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Abstract

Let p > 2 be a prime. Under mild assumptions, we prove the Iwasawa main conjecture of
Kato, for modular forms with general weight and conductor prime to p. This generalizes an
earlier work of the author on supersingular elliptic curves.

1 Introduction

Let p > 2 be a prime. The history of Iwasawa theory dates back to the 1950’s, when Iwasawa studied
the p-part of class groups of cyclotomic extensions of Q of p-power degree. It turns out that one can
pass to the cyclotomic Z, extension field Q and get a finitely generated torsion module structure
over the so called Iwasawa algebra A := Z,[[I']], where I" is defined to be Gal(Qs/Q). In 1960’s
Kobota and Leopoldt discovered an analytic counterpart of Iwasawa’s A-module namely the p-adic
L-function which packages together the algebraic part of special values of L-functions of Q twisted
by finite order cyclotomic characters. An old philosophy, which is explicitly formulated as the Iwa-
sawa main conjecture in this context, is that such special L-values should give the size of some class
groups with corresponding actions of the Galois group I'. Later in the 1970’s, Barry Mazur made
a key observation that Iwasawa’s idea can be applied to elliptic curves, or more generally, abelian
varieties. This has important application to the Birch and Swinnerton-Dyer conjecture. Later on
the formulation has been vastly generalized to motives, including the case of modular forms, by
Greenberg and other people.

Towards a proof there are in principal two approaches. One is using Euler system. This idea
originated in the work of Kolyvagin in late 1980’s and later on axiomized by Rubin in a handful
of different contexts. The Euler system method is especially useful in giving the upper bound of
the arithmetic objects (namely Selmer groups). With the help of the class number formula, this
is enough to imply the full equality in Iwasawa main conjecture for certain Hecke characters. The
other approach is to use modular forms. Such idea first appeared in a work of Ribet in early 1980’s
(called the Ribet’s lemma). This method is used to deduce the lower bound of Selmer groups and
is employed by Mazur-Wiles and Wiles to prove the Iwasawa main conjecture for totally real fields.
However to study Iwasawa theory for motives of rank larger than one, where one does not have the
class number formula, one needs to apply both the Euler system method and the modular form
method to give the full equality. This is illustrated by the recent work of Kato and Skinner-Urban
in the proof of Iwasawa main conjecture for modular forms ordinary at p. Kato proved the upper
bound for Selmer groups by constructing an Euler system using K-theory of modular curves, while
Skinner-Urban used modular form method on the rank 4 unitary group U(2,2). Now we discuss



some details about Kato and Skinner-Urban’s work, which is closely related to the present paper.
Strict Selmer Groups
Let
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be a normalized cuspidal eigenform for GLy/Q with even weight k& and conductor N. By work of
Shimura, Deligne, Langlands and others, one can associate a two dimensional irreducible Galois
representation pys : Gg — GL2(Opr). Here L is a finite extension of Q, and O, is the integer ring
of it. We choose the L so that it contains all the coefficients of I'o(N) cusp forms. This Galois
representation is determined by requiring that for all primes ¢ { pN,

trp(Froby) =

Moreover T§|g,, is crystalline in the sense of Fontaine with Hodge-Tate weights (0, —1). (We use
the convention that the cyclotomic character has Hodge-Tate weight 1.) In this paper we define the
Iwasawa algebra A = OL[[T]]. Let S be the set of primes dividing pN. We define

B (@0, Ty (-5 2)) = hm 1 05/, Ty (- 55 2))

where @, is running over all intermediate field extensions between Q. and Q. Kato proved that it
is a torsion-free rank one module over A, and defined a zeta element zka.¢o in it. On the arithmetic
side, we define the Selmer group

k—2 . k—2 .
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Here the superscript * means Pontryagin dual. Define also

Selstr,Qu. (f) := lim Selser @, (f)

and
Xstr = Selstr,@w (f)*

Kato formulated the Iwasawa main conjecture as

Conjecture 1.1.
H} 1, (Q%/Q, Ty (~*32))

Azkato

char X, := char( ).

Remark 1.2. In [22] Kato used the A-module HQ(QS,Tf(—g) ® A), which is isomorphic to Xty
here (see [28, Page 12]).

Kato proved the following



Theorem 1.3. We have
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If moreover Im(Gq) contains SLa(Z,), then the above containment is true as ideals of A.

charpgq, (Xstr) 2 charagg, (

In the case when f has CM the theorem depends on the result of Karl Rubin. Under some hy-
pothesis Skinner and Urban [40] proved the other side containment in the Iwasawa main conjecture,
in the case when the form f is good ordinary at p (meaning a, is a p-adic unit). If f is not ordinary
the situation is more complicated. Our goal in this paper is the prove the other side containment
for general modular forms with pt N.

We make the following assumption

(Irred) The residual Galois representation 7T is irreducible over G, .

This assumption is made to ensure that the local Iwasawa cohomology group at p is free over the
Iwasawa algebra, which simplifies the argument. We did not think about if there is any essential
difficulty without this assumption. Our main theorem is the following

Theorem 1.4. Assume 2|k, pt N, (Irred), and that T, is absolutely irreducible. Assume more-
over that the p-component of the automorphic representation my is a principal series representation
with distinct Satake parameters. Then we have

o [f there is an L||N, then

Hcll,IW(Q Tf(_%))
AZKato
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charA[l/p] (Xstr) g charA[l/p] (

k
o [f there is an L||N such that 7y is the Steinberg representation twisted by x & for xur being the

unramified character sending p to (—l)gpgfl. Suppose moreover that the weight k is in the
Fontaine-Laffaille range k < p —1, Then

Hcll,lw(Qv Tf(_%))
AZKaLto

charp (Xgtr) C chary ( ).

Note that for the one side containment above we do not need to assume the image of the residual
Galois representation T' contains SLo (Zy. The assumption on the Satake parameter is conjecturally
automatic. The assumption on the ¢ on the second part is due to using results of Hsieh in [I7] and
can probably be weakened if one has a general weight version of [7]. (It is used to ensure the local
root numbers of f over the auxiliary quadratic field to be +1.) The reason for the Fontaine-Laffille
assumption is two fold: one reason is to use the result of Faltings-Jordan [14] for the freeness of
certain cohomology module over the local Hecke algebra to compare the periods Q‘}an and Q;{Q;
On the other hand we need an integral comparison theorem for p-adic etale and deRham cohomology
for modular curves. Recently Bhargav-Morrow-Scholze [6] proved the general integral comparison
result for cohomology with trivial coefficient sheaf, replacing the Fontaine-Laffaille functor by the
Breuil-Kisin module functor. If general coefficient sheaf is allowed in Bhargav-Morrow-Scholze’s
result, we may remove this assumption on small weight for this part via a careful study of the
corresponding Breuil-Kisin module. A corollary of part two is that if L(f, %) # 0 then the p-part of
the Tamagawa number conjecture is true (see Corollary , for all but finitely many small primes
p (i.e. smaller than k + 1).



Remark 1.5. If k = 2 then the assumptions (Irred), the freeness of the Hecke module and that
T|Q(<p) 15 absolutely irreducible are redundant. Moreover in part two we can alternatively assume
that N is square-free and that there are at least two primes £||N such that the modulo p representation
Tt|c, is ramified. (It seems that in [7] it is enough to assume N there is square-free. In that case
the assumption N is square-free would be redundant).

The proof for the lower bound of Selmer groups uses the relations to L-functions. In the ordinary
case, Skinner-Urban studied the congruences between Eisenstein series and cusp forms on U(2,2),
upon fixing some quadratic imaginary extension C/Q. One important reason why it is possible is
in the ordinary case, the Iwasawa main conjecture can be formulated in Greenberg’s style, making
it convenient to use the lattice construction to produce enough elements in the Selmer groups. In
the non-ordinary case such formulation is not available. In the finite slope case there is Iwasawa
theory for trianguline representations developed by Pottharst (with the expense of inverting p for
everything). However it seems still rather difficult to prove the conjecture directly. For example
one challenging problem is to construct explicit families of finite slope Klingen-Eisenstein series
(the strategy developed from loc.cit does not give an overconvergent family, thus cannot be used
to construct a finite slope projection), and studying p-adic properties of the Fourier expansion.
There are also other difficulties, including constructing families of triangulations around all points
of interest.

The first general result in the non-ordinary case is the +-main conjecture for elliptic curves E/Q,
recently proved by the author [43]. To illustrate the idea, we first briefly discuss Greenberg-Iwasawa
theory, which plays a crucial role in the argument. Taking a quadratic imaginary field X/Q such
that p splits as vgvy. Let ' be the Galois group of Ko /K for Ko being the Zg extension of K.
Then any form ¢ with complex multiplication by K is ordinary at p. Suppose the weight of g is
greater than the weight of f. Then the Iwasawa theory of the Rankin-Selberg product f ® ¢ has
the same form as ordinary forms, since it satisfies the Panchishkin’s condition. This makes the
corresponding [wasawa main conjecture more accessible. Moreover this motive is closely related to
the Iwasawa theory of the original modular form f. We first give the precise formulation of the
main conjecture. In application we suppose g is the Hida family corresponding to characters of 'k
and we identify the Galois representation of g with the induced representation from Gx to Gg of
some character W of I'r. On the arithmetic side we defined

Gr 1 k—2 * 1 k—2 «
Selg’; = ker{H (’QT.f(—T) ® A*(¥)) — HH (’Cvan(—?) ® A" (V)
vip

< H (e, Ty ) © A°(0))

On the analytic side, there is a Greenberg p-adic L-function 5?% € O}'[[I'k]] with interpolation
property given in Proposition Here we write O} for the completion of the maximal unramified
extension of Op. The Greenberg-Iwasawa main conjecture is the following:

Conjecture 1.6. (Greenberg Main Congecture)

Charogr[[r,c]](X;%Zf ®o, OF) = (LS%).



We will call this conjecture (GMC) in this paper. In our case the fact that E?}“C is integral is
explained in the text. Under some hypothesis we proved in [43], [44] that if f has weight two, then
up to powers of p we have

Char@zr[[Flc]](chC};‘ Qoy, Ogr) - (‘C?,IIPC)

After this is proved, in [43] the author used the explicit reciprocity law for Beilinson-Flach element
and Poitou-Tate exact sequence to deduce Conjecture from Conjecture [1.6

To prove the main theorem in this paper for general modular forms of any even weight, the
difficulty is two-fold. First of all, the author only proved Greenberg’s main conjecture when f has
weight two. The obstacle is that if f has higher weight then one needs to compute the Fourier-Jacobi
expansion for vector valued Eisenstein series, which seems formidable. Secondly we do not have an
explicit local theory as in the + case (except in the special case when a, = 0, and for elliptic curves
over Q but a, # 0 by Florian Sprung), while the work [43] used such theory in a crucial way.

Our first result is the following theorem on one containment of Conjecture [I.6which generalizes
the result in [44] to forms f of any even weight k.

Theorem 1.7. Suppose there is at least one rational prime q where the automorphic representation
¢ associated to f is not a principal series representation. Assume moreover that the p-component
of the automorphic representation my is a principal series representation with distinct Satake param-
eters, and that the residual Galois representation py is irreducible over Gy c,). Then up to powers
of p we have
charow 01 (X ©@0, OF) € (LF)-
Moreover if for each ¢|N non-split in K, we have £||N is ramified in K and 7, is the Steinberg
k

representation twisted by x 3 for Xur being the unramified character sending p to (—1)§p§_1. Then
the above containment is true before inverting p.

The last part is by appealing to the result of Hsieh [I7] on the vanishing of anti-cyclotomic
p-invariant of E?];C To prove this theorem, we use the full strength of our joint work with Eischen
[12] on constructing vector-valued Klingen Eisenstein families on U(3,1), from pullbacks of nearly
holomorphic Siegel Eisenstein series on U(3,3). We combine our earlier work in [43], [44] on the
p-adic property for Fourier-Jacobi coefficients with the general theory of Ikeda that the Fourier-
Jacobi coefficient of nearly holomorphic Siegel Fisenstein series can be C*°-approximated by finite
sums of products of Eisenstein series and theta functions on the Jacobi group containing U(2,2).
(In the scalar valued case it is already such a finite sum since the Siegel Eisenstein series showing
up is holomorphic.) We fix one Arichimedean weight and vary the p-adic nebentypus in families.
While the Fourier-Jacobi expansion in the vector-valued case seems quite hard to compute, we can
still use a conceptual argument to factor out a convergent infinite sum of Archimedean integrals
for it and prove the factor is non-zero. After this we can apply the techniques we developed in our
previous work to prove that certain Fourier-Jacobi coefficient is co-prime to the p-adic L-function
we study. Along the way we determine the constant coming from the local pullback integrals for
doubling methods at Archimedean places, by comparing our construction with Hida’s construction
using Rankin-Selberg method. This is crucial for the proof. (It seems such constants are hard to
compute directly. But logically only with this in hand we can know that the family constructed in
[12] is not zero in the vector-valued case!) Along the way we also remove the square-free conductor
assumption for f in our previous works. We believe that besides proving the main theorem of this
paper, the above theorem itself should have independent interest.



To prove the main theorem, we first prove the result after inverting p. Our idea is to use the
analytic Iwasawa theory of Pottharst and Iwasawa theory for (p,T')-modules (upgraded to a two
variable setting), in the context of Nekovar’s Selmer complexes [35]. It turns out that Pottharst’s
triangline-ordinary theory works in similar way as the classical ordinary case when working with the
more flexible analytic Iwasawa theory. In the two-variable setting there are subtleties to take care
of — for example there is a finite set of height one primes where the regulator map vanishes. Also
we need to compare differently constructed analytic p-adic L-functions — although they agree on all
arithmetic points, however these do not uniquely determine the analytic functions themselves.

After this, we only need to study powers of p. After carefully studying the control theorem, we
only need to compute the cardinality (which is < co) of the Selmer group for Ty(—%52) twisted
by some finite order cyclotomic character. We use a different idea and work directly with Kato’s
zeta element. We avoid the search for nice integral local theory analogous to the £ theory. Instead
we take one “generic” finite order cyclotomic character twist of T, and consider deformations of it
along the one variable family which corresponds to the Z,-extension of K that is totally ramified at
¥p and unramified at vg. In this family we do have a nice integral local theory at vg. The key fact is
a uniform boundedness result for Bloch-Kato’s logarithm map for families of unramified twists. We
prove this by a careful study of Fontaine’s rings Bgr and Agis. Fortunately this theory is enough
for our purposes.

We managed to make our proof to work as general as possible. In fact most part of the argument
can be applied to the case when f has ramification at p (most interestingly when 7y is supercuspidal
at p). However the essential difficulty is to prove the reciprocity law for Beilinson-Flach element at
the arithmetic points corresponding to L(f, x, g) for finite order characters x of I'. These correspond
to Rankin-Selberg products of f with weight one forms g, in which geometry does not give the
required formula directly. In the crystalline case, Kings-Loeffler-Zerbes achieved this by constructing
a big regulator map interpolating the Bloch-Kato exp* map and log map, and do some analytic
continuation. In the non-crystalline case it seems very hard to work out such a big regulator map
and the interpolation formula explicitly. One also needs to understand certain p-adic L-function
for such f, which has infinite slope. It seems there are some ongoing work on this using explicit
description of p-adic local Langlands correspondence, follows an early idea of M.Emerton. We
hope experts in such areas can shed some light on such problems. (And this paper provides more
motivation for such investigations).

The paper is organized as follows: in Section 2 we recall and develop some p-adic local theory
needed for the argument. One key result is to study the Iwasawa theory for the Z,-extension of K
which is unramified in vy and totally ramified in vy. In Section 3 we prove the Greenberg type main
conjecture for general weight modular forms f, by studying the local integral at the Archimedean
place. In Section 4 we give the proof of the main theorem of this paper.

Acknowledgement We would like to thank David Loeffler, Antonio Lei, Ruochuan Liu, Jonathan
Pottharst, Christopher Skinner, Richard Taylor, Michael Woodbury and Sarah Zerbes for useful
communications. We would also like to thank Manjul Bhargava for his constant interest and en-
couragement on part of this work.

Notations: In this paper we often write T = Tf(—%) for the Galois representation T associated
to f. We write Q4 as the cyclotomic Zp-extension of Q. Let K be a quadratic imaginary extension
of Q where p splits as vgvg. Let K be the Zg extension of K. Let Q'  be the unramified Z,-
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extension of Qp. Let I' = I'g = Gal(Qu/Q), I'c = Gal(K/K) and 'y = Gal(Q},/Qp). Let L/Q,
be a finite extension as before with integer ring Or,. Define A = Ag = O[[I']] and Ax = O[[T'k]]-
Let K (K") be the Z,-extension of K unramified outside vy (unramified outside g, respectively).
Define T',, = Gal(K" /K) and 'y, = Gal(K"/K). We write € for the cyclotomic character.

2 (¢,I')-modules and Iwasawa Theory

To save notations we only present the case when the intersection of Ky and the narrow Hilbert
class field is K. The general case works in the same way (see [43]).
2.1 Iwasawa Cohomology Groups

Lemma 2.1. We have H*(Q,, T/pT) ~ F2.

Proof. Tt follows from the local Euler characteristic formula that

ﬁHO(@Pv T/pT) : ﬁHQ(Q;m T/pT) _ p—2
tHY(Qp, T/pT) ‘

By (Irred) and Tate local duality we have HY(Q,, T/pT) = H*(Qyp, T/pT) = 0. So tH*(Q,, T/pT) =
p?. Thus HY(Q,, T/pT) ~ ]F;. O

Lemma 2.2. We have H'(Q,,T) ~ Z2.

Proof. Using the local Euler characteristic formula we have
H'(Qy, T/p"T) = p*".

From the cohomology long exact sequence of

0 LA T/p"T — 0

we see that H'(Q,, T') is a torsion-free Z,-modules and that H'(Q,,T)/p"H'(Q,,T) ~ H (Q,, T/p"T).
Since H?(Q,,T) = 0 by (Irred) and Tate local duality. These altogether gives the lemma. O

We define the classical Iwasawa cohomology H 31 1w (@p,00, T') to be the inverse limit with respect
to the co-restriction map.
l.&n Hl (QPJL? T) .
@ngp,nCQp,oo

Lemma 2.3. We have
H! (Qpoo, T) ~ A

cl,Iw

and
cll,Iw( poos 1) 22 Zyp[[T'1]].

p,007



Proof. From (Irred) we know H(K,T[p]) = 0 for any K Abelian over Q,. As above for any
0 # f € A it follows from the cohomological long exact sequence of

0 — TN ——— TN —— TRA/fA —— 0

and (Irred) that Hcl1 IW(QP o) T) is a torsion-free A-module, and that Hgl 1w (@p,o0: T)/ fHy, 1 (Qp oo, T) =~

HY(Qp T ® A/ fA). Hy, 11w (Qpos, T)/ (T, p) H, cl, 11w (Qpyoo, T) = Hl(Qp,T/pT). By Nakayama’s
lemma H} (Qppo,T) is a A-module generated by two elements and is thus a quotient of A @ A.

cl,Iw
Taking wy, as above, we see that H'(Q,,,T) is a A,-module generated by two elements. As

before using Euler local characteristic formula we can show that the Zyrank of HY(Qpn,T) is
the same as that of A, ®© A,. So the two generators of H IVV((@Z,7C><>,T) gives an isomorphism
HYQpn,T) ~ Ay ® A,,. Take inverse limit we get HCI,IW(QILOW T) ~ A® A. For the second state-

ment, again we have H

1w (Qplae: T) is a Zy[[I']]-module generated by two elements. Similarly we

p7oo’
can prove that H! (Qp,m,n, T) is a Ay, p-module generated by two elements. The rest of the argument

is the same as for the first statement. O

2.2 (¢,I')-modules

We first recall some standard notions of p-adic Hodge theory. Let C, be the p-adic completion of
Qp and Oc, be the elements whose p-adic valuation is less than or equal to 1. Fix once for all
p"-th root of unity (,» with C£n+1 = (pn. Let BT = r&lnzo Oc,/p with respect to the p-th power

map as the transition map. We define a valuation v on E* as follows. Suppose & = (xy,), the
define v(z) = lim, p"v(zy,). Here the valuation v is normalized so that v(p) = 1 and for n large
we take a lifting of z,, in O¢ and use its valuation to define v(z,,). This valuation on E* is easily
seen to be well defined. Define E as the fraction field of E*. Let € := ({pn)n>0 € E* (Z being the
image of z). Let AT := W(E*) and A :== W(E ) be the ring of Witt vectors of Et and E respec-
tively. Write [z] for the Techimuller lift of z € Et or E. There is a surjective ring homomorphism
f: AT Oc, with 0([Z,]) := limy, 0 28" Define Bi; = hm o A*[1/p]/(ker(A)[1/p])". Define

t =log(e]) = >, (_17):1 ' ([e] = 1)® € Blz. Then BJ; is a discrete valuation ring with maximal

ideal (t) and residue field C,.

For 0 < r < s < oo, 7,5 € Q let A"l be the p-adic completion of A* [[E T [5;1}5]_ Let
Blrsl = A[“S][l/p]. Write B = Nr>s>00B Blrsl and BT = U, BT So there is a nature injec-

rig rig
o Bl
tion B' » > p ' — BdR and injection

~rp—1 p—1

30 L B S By (1)

S 2 1 o DN B

for each n > 0. For any finite extension K/Q, there is an Robba ring B;rigK - Bjig of it. If K is
unramified over @, then
i _ 1,
Brig,K - UT>OBrig,K
for
BL; ={f(T ZanT”|an € K, f(T) convergent in p~*/" < |T}|, < 1}
neZ



with T' = [¢] — 1. In this case we write

B;'i’gyK ={f(T) = ZanT”\an € K, f(T) convergent in 0 < |T|, < 1}.
nezZ
If K is ramified over Q, then the construction of Bjig i requires the theory of norm fields. There is

also a 1 operator B:igj{ — Bjigj( defined as follows: we have BL&K = @f:_ll(T + 1)"<p(Bjig7K). For
any
p—1

o= Y (1+T)p(a)

i=1
define ¢ (z) = xg. The ¢, defined in satisfies
, n—1 —1
(Bl ") = Kallt]
with K, := K((pn).
Definition 2.4. A (p,T'x)-module D of rank d over B;rigK if
o D is a finite free BjigK—module of rank d;
o D is equipped with a p-semilinear map ¢ : D — D such that
.t :
¢*(D) : Bl k ®%B$gx D—D:a®x— ap(x)
s an isomorphism;

o D is equipped with a continuous semilinear action of U'xc which commutes with .

Bloch-Kato exponential maps
Recall the fundamental exact sequence in p-adic Hodge theory

0—Q,— B ® Bin — Bar — 0. (2)

cris

Tensoring with the Galois representation V' and taking the K-Galois cohomology long exact sequence
we define the Bloch-Kato’s exponential map to be the coboundary map

Dgr(V)
DI (V) + D5 (V)

cris

— HY(K,V).

In general Nakamura defined the exp and exp* maps for deRham (¢, T')-modules.
For any n > n(D) we define

Diy(D) = Ky[[t]] ®

and
Dt (D) := K, ((t)) ®, phra D

rig, K
We also define
Dgr(D) = Dair(D)"*=", D (D) = D[1/t]"<=".

crys



The filtration on DL (D) is given by
Fil' DI (D) = DI (D) nt'DL(D),i € Z.

We define a (¢,I')-module D to be crystalline (deRham) if the rank D is equal to the Z,-rank
of Derys (Dgr). If V' is a representation over some finite extension L of Q,, we make all these
definitions by regarding it as a QQ, representation.

2.3 A, and Co-admissible modules

We summarize some facts and definitions in [37] for later use.

Definition 2.5. ([%4, Definition 3.1]) The analytic Iwasawa algebra Ao := lim A[m;l/p][l/p]. This
is the ring of rigid analytic functions on the open unit disc and is a Bezout domain. The analytic
Twasawa cohomology

H{ (K, D) :=lim H'(K, D&k A},)

as a Noo-module.

Definition 2.6. A co-admissible Aoo-module M is the module of global sections of coherent analytic
sheaves on W. That means, there is an inverse system (My,), of finitely generated Ay[1/p]-modules
such that the map Mp1 — M, induces isomorphisms Mpy1 @, [1/p] Ay [1/p] =~ M,,. Then

M = lim M,.
o

The following proposition is proved by Pottharst [37].

Proposition 2.7. (1) The torsion submodule Mios of a admissible Aoo-module M is also co-
admissible, and M /Mo is a finitely generated free Aoo-module.

(2) The torsion co-adimissible Aso-modules are those isomorphic to [[,c; Accha® for some collec-
tions {patacr of closed points of U,SpecA,[1/p] (no are positive integers) such that for each
n there are only finitely many o with p,, € SpecA[1/p].

Definition 2.8. (Pottharst) Let M as above be torsion. We define the divisor for Mas the formal
sum Yy, NoPo. We define the characteristic ideal charp (M) to be the principal ideal generated by
some fyr € A such that the divisor of fur is the same as the divisor for M. (Such fy exists by a
well known result of Lazard).

Then as in [37, Page 7|
Hl (K,V)=H}

cl,Iw

(K, V) ®p Ao.

2.4 Unramified Iwasawa Theory

In this subsection we prove some key facts about uniform boundedness of Bloch-Kato logarithm map
along unramified field extensions. Later on we are going to study the Z,-extension of X which is
unramified at vy but totally ramified at vy, and the result proved here will be of crucial importance.
We write in this subsection r the highest Hodge-Tate weight of T. Recall T = [¢] — 1. We also

define y,(z) = 7. Let ¢’ = ¢~ 1(q) for ¢ = > _acF, €]t

10



Lemma 2.9. We have 0(¢') =0, but 0(¢'/T) # 0.

Proof. It is clear that 8(¢') = 0. Take w = (@°, @w!,---) € E* with @” = —p and ¢ := [w]+p. Then
ker{¢) : W(R) — Oc} is the principal ideal generated by ¢ ([15, Proposition 5.12]). If 6(¢'/T) = 0
then ¢ = &2\ for some A € W(E™). So @ = @w?\. But v(¢) = 1 and v(w?) = 2, a contradiction. [J

Definition 2.10.
=0(q'/T).
Definition 2.11. Let A°. be the divided power envelop of W(E'+) with respect to ker6, that is,

cris

by adding all elements o™ /m! for all a € kerf. Defining the ring Acns = hm Agrls/p"Agns and
B(—:;s = Acris[l/p}'

Now let Fil" Acris = Acris NFil" Bqr and Filj Acis = {7 € Fil" Acyis|px € p"A}. Then we have the
following

Lemma 2.12. For every x € Fil" Aeyis, p®-alx € Fﬂ;AcriS for a the largest integer such that (p—1)a <
r. Moreover Fil, Auis is the associated sub W(E+)—m0dule of Auis generated by ¢y, (p~1tP~1) for
j+@—-1)b>r.

This is just [I5, Proposition 6.24].

Let T' be a two dimensional Galois representation of Gg, over Op with V := T ®z, Q) being
deRham. Let vy, vy be a basis of T. Suppose the Hodge-Tate weight of V' is (r, s) with » > 0, s <0.
Let wy be a generator of the one dimensional space FilODdR(V) over L. Then t"wy € B;R RT.
There is an element z € W(E*)[ | ® T such that

t'wy —z € FiI''Byr @ T. (3)

Thus there is an n with p"z € W(ET) @ T.

Write U' = {2 € E|v(x—1) > 1}. Let m, be such that p™ { p® a'b'pb/aj forall j+(p—1)b > 7.
We define U} to be the p-adic closure of the Z,-submodule of F 11_7"Bf]’flS generated by elements of
the form #7% where a; are elements in log(Ul)7 i < r (See [15, 6.1.3] for details about the log
map). Take m > r + (r — 1)m, + n we claim that Im(U}') ®z, T contains p™awy for all a € W (Fp),
where Im(U}!) is the image of log(U}') in %.

dR
We use induction. Take I;r—l € logU! such that

O(by_1)-0(0)" - t7" = p' T awy (mod Fil'™"Byg @ T).

This is possible because §(log(U)) D pOc,. Suppose we found by_1,--- b € log(U" and é,_1,--- , & €
log(U1) such that

i

—i+my(r—i—1)+n [;7"_ v r— B v 4 s T i
prome =i Ddng o = tl () Ly A+ (D))o ! () ly...4 4 (t))UQ(modFﬂ Bar®@T).
Then by (3)

, , by O by U Grq D G o

r(, r—itmy(r—i—1)+n _Yr—1 Y1 . MYBAY Gt LAY .. Y

t"(p a-wy — ( ; (t) + +t(t))v1 ( (t) + +t(t)))v2

€ (FiI" "Aais + FiI'' Bf) ® T
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By Lemma we know the image under 6 of the coefficient of v; in

(ti(pr—i—o—mr(r—i—l)—o—n . ( )r—l 4ot

a-wy — (75

is in p~""Oc,, and that the image under ¢ of the coefficient of vo in

, , , Cr v G U,
(tz(pr—z-i-mr(r—z—l)-i-na Wy — (7‘71 . (g)r—l 4ot ?I(E)z))UZ)
is in p~""Oc,. So there is a choice of l;r,l, e ,Bi,l and ¢._1,--,¢;_1 such that
: : b1 0 bi1, ¥, Gy D Gii1 Dy
pr71+1+mr(rfz)+na'w‘/ _ ( r—1 (7)7"71 4t i 1(7)171)’01 _ ( r—1 (7)1"71 4t i 1(7)z71)v2
t t t 't t t
€Fil'" " Bgr ® T.
(The by_1,--- ,bjand &_y,--- ,& are the previous @_1, -+, biand é._1, - - - , & multiplied by p'Tmr )
Continuing this process we can find b,_1, -+ ;b9 and ¢,_1,--- ,¢g such that
~ b1, ., bo Cro1 T, Zo
prtmrr=Eng g — ( Tt (;)T 1+‘--+7)v1 — (= (;)r 1+~~+7)vz €EBL®T.

This proves the claim.
Another observation is that U! N ker(B;ii:Sl — %) C p~"™Zy,. This can be seen by noting
dR
that for any element C' in this intersection, t"C' € Fil"Aes. So 0(C) € p~™Oc,. The following
proposition follows immediately.

Proposition 2.13. We consider the co-boundary map

(Bar ® V)"er
(BdR & V)I@p + (Bcris & V)IQP’@Zl

exp : —>H1(I@p,V).

Then there is an m > 0 such that for any a € W(Fy,) we have exp(a-w) € p~"H'(Ig,,T).

Proof. To see this we just use the diagram

0 ker UleBfy —— U'+Bjr —— 0
0 Qp Bi' @By —— B —— 0

O

We refer to Section for some discussion of Yager modules and periods for unramfied repre-
sentations, and the definitions of the d and p(d).

Corollary 2.14. Let p be an unramified p-adic character of Gq, such that p(Frob,) = 1+m € Oc,
with val,(m) > 0. Then the map

B
exp s (o @ V(p)“r — H'(Gg,, V(p))
dR

12



can be constructed as

exp(liran Z dyp(o) - wy) = qugn Z p(o)exp(d; - wy).
oelUy, ocUp

The right hand side is well defined thanks to Proposition [2.13

To see this, we consider the natural unramified rank one Galois representation of U = Gal(Q)',,/Q)
over the Iwasawa algebra Z,[[U]]. We consider the map from Z,[[U]] to p mapping u to p(u). Ten-
soring this map with and taking the long exact sequence of Galois cohomology, we get the
required formula.

Corollary 2.15. For some integer m we consider the inverse limit of the maps for Q, C F,, C Q,,
exp Op, -wy — p "H(F,,T)

and get a map
exp : QiLnOFn) cwp = p "HY(Qp, T ® Zy[[U]]).

n

Then for some choice of such an integer m we have p™ exp(d-wy) generates a Zy,|[U]]-direct summand

of
HYQp, T @ Z,[[U]]) = Z,[[U]] ® Z[[U]].

Proof. By Corollary the specialization of exp(dwy) to any ¢ € SpecZy|[U]] ®z, Qp with u
Dar(V(p))

DIR(V(P)))'
The corollary follows by observing that Z,[[U]] ®z, Q, is a Bezout domain. O

mapping to 1+m with val,(m) > 0 is non-zero (since the exp map for V'(p) is injective on

3 Iwasawa-Greenberg Main Conjecture

The Idea

Our goal in this section is to prove Theorem [I.7] The idea in [43] in the proof for weight two
case is roughly summarized as follows. We first construct families of Klingen Eisenstein series on
the unitary group U(3,1) using [12]. The Hida theory developed in [43, Section 3| enables us to
construct a family of cusp forms, which is congruent to the Klingen Eisenstein family modulo E?ﬁc
Then we proved there is a functional (constructed via Fourier-Jacobi expansion map) acting on the
space of families of semi-ordinary forms on U(3,1), which maps the Klingen Eisenstein family to
an element which is a unit up in the coefficient ring O}"[[I'x]], up to multiplying by an element
in @; (This is the hard part of the whole argument). With this in hand, this functional and
the cuspidal family we mentioned above gives a map from the cuspidal Hecke algebra to O""[[I'x]]
which, modulo E?}”C gives the Hecke eigenvalues acting on the Klingen Fisenstein family. Passing
to the Galois Side; such congruence enables us to construct enough elements in the Selmer groups
from the “lattice construction”, proving the lower bound of the Selmer group.

Now we return to the situation in this paper (i.e. general weight), all the ingredients are available,
except that we need to construct the corresponding functional using Fourier-Jacobi expansion map,
so that its value on the Klingen Eisenstein family is an element in O} [[I'x]]*, up to multiplying
by a non-zero constant. Recall that in [43], since the Klingen Eisenstein series is realized using
pullback formula under

U(3,1) x U(2) — U(3,3)

13



for the Siegel Eisenstein series Egicg on U(3,3), we computed that the 1-st Fourier-Jacobi coefficient
FJ1Eseg = E - © where E is a Siegel Eisenstein series on U(2,2) and © is a theta function on
NU(2,2). We constructed a theta function 6; on NU(2) and defined a functional lp, by pairing
with 6 along N, from forms on D(Q)\D(A) to forms on U(2). We also constructed auxiliary theta
functions h and 6 on U(2) and deformed them in Hida families h and . We used the doubling
method for h under U(2) x U(2) — U(2,2) to see that (lp, FJ1(E), h) is essentially the triple product
integral [ h(g)0"%(g)f(g)dg. Here the superscript low means the level group for @ at p is lower
triangular. We also construct families of forms h and 6 in the dual space of h and 6, respectively.
The product

/ h(9)6° (9) £ (9)dg / R(9)8° (9)F(9)dg

can be evaluated using Ichino’s triple product formula. In [43] we have seen that both [ h(g)0(g)f(g)dg
and [ h(g)0(g)f(g)dg are interpolated by elements in O¥ [[I'c]], and the product is in (O¥[[Tk]])*
up to multiplying by an element in @; (a number fixed throughout the whole family).

In this paper we use the construction in [I2] of the Klingen Eisenstein series, using the pullback
formula for

U(3,1) x U(0,2) — U(3,3)
from the nearly holomorphic Siegel Eisenstein series.

Proposition 3.1. Suppose the unitary automorphic representation m = wy generated by the weight
k form f is such that mp is an unramified principal series representation w(x1,X2) with distinct
Satake parameters. Let T be the dual representation of w. Let ¥ be a finite set of primes containing
all the bad primes

(i) There is an element L’J%,C € Ak, 0y ®z, Qp such that for any character s of U, which is the
avatar of a Hecke character of conductor p, infinite type (%’ +mg, —%¢ —mg) with kg an even
integer which is at least 6, mgy > %, we have

LE(7~T,§¢, /@L—l)Q4m¢+2H¢ o 2 L
H(Lix) = Q4mi+2ﬁ¢p p™9(02) [T0G 650 )
) =1

Cib 18 a constant coming from an Archimedean integral.

(it) There is a set of formal g-ezpansions Eg ¢, := {35 afg] (B)qﬂ}([g]ﬁt) for s afg] (B € Ak, ovr®z,
Rigl,o0 Where Rig o 15 some ring to be defined later, ([g],t) are p-adic cusp labels, such that
for a Zariski dense set of arithmetic points ¢ € Speck o, , ¢(Ey¢,) is the Fourier-Jacobi ex-
pansion of the highest weight vector of the holomorphic Klingen FEisenstein series constructed
by pullback formula which is an eigenvector for U with non-zero eigenvalue. The weight for
d(Efe,) is (mg — %,m(ﬁ + %,0;@,).

(iii) The a’fg] (0)’s are divisible by ,C]%,C’&O.E? where L%, is the p-adic L-function of a Dirichlet

character as in [12].

We also refer to [12] for the convention of weights of automorphic forms on U(2) and U(3,1).
This is just a translation of the main theorem of [I2] to the situation here. We can recover the full
p-adic L-function Ly x by putting back the Euler factors at primes in 3. We can actually make the
constant c;5 precise.
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Lemma 3.2. The constant c;5 above is given by

F(Kl(b 4 m¢ _ g)r(ﬁl(ﬁ 4 m¢ 4 g _ 1)2—3/64,—4md)+17r1—2l<,¢—2m¢,Z'k—fﬁqb—qu‘)—l'
Proof. 1t is not easy to compute the c;) directly. We prove the lemma by a comparison of the above
p-adic L-function and Hida’s Rankin-Selberg p-adic L-function. We pick an auxiliary Hida family
of ordinary forms f’ and compare

)
L-function, which interpolates the Petersson inner product of specializations of g, (see [1§]).

The Egigg is the Rankin-Selberg p-adic L-function constructed by Hida in [16] interpolating

algebraic part of the critical values of Rankin-Selberg L-functions for specializations of f’ and
g, where the specializations of g has higher weight.

e The product EHidg-E%atzh;@ where LE8h is the class number hy of K times the Katz p-adic

e The p-adic L-function L¢ x constructed using doubling method as above.

We first look at the arithmetic points where the Siegel Eisenstein series are of scalar weight. The
computations are essentially done in [45] (although the ramifications in loc.cit is slightly different,
however those assumptions are put for constructing the family of Klingen Eisenstein series. The
computations in the doubling method construction of the p-adic L-function carries out in the same
way in the situation here). We see that the above two items have the same value at these points.
As these arithmetic points are Zariski dense, the two should be equal identically. Then we look at
the arithmetic points considered in the above proposition. Comparing the interpolation formulas
here and in [I6, Theorem I, we get the formulas for ¢, (note that the critical L-value is not zero
since it is away from center). O

Now we still write E?gg for the Rankin-Selberg Hida p-adic L-function interpolating critical
values of the Rankin-Selberg L-function for f and specializations of g whose weight is higher than
f. Since the higher weight form g is ordinary, Hida’s construction works in the same way even
though f is not ordinary. We have the following

Corollary 3.3.

LYSE - L he = L

The corollary follows from above lemma and the interpolation formulas on both hand sides.
From now on we write .C](c;r for the L x constructed above, since it corresponds to the Greenberg’s
main conjecture. We prove the following

Lemma 3.4. The Ef,C is in OF[[Tk]].

Proof. From the construction the denominator of ﬁGr can only be powers of p times the product
of the Euler factors of a finite number of primes of £]C5r But by the argument in [43] Proposition
8.3] we know the denominator can at most be powers of U if we take Z,[[U]] as the coefficient ring
of g. Thus the denominator must be a unit. O

Now let us return to the proof of Theorem 1.7 The main difficulty here is that the explicit local
Fourier-Jacobi computation at Archimedean place is very hard to study if the weight is not scalar.
In fact since Egieg is only nearly holomorphic instead of holomorphic, from the general theory in [20]
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the Fourier-Jacobi coeflicients of it is not necessarily a finite sum of products of Siegel Eisenstein
series and theta functions, but can be infinitely approximated by them in C*°(D(Q)\D(A)). Our
idea is not to compute such local Fourier-Jacobi integrals at co. Instead we fix the weight (k, kg, m¢)
(notation as before) and varying its nebentypus at p. Such arithmetic points are Zariski dense in
SpecOpr[[T'x]]. We show that there is a number C, depending only on the Archimedean data (and
is thus the same number for all arithmetic points), which can be proved to be non-zero, and an

element £ € OF[[Tx]]* - Q, such that at each of such arithmetic point we have

{lo, (FJs(o(E))), ho) - /’3¢(9)9}£’W(g)f(g)d9 = Cx - ¢(L).

Families of Theta Lifting

We pick up auxiliary Hecke characters xg, Xaux and xp = Xp “Xaux of K*\AZ, similar as in [44]
Section 8.2, except that we require the yaux to have infinite type (—%, %) instead of (0,0). We
refer to [1] for backgrounds of Fock models and Schrodinger models at Archimedean places. We
construct families h of CM forms on U(2) of weight (k—gQ, —k—gz) and varying p-part of nebentypus,

and try to evaluate their Petersson inner products using Rallis inner product formula as in [44] 8.3].
The seesaw diagram is

U(1,1)(wy2) U(2)(wx) x U(2)(wa)

U (wrz) x UM)(wyr2)  U2)(wx2)

To do so we refer to [I2], Section 4.4.4] for the construction of a differential operator D{ (where d =
2mg here) on the space of modular forms on U(2,2) of weight 1 to the space of nearly holomorphic
(star, Kstar, )®(1Kdet)-valued forms, and write Projlt:—208(Ewk-20©det) (here we use the standard
notations as in [I2] for algebraic representation L;_s o) of GLg of highest weight (k—2,0), and stgr,
for the standard representation of GLg) for the projection corresponding to the summand Lj_ o)X
(L(k—2,0) ® det) as a subrepresentation of (stqr, Mstar,) ® (1Xdet). Let ¢J be the Archimedean
Schwartz function defined in [44] Section 8.3, case 1| and ¢og p—2 := Projl 2.0 —2,0@det) g0
The ¢o —2 s easily seen to be non-zero, by for example checking the g-expansions. It corresponds
to polynomials in the Fock models. We first construct a theta function © on U(2,2) as in [44, Section
8.3, case 0 - case 5| by replacing the Archimedean theta kernel ¢% there by ®oo k—2, and keeping
the theta kernel at all finite places. This corresponds to the dual reductive pair (U(2,2) x U(1)).
Pullback under
U(2) x U(2) — U(2,2)

we get theta function on U(2) (for the dual reductive pair (U(2),U(1)). (For more detailed back-

grounds we refer to 44, Section 4.8.1].) We get families h, 8, h and 8 of weight (k—z22), —k—f),

(0,0), (%, %), (0,0) respectively (note that weight 0 forms on definite unitary corresponds to
weight 2 forms on GLg under the Jacquet-Langlands correspondence) . Moreover for ¢’s varying
in the set of arithmetic points, the number (hy, fz¢>pt¢ is interpolated by c - £}, where co f is
a nonzero constant which depends only on k and L is a p-adic L-function of the CM character
XhX), - (That ¢k is non-zero can be see as follows. The Petersson inner product can alternative
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be evaluated using Rallis inner product formula and the following diagram as well

U(2,2) U(1) x UQ1)

U2) xU(2) UQ)
Thus we are in the situation of doubling method construction of the p-adic L-function for h for
U(2) x U(2) — U(2,2).

This situation is slightly different from our previous discussion on double method, since we are start-
ing from a weight one Siegel Eisenstein series on U(2,2) while in [44] we start with weight x > 6
Siegel Eisenstein series. However it is easy to see that the pullback integral at the Archimedean
place is non-zero, since the Siegel Eisenstein section appearing here is a non-zero generator of the
one-dimengional subspace of the induced representation for the Siegel Eisenstein series, with the
given action of U(2)(R) x U(2)(R) (i.e. weight (%52, —£52)).

Interpolating Inner Products

We take a basis {v1,va, -+, v} of V(%ﬁ%) and {vy, vy, -, v} of V(\%

If

k—2\"
-53)

27 2

fe A(U(2),‘/(k;2 _k—Q))

(the space of V( k=2 k-2 )—Valued automorphic forms on the definite unitary group),
2 2

heAUER),Vie e

(5= —%

Writing f = fiv1 + -+ + frve and h = hqvy + - - + hyvy. Then define (f, h) := E§:1<fia hi).
We first develop a vector valued generalization in [44, Section 7.3| of pairing of a family of forms
f of weight Vikzz k-2 (but with nebentypus at p varying) on U(2) to a Hida family of eigenforms
2 2

g of weight V(Vk;2 o2y We define V., ,_, -valued measure dug as in loc.cit and use the above
2 2 2 2

pairing to define
/ fdpg
[U(2)]

as an element in A, such that for each arithmetic points ¢,
qﬁ(/ fdug) = p' - (F5,85").
[U(2)]

Tkeda Theory
Now we put ourselves in the context of [20]. We are in the m =1 and n = 2 of [2(, Section 2, case
2] (see the definitions of X, Y, Z,V there). Let ¢ be an additive character of A. Define

x.,, , T
pnin= [ o= Doaltr Dzt 8
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for ¢1, 2 € S(X(A)). Then ¢y, ¢, € Sy(V(A)) and functions of this form generate a dense subspace
of Sy (Vo(A)). For g € Q, from |20, Proposition 1.3] and its proof we can find a series of functions
©ioo € Sp(Vao), each are finite sums of functions of the form defined as , such that

> plei)FIg(E)
=1

is convergent to FJg(E) in C*(D(Q)\D(A)). We write pico = D 711 Py s o0bijoo- €6 Paij =
Daijoo [Lycoo Paw and G245 = D200 [[ycoo 2,0 An easy analysis sees it makes sense for the
k-component ¢, (which is a Schwartz function) of the Archimedean Schwartz function ¢, such
that the theta series of ¢oo  ® [, oo v is the k-component of the theta series of ¢oo @ [], 550 @o-

We deduce from [20, Proposition 1.3] (and its proof) that p(we, . s )FJ(E) can be written
as finite sums of expressions as

@¢47M®HU<OO o (nh)E(R(fso, $2,00) H f

<0

for some Siegel section [], . f, and Schwartz functions [], . ¢». But

E(R(foo, P8 joc)0200) - [ ] f2) = (064 0,600 ) FI5(E), Ogy))

<00

where @1/,00 is a Schwartz function such that

<¢X,ooa ¢4,oo> =1

Now the computations in [44] implies for each v < oo

FJ/B v Z fjv ¢.7v

Jv=1

Then from the computation in [20, Page 628] on

(FJ5(E), O4)

and choosing the test Schwartz function ¢ properly, we know that implies that

p(@d)él oo:¢2 [e'e] FJﬂ H Z 80(254700,(252,00).]0007 CZ)X,OO) : H fj'tﬂ _) : @¢4,00'HU<00 d)jv °
v

v ]1)

By the doubling method for h under U(2) x U(2) — U(2,2) of the Siegel Eisenstein series

E(R(p(£4 09,00 ) Jo0r Bio0) - | [ Fies =)
above (see[d4], Proposition 6.1| for details), we know there is a constant Cj j such that
(U0, (FI5(E))0) = Cigo [ ()05 (9) 1)y = Crson [ hla)BE™ ()f(9)ds
[U(2)] [U(2)]
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Here as in [44] the superscript “low” means the level group for 9§OW at p is lower triangular. That
the “0” part appearing is the eigen-component 03 of trivial weight comes from considering the
central character. Since Y 72, (37 E(R(f, $2,,j:9)O¢,, ;(ng)) is C> convergent to FJg(E) in
C>*(D(Q)\D(A)) (regarded as series with index ) we see that Y (3, Cijoo) is convergent as a
series of ¢ and we write Cy, for the sum.

We can manage to make some choice of ¢1 and ¢1 = @10 X HKOO ®1,0, and define the
functional lg, as in [44] Sections 4.9, 8.5, such that 6; = 6y, is such that ly, € Hom(—,Oy) and
that the (%, —%)—component of lg, (FJ5(E)) is non-zero for some 3 € Q* NZ, . If not then the

(%, —k—f)—component of Exiing is a constant function on X3 1. This contradicts the description of

the boundary restriction of Exjing, namely the (%, _k;z
non-zero at other cusps.
Thus there must be a 3 # 0 such that Proj r-z _H)(FJB/ =0). Let g’ = p"g" for §" € L)
2 7 2

and n € Z. Let y be an element in X which is very close to (p,1) in the p-adic topology of IC,.
Then diag(yy,y,y, 1)" € U(3,1)(Q). Set 8 = f'(yy)~" € Z; N Q then

)-component is zero at some cusp while

projii=z _ iy (FJsp(diag(yy, y, y, 1)p) E)

is not the zero function. So there must be a choice of §; and some weight (%, —k—f) form A such
that the Cy above is non-zero. Note that the Cy, only depends on our Archimedean datum. The
reason of making sure that g € Z; is that only for those 8 we did the Fourier-Jacobi coefficient
computation at p for the Klingen Eisenstein series in [44].

As in [43] we consider triple product expression

/ hfdug,.
(recall fl, f , 05 are in the dual automorphic representation space for h, f and 83, respectively. This
expression is interpolated by an element in Op[[['k]]. As in [44], Sections 8.4, 8.5] we appeal to
Ichino’s formula to evaluate the product of the two triple product integrals above. This product
turns out to be some constant C' € @}f times a product of several p-adic L-functions (see [44], between
Definition 8.15 to Lemma 8.16]), which are units in O¥[[['x]]. Note that the representation L*~2
has dimension k£ — 1, and the local triple product at the Archimedean place is k% -(k—1)=1hby

Peter-Weyl Theorem. By our choices for xy and xp, we arrive at the following '
Proposition 3.5. The

[ 10 (B35(E)dm,
is a product of an element in O [[Tx]]* and an element in Q.

Remark 3.6. To see that
Fi /lel(FJﬁ(F))duh

indeed gives a functional on the space of semi-ordinary families (over the two-dimensional weight
space) of forms on U(3,1), we note that the weight k is fived throughout the two-dimensional family.
In the theory of p-adic semi-ordinary families (as developed in [43]) we are interpolating the highest
weight vector of the automorphic forms. Thus each component of the LF~2-projection of FJg(F) is
interpolated p-adic analytically. So we can indeed define the integration of it with duy.
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We finally compute a local triple product integral, which enables us to remove the square-free
conductor assumption in [44].

Proposition 3.7. Suppose 7y is supercuspidal representation with trivial character and conductor
pt, t > 2 and @y € T is a new vector. Let 7y be the contragradient representation of w7, and @y € 7y
be the new vector. Consider the matriz coefficient ® = @, 5,(g) = (7(g)pe, Pe), normalized such

that ®,,.5,(1) = 1. Then for g € diag(f",1) (1 E_IZ£> K, ®(g) # 0 only when n = 0. In that

1

case ®(g) = 1. For g € diag(1,¢™) <£th 1
14

P(g) = 1.

This is an easy consequence of [19, Proposition 3.1].

)Kt, ®(g) # 0 only when n = 0. In this case

Corollary 3.8. Let m; be a supercuspidal representation of GLo(Qp) with trivial character and
conductor pt. Let @, € 1y and @y € $p be as above. Let Xh,1, Xh2, X6,1, Xo,2 be characters of QZX
with conductors p'* and t; > t such that Xh,1X6,1 and Xn2Xe2 are both unramified. Then Ichino’s
local triple production integral

Io(pe ® fro © Frn 0 ® fro © Jr) = VOl ).
Now we state the main theorem of this section.
Theorem 3.9. Suppose that
o There is at least one prime { such that w¢y is not a principal series representation.

o The p component of 7y is an unramified principal series representation with distinct Satake
parameters.

o The residual Galois representation py is absolutely irreducible over K[ (—1)1)7_1])].

Then the one containment
charowr (X k) € (£§%)

up to powers of p. If moreover that

e For each £|N non-split in I, the ¢ is ramified in K and the representation my is the Steinberg
representation twisted by the quadratic unramified character.

Then we have
charozr[[plc” (X]%IYC) g (ﬁ%k)

Proof. The argument goes in the same way as [43, Theorem 5.3]. The assumption on p is made to
apply the modularity lifting result as in loc.cit. (There the weight of f is assumed to be 2 and thus
the assumption is redundant). O

20



4 Proof of Main Results

4.1 Beilinson-Flach Elements and Yager Modules

Now we reproduce some constructions in [43]. Recall g be the Hida family of normalized CM forms
attached to characters of I'x with the coefficient ring Ag := Z,[[U]] (the trivial character of I'c is a
specialization of this family). We write Lg for the fraction ring of Ag. Asin [25] let M (f)* (M (g)*)
be the part of the cohomology of the modular curves which is the Galois representation associated
to f (g). The corresponding coefficients for M (f)* and M(g)* is Q, and Lg. (Note that the Hida
family g is not quite a Hida family considered in loc.cit. It plays the role of a branch a there). Note
also that g is cuspidal (which is called “generically non-Eisenstein” in an earlier version) in the sense
of [27]. We have M (g)* is a rank two Lg vector space and, there is a short exact sequence of Lg
vector spaces with G, action:
0= Fgd = M) — F; =0

with ﬁét being rank one Lg vector spaces such that the Galois action on .Z, is unramified. Since
g is a CM family with p splits in &, the above exact sequence in fact splits as G, representation.
For an arithmetic specialization g, of g the Galois representation M (f)* @ M(gg)* is the induced
representation from G to Gg of M(f)* ®&g, where &g, is the Hecke character corresponding to gg.
This identification will be used implicitly later. We also write Dar(f) = (M (f)* ® Bqr)“%. The
transition map is given by co-restriction. For f let Dgr(f) be the Dieudonne module for M(f)*
and let 7} be any basis of Fil’'Dgr(f). Let wy be a basis of % such that (wf,wy) = 1.

We mainly follow [31] to present the theory of Yager modules. Let K/Q, be a finite unramified
extension. For x € Ok we define yr/q,(2) = > ccax/g,) 2°l0] € Ox[Gal(K/Qp)] (note our
convention is slightly different from [31]). Let Q;"/Q, be an unramified Z,-extension with Galois
group U. Then the above map induces an isomorphism of Ay, (U)-modules

your/g, © MmO = Sgur g, = {f € Zy'[[U]) : f* = [u]f}
QpCKCQyur

for any v € U a topological generator. Here the superscript means u acting on the coefficient ring
while [u] means multiplying by the group-like element u~!. The module SQ;T /q, is called the Yager
module. It is explained in loc.cit that the SQ;”» /0, 18 a free rank one module over Z,. Let F be a

Zy, representation of U then they defined a map p : ZI“,’"[[UH — Aut(F ® Z;’“) by mapping u to its
action on F and extend linearly. As is noted in loc.cit the image of elements in the Yager module
is in (F ® ZZ;T)G@P. We define as a generator of the Yager module for Q,. Then we can define p(d)

and let p(d)" be the element in Z4"[[U]] which is the inverse of Wm > cv/pmu - o1

Now we recall some notations in [36]. Let ES,(Dx) := lim HY(X1(Dkp") ® Q,Z,) and
GES,(Dg) = lim HY(Y1(Dxp") ® Q, Z,) which are modules equipped with Galois action of Gg.
Here X (Dxp") and Y1 (Dxp") are corresponding compact and non-compact modular curves. Recall
in [oc.cit there is an ordinary idempotent e* associated to the covariant Hecke operator U,. Let

A, = e*ESy(Di)r = e*GES,(Dx)» (see the Theorem in loc.cit). Let B, (B%,) be the quotient
of e*ES,(Dx) (e*GES,(Dx)) over A%,
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In an earlier version of [27] the authors defined elements wy € (Fg (xg') ® Z;T)G@P and 7y €
(ﬁg_ ® Z;T)GQP. Here the g is the central character for g. We briefly recall the definitions since
they are more convenient for our use (these notions are replaced by their dual in the current version
of [27]). In the natural isomorphism

A, @z, 2y [[T1) = Homy,, (S (Dic, xic, 23 [[T1), Zy [[T1))

(see the proof of [36, Corollary 2.3.6], the wg/ is corresponds to the functional which maps each
normalized eigenform to 1. On the other hand ng/ is defined to be the element in B%_ which, under
the pairing in [36, Theorem 2.3.5], pairs with wg/ to the product of local root numbers at primes to
p places of g. This product moves p-adic analytically and is a unit.

We take basis v= of .Zg with respect to which wy and nJ are p(d)Yv" and p(d)v~ (see the
discussion for Yager Modules). Let Wy be the Ag-valued Galois character of Gx corresponding to
the Galois representation associated to g (i.e. Indgg\llg = M(g)*). Since p splits as voUp in K,

there is a canonical identification (Indgg lIlg)]G@p o~ \I/glg,% ® \Ijg’Gzc,jo and can take a Ag-basis of
the right side as {v,c- v} where ¢ is the complex conjugation. (Note that there are two choices for
the Wy and we choose the one so that ‘1’g|G;cv0 corresponds to g ).

Convention:

we use the basis {v", c-v™} to identify the Galois representation of g with the induced representation
Indf;, Vg.

In [30], the authors constructed Beilinson-Flach elements BF = BF;, o € Hcluw(Qoov Ty @ Tg).
Recall that these classes are obtained from writing down classes in H;?not(Yl(N)?@p, Ts[blfﬁlf}(%Qp@ —
7))) explicitly for cuspidal eigenforms f and g with weights k and & respectively and j+1 < k, K/,
and consider the image under the map

HS

mot

Vi), T (A, (2~ 1)) " HE (AN, TR (A, (2 — 1))
Al rg 1 " i
— HY(Qp, My(f ® g)*(—7))-

Here Tsym!™*'] means the [k, k']-component in the symmetric tensor product of the universal elliptic
curve ¢ over the modular curves. The r' is the etale regulator map and AlJy f, is the etale Abel-
Jacobi map, followed by projecting to the f ® g-component. Deforming f in a Coleman family F
and varying the k, k' and j in p-adic families one gets the three-variable Beilinson-Flach class, which
specializes to the two-variable class under F — f.

4.2 Control Theorem of Selmer Groups

Let P € SpecA be a generic arithmetic point (i.e. corresponding to a finite order character of I)
and v € HL (Qpoo,T @ A) an element of a A-basis of the latter such that the image of v is an
A/ P-basis of H}(@p, T ® A/P). Then it is easy to see that v satisfies the following

H'(QS/QT) _, H'(Q,T)
THNQ/QT) T Ly

(*) For all but finitely many integers m and = :=~ — (1 + p)™, the map
is injective.

Picking up such a v is important, especially when we prove that certain module of dual Selmer
group has non pseudo-null submodules later on. (A pseudo-null submodule over A means it has
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finite cardinality). We consider the control theorem for v¥-Selmer groups. This means the Selmer
condition which is the usual one at primes outside p, but is the orthogonal complement of Av at p
under Tate local pairing. We look at the following diagram

0 —— Selyv(Q,A[P]) —— HYQ%/Q,A[P]) —— Py (Q,A[P])
s [ e
0 —— Selyv(Qu)? —— lim H'(Q7/Qn,A)" —— Pyv(Qoo, A)

1 G , 1 G 5
where Py (Q, A) = [Ty, H'(Ge, A) x 2 &2 and Py (Q, A) = [Ty, H'(Ge, A[P]) X (i rsimitts

We define the Tamagawa number of A[P] at £ # p to be
cpy = tker{H'(Gy, A[P]) — H"(I;, A[P])}.
Also let ¢, € O, ® A/P be such that

cpe =10 ® (A/P)/cp,Or @ (A/P)).

We define a number cp,, at p as follows (up to a p-adic unit): let V be a Op-basis of %,

then
Orp® (A/P)

oy Or e (AJP) (5)

exp”V = cpwyi, cpp = f(
Here we identify the Ty with its realization in the cohomology of the modular curve.

Remark 4.1. We discuss a little about the relations between this cpy, and Tamagawa numbers. We
first note that in the Fontaine-Laffaille range k < p, the number is actually a local number. This
can be seen using the integral comparison theorem between crystalline and deRham cohomology of
modular curves. For details see Section [{.4) Keep this assumption, suppose P corresponds to the
trivial character of U'. Then T ® A/ P is crystalline. Then its Tamagawa number is defined in [29,

(5.6)] as
Or,

pp/ det(l — @] Deris(V))Or

H( )-

For more backgrounds justifying this definition see [5l].

For x a character of Gal(Q)/Q,) with coefficient ring E, in literature people usually use the
convention that

Dar(V @ x) = Dar(V) ® Dar(Xx) = Dar(V) @ (Qpn ® E)X.

Recall when defining the exp* map for Tp, the pairing on both Galois cohomology and Dieudonne
module come from

(Tp ® Qp) x (Tpr ® Qp) = Qpn(1) = Qp(1)

where the last is the trace map. By the formula in [31, Lemma B.4|, we see for any a € K,

trg., /g, (a({exp” z,logy) — (x,y))) = 0.
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Thus (exp* z,logy) = (z,y)K, . We observe that the pairing of cup product

 H'(Q,, T®A/P)
() HYQ,, T ® A/P)

x Hf(Qp, T ® A/P") = O
is surjective. Thus for some Op. basis V of H}(Qp, T ® A/P"), we have
_ 1 y
by

Remark 4.2. In the case when f is ordinary at p, or f corresponds to a supersingular elliptic curve
with a, = 0, it is not hard to explicitly compute the cpy using the local theory, e.g. in [{3].

The Poitou-Tate exact sequence implies that if #Sel,v(Q, A[P]) < oo and H}(Q%/Q, T/P'T) =
0, then
[ e FittSelyy (Q, A[P]) = Fitt Xyv /PXyv.
L

Lemma 4.3. The cardinality 4(H*(Q%/Q,T))[z] < oo for all but finitely many m’s and r =

7= (1 +p)™
Proof. The H?(Q%/Q, T) is a finitely generated A-module. Then the lemma follows from the well
known structure theorem of finitely generated A-modules. O

1 S . ) m
Lemma 4.4. The % = 0 for all but finitely many m’s and v =y — (1 + p)™.

Proof. We have

'(Q/Q.A)
@0 A) /AR

From the Global duality the right side is dual to

ker{ H'(Q%/Q,T,) = [[ H'(Qu, )}

veES

We claim this term is 0 for all but finitely many m. Indeed H'(Q°/Q,T,) is p-torsion free by
(Trred). Moreover we have exact sequence

H'(Q%/Q,T)
zH'(Q%/Q, T)
The last term is finite for all but finitely many m by lemma . The H'(Q%/Q,T) is a torsion-

free rank one A-module such that the localization map H'(Q®/Q,T) — H(Q,, T) is injective.
(Because by [39] the image of zkato under this map is non-zero). Now it is easy to see that

ker{H'(Q°/Q,T;) — H'(Q,, T;)}

— HY(Q/Q,T,) = H*(Q°/Q, T)[x].

is 0 for all but finitely many m. The lemma follows readily. O

Proposition 4.5. The Xyv has no pseudo-null submodules.
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Proof. Let © = v — (14 p)™ for some integer m. Then we claim for all but finitely many integers
m we have surjection

H'Y(Q%/Q, Alz]) - Pov(Q, Alz]). (7)
We first look at the exact sequence
H'(Q%/Q,T) —= H'(Q%/Q,T) — H'(Q%/Q,T;) —— H*(Q%/Q,T)[xl.
From Lemma the last term is torsion for all but finitely many m. By property (*) on v we get
H\%(QS/@7 Tx) =0
for these x. From Poitou-Tate exact sequence
Hy(Q%/Q. Tx) — Pv(Q To) — H'(Q"/Q, Ala])”,

we get the claim.
It is also clear that the map H'(Q%/Q, Alz]) — H'(Q%/Q, A)[z] is an isomorphism, and that
the map
Pyv (@, A[IL‘]) — Pyv (Q, A) [JT]

is surjective. These altogether imply
H'(Q%/Q, A)z] = Py (Q. A)lz]

is surjective.
Then consider the following diagram

0 —— Sel,v(Q,A) —— HY(Q%/Q,A) —— Py (Q,A)

| | |
0 — Selyv(Q,A) —— HY(Q5/Q,A) —— P (Q,A)

By Snake lemma and Lemmathe %(%AA)) = 0 for all but finitely many m and z = v—(1+p)™.

By Nakayama’s lemma, there is no quotient of Selyv(Q, A) of finite cardinality. Thus X,v has no
pseudo-null submodules. O

Writing % for the characteristic polynomial of X,v and write ¢ for the arithmetic point cor-
responding to P. We also write Xyv 4 for the Selmer group for A[¢]. Note that the local Selmer
condition of it at all primes outside p is {0}. Thus the control theorem as before implies that

H CP,Z(f)ﬂ(XVV,qﬁ) = ﬂ(XVV/PXVV)' (8)
tp

Note for any finitely generated torsion Iwasawa module M of A, if (z) is a prime ideal of A with
#(2) < 00, and Z is a generator of chary (M), then

M A
Sy > A (——).
o) 2 Mz )
If M has no pseudo-null submodule then the above “>” is an “=". So the control theorem argument
as before implies that
[ cre(NiXove) = 206/ (F(9))- (9)

Yp
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4.3 Selmer Complexes and Iwasawa Main Conjecture

Before continuing we explain how we make choice for the quadratic imaginary field IC. We choose it
to be ramified in the prime ¢ in the assumption of Theorem split at p, and is split at all other
primes of N. We also ensure that the 7 is still irreducible over Gr(c,)-

We follow [37], [38] to present the analytic Iwasawa theory, in the framework of Nekovar’s
Selmer complex. Let U =~ Z, be the Galois group Gal(Q},"/Qp). We define A to be the affinoid
ring Or(p~"U) for some 7 > 0 and A4 oo = Aoo®A. We fix a local condition, which means for any
v € S a bounded complex of finite type A4 o-modules U and a morphism

iy US = C% (G, T ® Agoo).

Here we write C2, . (G, M) for the space of continuous cochains of the G-module M. We define the

Selmer complex for f over K to be the mapping cone
Cone|Cony (Gic,5: T ©0p, Adoo) & GuesUy = SuesCoont (Go, T @ A oo)][1],

where the map is given by @, (res,, —i,). Throughout this paper, for each v € S not dividing p, we
use the unramified local condition by

Z.U : U; : C(:ont(G'U/Ivv (T ® AA7OO)1[1) - C(:ont(G'U? T AA,OO)'

We will make several different choices for the local Selmer conditions at p. We need some prepara-
tions.

Definition 4.6. Write #Z for the Robba ring B;rig qQ, over Qp and Z* for B:i'g Q- We define a

triangulation of a two-dimensional (¢,T)-modules D over Z to be a short exact sequence 0 —
FtD — D — F~D — 0 where FTD are free rank one (p,T')-modules over . For any finite
extension L of Qp, we define 1, = % ®q, L and can talk about triangulations of (yp,I")-modules of
rank two over Zy,.

Definition 4.7. If V is a two dimensional crystalline representation of Gq,. A refinement of V' is
a full p-stable filtration of Deyis(V):

Fo=0C F1 C Fo = Degis(V).
This is equivalent to an ordering of {a, B}.

It is summarized in [4] 2.4] that there is a one-to-one correspondence between triangulations of
D(V) and refinements of V, given by F; = FYD[1/t] N Deis (V) and Fy = F![1/t]"'. Let the Robba
ring over A be Z4 1= Z®A. We also write Z} = ZT®A. There is a nature action U — A*.
Then we can define a (¢, I')-module D 4 over Z 4 by pulling back the action of I' on D but twisting
the action of ¢ on D by the Frobenius action via 1+ U as above. We define the analytic Iwasawa
cohomology for D 4 in the same way as [2.5

Lemma 4.8. The H{ (Qp,, D) can be computed using the complex

DAE>DA

concentrated at degrees 1 and 2.
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This is just [23, Theorem 4.4.8]. Suppose D has the form %Z(a~!), then we have

Proposition 4.9. There is an exact sequence

- . _ t"® Dcrls(D.A)
0= B35 (1" Deris(D.4)?~" = (%5 ® D)= = (%4 © D)¥=" — GB =) & Do (D))

where the third arrow is given by o —1 and N >> 0. Note that o, 5 are Weil numbers of odd weight
k — 1. The second term above is easily seen to be 0.

This proposition is the family version of [34] Lemma 3.18]. The analogues in our setting of
the results in Lemma 3.17 of loc.cit is proved in [8, Section 2] as well. For the above rank one
(¢, I')-module D we consider a finite set of height one primes S(D) of Ak 0, each generated by an
element of the form (U + 1 — ap™™) for some non-negative integer m. Note that this is a finite set
because for m >> 0, (U + 1 — ap™™) is invertible. For any height one prime P not in S(D) the
localized map at P

p—1:(Z50D)s~" = (%2 D)LY

is an isomorphism. Now suppose D is the (¢, I')-module of V; = Ty ®z, Q,. We fix a triangulation
of D by requiring F~ := D/F* to be the (p,I')-module Z(a~!). We thus define an induced
triangulation of D4 in the obvious way. For any (¢,I')-module of the form Z4(a~!) for some
a € A*, we define a regulator map as [25] (6.2.1)]:
Reg,%',’A(afl) :Hllw(QP“%A(ail) i) %A(ail)w:1
—= s BT 2 (a0 S ASAgee

The last map is the Mellin transform. As in [25, Section 6] since F~ has the form Z4(a™ ') so
we can define the regulator map Regr— as above. The F7T is of the form Z(5~!) twisted by the

k —1-th Tate twist, so as in loc.cit we can still define the regulator map Regr+ by re-parameterizing
the weight space. We have an exact sequence

0— HIIW(QI’?]:J’_(D.A)) - HIIW(QIMD.A) - HIIW(QPa]:_(D.A)) — 0.

(As noted in [37, Proof of Proposition 2.9], by the machinery developed in [38] we only need to
check that for any specialization of fj[ twisted by a character of I', the H? becomes trivial. This is
easily seen by the local duality.)

Definition 4.10. We define the o local Selmer condition U, at p as the second arrow above, using
the identification [38, Theorem 2.8] of the derived category of Galois cohomology of Galois repre-
sentations over an affinoid algebra and the corresponding (p,T')-module.

By Proposition for any P ¢ S(D) the regulator map Reg gives isomorphisms
HY(Qp, F{) P = Adoo,p

HYQp, F1)p = A oo p-

We also have
H' (QP7 D)P = A?‘l,oo,P'
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Denote RT(Gx.5,Us, T ® A4 o0) as the image of the Selmer complex in the derived category
of finite type A4 oo-modules. Let I;V‘(G;QS,T ® A400) be the cohomology groups of the Selmer
complex, which are called extended Selmer groups. Replacing A4 by Agec We similarly define
ﬁi(G;gS, T ® Ag,e0), etc. We record here some properties of the Selmer complex

Proposition 4.11. [37, Theorem 4.1]
RTo(Gx,5, U3, T @ Adoo) @, Mgoo ~ RTa(Gi.5,US, T ® Agoc)-
In particular
0 = H.(Gr.5, T®MAk 00)@Ag00 — HL (G5, TOAG s0) — Tory > (H (G5, TOAG 00)s Agioo) — 0.

Definition 4.12. We define X,a to be E[Z(G;QS,T ® A soo) defined using the a-Selmer conditions
at both vy and vy. Similarly we define Xorel, Xarel, etc (here rel stands for “relaxved”).

It follows from the definition of the Selmer complex that

0= H)a(Grs, T ® Aaoe) = H (Grs, T @ Aaos)  — H (Goy, F~) = HZ (G5, T ® A o0)
— H*(Gr,5,T ® A oo) = BupH*(Gi,, T ® Maoo).-
(10)

(See [37, Page 18], especially the computation of local Galois cohomology at v 1 p. Note also that
0= HZ,(Gp, Da) = HE (Gp, F) = H2,(Gp, F4).) Also
0— ff&rel(G)c’S? T®Aso0) = Hl(Glgs, T®Aoo) — H! (Gyy, D) — ]:Ig,rel(G/C,Sv T®Asoco)
— HQ(G]C,S, T® AA,oo) — @UJ[pHQ(G;CU,T ® A.Apo)-
(11)
Denote the third arrows of [10| and [L1{ as (A) and (B). Define Ker by the exact sequence

HY(Gyy, D)  HY Gy, F7)

w3 A

0 — Ker —

Then

im(B) + HY(Gyy, FT) N HY(Gyy, FT) N HY(Gyy, FT)

Ker = ~ ~ .
o im(B) im(B) N HY(Gyy, F)  im(HL, (Grs.T ® Aaoo))

Combining this with and we obtain

HY Gy, FT)
im(ng,rel(G/C,Sa T® A.A,OO))

0— = Hf 1(Gre,5, T @ Asos) = HZ (G5, T ® Aaoo) — 0. (12)

Similarly we get

HY Gy F)

0—
lm(H(}z,rel(GKys’ T A-A,OO))

= H7 o(Gres, T ® Aoo) = H et (Gre,s, T ® Aaoo) = 0. (13)
Before continuing we need the following
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Lemma 4.13. The H:

a,rel

(Gi,5:T ® A oo) has rank one over Ay .

Proof. We only need to know that H! (Gxs,T ® Asc) = 0. We need to use the
Lemma 4.14. [3, Proposition 5] Let x be a finite order character of I'. Then

Hclu(vaT ®x) = H}(QpaT ® X)-

Now if H! (Gk.s,T ® Ajs) = 0 has positive rank, then for all ¢ we have the Bloch-Kato
Selmer group of T has positive rank, which contradicts the main theorem of [22]. O

We have
IOCUOBFO[ S HIlw(Qp7F+DA)

by [25) Section 7].

Let Ag,, be the p-adic completion of A[m"/p] and A4, = Ag,®A. Note that the ring A4 o
and Ag oo are not Noetherian, while Ag, and A4, are. So in order to prove the main conjecture
in terms of characteristic ideal, we first observe that we only need to prove the equality for ideals
after tensoring with Ag,, for each n. We replace A 4 0 by A4, and define the corresponding Selmer
complex for T'® A 4, using the pullbacks of the local Selmer conditions U, under the nature map
frn i Ao = Aan. Note that by [38, Theorem 1.6] we have an isomorphism in the derived category

Lf:;RFCOHt(G, T® AIC,OO) = chont(Ga T® AIC,n)-

Definition 4.15. We define the congruence number cy of f. Consider the localized Hecke algebra
Tw, acting on the space of Op-valued cusp forms with respect to I'o(N), where my is the mazimal
ideal corresponding to f. Then Tw, ®z, Qp ~ L ® B for some algebra B, where the L-corresponds
to projecting to f-component. Let 1; be the idempotent corresponding to this L. On the other hand

we write £y for the generator of the rank one Or-module T, N L. Let cy := %.

Now we define several p-adic L-functions.

Definition 4.16. We define a Rankin-Selberg p-adic L-function Ltgg (here we fix one Hecke eigen-
value « of f at p). Notice the difference from the previously defined E?gg which interpolates critical
Rankin-Selberg L-values where the specializations of g has weight higher than f. We multiply the
“geometric” p-adic L-function for the Rankin-Selberg product f ® g constructed in [25, Appendiz],
interpolating the critical values of the Rankin-Selberg L-values of f and specializations of g whose
weight is less than the weight of f. Then we multiply it by the congruence number of f and denote
the product as Lyigg. In the special case here where g comes from families of characters of I'c we
also denote it as Loq. (Note that the period for the “geometric” p-adic L-function is the Petersson
inner product of f with itself. Such Petersson inner product, divided by the congruence number of
f is the so called canonical period of f.)

We also define the p-adic L-function Lo (f) of fo over Q by requiring that for any finite order
character x of T with conductor p"™ (n >2) and r + LEQ el,k—1],

1 p—
L{p}(.ﬂXvT + %)

k—2
ooy (P EE TR amrg(x)
ﬁa(f)(ﬁ X 1) = 2 ko,

(2ri) 7 Y
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The reciprocity law in loc.cit implies that under the convention at the end of Section [4.I],

<Regv—07]_-— (BFq), nf> = Laa/cfa (14)

1 v
_ rG
<Regy07]—‘+ (BFO()7wf> =L jC ’ h}(j[/%atz ) c- vt

(15)

We say one word about different conventions about the wy and 7y : in [25] the D(F~M3) is identified

with the (F~" Mg ® Zgr)GQP via a choice of the p(d). (In fact there is a gap in the construction
of Urban’s Ranin-Selberg p-adic L-functions as noted in the appendix of [25]. But as the authors
informed us, they have been able to resolve the problem [24] by proving interpolation formulas of
their “geometric” p-adic L-functions at all points we are interested in.) We need the following

Lemma 4.17. If we identify the coefficient ring of g with Z,[[U]]. Then up to some powers of U

we have
h;g[',,}éatzc ~oT

is in Zy' [[U]].

This is explained in [44], Proposition 8.3].

Note that by an easy argument using global duality (see [33, 5.1.6]), the A4 ~-characteristic
ideal of H?(Gx,5,T ® Aaoo) is exactly the base change to A4 of that for ng,rc So by and
we arrived at the following

Proposition 4.18. Let P be a height one prime of Ak oo, which is not in Sy, (F (D)) (the subscript
vo means identifying KC,, with Qp) or Sy, (F (D)), then

ordpchary . (Xa,a) > ordpLaq.

Note that the pullback of U in Lemma, is a height one prime which does not contain Lq4,
since the latter is not identically 0 on the cyclotomic line.

Remark 4.19. Note that the parameter U and A at vo and Uy are different as parameters in I'x.
In fact one can prove that the set Sy, (F 1 (D)) and Sy, (F (D)) are the same. But we will not need
it in thes paper.

So we have
ordpFitt(Xae) > ordpLaa

for those primes. Observe that when specializing to the cyclotomic line any prime P in S,,(.Z (D))
or Sg,(:F~ (D)) specializes to the trivial ideal of Ax. So by Proposition we have the

Corollary 4.20.
chary, o (Xaa) € (Laa)-

To save notation we also write L, for the specialization of L., to the cyclotomic line. In
order to relate this to Kato’s main conjecture we need to study the relations between L., and
Lo(f) La(fX<). Note that although we know they are equal at all arithmetic points, however these
interpolation formulas do not determine the element in Ag ~ uniquely. So we need to prove the
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Lemma 4.21. Up to multiplying by a non-zero constant we have

Loo = Lao(f) - La(fXF).

Proof. There are several ways of proving this and we only give one. The eigencurve machinery
implies we can deform f, into a Coleman family F'. Then Bellaiche constructed [2] the corresponding
two variable p-adic L-functions L g and Lregy,,@ which specializes to L4 (f) and Lo (f ® xx). Also
there is the Rankin-Selberg three-variable p-adic L-function constructed by Loeffler-Zerbes [25] as
the “geometric” p-adic L-function £(F ® g) (whose weigth space contains the weight space for L(F)
and L(F ® xi) as closed subspace) which specializes to L,,. Note that the Loeffler-Zerbes included
the interpolation formulas when the specialization of g has weight one. There is a p-adically dense
set of arithmetic points (crystalline points, see [25]) in the two-variable weight space for £, where
the specializations of L(F ® g) and L(F) - L(F ® xx) are equal. Here one small subtlety is the
different period in each case — the canonical period for each specialization of F', or the product of
the 4+ periods. However at least locally the ratio of such periods is interpolated as rigid analytic
functions, say by taking the ratio of the two p-adic L-functions above. So we multiply one p-adic
L-function by this ratio and this product should be equal to the second p-adic L-function. This

specialization to f of this ratio is the constant mentioned in the lemma (which is just the non-zero

QC?LI]

number Qfﬂ,). So as rigid analytic functions the two variable p-adic L-functions £(F ® g) and
ro

L(F) - L(F ® xx) must be equal up to multiplying by this constant. Thus we get the corollary. [

It is also easy to see that
RT4(Gi,5,T ® Agoc, f) ~ RTo(Go,s, T @ Ag.oo, f) ® R (G5, T @ Ag,e0, [XF).

The following theorem is proved by Pottharst in [37, Theorem 5.4], which is essentially a reformu-
lation of Kato’s theorem.

Theorem 4.22.
charp,  (Xaa(f, Q) 2 (La(f)).

Moreover the “="is equivalent to Conjecture after inverting p.
Combining what we have proved with Kato’s theorem we have

Theorem 4.23.
Char/\@,oo (Xaa(f, @)) — (Eoz(f))'

4.4 Powers of p

We briefly discuss the wy and 7y in [25]. We refer to [10, Section 2.1, 2.2 for the background
of the motive My /o, associated to the space of weight & modular forms. This comes from the
k — 2-th symmetric power of the universal elliptic curve over the modular curve. Suppose k < p (i.e.
the Fontaine-Laffaille range). Let Dpyr, be the Fontaine-Laffaille functor. Then by the comparison
theorem of Faltings (as noted in loc.cit), we have

DrL(H{ (My)) = Hig(My).

31



(See [30, Section 6.10]). The Galois representation Ty is realized as H{(My)[\s] (meaning the
maximal submodule of H{ (M) on which the Hecke algebra To(N) is acting via its action Ay on
f). Thus

Dyr(Ty) = H' (Mp)[As].

On the other hand we have an exact sequence of Hecke modules (localized at the maximal ideal
my C To(N)):

0— H°(Xo(N),w"/OL)m; = Hig(Mp)m; = H (Xo(N),w* */OL)m; = 0.

Here w” is the weight k automorphic sheave. As Hecke modules the next to last term is free of
rank one over To(N)m, and the second term is isomorphic to S(Xo(N), OL)m, (Or-valued cusp
forms). Unravelling the definitions the ny € H'(Xo(N), w2_k/(9L)mf ®z, Qp in [25] corresponds to
the f-component projector 1; under the identification of H' (Xo(N), Zp)m; ®z, Qp with To(N)m,,

while
Dy (Ty)

~ w2k .
m ~ H'(Xo(N), Jmy[Af]

So by definition the ratio of a generator of FDFL(Tf) over 1)y is the congruence number cy of f

i1° Dpy, (Ty)
(determined up to a p-adic unit).

Remark 4.24. Note that up to multiplying by a p-adic unit, the canonical period Qjﬂn 1s the Pe-
tersson inner product period in the Rankin-Selberg p-adic L-function Lygg divided by this cy.

Definition 4.25. We say an arithmetic point ¢ € X is generic if L(f, Xg:k/2) # 0 and E%qu; is
not tdentically 0. It is clear that all but finite many arithmetic points are generic.

We write (v1,v2) for an Op, -basis of Hl(Qp,Tq;) such that vy is a generator of H}(Qp,Td;).
We sometimes write them as vy g, v2,5,- Let qg be such that gg and qg_l are both generic. Write
P = [eye X T'yy and let pr @ Y := Spec Zy[[['eye X T'z,]] = & := Spec [[['yc]] be the natural
projection. For ¢ € X let B

We consider V;. Define an element Eé € OL[[I'y]] such that

BFJy, = (£)(G0; )5 vz (mod vz, (16)

Then [,(%(0) £ 0. For any ¢ of conductor p” and such that Xd;elﬂ'*g has finite order, we have

HLpLp)  Le(F1+7x5")

2r ¢

af - - = : ,
f G(XQ;)QPQTJ (27-[-1)2+2]Q(}an
We also have for any ¢ € y¢;
r — «Q 18 T
log,, 6(BF) = 0(LF5)G 0 - (F)wf- (17)
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Note that 8¢, 7, only depends on , ag is an element in Z,[[Ty,]] such that ag(0) = 1. Recall also
the remark right after (4.3) and for the role played by wy and 7g. We have

N 1 - _ arfy .,

where ¢y is the congruence number we defined before. So

_ Le(f1+35.x5) - Gx;h)

* _ -1 af \r 2rj | —2r
Lic(f,1+ 35, x;I)G N

N Cf(27ri)2+2jQ‘}an (X<5 )af prer

Thus
_ Li(f,1+5,x5") 3
* _ ¢ -1 F oy o 2r+r o, (k—1)r
Similarly for ¢ above 8
- - r Q@ r

log,, ¢! (BF) = ¢~ (LF5)G(x3)( pfg‘ yw, (19)

and
* J—1 LK(f’ k—1- j’ thrll) Bf r 2r(k—2—73)+r /, (k—1)r
€XDy ¢ (BF) = Cf(27r’i)2k_2_2j93¢an G(X&