of CM elliptic curves and false elliptic curves
in the next section we do not need to make these extra assumptions.

4.5.5. Serre’s tensor product construction. To relate the periods of a
CM elliptic curve to the periods of a false elliptic curve, we use Serre’s tensor
product construction (see [12, §1.7.4]) which we briefly recall. If E0/F is a
CM elliptic curve as in Section 4.5.1 with complex multiplication by OK,
then by Serre’s tensor product construction applied to OB ⊗OK E0, there
exists a false elliptic scheme A/OF,(p) such that A(R) = OB ⊗OK E0(R) for
any OF,(p)-algebra R; we let the false elliptic curve A/F be the generic fiber
of A. We will now relate the complex and p-adic periods of A to the complex
and p-adic periods of E0, respectively.

We have

Ω1(A/OF,(p)) = OB⊗OKΩ
1(E0/OF,(p)) =

(
OB ⊗OK OF,(p)

)
⊗OF,(p)

OF,(p)·ωE0
.

We continue to write e for the image in OB ⊗OK OF,(p) of the idempotent
e ∈ OB ⊗ OF,(p), and let ωA = e ⊗ ωE0

∈ eΩ1(A/OF,(p)). Then ωA is an
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OF,(p)-basis of eΩ
1(A/OF,(p)). On the other hand,

Ω1(A/C) = OB ⊗OK Ω1(E0/C) = (OB ⊗OK OF,(p))⊗OF,(p)
C · ωC,

where ωC ∈ Ω1(E0/C) is the 1-form defined in Section 4.5.1. Then ωA,C =
e ⊗ dz is a C-basis of eΩ1(A/C). The complex period ΩA,∞ ∈ C is then
defined via ωA = ΩA,∞ · (2πi) · ωA,C. It follows that ΩA,∞ = Ω∞.

The comparison of the p-adic periods of E0 and A is similar. We first
note that over R we have

A[p∞]0 = OB ⊗OK E0[p∞]0 = OB ⊗OK E0[p∞v ] ∼= (OB ⊗OK Zp)⊗Zp
μp∞ ,

where Zp is a OK-module via OK ↪→ OK,p = Zp. It follows that the pullback
of e⊗dt/t is just ωA,can = e⊗ωcan ∈ eΩ(A/R) = e(OB⊗OKZp)⊗Zp

Ω1(E0/R).
Here we have used the fixed embedding M ↪→ Qp to identify e with an
element of OB ⊗ Zp. The p-adic period ΩA,p ∈ R× is then defined via ωA =
ΩA,p · ωA,can. Clearly, ΩA,p = Ωp.

5. Anticyclotomic p-adic L-functions

In this section we recall the p-adic L-functions that appear in the Iwasawa-
Greenberg main conjectures for the Selmer groups H1

FΣ
ac
(K,M) and

H1
FΣ

ac
(K,M) defined in Sections 2.3.4 and 3.4, respectively. These conjec-

tures and their current status are recalled in the section following this one.
We continue with most of the notation and conventions of the preceding
discussion.

5.1. Anticyclotomic p-adic L-functions

Let K be an imaginary quadratic field of discriminant −DK < 0 such that p
splits in K. Let Σcc be the set of those continuous characters ψ : GK → Q×

p

that satisfy

• ψτ = ψ−1;
• ψ factors through Γ;
• ψ is crystalline at both v and v̄;
• ψ has Hodge–Tate weights −n < 0 and n > 0 at v and v̄, respectively.

Such a character ψ is the p-adic avatar of an algebraic Hecke character
ψalg of A×

K as follows. Let recK : A×
K → Gab

K be the reciprocity map of class
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field theory, normalized so that uniformizers map to geometric Frobenius
elements. Then ψalg is given by

ψalg(x) = ψ(recK(x))x
−n
v xnv̄x

n
∞x̄−n

∞ .

To make sense of this expression we have to explain how this is to be seen
as a C×-valued character. The quantity ψ(recK(x))x−n

v xnv̄ , which is a priori

in Q×
p (since Kv and Kv̄ are both just Qp), actually belongs to Q

× ⊂ Qp; we

use the chosen embedding Q = K ιv
↪→ Kv = Qp to identify Q

×
as a subgroup

of Q
×
p . We then use the fixed embedding Q ⊂ C to see ψ(recK(x))x−n

v xnv̄ as

C-valued and to identify K⊗R with C. The character ψalg then has infinity
type (n,−n) in the sense that ψalg

∞ (z) = znz̄−n.
Let f ∈ S2(Γ0(N)) be a newform and let O and L be as in Section 2.4.1.

We assume that L is so large that it contains the Hilbert class field of K. We
also assume that (gen-H) holds for K andN . Let B be the quaternion algebra
of discriminant N− and let R ⊂ OB be the orders from Section 4.2. The
Jacquet–Langlands correspondence [25] implies the existence of a classical
holomorphic quaternionic modular form fB (that is, a modular form for the
arithmetic subgroup ΓB

0 (N
+) defined by the units of the Eichler order R)

of weight 2 and trivial character and having the same Hecke eigenvalues as
f at all primes � � N−. Let p ⊂ Z(f) be the prime determined by the fixed
embedding Q(f) ↪→ Qp (so L is a finite extension of Q(f)p). We now require
that (good) holds; that is, p � N . Then the form fB can be normalized so
that it is defined over Z(f)(p) – that is, it is identified with a global section
ωf of Ω1(X∗

N+,N−/Z(f)(p)) – and non-zero modulo p.

Let R be the completion of the ring of integers of the subfield of Qp

generated by the p-adic field L from Section 2.4 and the maximal unramified
extension Qur

p ⊂ Qp of Qp. Note that R is a complete DVR. As explained in
[3], [7], and [8], under the hypotheses (H) and (good) there exists Lp(f) ∈
ΛR := Λ⊗̂OR = R[[Γ]] such that for ψ ∈ Σcc with n ≡ 0 (mod p − 1), the

image Lp(f, ψ) := ψ̂(Lp(f)) ∈ R of Lp(f) under the R-linear extension of

the character ψ to a continuous homomorphism ψ̂ : ΛR → R satisfies

(5.1.a) Lp(f, ψ) = Ev̄(f, ψ)
2 · tK · C(f, ψ)

α(f, fB)W (f, ψ)
· Ω4n

p · L(f, ψ
alg, 1)

Ω4n
∞

.

The various factors appearing in this expression are:

• Ev̄(f, ψ) = (1− ψalg(�v̄)app
−1 + ψalg(�v̄)

2p−1), with �v̄ ∈ Kv̄ a uni-
formizer;
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• tK is a power of 2 that depends only on K (unimportant since p is
assumed odd);

• C(f, ψ) =
1

4
π2n−1Γ(n)Γ(n + 1)wK

√
DK
∏
�|N−

�− 1

�+ 1
, where wK is the

number of roots of unity in K;
• W (f, ψ) = WfNK/Q(b)ψ

alg(xb)N
nb−2n

N , where b ⊂ OK and bN ∈ OK
are as in [7, Prop. 8.3], xb ∈ A∞,×

K is such that ordw(xb,w) = ordw(b)
for all finite places w of K, and Wf ∈ C× is a complex number of norm
one as in the remarks following the proof of Lemma 8.4 of [7]; both b

and bN can be taken to be coprime to p;

• α(f, fB) =
〈f,f〉Γ0(N)

〈fB ,fB〉ΓB
0

(N+)

is a ratio of Petersson norms, which are nor-

malized so that 〈g, g〉Γ =
∫
Γ\h g(z)g(z)

dxdy
y2 ; in [7] this ratio was shown

to belong to L;
• Ωp ∈ R× and Ω∞ ∈ C× are, respectively, the p-adic and complex
periods of a ‘false elliptic curve’ with CM by OK as defined at the
start of [7, §8.4]; as explained in Section 4.5.5 these can be taken to
be the respective p-adic and complex periods of an elliptic curve with
complex multiplication by OK;

• L(f, ψalg, s) = L(πK × ψalg, s − 1/2) = L(V ∨
f ⊗ ψ, s), where πK is the

base change of π to GL2(AK) and, following our earlier convention, we
use geometric conventions for the L-function of the GK-representation
V ∨
f ⊗ ψ.

Remark 5.1.1.

(a) To see the interpolated values Lp(f, ψ) as belonging to R, one first
recognizes many of the quantities on the right-hand side of (5.1.a)
as algebraic, that is, as belonging to Q ⊂ C. These are then viewed
as belonging to Qp via an embedding extending the fixed inclusion
Q(f) ↪→ L.

(b) To compare the interpolation formula (5.1.a) with that in [7] and [8],
one should take χ−1 = ψalg| · |AK in the formulas in loc. cit. Note that χ
has infinity type (−2−j, j) with j = n+1 (this is infinity type (2+j,−j)
with the conventions of loc. cit.) and L(f, χ−1, 0) = L(f, ψalg, 1).

(c) In [3] and [7] the p-adic L-function is only constructed as a continu-
ous function (though the construction clearly gives a measure). The
measure is made explicit, for example, in [8].

In this paper we make use of two important results about Lp(f), due
to Burungale and Brooks, respectively. The first of these is the vanishing of
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the μ-invariant of Lp(f) and the second is a formula for the value Lp(f, 1)
under the trivial character (which does not belong to Σcc). We recall these
results in the following two sections.

5.1.2. Vanishing of the anticyclotomic μ-invariant. The choice of
topological generator γ ∈ Γ determines a continuous isomorphism ΛR

∼→
R[[T ]] such that γ − 1 �→ T ; we use this to identify each λ ∈ ΛR with a
power series λ(T ). Each element λ ∈ ΛR has a unique expression λ(T ) =

�
μ(λ)
R pλ(T )uλ(T ) with �R ∈ R a fixed uniformizer, μ(λ) ∈ Z a non-negative

integer, pλ a monic polynomial of minimal degree, and uλ ∈ R[[T ]]×. The
integer μ(λ) – the μ-invariant of λ – and the degree of pλ are independent
of the choices of γ and �R.

Under the additional assumption that

(�-free) N is squarefree

Burungale [8] has shown that the μ-invariant of Lp(f) vanishes:

Proposition 5.1.3 ([8, Thm. B]). If p ≥ 3 and (irredK), (split), (H),
(good), and (�-free) hold, then μ(Lp(f)) = 0.

Let Σ be a finite set of places of K that do not divide p. We also define an
incomplete p-adic L-function LΣ

p (f) by removing the Euler factors at those
places in Σ:

LΣ
p (f) = Lp(f)×

∏
w∈Σ

Pw(ε
−1Ψ−1(Frobw)) ∈ R[[Γ]].

Then LΣ
p (f, ψ) := ψ̂(LΣ

p (f)), ψ ∈ Σcc, satisfies the interpolation formula

(5.1.a) but with L(f, ψalg, 1) replaced with the incomplete L-value
LΣ(f, ψalg, 1) on the right-hand side.

Remark 5.1.4. If w = (�) is an inert place in K, then Ψ(Frobw) = 1 and in
this case Pw(ε

−1Ψ−1(Frobw)) = (1 − a�(f)�
−1 + �−1)(1 + a�(f)�

−1 + �−1),
which can contribute to the μ-invariant of LΣ

p (f). In particular, the μ-

invariant of the incomplete L-function LΣ
p (f) may be greater than that of

Lp(f). This does not happen for the usual cyclotomic p-adic L-function.

5.1.5. A formula for Lp(f, 1). We recall Brooks’ formula [7, Prop. 8.13]
(see also [44, Prop.2.6.1]) for the value Lp(f, 1) of Lp(f) at the trivial char-
acter (which is outside the range of interpolation). Suppose that N and K
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satisfy (gen-H). Recall that there is a logarithm map

logωf
: J(X∗

N+,N−)(Kv)⊗Zp
O → Kv

such that d logωf
= ωf ∈ Ω1(J(X∗

N+,N−)/Zp) ⊗Zp
O = Ω1(J(X∗

N+,N−/O).

Recall that ωf ∈ Ω1(J(X∗
N+,N−)/Zp)⊗Zp

O is the O-basis element associated

with fB, as defined above. Let �0 � pN be a prime that splits in K and such
that 1− a�0 + �0 �= 0 (there are a positive proportion of such �0). In Section

4.3 we defined a Heegner point xN
+,N−

K ∈ J(X∗
N+,N−)(K). Then Brooks’

formula is:

Proposition 5.1.6 ([7, Prop. 8.13]). Suppose (�-free) holds and N and K
satisfy (gen-H). Then

Lp(f, 1) =
1

(1− a�0 + �0)2
·
(
1 + p− ap

p

)2 (
logωf

xN
+,N−

K

)2
,

where the equality is up to a p-adic unit.

Brooks’ formula is actually given in terms of the logarithm of a point

x̃N
+,N−

K =
∑

σ∈Gal(H/K)

εf [x]
σ ∈ J(X∗

N+,N−)(K′)⊗ Z(f),

where [x] is as in the definition of xN
+,N−

K but εf is a certain projector in a

ring of correspondences. As explained in [44, p.14], the relation with xN
+,N−

K
is εf · xN

+,N−

K = (1− a�0 + �0) · x̃N
+,N−

K from which we find

logωf
xN

+,N−

K = logωf
εf · xN

+,N−

K = (1− a�0 + �0) · logωf
x̃N

+,N−

K .

We now rewrite Brook’s formula in a form more directly comparable to
the expression (3.5.c) at the end of Section 3. We do this in the case that V
is an irreducible κ-representation of GQ. Then we can – and do – take Af

and the quotient map π : J(X∗
N+,N−) → Af to be (Z(f), p)-optimal in the

sense of [58]. This means that π is the composition of an optimal quotient
π0 : J(X∗

N+,N−) → A0 and an isogeny φ : A0 → Af such that the image of
the map TpA0 → TpAf induced by φ is not contained in pTpAf . We note

that (irredK) also holds and that we may choose �0 � pN such that �0 splits
in K and (�0-good) holds. Then the formula in Proposition 5.1.6 can be
expressed as:
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Proposition 5.1.7. Suppose (good) and (irredK) hold. Then with the above

choice of Af and π, we have that Lp(f, 1) equals(
1 + p− ap

p

)2

logωAf

(
zN

+,N−

K

)2
,

up to a p-adic unit.

Proof. To prove this proposition it suffices to prove that π∗(ωAf
) is an O×-

multiple of ωf . By the hypothesis (good), each of J(X∗
N+,N−), A0, and Af has

good reduction at p. Let J , A0, and A be their respective Néron models over

Zp; these are abelian schemes. The maps π, π0, and φ extend to morphisms

of these Néron models. Furthermore, as π0 is an optimal quotient (so the

kernel of π0 is also an abelian variety) and since p − 1 > 1, the image of

π∗
0 : Ω1(A0/Zp) → Ω1(J /Zp) is a Zp-direct summand; this follows from [6,

Thm. 4, p. 187] (cf. [1, Cor. A.1]). So it suffices to show that φ∗(ωAf
) is part

of an O-basis of Ω1(A0/Zp)⊗Zp
O.

We have that

Ω1(Af/Zp)⊗Zp
O/p = Ω1(Af/Fp)⊗Zp

O/p = LieFp
(Af [p]

0)∨ ⊗Zp
O/p.

Using the prime factorization pZ(f) =
∏

q|p q
eq , the right-hand side can be

written as ∏
q|p

LieFp
(Af [q

eq ]0)∨ ⊗Zp
O/p.

By the choice of ωAf
, the image of ωAf

in Ω1(Af/Zp)⊗Zp
O/p is identified

with a O/p-basis element of the p-summand (that is, for q = p). So it suffices

to prove that φ∗ induces an injection

LieFp
(Af [p

ep ]0)∨ ⊗Zp
O/p ↪→ LieFp

(A0[p]
0)∨ ⊗Zp

O/p.

For this, we note that since the image of TpA0 is not contained in pTpAf ,

and since Af [p] is an irreducible κ-representation of GQ, the induced homo-

morphism

A0[p] = TpA0/pTpA0 → TpAf/p
epTpAf = Af [p

ep ]

is surjective. Hence the morphism A0[p] → Af [p
ep ] is surjective and so, too,

is the induced map of the Lie algebras of their connected subgroups.
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5.2. The two-variable Rankin–Selberg p-adic L-function

The p-adic L-function LΣ
p (f) is the specialization of a p-adic L-function

LΣ
p (f) ∈ ΛK,R := R[[ΓK]] first constructed by Hida [22]. In what follows we

recall this p-adic L-function and explain its relation to LΣ
p (f).

Let Λ+ = O[[Γ+
K]]. Let

u = ε(γ+).

We say that a continuous O-homomorphism λ : Λ+ → Qp is algebraic of
weight n if λ(γ+) = u−n for some integer n ≥ 0. Let Kv

∞ ⊂ K∞ be the
maximal subfield unramified at v, and let Γv = Gal(Kv

∞/K). Then Γv
∼= Zp.

Let I = O[[Γv]]. The composite of the canonical homomorphisms Γ+
K ↪→

ΓK � Γv makes I into a Λ+-homomorphism. We say that a continuous
O-homomorphism λ : I → Qp is algebraic of weight k = 2n + 1 ≥ 1 if its
restriction to Λ+ is algebraic of weight n.

Let Θv : A×
K → Γv be the composition of the reciprocity map recK :

A×
K → Gab

K of class field theory with the canonical projection Gab
K � Γv. For

each non-zero fractional ideal a of K, we let xa ∈ A∞,×
K be a finite idèle of K

such that ordw(xa,v) = ordw(a) for all finite places w of K. Then the formal
q-expansion

f =
∞∑
n=1

b(n)qn ∈ I[[q]], b(n) =
∑

a⊂OK,N(a)=n

(a,pv̄)=1,

Θv(xa),

is an ordinary I-adic eigenform of tame level DK, in the sense that if λ :
I → Qp is an algebraic homomorphism of weight k = 2n + 1 with n ≡ 0
(mod p−1), then fλ =

∑∞
n=1 λ(b(n))q

n is the q-expansion of a p-ordinary p-
stabilized newform of weight k and level DKp. The form fλ can be identified
as follows. The condition that λ be algebraic of weight k implies that ρλ =

λ|Γv
, viewed as a continuous Q

×
p -valued character of GK, has Hodge-Tate

weights 0 and k−1 at v and v̄, respectively. Associated with ρλ is an algebraic
Hecke character ρalgλ with infinity type (0, 1− k) that is unramified at v and
v̄. The ordinary eigenform fλ is the ordinary p-stabilization of the newform
f0
λ of weight k and level DK associated with ρalgλ (so, in particular, L(f0

λ , s) =

L(ρalgλ , s)).
Let ΛHida = O[[1 + pZp]] (this is denoted Λ in [22]). We give Λ+ the

structure of a ΛHida-algebra by 1 + Zp � u �→ u−1γ−1
+ ∈ Λ+; this is an

isomorphism. We also endow I with the structure of a ΛHida-algebra by
1 + Zp � u �→ uγ−2

+ ∈ I. With the latter structure, our definition of an
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algebraic homomorphism of weight k is consistent with that in [22]. Note

that I is a finite, flat ΛHida-algebra.

For a p-adic O-algebra A, let X (A) = HomO−alg,cts(A,Qp) be the set of

all continuous O-algebra homomorphisms. Hida [22, Thm. 5.1b] has shown

that there is an element D in the fraction ring of I⊗̂OΛ+ that, when viewed

as a p-adic analytic function on X (I)×X (Λ+), has the following properties.

The function D is finite at each point (λ, λ′) ∈ X (I) × X (Λ+) with λ and

λ′ algebraic homomorphisms of respective weights k and n and satisfying

1 ≤ n ≤ k − 1, and if k ≡ 1 (mod 2(p− 1)) and n ≡ 0 (mod p− 1), then

D(λ, λ′) = (DKN)k/2NnΓ(n)Γ(n+ 1)Wf
E(1 + n)

S(λ)

D(1 + n, fλ, f)

Ω(fλ, f, n)
,(5.2.a)

where

• S(λ) = (1− pk−1ρalgλ (�v)
−2)(1− pk−2ρalgλ (�v)

−2);

• E(s) = (1− ρalgλ (�v)ap(f)p
−s + ρalgλ (�v)p

1−s);

• D(fλ, f, s) = ζpNDK(k + 2− 2s− 2)×
∑∞

n=1 an(fλ)ann
−s

= E(s)L(f, (ρalgλ ), s);

• Ω(fλ, f, n) = (2πi)2n−1(2i)k+1π2〈f0
λ , f

0
λ〉Γ1(DK).

Let IR = I⊗̂OR = R[[Γv]] and let L−
p (K) ∈ I be the anticyclotomic

p-adic L-function of the imaginary quadratic field K. The p-adic L-function

L−
p (K) is a specialization of Katz’s two-variable p-adic L-function and sat-

isfies the following interpolation property: for an integer k ≥ 0 such that

k ≡ 1 (mod 2(p− 1)) and λ ∈ X (I) an algebraic homomorphism of weight

k,

L−
p (K, λ) := λ(L−

p (K)) = S(λ)Ω2k−2
p

wK(2π)k−2Γ(k)

2D
(k−1)/2
K Ω2k−2

∞
L(ρalgλ ρalg,−τ

λ , 1).

Here the superscript ‘-τ ’ denotes composing the inverse character with the

action on A×
K of the nontrivial automorphism τ of K. The complex and p-

adic periods Ω and Ωp are the periods of an elliptic curve with CM by OK
and can be fixed to be the same as those appearing in (5.1.a). Appealing to

the well-known relation

〈f0
λ , f

0
λ〉Γ1(DK) = Γ(k)D2

K2
−2kπ−1−k · ress=kD(s, fλ, f

τ
λ )

= Γ(k)D2
K2

−2kπ−1−k · 2πhK

wKD
1/2
K

L(ρalgλ ρalg,−τ
λ , 1),



The BSD formula for the rank one case 415

where hK is the class number of K, the interpolation formula for L−
p (K) can

be rewritten as

(5.2.b) L−
p (K, λ) = w2

KS(λ)Ω
2k−2
p

π2k−223k−4

hKD
k/2+1
K Ω2k−2

∞
〈f0

λ , f
0
λ〉Γ1(DK).

Note that ρalgλ ρalg,−τ
λ is an anticyclotomic character with infinity type (k −

1, 1− k).

Suppose

(units) p � wK.

We put

Lp(f) =

(
hK
wK

L−
p (K)⊗ 1

)
D.

We consider Lp(f) as an element of the fraction field of ΛK = O[[ΓK]] via
the isomorphism ΓK

∼→ Γv ⊕ Γ+
K that is the direct sum of the canonical

projections to Γv and Γ+
K, respectively. Then for a finite set Σ of finite

places of K not dividing p we put

LΣ
p (f) = Lp(f)×

∏
w∈Σ

Pw(ε
−1ΨK(frobw)).

If Σ contains all places dividing NDK that do not divide p, then Wan has
shown that LΣ

p (f) ∈ ΛK [52]. For such Σ we let LΣ
p (f)

− ∈ Λ be the image of

LΣ
p (f) under the quotient map ΛK � Λ induced by the canonical projection

ΓK � Γ.

5.3. Relating LΣ
p (f)

− to LΣ
p (f)

Let ψ ∈ Σcc. By abuse of notation we also denote by ψ̂ the homomorphism
of ΛK obtained by composition with the projection ΛK � Λ and we put
LΣ
p (f, ψ)

− = ψ̂(LΣ
p (f)). Then the homomorphism ψ̂ ∈ X (ΛK) corresponds

via the isomorphism ΛK
∼→ I⊗̂OΛ+ to the point (λ, λ′) ∈ X (I) × X (Λ+)

with λ|Γv
= ψnε

−n (and so algebraic of weight 2n+ 1) and with λ′|Γ+
K
= εn

(and so algebraic of weight n). Here n is such that ψalg has infinity type
(n,−n). From the interpolation formulas for D(λ, λ′) and L−

p (K, λ) we then
find

LΣ
p (f, ψ)

− = ψ̂(LΣ
p (f)) = wKN

2n+1/2D−1
K Γ(n)Γ(n+ 1)Wf i

−122nπ2n−1

× Ev̄(f, ψ)
2Ω4n

p

LΣ(f, ψalg
n , 1)

Ω4n
.
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In particular, for ψ ∈ Σcc,

(5.3.a) LΣ
p (f, ψ)

− = c(f, ψ)Lp(f, ψ),

where

c(f, ψ) = t−1
K D

−3/2
K N3n+1/2

·
∏
�|N−

(
�+ 1

�− 1

)
22n+2i−1NK/Q(b)ψ

alg(xp)b
−2n
N α(f, fb).

The following lemma allows us to pass from (5.3.a) to a relation between
LΣ
p (f, ψ)

− and LΣ
p (f).

Lemma 5.3.1. There exist c ∈ R
[
1
p

]×
and U ∈ Λ× such that c(f, ψ) =

cψ̂(U) for all ψ ∈ Σcc with n ≡ 0 (mod p− 1).

Proof. We let

c = t−1
K D

−3/2
K N1/2

∏
�|N−

(
�+ 1

�− 1

)
22i−1NK/Q(b)α(f, fB) ∈ R[

1

p
]×.

We can assume that xb is chosen so that xb,v = 1 = xb,v̄. Let γb ∈ Γ be
the image of recK(xb). Then ψalg(xb) = ψ(γb). Let γv ∈ Γ be a topological
generator of the image of the inertia group Iv. For ψ to be crystalline at v
with Hodge-Tate weight −n means that ψ(γv) = ε(γv)

n. Let av ∈ Z×
p such

that ε(γv) = (1 + p)av and put

U = γ
(2 logp(2)+3 logp(N)+logp(bN ))/av

v γb ∈ Γ ⊂ Λ×.

Here logp is the Iwasawa p-adic logarithm. Also, we are viewing bN ∈ O×
K,(p)

as an element of Z×
p via the identification Zp = OK,v (which comes from the

hypothesis that p splits in K). Then if n ≡ 0 (mod p− 1), U satisfies

ψ̂(U) = (1 + p)n(2 logp(2)+3 logp(N)+logp(bN ))ψalg(xb) = 22nN3nbnNψalg(xb),

and so cψ̂(U) = c(f, ψ).

Combining Lemma 5.3.1 with (5.3.a) we find that LΣ
p (f, ψ)

− =

ψ̂(cULΣ
p (f)) for all ψ ∈ Σcc with n ≡ 0 (mod p − 1). If Σ contains all

the places dividing NDK not dividing p, then LΣ
p (f, ψ)

− = ψ̂(LΣ
p (f)

−)
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for all these ψ. Since the set of kernels of the homomorphisms ψ̂ of ΛR
for such ψ are Zariski dense in Spec(ΛR), we conclude that we then have

LΣ
p (f)

− = cULp(f) in ΛR. Hence:

Corollary 5.3.2. If Σ contains all places of K dividing NDK that do not

divide p, then (LΣ
p (f)) = (LΣ

p (f)
−) in ΛR

[
1
p

]
.

Remark 5.3.3. It is possible to define LΣ
p (f)

− for all finite sets Σ of places

of K not dividing p and to directly show, again making use of (5.3.a) and

Lemma 5.3.1, that the conclusion of Corollary 5.3.2 holds for all such Σ. We

will not need this.

6. Main conjectures

For the Selmer groups H1
FΣ

ac
(K,M) and H1

FΣ
Gr
(K,M) from Section 2.3.4, let

XΣ
ac(M) = HomO(H

1
FΣ

ac
(K,M), L/O) and

XΣ
Gr(M) = HomO(H

1
FΣ

Gr
(K,M), L/O).

We now recall the Iwasawa-Greenberg main conjectures for these groups

together with some recent results towards proving these conjectures. To do

this, recall that Λ = O[[Γ]] and ΛK = O[[ΓK]] and that R is the valuation ring

of the completion of the maximal unramified extension of L. Let ΛR = R[[Γ]]

and ΛK,R = R[[ΓK]]. The groups XΣ
ac(M) and XΣ

Gr(M) are, respectively,

finite Λ- and ΛK-modules.

6.1. The Iwasawa–Greenberg main conjectures

Let Σ be a finite set of finite places of K that do not divide p. The main

conjectures are easy to state:

Conjecture 6.1.1 (Main Conjecture for M). Let LΣ
p (f) be Hida’s two vari-

able p-adic L-function recalled in Section 5.2. Then

charΛK

(
XΣ

Gr(M)
)
ΛK,R = (LΣ

p (f)) ⊂ ΛK,R.

Note that implicit in the statement of this conjecture is that LΣ
p (f)

belongs to ΛK,R and not just its field of fractions. In Section 5.2 this was

explained to be known to hold when Σ is sufficiently large.
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Conjecture 6.1.2 (Main Conjecture for M). Let LΣ
p (f) ∈ ΛR be the p-adic

L-function defined in Section 5.1. Then

charΛ
(
XΣ

ac(M)
)
ΛR = (LΣ

p (f)) ⊂ ΛR.

Remark 6.1.3. Note that we always have equalities of ideals

charΛK,R

(
XΣ

Gr(M)⊗ΛK ΛK,R
)
= charΛK

(
XΣ

Gr(M)
)
ΛK,R

and

charΛR

(
XΣ

ac(M)⊗Λ ΛR
)
= charΛ

(
XΣ

ac(M)
)
ΛR.

Recently substantial progress has been made toward these conjectures

in [52] and [53] by following the strategy from [46] of exploiting congruences

between suitable Eisenstein series and cuspforms, this time on GU(3, 1).

Theorem 6.1.4 ([52, Thm.1.1],[53, Thm.1.1]). Suppose (irredK), (split),

(gen-H), (good), and (�-free) hold. Suppose also that there is at least one

prime divisor of N non-split in K and that Σ contains all places dividing

NDK. Then

charΓK

(
XΣ

Gr(M)
)
ΛK,R [1/p] ⊆ (LΣ

p (f)) ⊂ ΛK,R [1/p].

Combining this with Corollary 3.4.2 and Corollary 5.3.2, we conclude:

Theorem 6.1.5. Suppose (irredK), (split), (gen-H), (good), and (�-free)

hold. Suppose also that there is at least one prime divisor of N non-split in

K and that Σ contains all places dividing NDK. Then

charΛ
(
XΣ

ac(M)
)
ΛR [1/p] ⊂ (LΣ

p (f)) ⊂ ΛR [1/p].

This theorem can be strengthened upon combination with Proposition

3.3.3 (in particular, the surjectivity of (3.3.a)) and Burungale’s μ = 0 result

of Proposition 5.1.3 (combined with a result of Hsieh [24] to also include the

case when N may not be coprime to the discriminant of K):

Theorem 6.1.6. Suppose that (irredK), (split), (gen-H), (good), (corank 1),

(sur) and (�-free) hold. Suppose also that there is at least one prime divisor

of N non-split in K. Then

charΛ
(
XΣ

ac(M)
)
ΛR ⊂ (LΣ

p (f)) ⊂ ΛR.
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Proof. Let Σ1 ⊂ Σ2 be two finite sets of places of K dividing p and with
Σ2 containing all the places dividing NDK. Then the surjectivity of (3.3.a)
yields

charΛ
(
XΣ2

ac (M)
)

= charΛ
(
XΣ1

ac (M)
)
charΛ

⎛⎝ ∏
w∈Σ2\Σ1

HomO

(
H1(Kw,M)

H1
Fac

(Kw,M)
, L/O

)⎞⎠
= charΛ

(
XΣ1

ac (M)
) ∏
w∈Σ2\Σ1

(
Pw(ε

−1Ψ−1(Frobw))
)
.

Here, we have used that Pw(ε
−1Ψ−1(Frobw)) is a generator for the character-

istic ideal of the Pontrjagin dual of H1(Kw,M)/H1
Fac

(Kw,M) (a consequence
of [46, §4.3.13] and [17, Prop.2.4]). Comparing this with the definition of
LΣ2
p (f) we then see that the hypothesis that Σ contain the places dividing

NDK can be removed from Theorem 6.1.5. In the case where Σ = ∅ the
resulting inclusion of ideals can then be improved to an inclusion in ΛR in
light of the μ = 0 result of Proposition 5.1.3. The inclusion in ΛR for any Σ
then follows.

Remark 6.1.7. As a consequence of our results below, in some cases we will
be able to improve the inclusion in Theorem 6.1.6 to an equality.

6.2. Consequences for the order of H1
Fac

(K,W )

We can now record the key result connecting the value Lp(f, 1) with the
order of H1

Fac
(K,W ).

Proposition 6.2.1. Suppose (irredK), (split), (gen-H), (good), (corank 1),
(sur) and (�-free) hold. Suppose also that there is at least one prime divisor
of N non-split in K. Then Lp(f, 1) �= 0 and

#O/(Lp(f, 1)) | #H1
Fac

(K,W ) · C(W ),

where C(W ) = C∅(W ) is as in Theorem 3.3.1.

Proof. Let (fac(T )) = charΛ (Xac(M)) with fac(T ) ∈ O[[T ]] ∼= Λ, where the
isomorphism identifies 1 + T with the chosen topological generator γ. Then
by Theorem 6.1.6, Lp(f) divides fac(T ) in R[[T ]]. In particular fac(0) is an
R-multiple of Lp(f, 1). On the other hand, by Theorem 3.3.1

#O/(fac(0)) = #H1
Fac

(K,W ) · C(W ) < ∞.
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(The finiteness of the right-hand side was established in Proposition 3.2.1.)
The proposition follows.

7. Proof of the main theorem

In this section we piece together the results from the previous sections to
prove the main result of the paper, Theorem 1.2.1. We therefore take E/Q
to be an elliptic curve as in that theorem. In particular, we assume:

• E is a semistable elliptic curve with square-free conductor N ;
• E has good reduction at the prime p (i.e., p � N);
• if p = 3 and E has supersingular reduction at p, then ap(E) = 0;
• the residual representation ρ̄E,p : GQ → Aut(E[p]) is irreducible;
• ords=1L(E, s) = 1.

The results of Gross–Zagier and Kolyvagin then imply that rkZ E(Q) = 1
and X(E/Q) is finite. To prove Theorem 1.2.1 we must show that the same
power of p appears in both sides of (1.1.a). Since Conjecture 1.1.1 is isogeny
invariant – more precisely, the ratio of both sides of (1.1.a), when both are
finite, is an invariant of the isogeny class of E (cf. [49, Thm. 2.1]) – we may
further assume:

• E admits an optimal quotient map π : J(X0(N)) → E (that is, such
that the kernel of π is connected).

7.1. The Birch and Swinnerton-Dyer conjecture

We will eventually deduce both the conjectured upper and lower bounds on
#X(E/Q)[p∞] from corresponding upper and lower bounds for
#X(E/K)[p∞] for suitable imaginary quadratic fields K. For this reason we
find it helpful to recall the general Birch and Swinnerton-Dyer conjecture for
an elliptic curve over a number field. As stated by Tate [49, (A) and (B)],
this is:

Conjecture 7.1.1 (general Birch and Swinnerton-Dyer Conjecture). Let F
be a number field and let E/F be an elliptic curve over F .

(a) The Hasse–Weil L-function L(E/F, s) has an analytic continuation to
the entire complex plane and ords=1L(E/F, s) = rkZ E(F );

(b) The Tate-Shafarevich group X(E/F ) has finite order, and
(7.1.a)

L(r)(E/F, 1)
r! · ΩE/F · Reg(E/F ) · |ΔF |−1/2

=
#X(E/F ) ·

∏
v�∞ cv(E/F )

#E(F )2tors
,
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where r = ords=1L(E/F, s), cv(E/F ) = [E(Fv) : E0(Fv)] is the Tama-

gawa number at v for a finite place v of F , Reg(E/F ) is the regulator

of the Néron-Tate height pairing on E(F ), ΔF is the discriminant of

F , and ΩE/F ∈ C× is the period defined by

(7.1.b) ΩE/F = NF/Q(aω)·
∏
v|∞
v-real

∫
E(Fv)

|ω|·
∏
v|∞

v-complex

(
2 ·
∫
E(Fv)

ω ∧ ω

)
.

Here ω ∈ Ω1(Ẽ/OF ) is any non-zero differential on the Néron model

Ẽ of E over OF , and aω ⊂ F is the fractional ideal such that aω · ω =

Ω1(Ẽ/OF ). Also, for a finite place v, E0(Fv) ⊂ E(Fv) denotes the

subgroup of local points that specialize to the identity component of the

Néron model of E at the place v.

When F = Q, we generally write ΩE for ΩE/Q.

7.2. The Birch–Swinnerton-Dyer formula for rank zero elliptic

curves

To pass from the expected upper and lower bounds for #X(E/K)[p∞] for

suitable imaginary quadratic fields K = Q(
√
D) (D < 0) to the expected

upper or lower bound for #X(E/Q)[p∞], we will need to appeal to known

results for the BSD formula for the K-twists7 ED of E. The fields K will

always be chosen so that the groups ED(Q) have rank 0. We therefore recall

the known results about the p-part of the BSD formula for rank 0 curves.

In the theorem below we summarize the already known results on the

Birch and Swinnerton-Dyer conjecture for both ordinary and supersingular

elliptic curves of analytic rank zero. The inequality of part (i) of the theo-

rem is a consequence of Kato’s groundbreaking work on an Euler system for

elliptic curves (see [39, Thm.4.8]). The equality of part (ii) for the ordinary

case is proved in [46, Thm.2], [45, Thm.C] as a consequence of the proof

Iwasawa main conjecture for GL2, and that of part (iii) for the supersingu-

lar case is a consequence of the proof of Kobayashi’s main conjecture [54,

Cor.4.8].

7If E has Weierstrass equation y2 = x3 + Ax+ B, then the K-twist of E is the
curve ED/Q having Weierstrass equation Dy2 = x3 +Ax+B. If f is the newform
associated with E, then the newform associated with ED is just the newform fK
associated with the twist of f by the quadratic character χK of K.
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Theorem 7.2.1. Let E/Q be an elliptic curve with good or multiplicative
reduction at the odd prime p and suppose that ρE,p : Gal(Q/Q) → Aut(E [p])
is irreducible. Suppose L(E , 1) �= 0.

(i) One has

(7.2.a) ordp(#X(E/Q)[p∞]) ≤ ordp

(
L(E/Q, 1)

ΩE ·
∏

� c�(E)

)
.

(ii) If E has good ordinary or multiplicative reduction at p and there exists
a prime q of multiplicative reduction for E at which the representation
ρE,p is ramified, then

(7.2.b) ordp(#X(E/Q)[p∞]) = ordp

(
L(E/Q, 1)

ΩE ·
∏

� c�(E)

)
.

(iii) If E is semistable or a twist of a semistable elliptic curve by a quadratic
character that is unramified at the primes dividing the conductor of
the semistable curve and if E has supersingular reduction at p with
ap(E) = 0, then

(7.2.c) ordp(#X(E/Q)[p∞]) = ordp

(
L(E/Q, 1)

ΩE ·
∏

� c�(E)

)
.

Remark 7.2.2. Note that the condition that ap(E) = 0 in part (iii) of this
theorem is superfluous if p ≥ 5.

Remark 7.2.3. Part (iii) of the above theorem is slightly more general than
the result cited in [54], where the elliptic curve is assumed to be semistable.
However, the same proof extends to the case of the quadratic twist of a
semistable curve. The only reason for including the semistable assumption
there was to avoid local triple product integrals for supercuspidal represen-
tations at split primes in [52], [53], which is excluded under the assumption
of the above theorem. The results of Hsieh and Hung on non-vanishing (or
non-vanishing modulo p) of L-values and vanishing of μ-invariants are also
valid in the more general setting of the quadratic twist.

7.3. Comparison of Tamagawa numbers and periods for
quadratic twists

We will derive both upper and lower bounds on #X(E/Q)[p∞] from corre-
sponding bounds on #X(E/K)[p∞] for suitable choices of imaginary quad-
ratic fields K = Q(

√
−D). In order to derive from this the exact upper and
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lower bounds predicted by Conjecture 1.1.1, we recall here the relations be-
tween the Tamagawa numbers and periods of E over K and the Tamagawa
numbers and periods of E and its quadratic twist8 ED. These are discussed
in detail in [47].

7.3.1. Tamagawa numbers. We recall [47, Cor. 9.2] that

(7.3.a) ordp

(∏
w

cw(E/K)

)
= ordp

(∏
�

c�(E/Q) ·
∏
�

c�(E
D/Q)

)
.

On the left-hand side w is running over finite places of the imaginary quad-
ratic field K = Q(

√
D) of discriminant D < 0, and on the right-hand side �

is running over all primes. Here we have also used that E has good reduction
at p and so has Tamagawa number 1 at any place dividing p.

7.3.2. Periods and comparisons. For the elliptic curve E/Q, one de-
fines its real period to be

ΩE =

∫
E(R)

|ω|.

Here ωE is a Néron differential (a Z-basis of the module of differentials of
the Néron model of E over Z). If f ∈ S2(Γ0(N)) is the normalized cuspidal
eigenform associated with E (that is, satisfying L(f, s) = L(E, s)) then,
as explained in [47, §9.2], one also defines canonical periods Ω+

f ,Ω
−
f ∈ C×;

these are defined up to Z×
(p)-multiples (this can be refined to Z×-multiples,

but we do not need this here). Furthermore, as recalled in [47, §9.3], one
also has the congruence (or Hida) period

Ωcong
f =

〈f, f〉
ηf

∈ Q
×
p ,

where 〈f, f〉 is the Petersson norm and ηf is the congruence number of f
recalled in loc. cit.; to make sense of this definition we use our chosen iso-
morphism Qp

∼= C. Recall that Ωcong
f is only well-defined up to Z×

p -multiple.
We next recall the relations between these various periods.

8If E has Weierstrass equation y2 = x3 + Ax + B, then by ED we mean the
elliptic curve over Q having Weierstrass equation −Dy2 = x3 + Ax + B. This is
just the K-twist of E. If f is the newform associated with E, then the newform
associated with ED is just the newform fK associated with the twist of f by the
quadratic character of K.
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Let fK be the newform associated with the twist of f by the quadratic

character of the imaginary quadratic field K. It is explained in [45, §3.3] (see
also [17, Prop. 3.1]) that

(7.3.b) ΩE = −2πiΩ+
f and ΩED = −2πiΩ+

fK
,

up to Z×
(p)-multiples. By [47, Lem. 9.5] the congruence period can be chosen

to satisfy

(7.3.c) Ωcong
f = i(2π)2Ω+

f Ω
−
f .

Under the hypothesis that ρ̄E,p is irreducible, it is shown in [47, Lem. 9.6]

that if p � D then

(7.3.d) Ω±
f =

√
−D · Ω∓

fK
,

up to a Z×
p -multiple. Note that the statement of loc. cit. omits the factor√

−D (which equals the Gauss sum τ(χK) up to sign); this is because it is

assumed there that p splits in K (also assumed here) and so
√
−D ∈ Z×

p . In

particular, combining (7.3.b), (7.3.c), and (7.3.d) we find:

(7.3.e) Ωcong
f =

√
|D| · ΩEΩED .

Remark 7.3.3. The comparison between the periods ΩE of ΩED of the elliptic

curves and Ω+
f and Ω+

fK
is often done in terms of what is known as the Manin

constants, as explained in [17, §3]. It is known by a result of Mazur that if

p � 2ND, then p does not divide either of the Manin constants (see, e.g., [26,

§1]).

7.4. The final argument

Let f ∈ S2(Γ0(N)) be the Hecke eigenform associated toE. Then (V, T,W ) =

(Vf , Tf ,Wf ) = (VpE, TpE,E[p∞]), O = Zp, and V ∼= E[p]. Note that there

exists at least one prime q | N such that the mod p representation ρ̄E,p

is ramified at q. If not, then Ribet’s level lowering theorem [41, Thm.1.1]

yields a cuspform g of weight 2 and level 1 with mod p residual representa-

tion isomorphic to ρ̄E,p (we apply Ribet’s theorem to remove, one-by-one,

the primes dividing N). This is a contradiction as there are no cuspidal

eigenforms of weight 2 and level 1. Let N = q1 . . . qr with q1 = q.
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7.4.1. Lower bounds on #X(E/Q)[p∞]. We first choose an auxiliary
imaginary quadratic field K′ = Q(

√
D′) of discriminant D′ < 0 such that

(a) N and K′ satisfy (gen-H);
(b) q is either inert or ramified in K′;
(c) p splits in K′;
(d) L(ED′

, 1) �= 0.

It is easy to find K′ such that (a), (b) and (c) hold. Indeed, if r ≥ 2 (i.e., N
has at least two prime divisors), then we can even guarantee that (H) holds
by requiring that q be inert in K′. In the case where N = q is prime, we
take N− = 1 and N+ = q, which only satisfies (gen-H). We note that for
any K′ for which (a), (b), and (c) hold, the root number w(E/K′) of E/K′

is −1 (cf. (sign −1)). As w(E/Q) = −1 by hypothesis (this is a consequence
of ords=1L(E, s) being odd) and w(E/K′) = w(E/Q)w(ED′

/Q), we have
w(ED′

) = +1. As (a), (b), and (c) impose only finitely many congruence
conditions on the discriminant ofK′, it then follows from a result of Friedberg
and Hoffstein [14, Thm. B] that K′ can be chosen so that (d) also holds. Note
that the condition (d) means that ords=1L(E/K′, s) = 1. In particular, by
the work of Gross–Zagier and Kolyvagin we know that E(K′) has rank one
and that X(E/K′) is finite.

To take a first step towards a lower bound on #X(E/K′)[p∞] we want
to appeal to the Proposition 6.2.1. So we first check that the hypotheses of
that proposition hold with K = K′. The conditions (split), (gen-H), (good),
and (�-free) either follow immediately from our hypotheses on E or from
the choice of K′ (recall that in the case when N = q, we have used the work
of Hsieh [24] in addition to Burungale’s result to include the case when q
may not be coprime to the discriminant of K.) The condition (irredK) is an
easy consequence of the hypotheses that ρ̄E,p is irreducible and that ρ̄E,p is
ramified at the prime q = q1 || N (see [44, Lem. 2.8.1]). Finally, note that
(corank 1) and (sur) also hold as rkE(K′) = 1 and #X(E/K′)[p∞] < ∞
(cf. Section 3.5).

By Proposition 6.2.1 (with K = K′) we have

(7.4.a) ordp (Lp(f, 1)) ≤ ordp
(
#H1

Fac
(K′, E[p∞]) · C(E[p∞])

)
.

Let zK′ = zN
+,N−

K′ ∈ E(K′) be the Heegner point defined in Section 4.3. (Note
that the hypothesis (irredK) ensures that there are many good auxiliary
primes �0.) As the hypotheses of Proposition 5.1.7 are also clearly satisfied,
the left-hand side of (7.4.a) is

ordp(Lp(f, 1)) = 2 · ordp
(
1 + p− ap

p
logωE

(zK′)

)
.
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As Lp(f, 1) �= 0 (also by Proposition 6.2.1), this implies that zK′ has infi-

nite order (of course, this is also a consequence of the general Gross–Zagier

formula for zK′). Let

mK′ = [E(K′) : Z · zK′ ].

This index is finite. The hypotheses of Section 3.5 are also all satisfied, so it

follows from (3.5.d) and the definition of C(E[p∞]) that the right-hand side

of (7.4.a) is

ordp
(
#H1

Fac
(K′, E[p∞] · C(E[p∞])

)
= ordp

(
#X(E/K′)

)
− 2 · ordp(mK′)

+ 2 · ordp
(
1 + p− ap

p
logωE

(zK′)

)

+ ordp

⎛⎝ ∏
w|N+

cw(E/K′)

⎞⎠ .

We then conclude from all this that

(7.4.b) ordp
(
#X(E/K′)[p∞]

)
≥ 2 · ordp(mK′)− ordp

⎛⎝ ∏
w|N+

cw(E/K′)

⎞⎠ .

To pass from the inequality (7.4.b) to one involving the derivative

L′(E/K′, 1) we use the variant of the Gross–Zagier formula for the Heeg-

ner point9 zK′ [58, p. 245]: up to a unit in Z×
p ,

√
|D′|L

′(E/K′, 1)

Ωcong
f

=
δ(N, 1)

δ(N+, N−)

〈zK′ , zK′〉NT

c2E
,

where cE ∈ Z is the Manin constant of E (so p � cE in this case; see Re-

mark 7.3.3) and δ(N, 1), δ(N+, N−) are defined in loc. cit. In particular, as

explained on the same page of loc. cit.,

δN+,N− :=
δ(N, 1)

δ(N+, N−)
=
∏
�|N−

c�(E/K′)

9Though stated in terms of zK′ in [58], the formula in loc. cit. is a special case of
a formula in [10], which is expressed in terms of a ‘Heegner point’ defined using the
map 1/m · ι̃N+,N− from (4.2.e) in place of ιN+,N− . However, it is clear from (4.2.f)
that replacing this point with zK′ only changes the formula by a p-adic unit.
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up to a unit in Z×
p . We can then rewrite the Gross–Zagier formula for zK′

as an equality up to p-adic unit:

(7.4.c)
L′(E, 1)

ΩE · Reg(E/Q)
· L(E

D′
, 1)

ΩED′
= m2

K′ ·
∏
�|N−

c�(E/K′).

Here we have used that 〈zK′ , zK′〉NT = mK′ Reg(E/K′), Reg(E/K′) =

Reg(E/Q) (as ED′
(Q) is finite), L′(E/K′) = L′(E, 1)L(ED′

, 1), and the

period relation (7.3.e). From (7.4.c) we obtain

2·ordp(mK′) = ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
· L(E

D′
, 1)

ΩED′

)
−ordp

⎛⎝∏
�|N−

c�(E/K′)

⎞⎠.

Combining this with (7.4.b) and (7.3.a) (with K = K′) we obtain

ordp(#X(E/K′)[p∞])

≥ ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
∏

� c�(E/Q)
· L(ED′

, 1)

ΩED′
∏

� c�(E
D′/Q)

)
.

As X(E/K′)[p∞] ∼= X(E/Q)[p∞] ⊕ X(ED′
/Q)[p∞], from the above lower

bound on ordp(#X(E/K′)[p∞]) and Theorem 7.2.1(i) (really (7.2.a) for E =

ED′
) we conclude that

(7.4.d) ordp(#X(E/Q)[p∞]) ≥ ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
∏

� c�(E/Q)

)
.

That is, we have proved the exact conjectured lower bound on

#X(E/Q)[p∞].

7.4.2. Upper bounds on #X(E/Q)[p∞]. Recall that N = q1 · · · qr
with q1 = q such that p � cq(E/Q). If r is odd, let N+ = q1 and N− =

N/q1. If r is even, let N+ = 1 and N− = N . We choose a second auxiliary

imaginary quadratic field Q(
√
D′′) of discriminant D′′ < 0 such that

(a) the primes dividing N+ split in K′′;
(b) the primes dividing N− are all inert in K′′;
(c) p splits in K′′;
(d) L(ED′′

, 1) �= 0.
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Note that (H) holds for N and any K′′ satisfying (a), (b), and (c). As with

the choice of K′ above, the root number of the quadratic twist ED′′
is +1

and the result of Friedberg and Hoffstein ensures that K′′ can be chosen so

that (d) also holds.

Note that by (d) we have ords=1L(E/K′′, s) = 1. Let zK′′ = zN
+,N−

K′′ ∈
E(K′′) be the Heegner point defined in Section 4.3 and let mK′′ = [E(K′′) :
Z · zK′′ ]. From Theorem 4.4.1 we obtain

ordp(#X(E/K′′)[p∞]) ≤ 2 · ordp(mK′′).

From the Gross–Zagier formula for zK′′ we have, just as we did for zK′ , that

2·ordp(mK′′) = ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
· L(E

D′′
, 1)

ΩED′′

)
−ordp

⎛⎝∏
�|N−

c�(E/K′′)

⎞⎠.
For our choice of K′′ there are no w | N+ such that p | cw(E/K′′), and so

the product on the right-hand side can be replaced by a product over all w.

Combining the above equality with the preceding inequality and appealing

to (7.3.a) (for K = K′′) we get

ordp(#X(E/K′′)[p∞])

≤ ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
∏

� c�(E/Q)
· L(ED′′

, 1)

ΩED′′
∏

� c�(E
D′′/Q)

)
Appealing to part (ii) or (iii) of Theorem 7.2.1 (for E = ED′′

) then yields

(7.4.e) ordp(#X(E/Q)[p∞]) ≤ ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
∏

� c�(E/Q)

)
.

That is, we have proved the exact conjectured upper bound on

#X(E/Q)[p∞].

7.4.3. The final step: equality. Combining (7.4.d) and (7.4.e) gives

ordp(#X(E/Q)[p∞]) = ordp

(
L′(E, 1)

ΩE · Reg(E/Q)
∏

� c�(E/Q)

)
,

proving Theorem 1.2.1.
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7.4.4. Some remarks on the hypotheses in Theorem 1.2.1. We
make a few comments on how the various hypotheses on Theorem 1.2.1
intervene in its proof and some remarks on possible generalizations.

(i) The requirement that N be square-free is made in [7] and so appears as
a hypothesis of Proposition 5.1.6. However, this condition can likely
be dropped in light of the main results of [32]. The formulas in the
latter are not as explicit as the result in [7] but can be made so just
as the general Gross–Zagier formula is made explicit in [10].

(ii) The requirement that N be square-free is also made in [52] and [54],
but as we have already indicated (see Remark 7.2.3) this can be re-
placed with the requirement that the cuspidal automorphic represen-
tation π = ⊗�≤∞π� associated with E is either a principal series or a
Steinberg representation at each � | N . Further relaxing of this con-
ditions requires a better understanding of certain local triple product
integrals.

(iii) If p = 3 and E has supersingular reduction at p, then we have required
that ap(E) = 0. This is only because the same hypothesis is made in
[54], and so the p-part of the BSD formula in the rank 0 case (needed
for L(ED′′

, 1) in the argument deducing the exact upper bound) is
only known for supersingular p when ap(E) = 0.

(iv) As much as possible, we have worked in the context of the Selmer
groups of a general newform f ∈ S2(Γ0(N)) of weight 2 and trivial
character. The ultimate restriction to the case of an elliptic curve is
made for two reasons: (1) the lack of a precise reference for the upper-
bound on #X(Af/K)[p∞] coming from the Euler system of Heegner
points (the generalization of Theorem 4.4.1), and (2) the lack of a
general result about the p-part of the special value L(fK, 1)/2πiΩ

+
fK

(when L(fK, 1) �= 0) when f is not ordinary at p. We expect that both
of these issues will be addressed in forthcoming work.

(v) The condition that p be a prime of good reduction can likely be relaxed
to at least a prime of multiplicative reduction. The rank 0 special value
formulas are proved, for example, in [45], and the results of [11] and
[32] allow p to be a prime of multiplicative reduction.

(vi) That p is odd is, of course, an essential hypothesis of many of the
results used in the course of our proof.
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