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Abstract We prove the Noether-Lefschetz conjecture on the moduli space of
quasi-polarized K3 surfaces. This is deduced as a particular case of a general
theorem that states that lowdegree cohomology classes of arithmeticmanifolds
of orthogonal type are dual to the classes of special cycles, i.e. sub-arithmetic
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manifolds of the same type. For compact manifolds this was proved in [3],
here we extend the results of [3] to non-compact manifolds. This allows us to
apply our results to the moduli spaces of quasi-polarized K3 surfaces.
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1 Introduction

1.1 The Noether-Lefschetz conjecture

The study of Picard groups of moduli problems was started by Mumford [55]
in the 1960’s. For themoduli spaceMg of genus g curves,Mumford andHarer
(cf. [28,56]) showed that the Picard group Pic(Mg) ofMg is isomorphic to its
second cohomology group H2(Mg,Z), which is a finitely generated abelian
group of rank one for g ≥ 3. Moreover, the generator of H2(Mg,Q) is the
first Chern class of the Hodge bundle on Mg.

In higher dimensional moduli theory, a quasi-polarizedK3 surface of genus
g is a two dimensional analogue of the genus g smooth projective curve. Here,
a K3 surface over C is a smooth simply connected complete complex surface
with trivial canonical bundle and a quasi-polarized K3 surface of genus g ≥ 2
is defined by a pair (S, L) where S is a K3 surface and L is a line bundle on
S with primitive Chern class c1(L) ∈ H2(S,Z) satisfying

L · L =
∫
S
c1(L)2 = 2g − 2 and L · C =

∫
C
c1(L) ≥ 0

for every curveC ⊂ S. LetKg be themoduli space of complex quasi-polarized
K3 surfaces of genus g. Unlike the case of Pic(Mg), O’Grady [57] has shown
that the rank of Pic(Kg) can be arbitrarily large. Besides theHodge line bundle,
there are actually many other natural divisors on Kg coming from Noether-
Lefschetz theory developed byGriffiths andHarris in [26] (see also [47]).More
precisely, the Noether-Lefschetz locus in Kg parametrizes K3 surfaces in Kg
with Picard number greater than 2; it is a countable union of divisors. Each of
themparametrizes theK3 surfaceswhosePicard lattice contains a special curve
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class; these divisors are calledNoether-Lefschetz (NL) divisorsonKg.Oguiso’s
theorem [58, Main Theorem] implies that any curve on Kg will meet some
NL-divisor on Kg (see also [7, Theorem 1.1]). So it is natural to ask whether
the Picard group PicQ(Kg) ofKg with rational coefficients is spanned by NL-
divisors. This is conjectured to be true by Maulik and Pandharipande, see [47,
Conjecture 3]. More generally, one can extend this question to higher NL-loci
on Kg, which parametrize K3 surfaces in Kg with higher Picard number, see
[35]. Call the irreducible components of higher NL-loci the NL-cycles onKg.
Each of them parametrizes K3 surfaces in Kg whose Picard lattice contains a
special primitive lattice.

Theorem 1.1 For all g ≥ 2 and all r ≤ 4, the cohomology group H2r (Kg,Q)

is spanned by NL-cyles of codimension r. In particular (taking r = 1),
PicQ(Kg) ∼= H2(Kg,Q) and the Noether-Lefschetz conjecture holds on Kg
for all g ≥ 2.

Remark 1.2 There is a purely geometric approach (cf. [25]) for low genus case
(g ≤ 12), but it can not be applied for large genera. It remains interesting to
give a geometric proof for this conjecture.

Combined with works of Borcherds and Bruinier in [6] and [13] (see also
[42]), we get the following:

Corollary 1.3 We have

rank(Pic(Kg)) = 31g + 24

24
− 1

4

(g
2

)
− 1

6

(
g − 1

4g − 5

)
− 1

6
αg

−
g−1∑
k=0

{
k2

4g − 4

}
− �

{
k | k2

4g − 4
∈ Z, 0 ≤ k ≤ g − 1

}
(1.1)

where αg =
{−1 if g ≡ 1 mod 3(

g−1
3

)
otherwise

, the braces {·} in the fifth term denote

fractional part, and
(a
b

)
is the Jacobi symbol.

1.2 From moduli theory to Shimura varieties of orthogonal type

Theorem 1.1 will be deduced from a general theorem on arithmetic manifolds.
Let us recall how Kg identifies with an arithmetic locally symmetric space:
let (S, L) be a K3 surface in Kg, then the middle cohomology H2(S,Z) is an
even unimodular lattice of signature (3, 19) under the intersection form 〈, 〉
which is isometric to the K3 lattice

LK3 = U⊕3 ⊕ (−E8)
⊕2,
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where U is the hyperbolic lattice of rank two and E8 is the positive definite
lattice associated to the Lie group of the same name; see [47].

A marking on a K3 surface S is a choice of an isometry u : H2(S,Z) →
LK3. If (S, L) is a quasi-polarized K3 surface, the first Chern class c1(L) is a
primitive vector in H2(S,Z). Define the primitive sublattice H2(S,Z)prim of
H2(S,Z) by

H2(S,Z)prim = {η ∈ H2(S,Z) : η ∧ c1(L) = 0}.
Then we have an orthogonal (for the intersection form) splitting

H2(S,Z) = Zc1(L) ⊕ H2(S,Z)prim. (1.2)

There is a Hodge structure on H2(S,Z)prim given by theHodge decomposition
induced by the Hodge structure on H2(S,Z):

H2(S,Z)prim ⊗Z C = H2,0(S,C) ⊕ H1,1(S,C)prim ⊕ H0,2(S,C)

with Hodge number (1, 19, 1).
We will now describe the moduli space of such polarized Hodge structures.

Fix a primitive element v ∈ LK3 such that v2 is positive (and therefore equal
to 2(g − 1) for some g ≥ 2). Write

LK3 ⊗ Q = 〈v〉 ⊕⊥ V and � = LK3 ∩ V .

The lattice � is then isometric to the even lattice

Zw ⊕U⊕2 ⊕ (−E8)
⊕2,

where 〈w, w〉 = 2−2g. Amarked v-quasi-polarizedK3 surface is a collection
(S, L , u) where (S, L) is a quasi-polarized K3 surface, u is a marking and
u(c1(L)) = v. Note that this forces (S, L) to be of genus g. The period point
of (S, L , u) is uC(H2,0(S)), where uC : H2(S,Z) ⊗Z C → (LK3)C is the
complex linear extension of u. It is a complex line C · ω ∈ (LK3)C satisfying

〈ω, ω〉 = 0 and 〈ω, ω〉 > 0.

It is moreover orthogonal to v = u(c1(L)) ∈ LK3.We conclude that the period
point belongs to

D̂ = D̂(V ) = {ω ∈ V ⊗Q C | 〈ω, ω〉 = 0, 〈ω, ω〉 > 0}/C×
∼= {orientedpositive2-planes in VR = V ⊗Q R}
∼= SO(VR)/K∞,
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where K∞ ∼= SO(2) × SO(19) is the stabilizer of an oriented positive 2-
plane in SO(VR) ∼= SO(2, 19). Here, by a positive 2-plane P we mean a two
dimensional subspace P ⊂ VR such that the restriction of the form 〈 , 〉 to P
is positive definite.

Now the global Torelli theorem for K3 surfaces (cf. [20,59]) says that the
period map is onto and that if (S, L) and (S′, L ′) are two quasi-polarized K3-
surfaces and if there exists an isometry of latticesψ : H2(S′,Z) → H2(S,Z)

such that

ψ(c1(L
′)) = ψ(c1(L)) and ψC(H2,0(S′)) = H2,0(S),

then there exists a unique isomorphism of algebraic varieties f : S → S′
such that f ∗ = ψ . Forgetting the marking, we conclude that the period map

identifies the complex points of the moduli space Kg with the quotient �\D̂
where

� = {γ ∈ O(�) | γ acts trivially on �∨/�},

is the natural monodromy group acting properly discontinuously on D̂. The
monodromy group � contains an element which permutes the connected com-
ponents of D̂ and the arithmetic quotient Y� = �\D̂ is actually a connected
component of a Shimura variety associated to the group SO(2, 19).

We now interpret NL-cycles onKg as special cycles on Y� . Fix a vector x in
�. Then the set of marked v-quasi-polarized K3 surfaces (S, L , u) for which
x is the projection in � of an additional element in

Pic(S) ∼= H1,1(S,C) ∩ H2(S,Z)

corresponds to the subset of (S, L , u) ∈ Kg for which the period point
uC(H2,0(S)) belongs to

Dx = {ω ∈ D̂ | 〈x, ω〉 = 0} = D̂(V ∩ x⊥)

= {orientedpositive 2-planes in VR that are orthogonal to x},

which is non-empty if x2 < 0. The image in Y� of the NL-locus that para-
metrizes K3 surfaces with Picard number ≥ 2 is therefore the union of the
divisors obtained by projecting the Dx ’s. Maulik and Pandharipande define
refined divisors by specifying a Picard class: fixing two integers h and d such
that


(h, d) := − det

(
2g − 2 d

d 2h − 2

)
= d2 − 4(g − 1)(h − 1) > 0,
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Maulik and Pandharipande more precisely define the NL-divisor Dh,d to have
support on the locus of quasi-polarized K3 surfaces for which there exists a
class β ∈ Pic(S) corresponding to a divisor C on S satisfying

C · C =
∫
S
β2 = 2h − 2 and C · L =

∫
S
β ∧ c1(L) = d.

Let

n = − 
(h, d)

4(g − 1)
and �n = {x ∈ �∨ | 1

2
〈x, x〉 = n}.

The group � acts on �n with finitely many orbits and [47, Lemma 3, p. 30]
implies that (the image of) Dh,d in Y� is a finite union of totally geodesic
hypersurfaces

Dh,d =
∑

x∈�n mod �

x≡ dω
2g−2 mod �

�x\Dx , (1.3)

where�x is the stabilizer of Dx in�. In the degenerate casewhere
(h, d) = 0,
the theory of Kudla-Millson suggests that the class of Dh,d should be replaced
by the Euler class, which is also the class of the Hodge line bundle (See also
[47, §4.3]). We shall show in §8, Corollary 8.4, that this class belongs to the
span of the special cycles.

The divisors (1.3) are particular cases of the special cycles that we define
in the general context of arithmetic manifolds associated to quadratic forms
in §2.6. When the arithmetic manifold is Y� as above, codimension 1 spe-
cial cycles span the same subspace of the cohomology as the classes of the
NL-divisors (1.3). By “NL-cycles of codimension r” we refer to codimen-
sion r special cycles. See Kudla [35, Proposition 3.2] for relations with the
Noether-Lefschetz theory. Our main result (Theorem 2.7) will be more gener-
ally concerned with special cycles in general non-compact Shimura varieties
associated to orthogonal groups. In the two next paragraphs of this introduction
we state its two main corollaries. We refer to Sect. 2 for the, more technical,
general statement.

Remark 1.4 General (non-compact) Shimura varieties associated to � corre-
spond to the moduli spaces of primitively quasi-polarized K3 surfaces with
level structures; see [61, §2]. Recently, these moduli spaces play a more and
more important role in the study of K3 surfaces (cf. [45,46]). The Hodge-type
result above can be naturally extended to these moduli spaces.

1.3 Shimura varieties of orthogonal type

Let Y be a connected smooth Shimura variety of orthogonal type, that is, a
congruence locally Hermitian symmetric variety associated to the orthogonal
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group SO(p, 2). One attractive feature of these Shimura varieties is that they
have many algebraic cycles coming from sub-Shimura varieties of the same
type in all codimensions. These are the so called special cycles on Y and play
the central role in Kudla’s program, see Sect. 2.6 for a precise definition. A
natural question arising from geometry and also arithmetic group cohomology
theory is:

Question Do the classes of special cycles of codimension r exhaust all the
cohomology classes in H2r (Y,Q) ∩ Hr,r (Y ) for sufficiently small r?

We should remark that for 2r <
p
2 , the cohomology group H2r (Y,Q) has a

pure Hodge structure of weight 2r with only Hodge classes (see Example 3.4),
i.e. H2r (Y,C) = Hr,r (Y ), so we can simply replace H2r (Y,Q) ∩ Hr,r (Y ) by
H2r (Y,Q) in the question above. When Y is compact, this question can be
viewed as a strong form of the Hodge conjecture on Y : every rational class is a
linear combination of homology classes of algebraic cycles. And indeed in the
compact case, themain result of [3] provides a positive answer to bothQuestion
1.3 and the Hodge conjecture as long as r <

p+1
3 . The proof is of automorphic

nature. There are two steps: we first show that cohomology classes obtained
by the theta lift of Kudla-Millson (and which are related to special cycles by
the theory of Kudla-Millson) exhaust all the cohomology classes that can be
constructed using general theta lift theory. Next we use Arthur’s endoscopic
classification of automorphic representations of orthogonal groups to show
that all cohomology classes can be obtained by theta lifting.

When Y is non-compact, one expects a similar surjectivity theorem to hold
for certain low degree Hodge classes of Y . Indeed, before [3], Hoffman and
He considered the case p = 3 in [30]. In their situation, Y is a smooth Siegel
modular threefold and they prove that Pic(Y ) ⊗C ∼= H1,1(Y ) is generated by
Humbert surfaces. In the present paper, one of our goals is to extend [3] to all
non-compact Shimura varieties of orthogonal type:

Theorem 1.5 Assume that Y is a connected Shimura variety associated to
SO(p, 2). If r <

p+1
3 , any cohomology class in H2r (Y,Q) ∩ Hr,r (Y,C) is a

linear combination (with rational coefficients) of classes of special cycles.

Remark 1.6 The condition r ≤ 4 in Theorem 1.1 seems more restrictive. This
comes from the fact that H2r (Y,C) = Hr,r (Y ) only if 2r <

p
2 , see Theorem

3.6.

As in the case of [3], our proof relies on Arthur’s classification [2] which
depends on the stabilization of the trace formula for disconnected groups
recently obtained by Moeglin and Waldspurger [50].1 Note however that
Moeglin and Waldspurger make use of results on the “weighted fundamental

1 Before that the ordinary trace formula had been established and stabilized by Arthur.
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Lemma” that have been announced by Chaudouard and Laumon but which
have only been published (cf. [16,17]) by these authors so far under some
restrictive hypothesizes. This is not a serious problem as there is no doubt that
the methods of the published papers extend but this has yet to be done.

1.4 Real hyperbolic manifolds

As already mentioned Theorem 1.5 actually follows from the more general
Theorem 2.7 that applies to congruence arithmetic manifolds associated to
special orthogonal groups SO(V )where V is a non-degenerate quadratic space
over Q of any signature (p, q) over R. The corresponding manifolds are not
necessarily Hermitian. If q = 1 we obtain finite volume real hyperbolic man-
ifolds and as a corollary of Theorem 2.7 we get

Theorem 1.7 Let Y be a smooth non-compact finite volume congruence arith-
metic hyperbolic manifold of dimension p. Then for all r <

p
3 the Q-vector

space Hr (Y,Q) = H̄r (Y,Q) is spanned by classes of totally geodesic sub-
manifolds of codimension r.

1.5 Plan of the paper

In Sect. 2 we introduce arithmetic locally symmetric spaces associated to
orthogonal groups defined over Q. Then in Sect. 3 we prove that our main
Theorem 2.7 indeed implies the theorems announced in the Introduction. Sec-
tion 3 ends with an outline of the proof of Theorem 2.7. Section 4 recalls the
dictionary between cohomology and automorphic forms specific to arithmetic
locally symmetric spaces. Section 5 then briefly recalls Arthur’s classifica-
tion of automorphic representations of orthogonal groups as well as some key
results of [3]. The main new automorphic results of this paper are contained in
Sects. 6 and 7. The last Sect. 8 finally provides a proof of our main Theorem
2.7.

2 A general theorem on arithmetic manifolds associated to orthogonal
groups

2.1 General notations

Throughout this paper, let A be the adele ring of Q. We write A f for its finite
component respectively. We denote by | · |p the absolute value on local fields
Qp and | · |A = ∏

p | · |p the absolute value of adelic numbers in A. If G is
a classical group over Q we let G(A) be the group of its adelic points and
X (G)Q be the group of characters of G which are defined over Q.
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2.2 Orthogonal groups

Here we fix some notations for orthogonal groups. Let V be a non-degenerate
quadratic space of dim m over Q and let G = SO(V ) be the corresponding
special orthogonal group. Set N = m if m is even and N = m − 1 if m is odd.
Unless otherwise specified, we shall reserve the notation SO(n) to the (split)
special orthogonal group associated to

J =
⎛
⎝
0 1

. .
.

1 0

⎞
⎠ .

The group G = SO(V ) is an inner form of a quasi-split form G∗, where G∗ is
the odd orthogonal group SO(m) when m is odd or the outer twist SO(m, η)

of the split group SO(m) when m is even.

2.3 Locally symmetric spaces associated to G

Assume that V has signature (p, q) over R. Then G(R) = SO(p, q). Let us
take

D̂ = G(R)/(SO(p) × SO(q)),

and let D be a connected component of D̂; it is a symmetric space. Let G̃
be the general spin group GSpin(V ) associated to V . For any compact open
subgroup K ⊆ G(A f ), we set K̃ to be its preimage in G̃(A f ). Then we denote
by XK the double coset

G̃(Q)\(SO(p, q) × G̃(A f ))/(SO(p) × SO(q))K̃ .

Let G̃(Q)+ ⊆ G̃(Q) be the subgroup consisting of elements with totally
positive spinor norm, which can be viewed as the subgroup of G̃(Q) lying in
the identity component of the adjoint group of G̃(R). Write

G̃(A f ) =
∐
j

G̃(Q)+g j K̃ ,

one has that the decomposition of XK into connected components is

XK =
∐
g j

�g j \D,
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where �g j is the image of G̃(Q)+ ∩ g j K̃ g−1
j in SO0(p, q). When g j = 1,

we denote by �K the arithmetic group �1 = K ∩ G(Q) and YK = �K \D
the connected component of XK . Throughout this section, we assume that
�1 is torsion free. The arithmetic manifold YK inherits a natural Riemannian
metric from the Killing form on the Lie algebra ofG(R), making it a complete
manifold of finite volume.

2.4 L2-cohomology on arithmetic manifolds

Let �i
(2)(YK ,C) be the space of C-valued smooth square integrable i-forms

on YK whose exterior derivatives are still square integrable. It forms a complex
�•

(2)(YK ,C) under the natural exterior differential operator

d : �i
(2)(YK ,C) → �i+1

(2) (YK ,C).

The L2-cohomology H∗
(2)(YK ,C) of YK is defined as the cohomology of the

complex�•
(2)(YK ,C).With the distribution exterior derivative d̄, one canwork

with the full L2-spaces Li
(2)(YK ,C) instead of just smooth forms, i.e. ω ∈

Li
(2)(YK ,C) is a square integrable i-form and d̄ω remains square integrable,

then we can define the reduced L2-cohomology group to be

H̄ i
(2)(YK ,C) = {ω ∈ Li

2(YK ,C) : d̄ω = 0}/{d̄ Li−1
(2) (YK ,C)},

where {d̄ Li−1
(2) (YK ,C)} denotes the closure of the image Im d̄ in Li

2(YK ,C).

By Hodge theory, the group H̄ i
(2)(YK ,C) is isomorphic to the space of L2-

harmonic i-forms, which is a finite dimensional vector space with a natural
Hodge structure (cf. [10]). As YK is complete, there is an inclusion

H̄ i
(2)(YK ,C) ↪→ Hi

(2)(YK ,C), (2.1)

and it is an isomorphism when Hi
(2)(YK ,C) is finite dimensional.

Let �i (YK ,C) be the space of smooth i-forms on YK . The inclusion

�i
(2)(YK ,C) ↪→ �i (YK ,C)

induces a homomorphism

Hi
(2)(YK ,C) → Hi (YK ,C), (2.2)
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between the L2-cohomology group and ordinary de-Rham cohomology group.
We denote by H̄ i (YK ,C) the image of H̄ i

(2)(YK ,C) in Hi (YK ,C). In general,
the mapping (2.2) is neither injective nor surjective, but as we will see later
in §3.1, the maps (2.1) and (2.2) become isomorphisms when i is sufficiently
small. Since XK is a finite disjoint union of arithmetic manifolds we can
similarly define the groups H̄ k(XK ,C). Finally we set

H̄ i (Sh(G),C) = lim−→
K

H̄ i (XK ,C) and H̄ i (Sh0(G),C) = lim−→
K

H̄ i (YK ,C).

2.5 Refined Hodge decomposition

We recall from [3] that the decomposition of exterior powers of the cotangent
bundle of D under the action of the holonomy group, i.e. a maximal compact
subgroup of G(R), yields a natural notion of refined Hodge decomposition
of the cohomology groups of the associated locally symmetric spaces. Let
g = k ⊕ p be the (complexified) Cartan decomposition of G(R) associated
to some base-point in D. As a representation of SO(p,C) × SO(q,C) the
space p is isomorphic to V+ ⊗ V ∗− where V+ = C

p (resp. V− = C
q ) is

the standard representation of SO(p,C) (resp. SO(q,C)). The refined Hodge
types correspond to irreducible summands in the decomposition of ∧•p∗ as a
(SO(p,C) × SO(q,C))-module. In the case of the group SU(n, 1) (then D is
the complex hyperbolic space) it is an exercise to check that one recovers the
usual Hodge-Lefschetz decomposition. In general the decomposition is much
finer. In our orthogonal case, it is hard to write down the full decomposition
of ∧•p into irreducible modules. Note that, as a GL(V+) × GL(V−)-module,
the decomposition is already quite complicated. We have (see [21, Equation
(19), p. 121]):

∧R (V+ ⊗ V ∗−) ∼=
⊕
μ�R

Sμ(V+) ⊗ Sμ∗(V−)∗. (2.3)

Here we sum over all partition of R (equivalently Young diagram of size
|μ| = R) and μ∗ is the conjugate partition (or transposed Young diagram).

Since ∧•p = ∧•(V+ ⊗ V ∗−), the group SL(q) = SL(V−) acts on ∧•p∗.
We will be mainly concerned with elements of (∧•p∗)SL(q)—that is elements
that are trivial on the V−-side. In general (∧•p∗)SL(q) is strictly contained in
(∧•p∗)SO(q). If q is even there exists an invariant element

eq ∈ (∧qp∗)SO(p)×SL(q),

the Euler class/form, see [3, §5.13.1]. We define eq = 0 if q is odd.
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The subalgebra ∧•(p∗)SL(q) of ∧•(p∗) is invariant under K∞ = SO(p) ×
SO(q). Hence, we may form the associated subbundle

F = D ×K∞ (∧•p∗)SL(q)

of the bundle

D ×K∞ (∧•p∗)

of exterior powers of the cotangent bundle of D. The space of sections of F is
invariant under the Laplacian and hence under harmonic projection, compare
[18, bottom of p. 105]; it is a subalgebra of the algebra of differential forms.

We denote by H̄•(YK )SC the corresponding subspace of H̄•(YK ). When
q = 1 we have H̄•(YK )SC = H̄•(YK ) and when q = 2 we have

H̄•(YK )SC = ⊕p
r=1 H̄

r,r (YK ).

Remark 2.1 The subscript SC refers to special classes and not to special cycles.
We will see that special cycles give special classes. However, in general there
are more special classes than classes of special cycles.

It follows from e.g. [3, §5] that we have a decomposition:

H̄•(YK )SC = ⊕[p/2]
t=0 ⊕p−2t

k=0 ekq H̄
t×q(YK ). (2.4)

where H̄ t×q(YK ) is the part of the cohomology associated to some particular
cohomologicalmodule of SO(p, q) of primitive degree tq (see §4.5 below). By
analogy with the usual Hodge-Lefschetz decomposition, we call H̄r×q(YK )

the primitive part of H̄rq(YK )SC. We see then that if q is odd the above special
classes have pure refined Hodge type and if q is even each such class is the
sum of at most r + 1 refined Hodge types.

Remark 2.2 When q = 1 there is a unique cohomological (g, K∞)-module in
degree r for SO(p, 1) and we simply have H̄r×1(YK ,C) = H̄r (YK ,C).

Remark 2.3 When q = 2 and hence D is Hermitian, we know that D is a
domain in P(V ⊗ C). There is an ample line bundle L on YK — the Hodge
bundle — which is the descent ofOP(V⊗C)(1) (cf. [47, §4.3]). The Euler form
e2 is just the first Chern class c1(L) of L (up to a scalar), which is the Kähler
class. Note that Theorem 2.5 below implies that L is spanned by connected
Shimura subvarieties in YK of codimension one associated to SO(p − 1, 2).

The cup product with the Kähler class induces a Lefschetz structure on
H̄∗(YK ,C),

Lk : H̄ i (YK ,C) → H̄ i+2k(YK ,C).
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For r <
p−1
2 , the pure Hodge structure

H̄2r (YK ,C) =
⊕

i+ j=2r

H̄ i, j (YK )

is compatible with the Lefschetz structure. It also coincides with the Hodge
structure on the relative Lie algebra cohomology group H∗(g, K∞; Ar,r )

where Ar,r is the unique cohomological (g, K∞)-module that occurs prim-
itively in bi-degree (r, r) for SO(p, 2), see [3, §5]. So H̄r×2(YK ,C) =
H̄r,r
prim(YK ) and the decomposition (2.4) amounts to

H̄r,r (YK ) =
r⊕

t=0

L2r−2t H̄ t×2(YK ,C),

see [3, §13].

2.6 Special cycles on arithmetic manifolds

Given a vector x ∈ V r , we let U = U (x) be the Q-subspace of V spanned by
the components of x. Let Dx ⊂ D be the subset consisting of q-planes which
lie inU⊥. The codimension rq natural cycle c(U, g j , K ) on �g j \D is defined
to be the image of

�g j ,U\Dx → �g j \D (2.5)

where �g j ,U is the stabilizer of U in �g j . When K is small enough, (2.5)
is an embedding and hence the natural cycles on �g j \D are just arithmetic
submanifolds of the same type.

For any β ∈ Symr×r (Q), we set

�β = {x ∈ V r | 1
2
(x, x) = β, dimU (x) = rankβ}.

To any K -invariant Schwartz function ϕ ∈ S(V (A f )
r ) and any β ∈

Symr×r (Q) we associate a special cycle on XK defined as the linear com-
bination:

Z(β, ϕ, K ) =
∑
j

∑
x∈�β(Q)

mod �′
g j

ϕ(g−1
j x)c(U (x), g j , K ). (2.6)
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Remark 2.4 Let � ⊂ V be an even lattice. For each prime p, we let �p =
� ⊗Zp and let Kp be the subgroup of G(Qp) which leave �p stable and acts
trivially on �∨

p . Then

�K = {γ ∈ SO(�) | γ acts trivially on �∨/�}
and YK = �K \D. Moreover: an element β as above is just a rational n and a
K -invariant function ϕ ∈ S(V (A f )) corresponds to a linear combination of
characteristic functions on �∨/�. Special cycles in YK are therefore linear
combinations of the special cycles

∑
x∈�n mod �K
x≡γ mod �

�x\Dx ,

as n ∈ Q and γ ∈ �∨/� vary. Here we have denoted by �x is the stabilizer
of the line generated by x in �K .

In particular, in the moduli space of quasi-polarized K3 surfaces, the NL-
divisors Dh,d of Maulik and Pandharipande [see (1.3)] are particular special
cycles and any special cycle is a linear combination of these.

Let t be rank of β. Kudla and Millson [38] have associated a Poincaré dual
cohomology class {Z [β, ϕ, K ]} in H̄ tq(XK ,C) and we define

[β, ϕ] = {Z [β, ϕ, K ]} ∧ er−t
q ∈ H̄rq(XK ,C).

We shall deduce from Kudla-Millson theory the following:

Theorem 2.5 The Euler form eq belongs to the subspace spanned by the
classes {Z [β, ϕ, K ]} in Hq(XK ,C) when q is even.

It follows that [β, ϕ] can be viewed as the class of a linear combination of
arithmetic manifolds of the same type.

Definition 2.6 Let

SCrq(Sh(G)) ⊆ Hrq(Sh(G),C)

be the subspace spanned by the [β, ϕ] and set
SCrq(XK ) := SCrq(Sh(G))K , (2.7)

to be the K -invariant subspace. Then we define the space of special cycles on
YK to be the projection of SCrq(XK ) to Hrq(YK ,C), which is denoted by
SCrq(YK ).
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According to Theorem2.5, the subspace SCrq(YK ) is spanned by arithmetic
submanifolds in YK of the same type and codimension rq. Note that Kudla
[37] proves that SC•(YK ) is a sub-ring of H•(YK ,C).

2.7 Main result

It is proved in [3] that codimension rq special cycles yield classes that belong
to the subspace H̄rq(YK )SC. Recall decomposition (2.4):

H̄ ·(YK )SC = ⊕[p/2]
t=0 ⊕p−2t

k=0 ekq H̄
t×q(YK ).

In what follows we will consider the primitive part of the special cycles i.e.
their projections into the subspace associated to the refined Hodge type r × q.

We can now state our main result:

Theorem 2.7 Let YK be a connected arithmeticmanifold associated toSO(V )

and let r < min{ p+q−1
3 ,

p
2 }. Then the subspace H̄r×q(YK ,C) is spanned by

the Poincaré dual of special cycles, i.e. the natural projection

SCrq(YK ) → H̄r×q(YK ,C)

is surjective.

Remark 2.8 The bound p+q−1
3 is conjectured to be the sharp bound; see [3]

for some evidences.

3 Consequences of the general theorem

To apply Theorem 2.7 we need to relate L2-cohomology groups and ordinary
de Rham cohomology groups. This can be done using general results of Borel
and Zucker that we review now.

3.1 A theorem of Zucker

Let P0 be a minimal parabolic subgroup of G(R) and q0 the associated Lie
algebra with Levi decomposition q0 = l0 + u0. Let A ⊆ P0 be the maximal
Q-split torus and a0 the associated Lie algebra. We consider the Lie algebra
cohomology H∗(u,C) as a l0-module. Then Zucker (see also [12]) shows that

Theorem 3.1 [67, Theorem 3.20] The mapping (2.2) Hi
(2)(YK ,C) →

Hi (YK ,C) is an isomorphism for i ≤ cG, where the constant

cG = max{k : β + ρ > 0 for all weights β of Hk(u,C)},
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where ρ be the half sum of positive roots of a0 in u. In particular, cG is at least
the greatest number of {k : β + ρ > 0 for all weights β of ∧k u∗} which is
greater than [m4 ].
Remark 3.2 The result in [67] is actually much more general. Zucker has
shown the existence of such a constant not only for cohomology groups with
trivial coefficients, but also for cohomology groups with non-trivial coeffi-
cients.

Example 3.3 When G(R) = SO(p, 1) and YK is a hyperbolic manifold, the
constant cG is equal to [ p2 ] − 1 (cf. [67, Theorem 6.2]) and thus we have the
isomorphisms

H̄ i
(2)(YK ,C)

∼−→ Hi
(2)(YK ,C)

∼−→ Hi (YK ,C) (3.1)

for i ≤ [ p2 ] − 1.

Example 3.4 In case G(R) = SO(p, 2) and YK is locally Hermitian symmet-
ric, we can have a better bound for i from Zucker’s conjecture to ensure (2.2)
being an isomorphism. Remember that the quotient YK is a quasi-projective

variety with the Baily-Borel-Satake compactification Y
bb
K , then Zucker’s con-

jecture (cf. [43,63]) asserts that there is an isomorphism

Hi
(2)(YK ,C) ∼= I Hi (YK ,C), (3.2)

where I Hi (YK ,C) is the intersection cohomology on Y
bb
K . Since the boundary

of Y
bb
K has dimension at most one, we have an isomorphism

Hi
(2)(YK ,C) ∼= I Hi (YK ,C) ∼= Hi (YK ,C) = H̄ i (YK ,C), (3.3)

for i < p − 1. Moreover, a result of Harris and Zucker (cf. [29, Theorem
5.4]) shows that the map (3.3) is also a Hodge structure morphism. Therefore,
Hi (YK ,C) has a pure Hodge structure when i < p − 1.

In the next paragraph we explain how to deduce Theorems 1.1, 1.5 and 1.7
from the Introduction from Theorem 2.7.

3.2 Non-compact hyperbolic manifolds and Shimura varieties

For cohomology classes on hyperbolic manifolds and locally Hermitian sym-
metric varieties, we have the following consequences of Theorem 2.7.
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Theorem 3.5 Let Y = YK be a congruence arithmetic hyperbolic manifold
associated to the group SO(V ) as above with q = 1. Then, for all r < p/3,
the group Hr (Y,Q) is spanned by the classes of special cycles.

Proof Wemay assume that p > 3 (otherwise the statement is trivial). Then r <

p/3 implies r < [p/2] − 1, so that Hr (Y,C) ∼= H̄r (Y,C). Now Remark 2.2
implies that H̄r (Y,C) = H̄r×1(Y,C) and the assertion follows from Theorem
2.7. ��

This obviously implies Theorem 1.7 from the Introduction.
Consider now the case of the Shimura varieties associated to the group

SO(V ) as above with q = 2.

Theorem 3.6 Let Y = YK be a smooth Shimura variety associated to the
group SO(V ) as above with q = 2. Then, for all r < (m − 1)/3 the subspace
Hr,r (Y ) ⊂ H2r (Y,C) is defined overQ and spanned by the classes of special
cycles.

If we moreover assume r <
p
4 then H2r (Y,Q) = Hr,r (Y )∩H2r (Y,Q) and

therefore H2r (Y,Q) is spanned by the classes of special cycles.

Proof We may assume that p ≥ 3 for otherwise the statement is trivial. Then
if r < (p+1)/3 we have 2r < p−1 and the cohomology group H2r (Y,C) is
isomorphic to H̄2r (Y,C), see Example 3.4. Moreover, it follows from Remark
2.3 that Hr,r (Y ) decomposes as

Hr,r (Y ) =
r⊕

t=0

L2r−2t H t×2(Y,C).

By Theorem 2.7, we know that the subspace Ht×2(Y,C) is spanned by
the classes of special cycles. Note that the cup product with the Kähler form
is actually to take the intersection with the hyperplane class e2, which is a
linear combination of special cycles by Theorem 2.5. Since the intersections
of special cycles remain in the span of special cycles, Theorem 3.6 follows.

When 4r < p, the Hodge structure H2r (Y,C) is of pure weight (r, r) (but
is not (in general) if 4r ≥ p, see [3, §5.11]). This immediately yields the last
assertion. ��
Remark 3.7 When (p, q) = (3, 2), Y is a Siegel modular threefold. In this
case, we recover the surjectivity result proved in [30].

Now suppose Y = YK is a connected Shimura variety �\D (� = �K ) but
not necessarily smooth. Then Y is a smooth quasi-projective orbifold (cf. [27,
Section 14]), as we can take a neat subgroup �′ ⊆ � so that Y ′ = �′\D is
smooth. In this case, we get
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Corollary 3.8 The cohomology group H2r (Y,Q) is spanned by Poincaré dual
of special cycles for r <

p
4 . Moreover, PicQ(Y ) ∼= H2(Y,Q) is spanned

by special cycles of codimension one. In particular, the Noether-Lefschetz
conjecture holds on Kg for all g ≥ 2.

Proof With notations as above, by Theorem 3.6, H2r (�′\D,Q) = SC2r (Y ′)
is spanned by the special cycles of codimension r when r <

p
4 . Note that

H2r (Y,Q) = H2r (Y ′,Q)�/�′
and SC2r (Y ) = SC2r (Y ′)�/�′

,

it follows that
SC2r (Y ) = H2r (Y,Q). (3.4)

Next, since Y is a smooth quasi-projective orbifold and H1(Y,Q) = 0
(cf. Remark 4.1), the first Chern class map

c1 : PicQ(Y ) → H2(Y,Q),

is an injection by [27, Proposition 14.2] and hence has to be an isomorphism
by (3.4). ��

3.3 More applications

CombinedwithBorcherds’ theta lifting theory, onemay followBruinier’swork
to give an explicit computation of the Picard number for locally Hermitian
symmetric varieties associated to an even lattice.

Let M ⊂ V be an even lattice of level N and write M∨ for the dual lattice.
Let �M ⊂ SO(M) be the subgroup consisting of elements in SO(M) acting
trivially on the discriminant group M∨/M . Then the arithmetic manifold YM
associated to M is defined to be the quotient �M\D. In this case, Bruinier has
shown that there is a natural relation between the space of vector-valued cusp
forms of certain type and SCq(�M\D).

For the ease of readers, let us recall the vector-valued modular forms with
respect to M . The metaplectic group Mp2(Z) consists of pairs (A, φ(τ )),
where

A =
(
a b
c d

)
∈ SL2(Z), φ(τ) = ±√

cτ + d.

Borcherds has defined a Weil representation ρM of Mp2(Z) on the group ring
C[M∨/M] in [6, §4]. LetH be the complex upper half-plane. For any k ∈ 1

2Z,
a vector-valued modular form f (τ ) of weight k and type ρM is a holomorphic
function on H, such that
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f (Aτ) = φ(τ)2k · ρM(g)( f (τ )), for all g = (A, φ(τ )) ∈ Mp2(Z).

Let Sk,M be the space of C[M∨/M]-valued cusp forms of weight k and type
ρM . Then we have

Corollary 3.9 Let YM be the locally Hermitian symmetric variety associated
to an even lattice M of signature (p, 2). Then

dimQ PicQ(YM) = 1 + dimC Sm/2,M

if M = U ⊕U (N )⊕ E for some even lattice E, where U (N ) denotes the rank

two lattice

(
0 N
N 0

)
.

Proof By [14, Theorem 1.2], there is an isomorphism

Sm/2,M
∼−→ SC2(YM)/ < L > (3.5)

via the Borcherd’s theta lifting, where L is the line bundle defined in Remark
2.3. Note that SC2(YM) ∼= PicC(YM) by Corollary 3.8. It follows that
dimQ PicQ(YM) = 1 + dimC Sm/2,M . ��

The dimension of Sk,M has been explicitly computed in [13]. In particular,
when M = � as in the Introduction, one can get a simplified formula (1.1) of
dim Sk,� in [42] §2.5. As � contains two hyperbolic planes, then Corollary
1.3 follows from Theorem 3.6 and Corollary 3.9.

Remark 3.10 One can use a similar idea to compute the q-th Betti number
of arithmetic manifolds associated to a unimodular even lattice of signature
(p, q). Note that there is a similar map of (3.5) given in [15, Corollary 1.2 ].

3.4 Outline of the proof of Theorem 2.7

The proof of Theorem 2.7 relies on the dictionary between cohomology and
automorphic forms specific to Shimura varieties which allows to translate geo-
metric questions on Shimura varieties into purely automorphic problems. We
follow the lines of [3] but have to face the difficulty that our locally symmetric
spaces are not compact.

The first step consists in obtaining an understanding in terms of automorphic
forms of H̄n(YK ,C)SC. This is the subject of Sect. 4. One first argues at the
infinite places. By Matsushima’s formula the cohomology groups H̄ ·(YK ,C)

can be understood in terms of the appearance in L2(�K \SO(p, q)) of certain
— called cohomological — representations π∞ of SO(p, q). It follows from
the Vogan-Zuckerman classification of these cohomological representations
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that the only cohomological representations π∞ contributing to H̄ ·(YK ,C)SC

are of very simple type.
Section 5 then briefly Arthur’s endoscopic classification of automorphic

representations of G. We recall how the latter was used in [3] to prove that
automorphic representations that contribute to the low degree cohomology
have a very special Arthur parameter (see Theorem 5.8). These representations
occur in the discrete L2 automorphic spectrum and as such are either cuspidal
or residual. For cuspidal ones, it was proved in [3] that having this “very special
Arthur parameter” forces them to occur as θ -lifts. One main new ingredient
of this paper is the extension of this latter result to residual representations.
In Sect. 6 we first show that residual representations with this “very special
Arthur parameter” occur as residues of very particular Eisenstein series (see
Proposition 6.2). The results of Sects. 5 and 6 are then used in Sect. 7 to
prove that all (both cuspidal and residual) automorphic representations that
contributes to the low degree cohomology occur as θ -lifts (see Theorem 7.7).

We finally prove Theorem 2.7 in Sect. 8. Here, following [3], we show
that not only is the low degree cohomology generated by theta-lifts, but by
special theta lifts, where the special theta lift restricts the general theta lift to
(vector-valued) Schwartz functions introduced by Kudla andMillson.We then
conclude the proof by appealing to the theory of Kudla-Millson that implies
that the subspace of the cohomology generated by classes of special cycles is
exactly the one obtained from the special theta lifts.

4 Automorphic description of the cohomology groups of YK

4.1 Spectrum decomposition of cohomology

Let L2(�K \G(R)) be the space of square integrable functions on �K \G(R)

and let L2(�K \G(R))∞ be the subspace of smooth vectors. It is a (g, K∞)-
module and Borel shows that

H•
(2)(YK ,C) ∼= H•(g, K∞; L2(�K \G(R))∞).

We can exploit Langlands’ spectral decomposition of L2(�K \G(R)) to obtain
the corresponding decomposition of the cohomology group.

Let L2
dis(�K \G(R))∞ be the discrete spectrum of L2(�K \G(R))∞. Borel

and Casselman [9] have shown that the reduced L2-cohomology group is
isomorphic to the discrete part

H•(g, K∞; L2
dis(�K \G(R))∞)
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of H•(YK ,C). Note that the discrete spectrum of L2(�K \G(R)) decomposes
as a Hilbert sum of irreducible G(R)-modules with finite multiplicity and we
have Matsushima’s formula [11]:

H̄•
(2)(YK ,C) ∼=

⊕
π∞

m(π∞)H•(g, K∞; V∞
π∞). (4.1)

where (π∞, Vπ∞) runs over all the unitary representation ofG(R) occurring in
the discrete spectrum of L2(�K \G(R))with multiplicitym(π∞). The isomor-
phism (4.1) also yields a decomposition of H̄ i (YK ,C) and we can denote by
H̄•(g, K∞; Vπ∞) the corresponding image of H•(g, K∞; V∞

π∞) in H̄ i (YK ,C).

Remark 4.1 Combined with Zucker’s result and classification of cohomo-
logical (g, K∞)-modules, we can obtain a series of vanishing results of
cohomology groups on arithmetic manifolds of orthogonal type. For instance,
when G(R) = SO(p, 2) and p ≥ 3, we have H̄1(YK ,C) ∼= H1(YK ,C) = 0
because there is no (g, K∞)-module with non-zero first relative Lie algebra
cohomology (cf. [3, §5.10]). This implies that the Albanese variety of a con-
nected Shimura variety of orthogonal type is trivial (cf. [34]).

4.2 Adelic version

The quotient XG := G(Q)\G(A) has finite volume with respect to the natural
Haar measure. Let L2(XG) be the Hilbert space of square integrable functions
on XG . According to Langlands’ spectral decomposition theory, the discrete
part L2

dis(XG) of L2(XG)

L2
dis(XG) =

⊕̂
mdis(π)π

is the Hilbert sum of all irreducible G(A)-submodules π in L2(XG) with
finite non-zero multiplicity mdis(π). We shall denote by A2(G) the set of
those representations and byAc(G) the subset of those that are cuspidal. Any
π ∈ A2(G) has a unique decomposition

π = ⊗vπv,

where πv is an admissible representation of G(Qv) over all places. Moreover,
πv is unramified for all v outside a finite set S of places, see [19]. We write

π = π∞ ⊗ π f ∈ A2(G),
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and let πK
f be the finite dimensional subspaces of K -invariant vectors in π f .

Then we obtain the decomposition

H̄ i (XK ,C) ∼=
⊕

mdis(π)H̄ i (g, K ; V∞
π∞) ⊗ πK

f . (4.2)

A global representation π ∈ A2(G) has nonzero contribution to H̄ k
(2)(XK ,C)

via (4.2) and hence to H̄ k
(2)(YK ,C) only when it has cohomology at infinity.

We now review the Vogan-Zuckerman classification of cohomological repre-
sentations of G(R).

4.3 Cohomological (g, K∞)-module

In this paragraph we let G = SO(p, q) and fix a maximal compact subgroup
K∞ ∼= SO(p)×SO(q). Denote by θ the corresponding Cartan involution and
let g0 = k0 + p0 be the associated Cartan decomposition of g0 = Lie(G). We
write a = (a0)C for the complexification of a real Lie algebra a0.

A unitary representation (π, Vπ) of G is cohomological if the associated
(g, K∞)-module (π∞, V∞

π ) has nonzero relative Lie algebra cohomology, i.e.

H ·(g, K∞; V∞
π ) �= 0.

The unitary cohomological (g, K∞)-modules have been classified byVogan
and Zuckerman [65] as follows: let it0 ⊆ k0 be a Cartan subalgebra of k0. For
x ∈ t0, let q be the sum of nonnegative eigenspaces of ad(x). Then q is a
θ -stable parabolic subalgebra of g with a θ -stable Levi decomposition

q = l + u.

The normalizer of q in G is the connected Levi subgroup L ⊆ G with Lie
algebra l0 = l ∩ g0. Via cohomological induction q determines a unique irre-
ducible unitary representation Aq of G. More precisely, let h ⊇ t to a Cartan
subalgebra h of g and we fix a positive system 
+(h, g) of roots of h in g.
Let ρ be the half sum of roots in 
+(h, g) and ρ(u ∩ p) the half sum of roots
of t in u ∩ p. Denote by μ(q) the irreducible representation of KR of highest
weight 2ρ(u ∩ p). Then we have

Proposition 4.2 The module Aq is the unique irreducible unitary (g, K∞)-
module such that:

(1) Aq contains the K∞-type μ(q) occurring with multiplicity one.
(2) Aq has the infinitesimal character ρ.
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Moreover, let (π, Vπ) be an irreducible unitary (g, K∞)-module such that

H∗(g, K∞; V∞
π ) �= 0.

Then there is a θ -stable parabolic subalgebra q = l ⊕ u of g so that π ∼= Aq

and
Hi (g, K∞; Vπ) ∼= Homl∩k(∧i−dim(u∩p)(l ∩ p),C). (4.3)

Note that the isomorphism class of Aq only depends on the intersection
u∩ p, we may furthermore choose q such that the Levi subgroup L associated
to l has no non-compact (non-abelian) factor.

The unitary (g, K∞)-modules with nonzero low degree cohomology are
very particular (see [3, Proposition 5.16]):

Proposition 4.3 Let Aq be a cohomological (g, K∞)-module. Suppose that
R = dim(u ∩ p) is strictly less than p + q − 3 and pq/4. Then either L =
C × SO(p − 2r, q) with C ⊆ K∞ and R = rq or L = C × SO(p, q − 2r)
with C ⊂ K∞ and R = rp.

Coming back to the global situation, one can define subspaces of H̄ i (YK ,C)

coming from special automorphic representations.

Definition 4.4 Let

H̄ i (Sh(G),C)Aq ⊆ H̄ i (Sh(G),C)

be the subspace consisting of cohomology classes contributed from represen-
tations π ∈ A2(G), whose infinite component π∞ has underlying (g, K∞)-
module Aq. Similarly, we can define H̄ i (Sh0(G),C)Aq , H̄

i (XK ,C)Aq and
H̄ i (YK ,C)Aq .

By Proposition 4.2, the irreducible summands of the decomposition of ∧•p
give a refined Hodge structure of H•(g, K∞, Vπ). Recall that the space p =
C

p ⊗ (Cq)∗, where Cp (resp. Cq ) is the standard representation of SO(p,C)

(resp. SO(q,C)). Then there is a decomposition

∧R p =
⊕
μ�R

Sμ(Cp) ⊗ Sμ∗(Cq)∗ (4.4)

where μ is a partition of R, μ∗ is the conjugate partition and Sμ(Cp) is
the Schur functor associated to μ. Then the cohomological module Aq with
Levi subgroup C × SO(p − 2r, q) in Proposition 4.3 corresponds to the
irreducible representation S[r×q](Cp) ⊗ (∧q

C
q)r of SO(p,C) × SO(q,C),

where S[r×q](Cp) is the harmonic Schur functor associated to the partition
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(q, q . . . , q) of R = rq (see [3, §5.11]). It follows that H̄rq(Sh(G),C)Aq is
precisely the group H̄r×q(Sh(G),C) considered in Theorem 2.7.

Now let eq ∈ �q(D) be the Euler form defined in [3]; it is a K∞-invariant
q-form on D which is nonzero if and only if q is even. Wedging with the
(qk)-form ekq induces a morphism:

ekq : Hi (g, K∞; Aq) → Hi+qk(g, K∞; Aq) (4.5)

which is an isomorphism when q is even and k small enough. We refer the
readers to [3, Proposition 5.15] for the description of Hi (g, K∞; Aq).

In case G = SO0(p, 2), we write Ar,r for the cohomological (g, K∞)-
module with corresponding Levi subgroup U(1)r × SO(p − 2r, 2) for r <

p
2 .

Then H2k(g, K∞, Ar,r ) has a pure Hodge structure of type (k, k). In small
degree, under the isomorphism (4.5), we recover the Hodge-Lefschetz struc-
ture on the cohomology group of connected Shimura varieties viaMatsushima
formula.

5 Arthur’s classification theory

Langlands and Arthur theories investigate how the discrete automorphic rep-
resentations are assembled from the local representations.

We first recall that the local Langlands classification says that the set of
admissible representations of G(Qv) are parametrized by equivalence classes
of morphisms,

φv : LQv −→ LG. (5.1)

where LQ∞ = WR, if v = ∞, and LQp = WQp ×SU(2), if v is a (finite) prime
p, in any case WQv is the local Weil group of Qv and LG the complex dual
group. We call φv a Langlands parameter and denote by

∏
(φv) the packet of

admissible representations associated to φv. If we replace G by GL(N ), then
the local Langlands packet

∏
(φv) contains exactly one element.

5.1 Formal parameters of orthogonal groups

Arthur [2] parametrizes discrete automorphic representations of G by some
set of formal sums of formal tensor products (called global Arthur parameters)

� = �(μ j � Ra j ), (5.2)

where each μ j is an irreducible, unitary, cuspidal automorphic representation
of GL(d j ), Ra j denotes the irreducible representation of SL(2,C) of dimen-
sion a j ,

∑
a jd j = N , and we have:
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(1) the μ j � Ra j are all distinct, and
(2) for each j , we have μθ

j = μ j .
To each such global Arthur parameter �, we associate an irreducible rep-

resentation �� of the general linear group GL(N ,A): the representation ��

is the induced representation

ind(�μ1,a1 ⊗ �μ2,a2 . . . ⊗ �μ�,a�
), (5.3)

where the inducing parabolic subgroup of GL(N ) has Levi factor GL(d1a1)×
· · · ×GL(d�a�). Here �μ j ,a j is the unique Langlands quotient of the normal-
ized parabolically induced representation

ind(μ j | det |
a j−1
2

A ⊗ μ j | det |
a j−3
2

A ⊗ . . . ⊗ μ j | det |
1−a j
2

A ). (5.4)

from a parabolic subgroup of GL(d ja j ) whose Levi factor is the group of
block diagonal matrices GL(d j ) × . . . × GL(d j ) (a j -copies).

5.2 Local parameters

Let k = Qv with v finite or infinite.Arthur has duplicated the construction from
the global case to define the local parameters of admissible representations of
G(k). More precisely, one can define the local Arthur parameter of G(k) to be
the formal symbol

�k = �(μ j � Rai ) (5.5)

where μi is a tempered, θ -stable, irreducible representation of GL(di , k) that
is square integrable modulo the center and Rai is the ai -dimensional irre-
ducible representation of SL(2,C). Similar as the global construction (5.4), it
determines a unique irreducible representation ��k of GL(N , k).

By local Langlands correspondence, the local Arthur parameter �k can be
represented by a continuous homomorphism

�k : Lk × SL2(C) −→ LG, (5.6)

which has bounded image on its restriction to Lk and is algebraic on SL(2,C).
By abuse of notation, we still use�k to denote this homomorphism. One attach
an L-map φ�k : Lk → LG to �k by composition, i.e.

φ�k (w) = �k

(
w,

( |w|1/2
|w|−1/2

))
. (5.7)

Note that if G is not quasi-split, the map φ�k might not be relevant (in Lang-
lands’ sense) and therefore does not define an L-parameter in general.However
outside a finite set of places φ�k indeed defines a (relevant) L-parameter.
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Remark 5.1 As in [3], here we ignore the complication of lack of generalized
Ramanujan conjecture just for simplicity of notations. In general setting, we
need to introduce a larger set of homomorphisms without the boundedness
condition.Then the approximation toRamanujan’s conjecture in [44] is enough
for our purpose (see also [5] §3.1).

5.3 Arthur’s packets

Given a localArthur parameter�k , Arthur has associated afinite packet
∏

(�k)

of representations of G(k) with multiplicities to each �k using the twisted
Langlands-Shelstad transfer. The details of transfer are not important for us,
so we omit the description and only recall the relevant properties of Arthur
local packets. We will first describe these properties when G is quasi-split.
Suppose that G = G∗ is quasi-split.

Let π be a unitary representation of G = G(k). By the local Langlands’
classification [11, TheoremXI.2.10] there exist ‘Langlands data’ P , σ , λ, with
λ ∈ (a∗

P)+, such that π is the unique quotient of the corresponding standard
inducedmodule. The parabolic subgroup P comeswith a canonical embedding
of its dual chamber (a∗

P)+ into the closure (a∗
B)+ of the dual chamber of the

standardBorel subgroup B ofGL(N ).We shall write�π for the corresponding
image of the pointλ; and call it the exponentof the representationπ . Onewrites

�′ ≤ �, �′, � ∈ (a∗
B)+,

if � − �′ is a nonnegative integral combination of simple roots of (B, AB).
This determines a partial order.

The key property of local Arthur packets that we will use is the following
proposition that follows from [2, Theorem 2.2.1 and Eq. (2.2.12)]. By local
Langlands correspondence, each unitary representation π ofG(k) belongs to a
unique L-packet

∏
(φ) associated to an L-parameterφ : Lk → LG.Moreover:

if π and π ′ both belong to
∏

(φ) then �π = �π ′ , we may therefore define �φ

as their common value.

Proposition 5.2 Let �k be a local Arthur parameter. Then the associated L-
packet

∏
(φ�k ) is included in the Arthur packet

∏
(�k). Moreover: if π ∈∏

(�k) then

�π ≤ �φ�k
.

Note that a global Arthur parameter� gives rise to a local Arthur parameter
�v at each place v. The global part of Arthur’s theory (see [2, Theorem 1.5.2])
then implies:
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Proposition 5.3 Letπ be an irreducible automorphic representation of G(A).
Then there exists a global Arthur parameter � such that πv ∈ ∏

(�v) at each
place v. Moreover, there exists a finite set S of places of Q containing all
infinite places such that for all v /∈ S, the representation πv is unramified and
its L-parameter is φ�v , in particular πv belongs to the L-packet

∏
(φ�v).

Suppose now that G is not quasi-split. Recall the map φ�k associated to
a local Arthur parameter �k might not be relevant (in Langlands’ sense) now
and therefore might not define a local L-packet. In particular Proposition 5.2
does not make sense. Arthur stable trace formula however allows to compare
the discrete automorphic spectrum of G with that of G∗. This is the subject
of work in progress of Arthur, the results being announced in [2, Chapter 9].
We will only need weak version of them that can be directly deduced from
what Arthur has already written in the quasi-split case. It first follows from [2,
Proposition 9.5.2] that:

(1) it corresponds to any irreducible automorphic representation π of G(A) a
global Arthur parameter �, and

(2) at each place, one can still define a local packet
∏

(�v) of irreducible
unitary representations of G(Qv) (via the stable trace transfer),

in such a way that Proposition 5.3 still holds when S is chosen so that for all
v /∈ S, the group G(Qv) = G∗(Qv) is quasi-split. We subsume this in the
following

Proposition 5.4 Let π be an irreducible automorphic representation of G(A)

which occurs (discretely) as an irreducible summand in L2(G(Q)\G(A)).
Then there exist a global Arthur parameter � and a finite set S of places
of Q containing all Archimedean ones such that for all v /∈ S, the group
G(Qv) = G∗(Qv) is quasi-split, the representation πv is unramified and the
L-parameter of πv is φ�v .

We now explain how to replace Proposition 5.2. Let v be a place ofQ and let
k = Qv . By composition (5.7) the local Arthur parameter �k still defines an
L-parameter for GL(N ). Let ��k be its exponent. Note that if G(k) = G∗(k)
is quasi-split case we have:

��k = �φ�k
.

Now recall that if π is a unitary representation of G = G(k) then π is the
unique quotient of some standard module St(π) associated to a Langlands
datum. Here again the inducing parabolic subgroup comes with a canonical
embedding of its dual chamber into the closure of the dual chamber of the
standard Borel subgroup B of GL(N ). Therefore the exponent �π still makes
sense as an element of (a∗

B)+.
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Now following [2, pp. 66–72] we may replace Proposition 5.2 by the fol-
lowing proposition (see also [4, Appendix A] and [3, Appendix] for similar
results and more details).

Proposition 5.5 Let k = Qv with v finite or not. For every irreducible unitary
representation π of G(k) that belongs to a local Arthur packet

∏
(�k) we

have:

�π ≤ ��k .

Remark 5.6 1. Due to our particular choice of groups here

St(π) = ind
(⊗(ρ,a,x)St(ρ, a)| · |x ⊗ σ

)

where each triplet (ρ, a, x) consists of a unitary cuspidal representation ρ of a
linear group, a integer a and positive real number x , St(ρ, a) is the correspond-
ing Steinberg representation — the unique irreducible sub-representation of
the representation induced from ρ| · |(a−1)/2 ⊗ . . . ⊗ ρ| · |(1−a)/2 — and σ is a
tempered representation of an orthogonal group of the same type as G(k) but
of smaller dimension. The set of x’s with multiplicities is the same as the real
part of the exponent of π .
2. Let φ be the L-parameter of π . By embedding LG into LGL(N ), we may
associate toφ an irreducible unitary representation ofGL(N , k). Arthur’s proof
of [2, Proposition 3.4.3] in fact shows that the latter occurs as an (irreducible)
sub-quotient of the local standard representation associated to the local Arthur
parameter �k .

5.4 Automorphic L-functions

Let π ∈ A2(G) and let� = �(μi �Rai ) be the associated global Arthur para-
meter. We refer to [8] for the definition of the local L-factor of an unramified
local admissible representation. Let S be a finite set of places that contains the
finite set of Proposition 5.4 and the set of places where some (μi )v is ramified.
We can then define the formal Euler product

LS(s, ��) =
∏
j

∏
v /∈S

L

(
s − a j − 1

2
, μ j,v

)
× · · · × L

(
s − 1 − a j

2
, μ j,v

)

and the partial L-function LS(s, π) as the formal Euler product
∏
v /∈S

L(s, πv).

It then follows from Proposition 5.4 that we have

LS(s, π) = LS(s, ��).

123



The Noether-Lefschetz conjecture and generalizations

Note that according to Jacquet and Shalika [32] this partial L-function is
absolutely convergent for Re(s) � 0 and extends to a meromorphic function
of s.

For a self-dual automorphic character η, we can similarly write LS(s, η ×
π) as the partial L-function associated to the parameter �((η ⊗ μi ) � Rai ).
Similarly, we can define the L-function L(s, ��, rG) attached to�, where rG
is the finite dimensional representation Sym2 if m is odd and ∧2 if m is even.
As in [3], we shall say that an automorphic representation π ∈ A2(SO(V )) is
highly non-tempered if its global Arthur parameter contains a factor η � Ra ,
where η is a quadratic character and 3a > m−1. Assuming further that π has
a regular infinitesimal character, the poles of the partial L-function of a highly
non-tempered representations can be easily determined using the following
lemma.

Lemma 5.7 Suppose π ∈ A2(SO(V )) is highly non-tempered with corre-
sponding factor η � Ra in its global Arthur parameter �. If π has a regular
infinitesimal character, then � must have the form:

� = (�(τ,b)τ � Rb) � η � Ra, (5.8)

where each pair (τ, Rb) satisfies the condition either b < a or b = a and
τ �= η, and

∑
(τ,b)

bdτ + a = N. Moreover, the partial L-function LS(s, ��) is

holomorphic for Re(s) > a+1
2 and has a simple pole at s = a+1

2 .

Proof See [3] Lemma 4.3. ��

5.5 Local parameters of cohomological representations

Letπ∞ be a unitary representation ofG(R)whose underlying (g, K∞)-module
is equivalent to Aq associated to the Levi subgroup L = U(1)r×SO(p−2r, q).
A description of the local Arthur packets that can contain π∞ was conjectured
in [3, §6.6] and is proved in [1]. It follows that if π∞ belongs to a local Arthur
packet

∏
(�) then the real part of the exponent �� satisfies

Re(��) ≥ (m − 2r − 2,m − 2r − 4, . . . , 0, . . . , 0, . . . , 2r + 2−m). (5.9)

The full force of this resultwon’t be usedhere. Let us brieflydescribe the idea
of proof of a somewhat weaker estimate that will be enough for our purpose.
Let P0 be the minimal standard parabolic subgroup of GR with Langlands
decomposition P0 = 0MA0N , where M ∼= SO(p − q,R) × (R×)q and A
is the maximal R-split torus of P0 and using the standard labeling of simple
roots:
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(P0, A0) = {ε1, ε2 . . . , εq},
we may write π∞ as the unique Langlands quotient of the normalized induced
representation

indGP0(e
ν ⊗ σ) (5.10)

(see [65, §7]) or, equivalently, π∞ is the unique irreducible submodule of the
normalized induced representation indGP0(e

−ν ⊗ σ) where

ν = m − 2r − 2

2
ε1 + m − 2r − 4

2
ε2 + · · · + m − 2r − 2q

2
εq ∈ a∗

0, (5.11)

called the exponent of π∞, is in the positive chamber of the Weyl group and
σ is an irreducible representation on the compact group SO(p − q).2 Using
Langlands’ notation we say that π∞ is a Langlands’ quotient of a standard
representation whose non-tempered “exponents” are

(zz̄)m−2r−2, (zz̄)m−2r−4, . . . , (zz̄)m−2r−2q .

It follows in particular fromProposition 5.5 that if� is a localArthur parameter
such that π∞ belongs to

∏
(�) then the real part of the exponent�� satisfies:

Re(��) ≥ (m − 2r − 2,m − 2r − 4, . . . ,m − 2r − 2q, 0, . . .

. . . , 0, 2r + 2q − m, . . . , 2r + 2 − m). (5.12)

It is slightly weaker than (5.9) but it will be enough for our purpose.

5.6 Cohomological automorphic representation for SO(V )

Coming back to the global case, we consider the Arthur parameters of the
automorphic representations π = ⊗vπv ∈ A2(SO(V )) with π∞ cohomolog-
ical. Let � be the global Arthur parameter of π . By Proposition 4.2, we know
that the infinitesimal character of π∞ is regular (equal to that of the trivial
representation) and so is the infinitesimal character of �� . This implies that
for any two factors μ � Ra and μ′ � Ra′ in �, we have μ �= μ′ unless a or
a′ = 1 (see [3, Appendix]).

Furthermore: ifπ∞ is the cohomological representation of SO(p, q) associ-
ated to some Levi subgroup L = SO(p−2r, q)×U(1)r , the inequality (5.12)
on exponents at infinity forces �∞ to contain a “big” SL(2,C)-factor Ra with
a ≥ m − 2r − 1. The following theorem is proved in [3], see Proposition 6.9.
Here we quickly review the main steps of the proof.

2 The Harish-Chandra module of σ is determined by ρ + ρu (cf. See [11] Chapter VI when
q = 1).
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Theorem 5.8 Letπ = ⊗vπv be an irreducible square integrable automorphic
representation of G(A). If π∞ is a cohomological representation of SO(p, q)

associated to a Levi subgroup L = SO(p − 2r, q) × U(1)r with p > 2r and
m − 1 > 3r , then π is highly non-tempered.

Proof Since the SL(2,C)-factors of an Arthur parameter are global, the global
Arthur parameter � of π contains some factor μ � Ra with a ≥ m − 2r −
1 > m−1

3 . Then either μ is a character or μ is 2-dimensional by dimension
consideration. We have to exclude the latter case. If a > (m − 1)/2, this
is automatic. In general, we first observe that the explicit description of π∞
as a Langlands’ quotient not only shows π∞ has a big exponent but that
this exponent is a character exponent. Then the proof [3, Proposition 6.9]
(postponed to the Appendix there) shows that �∞ also has a big character
exponent and this excludes the possibility that μ is 2-dimensional. ��

6 Residual representations

In this section, we study the residual spectrum of G = SO(V ) via the theory
of Eisenstein series developed by Langlands (cf. [39,52]). Our main purpose
is to show that non-cuspidal representations with cohomology at infinity are
residues of Eisenstein series from the rank one maximal parabolic subgroup,
see Proposition 6.2.

6.1 Residual spectrum

The right regular representation of G(A) acting on the Hilbert space
L2(G(Q)\G(A)) has continuous spectrum and discrete spectrum:

L2(G(Q)\G(A)) = L2
dis(G(Q)\G(A)) ⊕ L2

cont(G(Q)\G(A)).

We are interested in the discrete spectrum. Using his theory of Eisenstein
series, Langlands decomposes this space as:

L2
dis(G(Q)\G(A)) =

⊕
(M,σ )

L2
dis(G(Q)\G(A))(M,σ ),

where (M, σ ) is a Levi subgroup with a cuspidal automorphic representation
σ (taken up to conjugacy and whose central character restricts trivially to the
center of G) and L2

dis(G(Q)\G(A))(M,σ ) is a space of residues of Eisenstein
series associated to (M, σ ).

Note that the subspace

L2
cusp(G(Q)\G(A)) := ⊕(G,π)L

2
dis(G(Q)\G(A))(G,π)
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is the space of cuspidal automorphic representations ofG. Its orthogonal com-
plement in L2

dis(G(Q)\G(A)) is called the residual spectrum and we denote
it by L2

res(G(Q)\G(A)). In order to understand it we have to introduce the
relevant Eisenstein series.

6.2 Eisenstein series

Let P = MN be a maximal standard parabolic subgroup of G and let (σ, Vσ )

be an irreducible automorphic representation of M(A). Choosing a section fs
of the parabolically induced representation

I(s, σ ) = indG(A)
P(A)(σ | det |s),

where | · | is the adelic absolute value, and the induction is normalized,3 we
define the Eisenstein series by the analytic continuation from the domain of
convergence of the series

E( fs, g) =
∑

γ∈P(Q)\G(Q)

fs(γ g). (6.1)

When σ is cuspidal, Langlands (see [52, Sect. IV.1]) shows that the Eisenstein
series (6.1) is a meromorphic function of s with finitely many poles, all simple,
in the region Re(s) > 0. Then L2

dis(G(Q)\G(A))(M,σ ) is the space spanned
by the residues ((s− s0)E( fs, g))s=s0 of the Eisenstein series (6.1) at a simple
pole s = s0 when varying the sections fs in Vσ .

6.3 Parabolic subgroups

The maximal parabolic subgroups of G = SO(V ) can be described as below:
let

V = Vt +Ut,t ,

be the Witt decomposition of V , where Vt is anisotropic and Ut,t is t-copies
of hyperbolic planes spanned by ui , u′

i for i = 1, 2 . . . , t with (ui , u′
j ) = δi j .

The integer t is the Witt index of V . Fixing an anisotropic quadratic space Vt ,
for any 0 ≤ d ≤ t , we write

V = Ud + Vd +U ′
d ,

3 Note that, since P is maximal, the group of characters of M is one dimensional generated by
det.
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whereUd ,U ′
d are subspaces spanned by u1, . . . ud and u

′
1, . . . , u

′
d respectively,

and Vt ⊂ Vd . The subgroup P ⊆ SO(V ) which stabilizes U ′
d is a standard

parabolic subgroup over Q with Levi decomposition P = MN , where

M ∼= GL(Ud) × SO(Vd). (6.2)

LetW (M)be the set of elementsw in theWeyl groupofG, ofminimal length
in their left coset modulo the Weyl group of M , such that wMw−1 is the Levi
factor of a standard parabolic subgroup of G. Then W (M) = {1, w0}, where
w0 is a Weyl group element that can be lifted to G(Q) so thatw0Nw−1

0 = N−
is the opposite of N . Recall that P is said to be self-associate ifw0Mw−1

0 = M .
On can prove (see [64]) that P as above is self-associate, unless t is odd and
d = t . Since we will only be concerned with low rank parabolic subgroups,
we may always assume that P is self-associate for the sake of simplicity.

6.4 Eisenstein series associated to non-cuspidal representations

The paper [48] deals with Eisenstein series where the hypothesis of the cusp-
idality of σ ∈ A2(M) is removed. There the following theorem is proved.

Let π = ⊗vπv be an irreducible sub-representation of G(A) in L2(G(Q)\
G(A)) and let � be the global Arthur parameter of π .

Theorem 6.1 Suppose that π∞ is a unitary cohomological representation.
Then: either π is cuspidal or � contains a factor ρ � Ra for some a > 1 and
ρ ∈ Ac(GL(d)) and there exists π ′ ∈ A2(SO(Vd)) such that

(1) the global Arthur parameter of π ′ is obtained from that of π by replacing
the factor ρ � Ra by ρ � Ra−2,

(2) the Eisenstein series E( fs, g) associated to ρ ⊗ σ have at most a simple
pole at s0 = 1

2 (a − 1), and
(3) the representation π is realized in the space spanned by the residues at

s0 = 1
2 (a − 1) of the Eisenstein series associated to σ = ρ ⊗ π ′.

We shall abbreviate the last item by:

π ↪→ (
(s − (a − 1)/2)E(s, ρ × π ′)

)
s=(a−1)/2 . (6.3)

Here we precise the preceding theorem assuming strong conditions on π∞.

Proposition 6.2 Suppose that π∞ is isomorphic to the cohomological repre-
sentation of SO(p, q) associated to the Levi subgroup L = SO(p − 2r, q) ×
U(1)r . Then in Theorem 6.1, if π is not cuspidal, we have:

(1) the representation ρ is a quadratic character (so that d = 1) and a =
m − 2r − 1, and
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(2) the inclusion (6.3) is an equality.

Remark 6.3 1. Since a ≥ 2 recall from §5.6 that being a character uniquely
determines ρ.

2. Since π is irreducible, if (6.3) is an equality then the space spanned by the
residues at s0 = 1

2 (a−1) of the Eisenstein series associated to σ = ρ ⊗π ′
is irreducible.

Proof of Proposition 6.2(1) Letπ be as in Theorem 6.1 and not cuspidal. Then
theArthur parameter� associated toπ contains a factorρ�Ra for some a > 1
and ρ ∈ Ac(GL(d)) and there exists π ′ ∈ A2(SO(Vd)) such that (6.3) holds.

Denote by ρ∞ the local Archimedean component of ρ. To prove Proposition
6.2(1), we shall prove that ρ∞ is a character.

Because π∞ is cohomological, the infinitesimal character of ρ∞ is integral
and this implies that ρ∞ is an induced representation

ind(δ1, . . . , δt ) or ind(δ1, . . . , δt , ε) (6.4)

(normalized induction from the standard parabolic subgroup of type (2, . . . , 2)
or (2, . . . , 2, 1) depending on the parity of d), where the δ j ’s are discrete series
of GL(2,R) and ε is a quadratic character ofR×.4 Now by localizing (6.3) we
conclude (see [48] for more details) that

π∞ ↪→ I

(
−a − 1

2
, ρ∞ ⊗ π ′∞

)
, (6.5)

whereπ ′∞ is the local component ofπ ′ at infinity. Sinceπ ′ is square integrable,
the representation π ′∞ is unitary. Moreover, after Salamanca-Riba (see [62,
Theorem 1.8]), we also know that the representation π ′∞ is cohomological
and has a regular, integral infinitesimal character. Write π ′∞ as the Langlands
submodule of a standard module I′.

We claim that the induced representation I
(−a−1

2 , ρ∞ ⊗ I′
)
contains a

unique irreducible sub-module, which is the Langlands sub-module of this
induced representation. Write I′ as induced of twists of discrete series and
character, see e.g. [3, Appendix, §16.12]. In this way I

(−a−1
2 , ρ∞ ⊗ I′

)
is a

standard module. If it is in Langlands’ position, then the claim immediately
follows (see e.g. [11, Proposition 2.6]). To prove the claim in general, we
will reduce to this case. To do that we look at the exponents of I′ (see again
[3, Appendix, §17.12] for more about exponents). Fix δ′ a representation that
occurs in the induction. Then δ′ is either a discrete series of parameter �′ or a
quadratic character corresponding to �′ = 0.

4 Note that only one quadratic character can occur because of the regularity of the infinitesimal
character.
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Now let x the biggest possible exponent for such a representation. Consider
the infinitesimal character of π ′ seen as an N -tuple of complex numbers mod-
ulo the Weyl group (cf. [3, §3.11]). It contains the elements of the segment5

�′ + [x, −x] and is symmetric around 0. Denote by � the parameter of one of
the δ j above. To put the induced representation in the positive Weyl chamber
(i.e. in Langlands’ position) we have to exchange δ j |det|(a−1)/2 and δ′|det|x if
(a−1)/2 < x . This is done using the following intertwining operator (between
two GL(4,R)-representations):

ind(δ j |det|s1 ⊗ δ′|det|s2) �→ ind(δ′|det|s2 ⊗ δ j |det|s1)
(normalized induction from the standard parabolic of type (2, 2).) To prove
the claim it suffices to show that the right-hand side induced representation
(which is in Langlands’ position) is irreducible. We distinguish between the
two following cases:

(1.) Let us first assume that �′ �= 0 (i.e. that δ′ is a discrete series and not a
character). Then it follows from [51, Lemme I.7] (and in fact, in this case
it is due to Speh) that the induced representation

ind(δ′|det|x ⊗ δ j |det|(a−1)/2)

can be reducible only when we have both �′ + (a − 1)/2 < � + x
and −�′ + (a − 1)/2 < −� + x . The second inequality is equivalent to
�+(a−1)/2 < �′+x . But, by the regularity of the infinitesimal character
of π∞, this implies � + (a − 1)/2 < �′ − x . From which we conclude
that

x + � < �′ − (a − 1)/2 < �′ + (a − 1)/2.

This proves that our parameters avoid the bad cases (of possible reducibil-
ity).

(2.) Let us now assume that �′ = 0. In that case, the infinitesimal character
of π ′∞ contains the segment [x, −x] which is symmetric around 0, so we
certainly have � + (a − 1)/2 > x and irreducibility follows.

This concludes the proof of the claim.
Proposition 6.2(1) follows: since π∞ is not a Langlands sub-module of a

standard representation containing a non trivial twist of a discrete series, we
have t = 0 in (6.4) and ρ is a character and d = 1. Finally, computing the
L-parameter ofπ∞ and using (5.11) we conclude that (a−1)/2 = m/2−r−1,
i.e. a = m − 2r − 1. ��
5 Here, following Zelevinski’s convention we call segment a set of real numbers of the form
[a, a + 1, . . . , b − 1, b].
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Remark 6.4 It follows from the proof above, and inspection of the Langlands
parameter of π∞, that the representation π ′∞ is isomorphic to the cohomo-
logical representation of SO(p − 1, q − 1) = SO(V1) associated to the Levi
subgroup L = SO(p − 1 − 2r, q − 1) × U(1)r .

Before entering the proof of Proposition 6.2(2) we shall recall some basic
facts on the relation between residues of Eisenstein series and residues of
intertwining operators.

6.5 Use of intertwining operators

If P is self-associate and σ is cuspidal then Langlands [39], see also [52,
Sect. IV.1], has shown that the poles of E( fs, g) coincide with the poles of its
constant term

EP( fs, g) =
∫
N (Q)\N (A)

E( fs, ng)dn

along the parabolic subgroup P . On the other hand, by [52, Sect. II.1.7], the
constant term equals

EP( fs, g) = fs(g) + M(s, w0, σ ) fs(g), (6.6)

where

M(s, w0, σ ) : I(s, σ ) → I(−s, σ )

given — whenever the integral below is convergent — by

(M(s, w0, σ ) f )(g) =
∫
N (Q)∩N−(Q)\N (A)

f (w−1
0 ng)dn ( f ∈ I(s, σ ))

(6.7)
is the standard intertwining operator defined in [52, Sect. II.1.6]. Note that we
have identified σ with its conjugate by w0 and furthermore note that w0(s) =
−s. Away from its poles M(s, w0, σ ) intertwines I(s, σ ) and I(−s, σ ).

In general, if σ is non-cuspidal (but discrete), an Eisenstein series associated
to σ is holomorphic at s = s0 if and only if all its cuspidal constant terms are
holomorphic, see e.g. [52, Sect. I.4.10]. If σ = ρ ⊗ π ′, as in Theorem 6.1, the
cuspidal constants terms are obtained as linear combinations of intertwining
operators defined on representations induced from ρ| · |s ⊗ π ′

Q where π ′
Q is a

cuspidal constant term along the unipotent radical of some standard parabolic
subgroup Q.

In order to understand the singularities of the Eisenstein series, one is there-
fore reduced to study the singularities of the standard intertwining operators.
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6.6 Normalization of intertwining operators

Intertwining operators are meromorphic and can be decomposed as Eulerian
products using local intertwining operators (that are also meromorphic); see
[52, §II.1.9]. Consider a square integrable representation σ = ρ ⊗ π ′ ∈
A2(M), as in Theorem 6.1, with ρ ∈ Ac(GL(d)) and π ′ ∈ A2(SO(Vd)).
If v = p is a finite place where everything is unramified the value of a local
(at p) intertwining operator is — up to an invertible holomorphic function —
an explicit expression of local L-functions:

L p(2s, ρp × (π ′
p)

GL)

L p(2s + 1, ρp × (π ′
p)

GL)
· L p(2s, rG, ρp)

L p(2s + 1, rG, ρp)
,

where (π ′
p)

GL is the local functorial lift of πp to a representation of GLN1(Qp)

(with N1 = N − 2d), see e.g. [64].
Note that if � ′ is the global Arthur parameter of π ′, it follows from Propo-

sition 5.3 (and the fact that being unramified we have p /∈ S) that (π ′
p)

GL

is associated to the L-parameter φ� ′
p
. This suggests to normalize the global

intertwining operators using a product of L-functions (and there inverses) ana-
logue as the one above but using the global Arthur parameter � ′: let �� ′ be
the representation of GL(N1) defined in (5.3). In [48], the rank one global
standard intertwining operator M(s, w0, ρ ⊗ π ′) are normalized in terms of
the Arthur parameter � ′,

N� ′(s, w0, ρ ⊗ π ′) := r(s, � ′)−1M(s, w0, ρ ⊗ π ′), (6.8)

where the normalizing factor

r(s, � ′) = L(2s, ρ × �� ′)

L(2s + 1, ρ × �� ′)
· L(2s, rG, ρ)

L(2s + 1, rG, ρ)
(6.9)

is the quotient of L-functions defined in §5.4. Write N� ′(s, w0, ρ × π ′) =
⊗vN� ′

v
(s, w0, ρv × π ′

v). Then if v = p is unramified, the local factor of
N� ′(s, w0, ρ ×π ′) at p is the identity on spherical vectors and at any place v

N� ′
v
(s, w0, ρv ⊗ π ′

v) = r(s, � ′
v)

−1M(s, w0, ρv ⊗ π ′
v)

intertwines the induced representations I(s, ρv ⊗ π ′
v) and I(−s, ρv ⊗ π ′

v). If
one can show that these normalized intertwining operators are holomorphic,
one gets that the poles of the global intertwining operator M(s, w0, η⊗π ′) are
precisely the poles of the global normalizing factor r(s, � ′). The latter being
expressed in terms of standard L-functions, we can easily determine its poles.
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6.7 Proof of Proposition 6.2(2)

Let π be as in Theorem 6.1 and not cuspidal. Since Proposition 6.2(1) is
proved, the Arthur parameter � associated to π contains a factor η � Ra for
some a > 1 and η a quadratic character and there exists π ′ ∈ A2(SO(V1))
such that (6.3) holds. Moreover: the global Arthur parameter of π ′ is obtained
from that of π by replacing the factor η � Ra by η � Ra−2.

Recall the following notation introduced in [48]: if π̃ is any automorphic
representation (not necessarily irreducible), P ⊂ Pd is a standard maximal
parabolic subgroup and ρ ∈ Ac(GL(d)), we denote by π̃P [ρ] the projection
on the ρ-cuspidal part of the constant term of π̃ along P .

Now let π̃ be the (automorphic) representation in the space spanned by the
residues at s0 = 1

2 (a − 1) of the Eisenstein series associated to σ = η ⊗ π ′.

Lemma 6.5 Suppose that π∞ is isomorphic to the cohomological representa-
tion of SO(p, q) associated to the Levi subgroup L = SO(p−2r, q)×U(1)r .
Then π̃P [ρ] = {0} unless P = P1 (with Levi GL(1) × SO(V1)) and
ρ = η. Furthermore: in this latter case π̃P [ρ] is precisely the image
of the induced representation I(s0, η ⊗ π ′) by the intertwining operator(
(s − s0)M(s, w0, η ⊗ π ′)

)
s=s0

.6

Proof of Lemma 6.5 We first remark that if there is only π̃P1[η] �= 0, then the
last statement follows from [52, §II.1.7]. So it suffices to show that only π̃P1[η]
is nonzero. According to Remark 6.4, we know that π ′∞ is isomorphic to the
cohomological representation of SO(p − 1, q − 1) = SO(V1) associated to
the Levi subgroup L = SO(p − 1 − 2r, q − 1) × U(1)r . By induction (on
p + q), we may therefore assume that Lemma 6.5 holds for π ′. (Note that the
induction starts with dim V = 2 or 3 where the Lemma is obvious.)

Now if π̃P [ρ] �= {0} for some P �= P1 (and some ρ), thenπ ′ is not cuspidal.
(Recall that Langlands has proved that if σ = η⊗π ′ is cuspidal the associated
Eisenstein series has only one non-trivial constant term, along P1.) And since
constant terms of Eisenstein series are sums of Eisenstein series of constant
terms (see [52, §II.1.7]), we have π ′

P ′ [ρ′] �= {0} for some standard parabolic
subgroup P ′ ⊂ SO(V1)with Levi isomorphic to GL(d)×SO(Vd+1) and some
ρ′ ∈ Ac(GL(d)). Now since Lemma 6.5 holds for π ′, we conclude that d = 1,
ρ′ = η and π ′ must be a quotient of an induced representation I(s0, η ⊗ π ′′)
for some square integrable automorphic representation π ′′ on SO(V2)with the
same s0. But this is not possible because of the form of the Arthur parameter
of π ′. Similarly, one shows that π̃P1[ρ] = 0 unless ρ = η. ��

6 Note that this operator is well defined since, as a pole of the Eisenstein series associated to
η ⊗ π ′, s0 is at most simple (see Theorem 6.1).
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Let us now prove that Lemma 6.5 implies Proposition 6.2(2). The
representation π̃ injects into the sum of its constant terms along stan-
dard maximal parabolic subgroups. But this sum reduces to the image
of the induced representation I(s0, η ⊗ π ′) by the intertwining operator(
(s − s0)M(s, w0, η ⊗ π ′)

)
s=s0

. We claim that the image of this intertwining
operator is irreducible. This implies that π̃ is irreducible and the proposition
follows.

To prove the claim, let us apply
(
(s − s0)M(s, w0, η ⊗ π ′)

)
s=s0

to some
function f which is the characteristic function of a hyperspecial maximal
compact subgroup outside a finite set of places. Let S be a finite set of places
that contains all these bad places and all the places of ramification. Then for
any v /∈ S, the normalized local intertwining operator

N� ′
v
(s, w0, ηv ⊗ π ′

v) = r(s, � ′
v)

−1M(s, w0, ηv ⊗ π ′
v) (6.10)

is the identity. It is proved in [49, §5.3.1] that for any finite v ∈ S the image
of the local intertwining operator (6.10) is either 0 or irreducible. We shall
now prove that this is still true if v = ∞. First of all we remark that the
standard intertwining operator M(s, w0, η∞ ⊗ π ′∞) is holomorphic at s = s0
with irreducible image. Indeed we have:

M(s, w0, η∞ ⊗ π ′∞) : I(s, η∞ ⊗ π ′∞) → I(−s, η∞ ⊗ π ′∞).

But the exponents of π ′∞ are strictly less that s0 (see the proof of Proposition
6.2(1)). So the induced modules are in Langlands position for s = s0 and it
follows from [11, Proposition 2.6] that M(s, w0, η∞ ⊗π ′∞) is holomorphic in
s = s0 with irreducible image. It remains to prove that the local normalization
factor does not add a pole, i.e. that r(s, � ′∞) does not vanish in s = s0. But
this follows from the explicit formula for r(s, � ′∞), see [51] for details.

Since the global normalization factor has a simple pole at s = s0, we know
that the image the intertwining operator

(
(s − s0)M(s, w0, η ⊗ π ′)

)
s=s0

is
either 0 or irreducible. As it contains the space of π which is not 0, this
concludes the proof of our claim and therefore of Proposition 6.2(2). ��

7 Theta correspondence for orthogonal groups

The theory of Howe’s theta correspondence between reductive dual pairs has
been applied to construct many automorphic representations with non-zero
cohomology at infinity (cf. [41]). Conversely, the results of [3] show that
small degree cohomological cuspidal representations of SO(V ) come from the
theta correspondence. In this section, we generalize the latter to non-cuspidal
automorphic representations.
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7.1 Theta correspondence

In this section, we will consider the reductive dual pair (O(V ),Sp(W )), where
W is a symplectic space over Q of dimension 2r and Sp(W ) is the associated
symplectic group. Let S̃p(·) be the metaplectic double cover of the symplectic
group Sp(·). Then we denote by Mp(W ) the symplectic group Sp(W ) if m is
even and themetaplectic group S̃p(W ) ifm is odd. There is a natural morphism

O(V ) × Mp(W ) → S̃p(V ⊗ W ). (7.1)

We denote by Mp2r (A), Om(A) and S̃p2mr (A) the adelic points of the groups
Mp(W ), O(V ) and S̃p(V ⊗ W ) respectively.

Fix a nontrivial additive character ψ of A/Q, let ωψ be the (automorphic)
Weil representation ofMp2mr (A) realized in theSchrödingermodelS(Vr (A)),
where S(V r (A)) is the space of Schwartz-Bruhat functions on V n(A). By
restricting the Weil representation ωψ to O(V ) × Mp(W ), one can define the
theta function on O(V ) × Mp(W ):

θψ,φ(g, g′) =
∑

ξ∈V (Q)r

ωψ(g, g′)(φ)(ξ), (7.2)

for each φ ∈ S(V r (A)). Given a cuspidal representation (τ, Hτ ) of Mp2r (A)

and f ∈ Hτ , the integral

θ
f

ψ,φ(g) =
∫

Mp(Q)\Mp(A)

θψ,φ(g, g′) f (g′)dg′, (7.3)

defines an automorphic function on Om(A), called the global theta lift of f .
Let θψ,V (τ ) be the space of all the theta liftings θ

f
ψ,φ as f and φ vary. This is

called the global ψ-theta lifting of τ to Om(A).

Remark 7.1 When the space θψ,V (τ ) contains a nonzero cuspidal automorphic
function, it is known that π̃ ∼= θψ,V (τ ) is irreducible and cuspidal (cf. [33,53]).
Moreover, it will be the first occurrence of the global ψ-theta lifting of τ in
the Witt tower of quadratic spaces (cf. [60]).

For the special orthogonal group SO(V ), we say that π ∈ A2(SO(V )) is
in the image of ψ-cuspidal theta correspondence from a smaller symplectic
group if a lift π̃ of π to O(V ) is contained in a global ψ-theta lifting from
symplectic groups, i.e. there exists τ ∈ Ac(Mp(W )) such that π̃ ↪→ θψ,V (τ ).
The restriction of π̃ to SO(V ) is isomorphic to π and its lift π̃ should be
uniquely determined. Then one of the key results in [3] states as
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Proposition 7.2 [3, Theorem 4.2] Let π be a cuspidal automorphic represen-
tationofG(A)with regular infinitesimal character. Ifπ is highly non-tempered,
then there exists a cuspidal representation τ of Mp2r (A) such that π (up to a
twist by a quadratic character) is in the image of ψ-cuspidal theta correspon-
dence from a smaller symplectic group.

7.2 Local theta correspondance

We also recall the local theta correspondence which will be used later. For
temporary notations, we let G = O(V )(Qv) and G ′ = Mp(W )(Qv). Simi-
larly as the global case, the local theta correspondence is obtained from the
restriction of the local Weil representation on G × G ′. By abuse of notations,
we denote by ωψ,v the pullback of the Weil representation to G × G ′. Then
for an irreducible admissible representation τ of G ′, we can define

S(τ ) = ωψ,v/
⋂

φ∈HomG(ωψ,v,τ )

ker φ

to be the maximal quotient of ωψ,v on which G acts as a multiple of τ . By [54,
Lemma III.4] if v is finite there is a smooth representation �(τ) of G such
that

S(τ ) � τ ⊗ �(τ)

and�(τ) is unique up to isomorphism. TheHowe duality principle (cf. [23,31,
66]) asserts further that if �(τ) �= 0, then it has a unique irreducible quotient
θψ,v(τ ) and two representations τ1, τ2 are isomorphic if θψ,v(τ1) ∼= θψ,v(τ2).
If v = ∞, Howe [31] proves that if π and π ′ are two irreducible (g, K∞)-
modules for G and G ′ then, in the category of (g, K∞)-modules, we have:

dimHomG×G ′(ωψ,v, π ⊗ π ′) ≤ 1.

This will be enough for our purpose: there is at most one irreducible represen-
tation θψ,v(τ ) such that HomG×G ′(ωψ,v, τ ⊗ θψ,v(τ )) �= {0}. The irreducible
representation θψ,v(τ ) is called the local ψ-theta lifting of τ . As indicated by
Rallis in [60], there is a natural relation between global and local theta liftings:

Proposition 7.3 For τ = ⊗vτv of Mp2r (A), the local theta lifting θψ,v(τv)

occurs as the irreducible constituent of the local component of the global
theta lifting θψ,V (τ ). In particular, if θψ,V (τ ) is cuspidal, then θψ,V (τ ) ∼=
⊗vθψ,v(τv).
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Remark 7.4 At the Archimedean place v = ∞, Li [40] has shown that the
cohomological (g, K∞)-modules Aq of Proposition 4.3 occur as (g, K∞)-
modules of representations obtained as local theta lifts of holomorphic unitary
discrete series representation of G ′(R) = Mp2r (R).

7.3 Constant terms of theta lifts

Next, we recall the constant term of global theta lifts computed by Rallis. With
notations as before, let P̃i be the standard maximal parabolic group of O(V )

with Levi decomposition P̃i = M̃i Ñi and

M̃i = GLi × O(Vi ), i ≤ t.

For a global theta lift θ
f

ψ,φ defined in (7.3), Rallis [60] has shown that the
constant term

θ
f

ψ,φ(g)
(P̃i )

=
∫
Ñi (Q)\Ñi (A)

θ
f

ψ,φ(ng)dn (7.4)

is the lift associated to a theta series in a smaller number of variables. More
precisely, using the decomposition V = Ui + Vi +U ′

i , one can write a vector
v ∈ V r as

v =
⎡
⎣ui

vi
u′
i

⎤
⎦ , ui ∈ Ur

i , vi ∈ V r
i , u′

i ∈ (U ′
i )
r .

Then we have

Lemma 7.5 Let (τ, Hτ ) be an irreducible cuspidal representation ofMp(W ).
For a cusp form f ∈ Hτ , the constant term of θ f

ψ,V along the unipotent radical
Ni is

θ
f

ψ,φ(g)
(P̃i )

=
∫
Mp2n(Q)\Mp2n(A)

θ ′(g′, g) f (g′)dg′ (7.5)

where

θ ′(g′, g) =
∑

ξi∈Vr
i (Q)

∫

ui∈Ur
i (A)

ωψ(g′, g)(φ)

⎡
⎣ui

ξi
0

⎤
⎦ dui .

Proof The computation (7.5) can be found in [60] Theorem I.1.1 (2) when m
is even. The proof is similar when m is odd. ��

From Lemma 7.5, we see that the constant term of θψ,V (τ ) along Pi lies
exactly in the theta lifting of τ to the smaller orthogonal groupO(Vi )whereGLi
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acts by a character. So the only nonzero cuspidal constant term of θψ,V (τ ) is
along the parabolic subgroup contained in some Ps (s ≤ d) and stabilizing the
flag consisting of s isotropic spaces.Moreover: this constant term is isomorphic
to

η| · |−m/2+r+1
A ⊗ · · · ⊗ η| · |−m/2+r+s

A ⊗ θψ,Vs (τ ), (7.6)

where the irreducible representation θψ,Vs (τ ) is the first occurrence (and cus-
pidal by [60]) of the theta correspondence of τ , and η is a character that only
depends on the choices made for theWeil representation (see [36, Remark 2.3]
where Kudla computes the Jacquet modules of local theta lift, see also [54,
p. 69]). By the square integrability criterion in [52, I.4.11], each automorphic
representation θψ,Vi (τ ) is square integrable as long as m − 2s > 2r + 2 and
i ≤ s. Specializing Lemma 7.5 we can compute its constant term:

Corollary 7.6 The constant term of θψ,Vi (τ ) along the unipotent radical of a
parabolic stabilizing an isotropic line of Vi is equal to

η| · |−m/2+r+i+1
A ⊗ θψ,Vi+1(τ ).

7.4 A surjectivity theorem

The following result shows that, under some conditions, representations with
cohomology come from the theta correspondence.

Theorem 7.7 Let π ∈ A2(SO(V )) be a square integrable automorphic rep-
resentation of SO(V ). Suppose that the local Archimedean component of π

is isomorphic to the cohomological representation of SO(p, q) associated to
the Levi subgroup L = SO(p − 2r, q) × U(1)r . Then, if 3r < m − 1, there
exists a cuspidal representation τ of Mp2r (A) such that π (up to a twist by a
quadratic character) is in the image of theta lift of τ .

Proof By Proposition 7.2, it suffices to consider the case when π is non-
cuspidal. It then follows from Proposition 6.2 that the Arthur parameter of π

contains a factor η�Ra , where η is a quadratic character and a = m−2r−1 >

1.
Nownote that theArthur parameter ofπ1 = π ′ in Proposition 6.2 is obtained

by replacing the factor η � Ra in the parameter of π by the factor η � Ra−2.
So if π1 is non-cuspidal we have a − 2 > 1 and, applying Proposition 6.2 one
more time, we conclude that π1 is itself the residue of an Eisenstein series for
some π2 ∈ A2(SO(V2)).

If π1 is cuspidal, we shall put s = 1 and otherwise inductively define
π2, . . . , πs until we arrive at a cuspidal representation πs . Note that the
processus stops at finite s less or equal to the Witt index of V and even
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s ≤ min(p − 2r, q). Furthermore we have a Witt tower of orthogonal groups

O(Vs) ⊂ O(Vs−1) ⊂ · · · ⊂ O(V0)

where dim Vi = m − 2i . And, since πi is not cuspidal as long as i < s we
have a−2i > 1 i.e.m−2i −2r > 2. Taking i = s−1 if follows in particular
that m/2 − r − i + 1 = (p − 2r + q − 2i)/2 + 1 > 0. We therefore obtain
a sequence of irreducible representations πi ∈ A2(SO(Vi )), i = 0, 1, 2 . . . t ,
such that

(1) π0 = π , we have

πi−1 = ((si − m/2 + r + i)E(si , η × πi ))si=m/2−r−i ,

for each i ≤ s, and πs ∈ Ac(SO(Vs)) is cuspidal;
(2) the Arthur parameter of πi+1 is the same as the Arthur parameter of πi

except that the factor η � Rm−2r−2i−1 is replaced by η � Rm−2r−2i−3;
(3) at the Archimedean place v = ∞, the underlying (g, K∞)-module

(πi )
∞∞ ∼= Aqi , where Aqi is associated to the Levi subgroup SO(p −

2r − i, q − i) × U(1)r ⊆ SO(p − i, q − i).

It follows from Theorem 5.8 that πs is the image of a cuspidal representation
τ of Sp(2r) using the θ -lifting: if s = 0, we use the hypothesis r < (m − 1)/3
and the assertion follows from Proposition 7.2. If s > 0, the wanted property
follows from [53, Theorem on p. 203] if m is even, and [24, Theorem 5.1] if
m is odd.7

We now want to prove that π itself is in the image of the theta corre-
spondence. Let us take π ′

s = πs . According to Corollary 7.6 we can define
inductively a sequence π ′

i (0 ≤ i ≤ s) of square integrable automorphic rep-
resentation of SO(Vi ) as follows: let π ′

i be the irreducible constituent in the
θ -lift of τ on SO(Vi ) whose constant term along the unipotent radical of a
parabolic stabilizing an isotropic line of Vi contains η| · |−m/2+r+i+1

A ⊗ π ′
i+1.��

Remark 7.8 We lift a cuspidal representation of Sp(2r) and O(Vs) is the first
occurrence, the lift to O(Vs) is cuspidal. Finally the orthogonal group O(Vs)
is “big” comparing to the symplectic group in the sense thatm−2s > 2r . It is
therefore a general theorem of Rallis [60] that all the theta lifts higher (i < s)
in the Witt tower are square integrable.

At infinity, the Archimedean component (π ′
i )∞ is in the image of local

theta correspondence of τ∞. The local theta correspondence is known in this

7 It is not explicitely stated there that τ is cuspidal, but this follows from the Rallis theta tower
property [60], since τ is the first occurence.
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case, see [40], and its underlying (g, K∞)-module (π ′
i )

∞∞ ∼= Aqi . We prove by
induction that π ′

i = πi . This is true by construction of π ′
s for i = s. Assume

that it is true until i and let us prove it for i − 1. We know that π ′
i−1 is not

cuspidal and that it satisfies the condition Proposition 6.2. We may therefore
realize π ′

i−1 in the space of residues of the Eisenstein series constructed from
some character η′ and some irreducible representation π ′ ∈ A2(SO(Vi )).
Computing the constant term as explained above, we obtain that η′ = η and
π ′ = π ′

i . Now using the induction equality π ′
i = πi and the irreducibility of

the space of residues already proved, we conclude that π ′
i = πi , as wanted.

This proves that π = π ′
0 is in the image of the theta correspondence.

8 Proof of Theorem 2.7

Motivated by Theorem 7.7 we introduce the following

Definition 8.1 Let

H̄ i
θ (Sh(G),C) ⊆ H̄ i (Sh(G),C)

be the subspace generated by the image of H̄ i (g, K∞; π) where π varies
among the irreducible representations in A2(G) which are in the image of
ψ-cuspidal theta correspondence from a symplectic group.

Theorem 7.7 then implies the following

Theorem 8.2 With notations as above, suppose that the Levi subgroup asso-
ciated to q is U(1)r × SO(p − 2r, q) with 2r < p and 3r < m − 1. Then the
natural map

H̄ i
θ (Sh(G),C) ∩ H̄ i (Sh(G),C)Aq → H̄ i (Sh0(G),C)Aq (8.1)

is surjective.

Proof The surjectivity of (8.1) is proved in [3, Theorem 8.10] for the cuspidal
part of the reduced L2-cohomology groups, i.e. the subspaces generated by
the contribution from cuspidal automorphic representations in A2(G). Since
Theorem 7.7 now holds for all square integrable representations, the proof of
[3, Theorem 8.10] extends to the whole reduced L2-cohomology group. We
sketch the proof below.

By Theorem 7.7 the space H̄ i (Sh(G),C) is generated by the images of

H̄ i (g, K∞; σ ⊗ χ),

where the σ are in the image of ψ-cuspidal theta correspondence from a
symplectic group and χ an automorphic quadratic character. Then for any
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ω ∈ Hi (g, K∞; σ⊗χ), one can construct a twisting cohomology classω⊗χ−1

(cf. [3, §8.9]) in H̄ i (g, K∞; σ) such that ω and ω ⊗χ−1 have the same image
in H̄ i (Sh0(G),C). This immediately yields the assertion. ��

8.1 The class of Kudla-Millson and special theta lifting

Let �rq(D̂,C) be the space of smooth nq-forms on D̂. In [38], Kudla and
Millson have constructed a Schwartz form:

ϕrq ∈ [S(V (R)r ) ⊗ �rq(D̂,C)]G(R),

(see also [3, Chapter 9]). Fixing a level K ⊆ G(A f ) and a K -invariant
Schwartz function ϕ ∈ S(V (A f )

r ), we define a global Schwartz form:

φ = ϕrq ⊗ ϕ ∈ [S(V (A)r ) ⊗ �rq(D̂,C)]G(R). (8.2)

Using the Weil representation, we can form a theta form

θψ,φ(g, g′) =
∑

ξ∈V (Q)r

ωψ(g, g′)(φ)(ξ) (8.3)

as in (7.2). As a function of g ∈ G(R), it defines a closed rq-form on XK ,
denoted by θrq(g′, ϕ). Let [θrq(g′, ϕ)] be the associated class in H̄rq(XK ,C).

Note that there is perfect pairing from Poincaré duality

〈, 〉 : Hrq(XK ,C) × H (p−r)q
c (XK ,C) → C, (8.4)

coming fromPoincaré duality,where H∗
c (−)denotes the deRhamcohomology

group with compact support. We now recall the main result of [38] (see also
[22]):

Proposition 8.3 [38, Theorem 2] As a function of g′ ∈ Mp2r (A), the coho-
mology class [θrq(g′, ϕ)] is a holomorphic Siegel modular form of weight m

2
for some congruence subgroup with coefficients in H̄rq(XK ,C). Moreover,
for any closed (p − r)q-form η with compact support on XK , the Fourier
expansion of

〈[θrq(g′, ϕ)], η〉
is

〈[θrq(g′, ϕ)], η〉 =
∑
β≥0

〈[β, ϕ], η〉Wβ(g′), (8.5)

where

Wβ(g′) = ω∞(g′∞) exp(−π tr(x∞, x∞))

and ω∞ is the Weil representation onMp2r (R).
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Corollary 8.4 When q is even, the Euler form eq is a linear combinantion of
the cohomology class of special cycles on XK of codimension q.

Proof We prove it by contradiction. Suppose eq is not in the span of
{Z(β, ϕ, K )}. Then there exists an element η ∈ Hq(XK ,C)∗ such that
η(eq) �= 0 and η vanishes on the span of special cycles. One can identify

η as an element in H (p−n)q
c (XK ,C) via the perfect pairing (8.4). Then by

Proposition 8.3, we know that
〈[θq(g′, ϕ)], η〉

is a holomorphic modular form
of weight m

2 for some congruence subgroup. Moreover, the constant term of〈[θq(g′, ϕ)], η〉
is η(eq) �= 0 (up to a nonzero scalar) while all the other Fourier

coefficients are zero by assumption and (8.5). This is impossible and hence
the corollary is proved. ��

This proves Theorem 2.5. Finally we prove our main theorem.

8.2 Proof of Theorem 2.7

It suffices to show that the natural projection

SCrq(YK ) → Hrq(YK ,C)Aq (8.6)

is surjective. Let us define

H̄rq
θrq

(Sh(G),C)Aq ⊆ H̄rq
θ (Sh(G),C)Aq, (8.7)

to be the subspace generated by the image of [θrq(g′, ϕ)] for ϕ ∈ S(V (A f )
n)

where the infinite component of the global Schwartz form ϕ is given by ϕ∞ =
ϕrq ; which is called the space of Kudla-Millson’s special theta lifting classes
in H̄rq(Sh(G),C). By definition, the subspace H̄rq

θrq
(Sh(G),C) is spanned by

the images of the classes

[θ f
rq(ϕ)] :=

∫
Mp(X)\Mp2r (A)

[θrq(g′, ϕ)] f (g′)dg′,

for f ∈ L2
cusp(Mp(X)\Mp2r (A)). Then we claim that:

(I) H̄rq
θrq

(Sh(G),C)Aq = H̄rq
θ (Sh(G),C)Aq .

(II) The projection

SCrq(Sh(G)) → H̄rq
θrq

(Sh(G),C)Aq, (8.8)

is surjective.
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Combining (I), (II) with Theorem 8.2, one can deduce that

SCrq(YK ) → H̄rq
θrq

(YK ,C)Aq = H̄rq(YK ,C)Aq (8.9)

is surjective as long as 2r < p and 3r < m − 1 by taking K -invariant classes
on both sides of (8.8) and projecting to the cohomology groups of YK .
Proof of the claims. Claims (I) and (II) are actually extensions of the results in
[3, §10] for subspaces of cuspidal classes to the entire reduced L2-cohomology
group. More precisely, the identity in part (I) is already proved in [3, Theorem
10.5] for cuspidal classes, but the proof does not depend on cuspidality at all.
So one can directly apply the argument there to obtain (I) and we omit the
details here.

For part (II), the proof that (8.8) is surjective is analogous to [3, Proposition
11.7]. Using the perfect pairing 〈, 〉 in (8.4), one can define

SCrq(Sh(G))⊥, Hrq
θrq

(Sh(G),C)⊥Aq,

to be the annihilator of the corresponding spaces in H (p−r)q
c (Sh(G),C). For

any η ∈ SCrq(Sh(G))⊥, assume that η is K ′-invariant for some level K ′.
According to Proposition 8.3, we know that the Siegel modular form

θϕ(η) : = 〈[θrq(g′, ϕ)], η〉 =
∫
XK ′

θrq(g
′, ϕ) ∧ η

=
∑
β≥0

〈[β, ϕ], η〉Wβ(g)
(8.10)

is zero by our assumption. Then we have

〈
[θ f
rq(ϕ)], η

〉
=

∫
Mp(W )\Mp2r (A)

θϕ(η) f (g′)dg′ = 0

which implies that η is orthogonal to the all [θ f
rq(ϕ)] ∈ H̄rq

θrq
(Sh(G),C). It

follows that

SCrq(Sh(G))⊥ ⊆ H̄rq
θ (Sh(G))⊥Aq

which implies the surjectivity of (8.8). ��
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