L,-BLASCHKE VALUATIONS

JIN LI, SHUFENG YUAN, AND GANGSONG LENG

ABSTRACT. In this article, a classification of continuous, linearly intertwin-
ing, symmetric Lp-Blaschke (p > 1) valuations is established as an extension
of Haberl’s work on Blaschke valuations. More precisely, we show that for
dimensions n > 3, the only continuous, linearly intertwining, normalized sym-
metric Lp-Blaschke valuation is the normalized Ly-curvature image operator,
while for dimension n = 2, a rotated normalized Ly-curvature image operator
is an only additional one. One of the advantages of our approach is that we deal
with normalized symmetric L,-Blaschke valuations, which makes it possible to
handle the case p = n. The cases where p # n are also discussed by studying

the relations between symmetric Lp-Blaschke valuations and normalized ones.

1. INTRODUCTION

A wvaluation is a function Z : Q — (G, +) defined on a class of subsets of R™ with

values in an Abelian semigroup (G, +) which satisfies
Z(KUL)+ Z(KNL) = ZK + ZL, (1.1)

whenever K, L, K UL, KNL € Q. In recent years, important new results on the
classification of valuations on the space of convex bodies have been obtained. The
starting point for a systematic investigation of general valuations was Hadwiger’s
[11] fundamental characterization of the linear combinations of intrinsic volumes as
the continuous valuations that are rigid motion invariant (see [1-3,22] for recent
important variants). Its beautiful applications in integral geometry and geometric
probability are described in Hadwiger’s book [10] and Klain and Rota’s recent
book [12].

Excellent surveys on the history of valuations from Dehn’s solution of Hilbert’s
third problem to approximately 1990 are in McMullen and Schneider [32] or Mec-
Mullen [31].
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First results on convex body valued valuations were obtained by Schneider [39]
in the 1970s, where the addition of convex bodies in (1.1) is Minkowski sum. In
recent years, the investigations of convex and star body valued valuations gained
momentum through a series of articles by Ludwig [18-21] (see also [1-8,34,35, 41,

,44]). A very recent development in this area explores the connections between
these valuations and the theory of isoperimetric inequalities (see e.g., [9,30,42]).

Assuming compatibility with the general linear group, Ludwig [20] obtained a
complete classification of L,-Minkowski valuations, i.e., valuations where the addi-
tion in (1.1) is L,-Minkowski sum. Her results establish simple characterizations
of fundamental operators like the projection or centroid body operator. Haberl [(]
established a classification of all continuous symmetric Blaschke valuations, where
addition in (1.1) is Blaschke sum “#”, compatible with the general linear group.
For n > 3, the only two examples of such valuations are a scalar multiple of the
curvature image operator and the Blaschke symmetral ZK = K#(—K). For
n = 2, Blaschke sum coincides with Minkowski sum, a classification is provided
by Ludwig’s results [20].

In this paper, we extend Haberl’s [6] results in the context of the L,-Brunn-
Minkowski theory when p > 1 for n > 2. To treat the case that p = n when n
is not even at the same time as the case for general p > 1, we deal with normal-
ized symmetric L,-Blaschke valuations (that is the addition in (1.1) is normalized
L,-Blaschke sum). For m > 3, the only example (up to a dilation) of a con-
tinuous, linearly intertwining, normalized symmetric L,-Blaschke valuation is the
normalized Ly-curvature image operator. For n = 2, the rotation of the normalized
L,-curvature image operator by an angle w/2 is the only additional example. As
by-products, by the relationship between symmetric L,-Blaschke valuations and
corresponding normalized case, we also classify continuous, linearly intertwining,
symmetric L,-Blaschke valuations for p # n.

Since the classification of L,-Blaschke valuations is based on Ludwig’s results
[20], some other classifications of Minkowski valuations should be remarked here.
Schneider and Schuster [41] and Schuster [43] classified some rotation covariant
Minkowski valuations. Schuster and Wannerer [14] classified GL(n) contravariant
Minkowski valuations without any restrictions on their domain. Very recently,
Haberl [7] showed that the homogeneity assumptions of p = 1 in Ludwig [20] are
not necessary, and Parapatits [34,35] showed that the homogeneity assumptions of
p > 1 in Ludwig [20] are also not necessary. But the homogeneity assumptions are

still needed in this paper.
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In order to state the main result, we collect some notation. Let K™ be the space
of convex bodies, i.e., nonempty, compact, convex subsets of R", endowed with
Hausdorftf metric. We denote by K the set of n-dimensional convex bodies which
contain the origin, and by K: the set of convex bodies which contain the origin.
The set of n-dimensional origin-symmetric convex bodies is denoted by 7.

We will always assume that p € R and p > 1 in this paper, unless noted otherwise.

In [20], Lutwak introduced the notion of the L,-surface area measure S, (K, )
and posed the even L,-Minkowski problem: given an even Borel measure p on
the unit sphere S”~!, does there exist an n-dimensional convex body K such that
= Sp(K,-)? An affirmative answer was given, if p # n and if 1 is not concentrated
on any great subsphere. For p # n, using the uniqueness of the even L,-Minkowski
problem on K7, the L,-Blaschke sum K#,L € K} of K,L € K] was defined by
Sp(K#,L, ) = Sp(K, ) + Sp(L,-). Thus K7 endowed with L,-Blaschke sum is an
Abelian semigroup which we denote by (K7, #,).

The volume-normalized even L,-Minkowski problem, for which the case p = n
can be handled as well, was introduced and solved by Lutwak, Yang and Zhang [30].
If 1 is an even Borel measure on the unit sphere S”~!, then there exists a unique
n-dimensional origin-symmetric convex body K such that

L(fi’ ) _ 1, (1.2)

V(K)

if and only if p is not concentrated on any great subsphere, where V([N( ) is the
volume of K.

The volume-normalized even L,-Minkowski problem also suggests the following
composition of bodies in K. For K, L € K7, we define the normalized L,-Blaschke
sum K%vépL € K} by

Sp(K%épLa') _ S,,(K,-) Sp(La')

V(K#,L) V(K) V(L)

Obviously the existence and uniqueness of K %EPL are guaranteed by relation (1.2).

Also K7 endowed with the normalized L,-Blaschke sum is an Abelian semigroup
which we denote by (K2, %Ep>.

We call a valuation Z : K} — (K7, #,) symmetric L,-Blaschke valuation, and a
valuation Z : K — (K7, %ﬁp> normalized symmetric Ly-Blaschke valuation.

A convex body K, which contains the origin in its interior, is said to have a L,-
curvature function f,(K,-) : S"7' — R, if S,(K,-) is absolutely continuous with
respect to spherical Lebesgue measure o, and

dS,(K,-)

dO’() :fp(K7'>
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almost everywhere with respect to o.
For p > 1, and p # n, the symmetric L,-curvature image ALK of K € K7} is
defined as the unique body in K7 such that

1 1
fp(A;gKv ) = ip(K, ~)"+P + §P(*K, .)ner’

where px(-) = p(K,-) : S"7! — R is the radial function of K, i.e., p(K,u) =
max{A > 0: Au € K}. When p = 1, this is the classical curvature image operator,
a central notion in the affine geometry of convex bodies; see e.g., [15,16,23-25,27].
When p > 1, it should be noticed that the definition of the L,-curvature image
operator here differs from the definition of the Lutwak [28].

For p > 1, the normalized symmetric Ly-curvature image KEK of K € K} is

defined as the unique body in K7 such that

fp(K:gK?) _ 1 An+p 1 _ A\n+p
e, = GO ™™ & S0l I 7)

Remark: By the uniqueness of the even L,-Minkowski problem and the volume-

normalized even L,-Minkowski problem, if p > 1, and p # n, it follows that
V(APK)YP=AP K — APK.

An operator Z : Q@ — (P(R™), +), where P(R™) denotes the power set of R™, is

called SL(n) covariant, if
2(6K) = ZK
for every K € Q and ¢ € SL(n). It is called SL(n) contravariant, if
Z(6K) = 6~ ZK

for every K € Q and ¢ € SL(n). Here, ¢~ " denotes the inverse of the transpose of
¢. We call Z homogeneous of degree q € R, if

Z(AK) = N ZK

for every K € Q and A > 0, and we call Z homogeneous if it is homogeneous for
some ¢ € R. If Z is homogeneous and SL(n) covariant or contravariant, then we
call it linearly intertwining.

Our main results are the following two theorems.

Theorem 1.1. Let n > 2. For p > 1 and p not an even integer, the operator
Z: Kl — <IC?,%EP> is a continuous, homogeneous, SL(n) contravariant valuation,

if and only if there exists a constant ¢ > 0 such that

ZK = cAPK



L,-BLASCHKE VALUATIONS 5
for every K € 7.

Theorem 1.2. Letn > 3. Forp > 1 and p not an even integer, there are no contin-
uous, homogeneous, SL(n) covariant normalized symmetric Ly-Blaschke valuations
on K.

For p > 1 and p not an even integer, the operator Z : K2 — <Kg,%ép> is a
continuous, homogeneous, SL(2) covariant valuation, if and only if there exists a

constant ¢ > 0 such that
ZK = cipr o ALK

for every K € K2. Here Yr /o is the rotation by an angle /2.

Theorem 1.1 and 1.2 establish a classification of continuous, linearly intertwin-
ing, normalized symmetric L,-Blaschke valuations on K} when p > 1 and p is not
an even integer. For p = 1, Haberl [(] obtained a complete classification of continu-
ous, linearly intertwining symmetric Blaschke valuations and we can easily get the
corresponding results in the normalized case by reversing the process of Theorem
5.3 and Theorem 5.4. Therefore we state the results here only for p > 1.

In Section 2, some preliminaries are given. The aim of Section 3 is to derive
the characterizing properties (stated in Theorem 1.1) of the normalized symmetric
L,-curvature image operator 7\13. In Section 4, Lemma 4.1 - Lemma 4.5 generate
a homogeneous, SL(n) covariant L,-Minkowski valuation on K. by a continuous,
homogeneous, SL(n) contravariant normalized symmetric L,-Blaschke valuation
on K. Using properties of the support set of the L,-projection bodies established
in Lemma 4.6 and characterization theorems of L,-Minkowski valuations [20], we
classify continuous, homogeneous, SL(n) contravariant normalized symmetric L,-
Blaschke valuations. In a similar way, we also classify continuous, homogeneous,
SL(n) covariant normalized symmetric L,-Blaschke valuations. In Section 5, from
the relationship between normalized symmetric L,-Blaschke valuations and sym-
metric L,-Blaschke valuations (Lemma 5.1 and Lemma 5.2), we also classify con-
tinuous, linearly intertwining, symmetric L,-Blaschke valuations on K7 for p # n
(see Theorem 5.3 and Theorem 5.4).

2. PRELIMINARIES

We work in Euclidean n-space R™ with n > 2. Let {e;},i = 1,--- ,n be the
standard basis of R"™. The usual scalar product of two vectors z and y € R" shall be
denoted by z-y. Forue S" ' u= ={z e R":z-u <0}, u" ={z € R" : z-u > 0}
and ut = {z € R® : x-u = 0}. The convex hull of a set A C R" will be
denoted by [A]. To shorten the notation we write [A,+xq, -, £x,,] instead of
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[AU{zy, —21, T, —2 }] for ACR™®, m €N, and z1,--- ,2,, € R™. In R?, we
write 1. /5 for the rotation by an angle /2.

The Hausdorff distance of two convex bodies K, L is defined as d(K, L) = max,
|hi(u) — hr(uw)|, where hg : R™ — R is the support function of K € IC%, ie.,
hg(x) = max{z -y : y € K}. Sometimes we also write hg(:) as h(K,-). If
f:R™ — R is a sublinear function (i.e., f(Ax) = A\f(x) for every A > 0 and x € R"™;
flz+y) < f(x)+ f(y) for every z,y € R™), then there exists a unique convex body
K such that f = hg.

Let S(K,-) be the classical surface area measure of a convex body K. If K
contains the origin in its interior, the Borel measure S, (K, ) = hg(-)!"?S(K,-) on
St is the L,-surface area measure of K.

For K;L € K" and «,8 > 0 (not both 0), the Minkowski linear combination
aK + BL is defined by aK + 8L = {ax + Sy : x € K,y € L}. For K,L € EZ
and a, f > 0, the L,-Minkowski linear combination o - K +, 8- L (not both 0) is
defined by h(a - K +, 8+ L,u)? = ah(K,u)? + Bh(L,u)? for every u € S"~1. Note
that ”-” rather than ”-,” is written for L,-Minkowski scalar multiplication. This
should create no confusion. Also note that the relationship between L,-Minkowski
and Minkowski scalar multiplication is o - K = o'/PK.

For p > 1, the L,-mixed volume V, (K, L) of the convex bodies K, L containing

the origin in their interiors was defined in [26] by
K -L)-V(K
ﬁ‘/p(K,L)— lim V( +P€ ) V( )7
e—0t €
where the existence of this limit was demonstrated in [26]. Obviously, for each K,

Vp(K,K) =V (K). It was also shown in [26] that the L,-mixed volume V), has the

following integral representation:

1
V,(K,L) = ﬁ/s (L) dS, (K, u).

For p > 1, the L,-cosine transform of a finite, signed Borel measure p on S™~!
is defined by

Coulw) = [ [0 olPdu(o), @ € B
Sn—l

Similarly, the L,-cosine transform of a Borel measurable function f on S™~! is
defined by

(Cof) () = / & - o[ f(v)do(v), = € R",

Sn—1
where o is the spherical Lebesgue measure. An important property of this integral

transform is the following injectivity behavior. If p is not an even integer, and p is
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a signed finite even Borel measure, then
/ |u - v[Pdu(v) =0 for all u € S" ' = = 0. (2.1)
Snfl

(see e.g., Koldobsky [13,14], Lonke [17], Neyman [33], and Rubin [37,38].)

For p > 1, the L,-projection body, 11,K, of a convex body K containing the
origin in its interior is the origin-symmetric convex body whose support function is
defined by

WL, K, u)? = /S - olPdS, (K, 0)

for every u € S"~!. The notion of the L,-projection body (with a different nor-
malization) was introduced by Lutwak, Yang and Zhang [29].
It is proved in [29] that

0K = | det ¢|/Po I, K

for every ¢ € GL(n). Then we immediately get

CpSp(dK, ) (x) = | det ¢|C,S5p (K, ) (¢~ ), (2.2)
and
Sp(¢K7 ) _ S;D(K> ) _1.')3
C’pW(m) =Cp V(EK) (¢~ ). (2.3)

The notion of the L,-centroid body was introduced by Lutwak, Yang and Zhang
[29]: For each compact star-shaped (about the origin) K in R™ and for p > 1, the
L,-centroid body I', K is defined by

1
W, K, u) = (7/ |2 - u|Pda) /P (2.4)
g cnpV(K) Jk
for every u € S"~!, where the constant Cn,p is chosen so that I',B = B. For p = 2,

the I's-centroid body is the Legendre ellipsoid of classical mechanics. It is easy to

see that
IpoK = oI, K (2.5)

for every ¢ € GL(n). We also can rewrite relation (2.4) for the L,-cosine transform:

1
(n+ p>cn7pV(K)
1 1

= T G . 2o

h(Tp K, u)? = (Copi ") (u)
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3. NORMALIZED SYMMETRIC L,-CURVATURE IMAGES

In this section, we will show that the normalized symmetric L,-curvature im-
age operator ZNVC’ is a continuous, homogeneous, SL(n) contravariant normalized
symmetric L,-Blaschke valuation.

We remark that a valuation Z : @ — (P(R™),+) is SL(n) covariant and homo-

geneous of degree ¢ if and only if it satisfies
Z(¢K) = (det ¢)+ ¢ZK (3.1)

for every K € Q and ¢ € GL(n) with positive determinant. Similarly, a valuation

Z is SL(n) contravariant and homogeneous of degree ¢ if and only if it satisfies
Z(¢K) = (det ) ¢~ ZK (3.2)

for every K € Q and ¢ € GL(n) with positive determinant.
To prove that 1~\{j is a continuous valuation, we will firstly show the following

lemma.

Lemma 3.1. If K;, K € K, i = 1,2,---, such that S“’,((Ili)) — S“}((II(()) weakly,
then K; — K.

Proof. Firstly, we want to show that { K} has a subsequence, { K;, }, converging to
an origin-symmetric convex body containing the origin in its interior (the proof is
similar as [30, Theorem 2]).

Define fx(u) by
Sp(K,)

Thus fx (u) is a support function of some convex body. Since =5 ) is not concen-

trated on any great subsphere, fx(u) > 0 for every u € S"~1. By the continuity

of fx(u) on the compact set S~ !, there exist two constants a,b > 0, such that

1a > fr(u) > 2b for every u € S"1. Since S{}((f(fi’)') — S{}((II(()) weakly, we get

[, (u) = fi(u). The convergence is uniform in v € S~ by [10, Theorem 1.8.12].
Hence a > fx, > b for sufficiently large ¢ uniformly.
In order to show K; is uniformly bounded, define real numbers M;, and vectors
u; € S"! by
M; = uggaﬂ)gl h(K;,u) = h(K;, u;).
Now, M;[—u;,u;] C K;. Hence M;|u; - v| < h(K;,v) for every v € S"~1. Thus,

1 ds,(K;,
MPB < Mf—/ s .v|pM
n Jgn-1 V(Kz)
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=1

— . p p _ _P
n /Sn—l h(K“,U) V(Kl) V(Kz

IN

)
for sufficiently large ¢. Hence K is uniformly bounded. By the Blaschke selection
theorem, there exists a subsequence {K;,} converging to a convex body, say K'.
Since K, are origin-symmetric, K’ is origin-symmetric. Define real numbers m,
and vectors u} € S"~! by

m; = min h(K;,u) = h(K;,u}),

uesSn—1

The property a > fg, for sufficiently large ¢ uniformly, together with Jensen’s
inequality, shows that

1 ;e @Sp(Kiyv) 1 1 luj - v| |, h(Ki, v)dS (K, v) 1
@z /S,,LJ =y ) _(n/sn,l WEKov) Vi) )
l/ |uj - v| h(EKG,v)dS(K,v) 2V (K| (u))h)
~ n Jgn h(Ki,v) V(K;) nV(K;)

Since K; is contained in the right cylinder K;|(u})* x m;[—ul,u}], we have
2m;V (K;|(uf)*) > V(K;). Thus,

2V (K| (up) ) _ 1
a > > ,
- aV(K;) T onmy

which shows m; > %for sufficient large ¢. Hence

iB C K,
na
where B is the unit ball in R™. Thus, K’ contains the origin in its interior. The
first step is complete.
Next, we argue the assertion by contradiction. Assume K; - K, then there ex-
ists a subsequence, { K;, }, such that d(K;,, K) > ¢ for a suitable ¢ > 0. Since {Kj, }
also satisfies the condition of this Lemma, from the conclusion above, there exists a

subsequence of {K;, }, say {Kijk }, converging to an origin-symmetric convex body,

Sp(Kij, +) S, (K',)
VK, ) & VE)
By the uniqueness of weak convergence and the normalized even L,-Minkowski

say K', containing the origin in its interior. Thus,

weakly.

problem, we get K;; — K "= K. That is a contradiction. ([l

Theorem 3.2. The normalized symmetric L,-curvature image operator 1~\§ Ky —
(Kr, #p> is a continuous, SL(n) contravariant valuation which is homogeneous of
degree —:—1. Moreover, d}w/gxlg K2 — (K2, #,,) is a continuous, SL(2) covariant

valuation which is homogeneous of degree —% —1.
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Proof. To prove that 7\5 is a normalized symmetric L,-Blaschke valuation, we just
need to show
Sp(lzg(K U L), ) Sp(/Eg(K NnL),-) _ Sp(/zzc)Kv ) + Sp(§€L7 ) (3.3)
V(AR(K UL)) V(AR(K N L)) V(ALK) V(ALL)

for every K, L, K UL, KNL € K}. Since

p(K UL, )"+ p(K (L, )" = p(K, )" + p(L, )",
p(=(KUL), )"+ p(=(K N L), )" = p(—K, )" + p(=L, )"

for every K, L, K UL, K N L € K7, it follows from the definition of K’c’, that the
relation (3.3) is true. Hence the valuation property is established.
To prove homogeneity and SL(n) contravariance of AP, by relation (3.2), we

need to show
APGK = (det ¢)~YPy tAPK (3.4)
for every ¢ € GL(n) with positive determinant. Indeed, the definition of 1~\fc’ , the
relation (2.5), (2.6) together with (2.3) imply that
" V(AOK)

1 1
(u) = (Cp(GPgr" + 5P 55)) (W)
= (n+ p)enpV (KT po K, u)?
= | det ¢|(n + p)cnpV (K)R(T,K, ¢'u)?
V(AEK) (¢")
Sp(| det ¢| /Pt ALK, )
" V(| det ¢| /Pyt ALK)

= | det ¢|C),

The injectivity property (2.1) and the uniqueness of the volume-normalized even
L,-Minkowski problem now imply relation (3.4).

If K; — K, then p(K;,-) — p(K,-) almost everywhere with respect to spher-
ical Lebesgue measure (see [0, Lemma 1]). Hence ($p(K;, )" P+ 3 p(—K;,-)"TP) —

(3p(K,-)"tP+1p(—K,-)"P) almost everywhere. Since (3p(K;, )" *P+1p(—K;, )" P)
SP(KSKiﬁ') SP(Kva)
B . V(ALK;) V(AZK)
get APK; — APK. Thus, ALK is a continuous valuation.

If ¢ € SL(2), we have ) /20" p_ /5 = ¢. Then we get

UnjoALOK = 1y 'ALK = 1000”0 jothn o AP K = @hr 1o ALK

for every K € K. Since the operator ¢, /5 is continuous, we obtain that 1/1,r/2/~VC’ is

are uniformly bounded, weakly. Hence, by Lemma 3.1, we

continuous. Moreover, it is easy to verify that ¢, /,AL is a normalized symmetric

L,-Blaschke valuation which is homogeneous of degree —% — 1. Hence, 9, /27ch is a



L,-BLASCHKE VALUATIONS 11

continuous, SL(2) covariant normalized symmetric L,-Blaschke valuation which is

homogeneous of degree f% —1. O

4. NORMALIZED L,-BLASCHKE VALUATIONS

In this section, for the contravariant and covariant case respectively, we establish
our classification results for continuous, linearly intertwining, normalized symmetric
L,-Blaschke valuations.

We remark firstly the fact that the SL(n) covariance (or contravariance) and
homogeneity of a valuation Z : K, — (B(R™), +) are completely determined by the
restriction of Z to n-dimensional convex bodies if the Abelian semigroup (P(R™), +)
has the cancellation property. (Actually this property is generalized from Lemma
4 and Lemma 9 of Haberl [6], and the proof of this property is almost the same as
Haberl’s).

Lemma 4.1. If Z : K, — (B(R"),+) is a valuation which is SL(n) covariant
(or contravariant) and homogeneous of degree q on n-dimensional convex bodies,
and (P(R™),+) has the cancellation property, then Z is SL(n) covariant (or con-

travariant respectively) and homogeneous of degree q on EZ.

Proof. In the covariant case, we have to show
ZoK = (det ¢)+ ¢ZK (4.1)

for every K € K: and ¢ € GL(n) with positive determinant. Let dim K = n — k,
where 0 < k < n. We prove our assertion by induction on k. Indeed, (4.1) is true
for k = 0 by assumption. Assume that (4.1) holds for (n — k)-dimensional convex
bodies and dim K = n — (k+1). Choose u ¢ lin K, where lin K denotes the linear
hull of K. Clearly [K,u], [K,—u], [K,u,—u], ¢[K,u], ¢[K, —u], ¢[K,u,—u] are of
dimension n — k, and
(K, u]U[K, —u] = [K,u,—u], [K,u]N[K, —u] = K,
¢[K7 u} U ¢[Ka —U] = ¢[K,U7 —’LL], ¢[Ka u] n ¢[Ka —’LL] = d)K

Since Z is a valuation,

With the induction assumption, we get

q—1

ZYK + (det ¢) =

OZIK,u, —u] = (det §) "= Z[K,u] + (det ¢) T $Z[I, —u].
So,

(det @)™+ ¢ ZoK + Z|K,u, —u] = Z|K,u] + Z[K, —u).
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By the cancellation property of (P(R"™),+), combined with the relation
ZK + Z[K,u,—u] = Z[K,u] + Z[K, —u],
we have
(det )~ ¢ Z¢K = ZK. (4.2)

This immediately proves that (4.1) holds for bodies of dimension n — k — 1.

The contravariant case is proved similarly to the covariant case. O

Since K™ endowed with L,-Minkowski sum is an Abelian semigroup which has

the cancellation property, we immediately get the following.

Lemma 4.2. If Z : K, — (B(R"), +,) is a L,-Minkowski valuation which is SL(n)
covariant (or contravariant) and homogeneous of degree q on n-dimensional conver
bodies, then Z is SL(n) covariant (or contravariant respectively) and homogeneous

of degree q on K:.

4.1. The contravariant case. Firstly, we reduce the possible degrees of homo-
geneity of continuous, SL(n) contravariant normalized symmetric L,-Blaschke val-

uations.

Lemma 4.3. If Z : K — (K, %EI) is a continuous, SL(n) contravariant valuation

which is homogeneous of degree q, then ¢ < —1.

Proof. Suppose K € K is an arbitrary convex body that K Nel and K Ne;, are

n-dimensional. For every positive s we have

[KNel +se, UK Ne, ,Ese,] = [K, +se,],

[KNel, +se,]N[K Ney,,+se,] = [KNel, +se,).
Since Z is a normalized symmetric L,-Blaschke valuation, we have
S,(Z|K Nei, +sen)], )

P V(ZIK nel, £se,))
L Sp(ZIK Nef, Esen], )

P V(ZIK Net, tsen))

S,(Z|K, tse,], -

LK Esenl, ) o, (43)

(e1)

(1) +C Sp(Z|K Ney,,tsey],-)

P V(ZK Neyn,+se,)) (1)

_ P
Co V(Z|K, £se,))

Define a linear map ¢ by

¢ei:eiai:]~7"' ,nfl,qﬁenzsen.



L,-BLASCHKE VALUATIONS 13

From the SL(n) contravariance and homogeneity of Z as well as relation (3.2) and
(2.3), we get
S,(Z|K Ne;, +sey), ) Sy(s5 ¢ Z[K Net, tey), )
P V(ZIK Nel, £se,)) () =G V(s ¢t Z[K Nel, +e,]) (e1)
—(atip S,(ZIK Nei,+e,),)
P V(ZIK Nnel, +e,))

(gbtel).

Since |e; - u| > 0 for all u € S"~!\ ef, and the L,-surface area measure of n-

dimensional bodies is not concentrated on any great sphere, we conclude that

o S,(ZIK Nel, +en),)
P V(ZIK Net, +e,))

1
— . P Z K j: .
V(Z[K € ienD /;'nfl |61 U| dSp( [ a €n> en]7 U) >0

(¢'er)

Moreover we have

lim [KNet,+se,] = KnNef,
s—0+
lim [K Ne,,+se,] = KnNe,,
s—0t
lim [K, £se,] = K.
s—0F

Hence the continuity of Z and volume, together with the weak continuity of L,-
surface area measures imply that the right side of (4.3) converges to a finite number
as s — 0T. This implies W >0,s0q < —1. O

In next two lemmas, we will show how to generate a homogeneous, SL(n) covari-

ant L,-Minkowski valuation on C,, by a continuous, SL(n) contravariant normalized

n
0

symmetric L,-Blaschke valuation which is homogeneous of degree ¢ on K}, where

g<—1.

Lemma 4.4. Let Z : KI — (K7, %Ep> be a continuous, SL(n) contravariant valua-
tion which is homogeneous of degree ¢ = —1. Define the map Z; : K: — <EZ, +p)
by

Sp(ZK.) o
hZ1K,z)P = CrFizry (@) dim K = n,
7 Sp(Z[K,£bgr1, - ,%£bn],) ) B
Cr V(Z[Kaib)::»ll,'” Eb,]) (rrz) dimK =k <mn,
for every x € R", where the byy1,--- , by, are an orthonormal basis of the orthogonal

complement of lin K and mg is the orthogonal projection onto lin K. Then Z, is

a SL(n) covariant Ly,-Minkowski valuation which is homogeneous of degree 1.

Proof. In order to show that Z; is well defined, suppose that dim K = k < n and
bei1, -+ by as well as cpy1,- - - , ¢, are two different orthonormal bases of (lin K)*.

Fix an orthonormal basis by,--- , by of lin K. Denote by 8 a proper rotation with
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0b; =b;, i =1,--- kand 6b; € {+¢;}, i =k +1,--- ,n. Then the contravariance
of Z and relation (2.3) induce that

o Sp(Z1K, £cpq1,- -+ ,Ecn), )

S (ZOK, by, Eb), )
PV(ZIK, £cner, - o £cn)) (mxe) = C,

P V(ZO[K, £bgt1, -+, b))
Sp(0Z[K, £bg11, -+, +bal, )

(TKT)

TP V(0ZIK, £bpar, -, £by)) (mrew)
SP(Z[Kv :l:bk+1a"’ aibn]a') —1
_ 9
PV (Z[K, £bpsr, -, £bn]) (0= mc)
Sy (Z[K, £bysr, - £bl,-) (rx).

T P V(Z[K, £bpa, -, b))

Thus, Z; is well defined.

Next, we show that Z; is a L,-Minkowski valuation. Suppose that K, L € KZ
such that K UL € K. and let k be an integer not larger than n. If dim(K UL) = k,
then one of the following four cases is valid:

(1) dim K =k, dimL =k, dimKNL =k, 0 <k <n,

(2;) dmK =k, dmL =k dmKNL=k—-1, 1 <k <mn,

(3k) dmK =k, dimL=k—1, 1 <k <mn,

(4) dmK =k —1,dimL =k, 1 <k <n.

The valuation property trivially holds true for the cases (3;) and (4j), since we
have L. C K and K C L respectively in these situations. Therefore it suffices to
prove

P P _ 7P P
hZ(KuL) + hZI(KmL) - hZK + hflL

for the cases (1;),0 < k <n and (2),1 <k <n.
Let us start with the easy case (1,,). The valuation property of Z implies

SP(Z<KUL>7') SP(Z(KQL)W) SP(ZK7') S;D(ZL")

V(Z(K UL)) V(Z(KNL)  V(ZK) V(ZL) "’

and thus

Sp(Z(KUL),-) Sp(Z(KNL),-) ., Sp(ZK,) Sp(ZL,-)
“Vawor) O vaEan) S ver) vz

Hence, the definition of Z; immediately proves the assertion. Next we deal with
the case (1x), 0 < k < n. Note that

[Kaibk+1a"' 7ibn] U [Laibk+la"' aibn] = [KUL7 ibk+17"' aian
[Kaibk)-‘rla"' 7ibn] N [L;ibk-ﬁ—l;"' aj:bn] = [KﬁL, ibk-‘rlf" aibn}
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Since lin K =lin L = lin (KU L) = lin (KN L), we have Tgx = T2 = T(gur)T =

)
T(knr)T- With the valuation property of case (1,) proved above, we get

c Sp(ZIK UL, £bgy1,--- ,£by], ")

@) +C Sy(Z[K O L, 4bjsr, -+ ,£by], ")
P V(ZIK UL, +bgyq,- -, %by)) P V(ZIKN L, £bgiq,- -, b))
Sy (ZIK, b, Eb) ) Sy(Z[L, £byi, -, by], )

T PTV(ZIK, £bpan, -, b)) () +Chp V(Z[L, £byrr, -, £bn]) (@)

()

for every x € R™. Changing x to mxx, we get the positive assertion of the cases
(1k).
Now we consider the case (2;), 1 < k <n. It is enough to show

p P — 1P
Bk sy = 15,

1K Z1(KNust) (44)

P
(KNut) + h71(Kﬂu*)
for dim K = k and a unit vector v € lin K such that K Nu™, K Nu~ are both
k-dimensional. Notice that if k = n, then 7xz = z. So we will prove the case (2f)
without distinguishing between k = n and k < n. Let by,--- , b, be an orthonormal
basis of R™ such that lin K = lin {b1, - ,bx}, and v = by. With the valuation

property of case (1) proved above, we have

0 Sp(ZIK desby, by, by, )
P V(ZIK,+sbg, £bgy1, -, +by))
Lo S,(Z|K N b, +sby, £bg1, -+, £by], )

P V(Z[K N b, £sby, £bgy1, -+ Eby])

Sy (ZIK N b, Esby, £byr, -, Eby], )
P V(ZIK N b, dsbg, by, -, £b,])
Sp(Z[K Nby, £8bg, £bgi1, -+, £b,), )

P V(ZIK Nby, £sby, £bir, -, £by))

(TrT)

(TKT)

(TrT)

(rx) (4.5)

for sufficiently small s > 0. Define a linear map ¢ by
oby, = sbg,db; =b;, i=1,---  k—1,k+1,--- ,n.

Note that det ¢ is independent of the choice of orthonormal basis of R", so det ¢ = s.
The contravariance of Z, and relations (3.2) as well as (2.3) give
Sy(Z|K Nbik, £sby, £bgy1, -+, £by), )
P V(ZIK Nby, £sby, by, -+, £by,])

o Sp(Zd)[KmbtvibkaiblvFlv'” ;ibn]v)
P V(ZGIK N, Ebg, b, -, £by))

(Tr )

(TKT)

c Sp(s ¢ P Z[K N b, by, £bgyr, -+, £b), )
=C, PRS- 0 (T x)
V(S n d) Z[Kﬁbk,ibk,ibk+la"' 7:|:bn])
- W SP(Z[Kﬂbé7ibkvibk+17". ,ibn],')((btﬂ_Kx) (4 6)

P V(ZIK N by, £by, £bgr, -+, £by))
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Note that lim ¢'mgr = Ty, Since ¢ = —1,
s—0t k
ZIK Nbi, +sby, +b R
lim pSP( [ N ]17 SOk, k+1, 5 n]a )(ﬂ'KI)
s—0+ V(Z[K N bk , Esbi, by, -, £by])
_ Sp(Z[Kﬂbkl,:tbk,ﬂ:bk_;,_h'” ,:tbn},~) (71' Lx)
P V(ZIK N bk, +bg, £bgg1, - £b,]) - KT

So if s tends to zero in (4.5), then we immediately obtain (4.4). Hence we proved
that Z; is a L,-Minkowski valuation. Moreover, it is easy to calculate that 7,
is a SL(n) covariant L,-Minkowski valuation which is homogeneous of degree 1
on n-dimensional convex bodies. Lemma 4.2 implies that Z; is a SL(n) covariant

L,-Minkowski valuation which is homogeneous of degree 1 on K:. (|

Lemma 4.5. Let Z : KI' — (K7, %ﬁ,} be a continuous, SL(n) contravariant valua-
tion which is homogeneous of degree ¢ < —1. Define the map Zs : K, — (K., +p)
by

Sp(ZK,) . B
h(Z2K, )P = Co iz () dimK =n,
0 dimK =k <n,

for every x € R". Then Zs is a SL(n) covariant L,-Minkowski valuation which is

homogeneous of degree 1 = —q.

Proof. We use the notation of Lemma 4.4. Since the case (1,) is the same as in
Lemma 4.4, and the cases (1), 0 < k < n, (2), 1 < k < n are trivially true, we
just need to consider the case (2,).

Hence we need to show

ny 4+ hY =h + hY

ZsK Zo(KNut) Zy(Knut) 72(Kﬁu*) (4'7)

for dimK = n and a unit vector u € R"™ such that K Nu*, K Nu~ are both
n-dimensional. Let by,---,b, be an orthonormal basis of R™ such that u = b,.
Comparing with the proof of Lemma 4.4, we just need to show the relation (4.6)
of the case k = n tends to zero for ¢ < —1 when s tends to zero. Actually, the

relation (4.6) of the case k =n is

Sy (Z[K Nbt, +sby,],-) (2) = s~52 S, (Z[K Nbt,+b,], )

¢ P V(Z[K NbL, £by,))

P V(Z[K N bk, £sby]) (¢2),

where ¢ is a linear map defined by ¢b, = sb,,¢b; = b;, i = 1,--- ,n — 1. Since
q < _17

J_ .
fo ¢ Sp(ZIE Nby, Esb )

Jmn o IR A bL Esb]) ) O
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Hence, Zs is a L,-Minkowski valuation. Moreover, it is easy to calculate that
Z3 is a SL(n) covariant L,-Minkowski valuation which is homogeneous of degree

’,’:—q. |:|

For p > 1, the following lemma shows that every support set of a L,-projection
body consists of precisely one point. It will help to rule out the existence of con-
tinuous, normalized symmetric L,-Blaschke valuations which are homogeneous of
degree —1 (see Theorem 4.8 and Theorem 4.13 for more details). A similar result
for p =1 can be found in Schneider [40, Lemma 3.5.5].

For K € K", e € S"71, write K. := {x € K|z -e = h(K,e)}.

Lemma 4.6. Forp > 1, if the support function of the convex body K € K" is given
by
M0 = ([l oPdu(e)
Sn—l

for u € S, with an even signed measure p, then, for e € S*71,
h(Ke,u) =ve - u
Jorue S, where ve = 2([g. |e - vlPdp(v))r ! Lo+ (e-v)P~wdp(v).

Proof. The assertion of the lemma is true for u = +e, since h(K., te) = £h(K,e).

Hence we may assume that u and e are linearly independent. Note that h(K,,u) =

lilgl+ w (see Schneider [10, Theorem 1.7.2]). Put
S—
Ag:={ve S e-v>0,(e+su) v>0}
By:={veS" e -v<0,(e+su)-v>0},
Cs:={veS" e -v>0,(e+su)-v<0}.
We obtain
h(K..u) = lim h(K,e+ su) — h(K,e)
e; s—0t S
1 p 1g 1 p p
=~ e v[Pdp(v)) " lim —( (e + su) - vPdu(v) — le - v[Pdp(v)),
P Jgn-1 s—=0t S Jgn-1 Sn—1
and

Jim ([ et s olaute) = [ e oPduto))
=20im ([ (s ordu) = [ e opdu(o)

=2p lim (e- )P (u-v)du(v)
s—0t A,UB,

+ lim p(p—1)(e-v)P"2(u-v)?s + o(s)du(v)
s—0t A UB,
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m Pdu(v) — im1 e-v)Pdu(v
—|—2hm/BS(e-v) du(v) — 2 1 /CS( Vdpu(v).

s—0t S s—0t S
Let
py (E) = sup{u(A)|A C E and A is a Borel set of S® ™'},

p_(E) = —inf{u(A)|A C E and A is a Borel set of S" '},

1 (E) = pi(E) + p—(E)

for every Borel set E of S"~1. We get

‘ p(p—1)(e-v)P"2(u-v)%s + o(s)du(v)’
A UB,

s—07T

< [ o= Dle 0 P o+ ofs)ldi (0) 5
Sn 1

For v € By, we have |e - v| < ¢s with a constant ¢ independent of s. Writing
Bl :={veS" e -v<0,(e+su) v>0}
we obtain
|§/B e-v)Pdu(v)| = ’7/ e-v)Pdu(v)| < PP u(BY).

Since (in the set-theoretic sense) lim B. = (), we have lim p/(B.) = 0. With
s—0t s—0t
p > 1, we get

s—0t S

o1 Pdu(v) —
lim /Bs(em) dp(v) = 0.

From lim C, = ), we similarly find
s—0t

s—0t s

1 Pdu(v) —
lim /Cs(em) du(v) = 0.

Further, lim A, = et\et, lim B, = {v € S" !le-v =0,u-v > 0}, and p > 1,
s—0t s—0t

we get

lim (e- )P (u-v)du(v) = /+ (e- )P~ (u-v)du(v).

s—0t A,UB,

Finally, we get

e =2 JesolPau)i ™ [ e op (o)

— (e oPdu(o)) ! /< 0P udp(v)) -

which completes the proof of the lemma. O
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To classify continuous, homogeneous, SL(n) contravariant normalized symmetric
L,-Blaschke valuations, we need the following results from Ludwig [20].

For —1 < 7 <1, define My :EZ —>K: by

P (M, K,v) = / (lv-z| +7(v-2))Pde
K

for v € R™. In particular, MJK is a dilate of the Ly-centroid body, if V(K) > 0.

A polytope is the convex hull of finitely many points in R™. Let P}’ be the set
of n-dimensional polytopes which contain the origin, ﬁz the set of polytopes which
contain the origin. Let &,(P) denote the set of edges of a polytope P which contain

the origin.

Lemma 4.7. [20] Let Z : P, — (K., +,), n > 3, be a L,-Minkowski valuation,
p > 1, which is SL(n) covariant and homogeneous of degree r. If r = n/p+ 1, then
there are constants a > 0 and —1 < 7 < 1 such that

ZP =aM,P
for every P € fz. If » = 1, then there are constants a,b > 0 such that
ZP =aP +, b(—P)

for every P € P,. In all other cases, ZP = {o} for every P € P, .

Let Z : fi — (Ki,—I—p), be a L,-Minkowski valuation, p > 1, which is SL(2)
covariant and homogeneous of degree r. If r = 2/p 4+ 1, then there are constants
a>0and —1 <7 <1 such that

ZP = aM]P

for every P € fi. If r = 1, then there are constants ag,by > 0 and a;,b; € R with
apn +CL1', b() +b1 Z O, 1= 1,2 such that

ZP = aoP 4+, bo(—P) +5 > (a;Ei +, b(—E;))

for every P € ﬁi, where Y7 denotes the L,-Minkowski sum, and the sum is taken
over E; € £,(P). If r = 2/p — 1, then there are constants ¢ > 0 and —1 <7 <1
such that

ZP = at), o117 P

for every P € 53. Here ﬁ;P is defined by the relation (4.16). In all other cases,
ZP = {o}for every P € fi.

Now we can classify continuous, homogeneous, SL(n) contravariant normalized

symmetric L,-Blaschke valuations.
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Theorem 4.8. Let n > 2, p > 1 and p not an even integer. If Z : KI' — (K2, #,,}
is a continuous, homogeneous, SL(n) contravariant valuation, then there exists a

constant ¢ > 0 such that
ZK = cAPK

for every K € 7.

Proof. Let ¢ be the degree of homogeneity of Z. Lemma 4.3 shows that ¢ < —1.

If ¢ = —1, then Z1, introduced in Lemma 4.4, is a SL(n) covariant L,-Minkowski
valuation which is homogeneous of degree 1. If n > 3, from Lemma 4.7, we derive
that there are constants a,b > 0 such that

Z\P = aP +, b(—P)

for every P € P,. If n = 2, from Lemma 4.7, we derive that there are constants
CL(),bO >0 and ai,bi € R with ag + a;, by + b; > 0, :=1,2 such that

le =aqoP +p bo(—P) +p Zp(aiEi +p bi(—Ei))

for every P € ﬁ:, where the sum is taken over E; € &,(P). For Py = [£ey, -+ , te,],
we have

,ZP
7V(ZPO)1/Z’ = CP07

for a suitable ¢ > 0 when n > 2. Assumption that Z does not contain {o} in its
range gives ¢ > 0. For p > 1, every support set of a L,-projection body consists
of precisely one point (Lemma 4.6). However, Py has the support set [e1, - , €]
which does not consist of precisely one point. That is a contradiction.

If ¢ = —n/p — 1, then Z5, introduced in Lemma 4.5, is a SL(n) covariant L,-
Minkowski valuation which is homogeneous of degree n/p + 1. For n > 2, from
Lemma 4.7, we infer that the existence of constants ¢ > 0 and —1 < 7 < 1 such
that

7P = aM P

for every P € P,. Assumption that Z does not contain {0} in its range gives a > 0.
Since Z, P is origin-symmetric, we deduce that 7 = 0. Thus, % = aMI? P for
every P € P. Since the operators % and I'), are continuous on K7, and P; is

dense in K7, we obtain

,ZK

_ 0
vizeyr MR



L,-BLASCHKE VALUATIONS 21

for every K € K. By rewriting this in terms of the L,-cosine transforms (via
relation (2.6) and (cn,pV(K))%FpK = MJK), we get
Sp(ZK,-) 1 1
C p ’ =bC A\ntp =bC. (= A\n+p o A\n+p
VLR = YO () = 0Cy (5om ()" 4 G0k (")
for a suitable constant b > 0. Since S,(ZK,-) is an even measure, the injectivity
property (2.1) and the definition of the normalized symmetric L,-curvature image

operator finally shows
ZK = cAPK (4.8)

for a suitable constant ¢ > 0.
If g = —2/p+1 and n = 2, then Z,, introduced in Lemma 4.5, is a SL(n)
covariant L,-Minkowski valuation which is homogeneous of degree 2/p — 1. By

Lemma 4.7, there are constants ¢ > 0 and —1 < 7 < 1 such that
ZyP = oI} P

for every P € P.. f[; is not continuous on P} while % is continuous on P}
Thus, that is a contradiction.

In all other cases, Zs, introduced in Lemma 4.5, is a SL(n) covariant L,-
Minkowski valuation which is homogeneous of degree r, where r £ 1, r £ n/p+1
for n > 2 and r # 2/p — 1 as an addition for n = 2. By Lemma 4.7, ZoP = {0} for
every P € P,. So

gl = G, @) =0 (4.9
for every P € P}. S,(ZP,-) is an even measure since ZP is an origin-symmetric
convex body. Thus, by relation (2.1), we have S,(ZP,-) = 0. That is a contradic-
tion. O

Hence, Theorem 3.2 and Theorem 4.8 directly imply Theorem 1.1.

4.2. The covariant case. The following Lemma 4.9, Lemma 4.10 and Lemma

4.11 are the counterparts of Lemma 4.3, Lemma 4.4 and Lemma 4.5 respectively.

Lemma 4.9. If Z : KI' — (IC?J%) is a continuous, SL(n) covariant valuation

which is homogeneous of degree q, then ¢ < —n + 1.

Proof. Suppose K € K and s > 0. As in the proof of Lemma 4.3, we get that
S,(Z|K Nelt,+sen], ) (en)
P V(ZIKNnel, £se,]) "
_ -~ SZK Net, +sey), .)(e e Sp(Z|K Ne,,+se,),-)
P V(ZIKNel, tse,]) P V(ZIK Nern,tse,))

(en)



22 JIN LI, SHUFENG YUAN, AND GANGSONG LENG

_c Sp(Z[K, £sey), )
P V(Z[K, +se,))

(en), (4.10)

Sp(Z[KNey ,£sen],:
and thus C, V((Z[[Kﬂe,{-,:tsen]]))

(The difference between relation (4.3) and relation (4.10) is that the independent

variable of the Lp-cosine transform is changed from e; to e,.) Define the linear

(en) must converge to a finite number as s — 07.

map ¢ as before by
(Z)e'i =e;,t=1,---,n—1¢e, = se,.

From the SL(n) covariance and homogeneity of Z as well as relation (3.1) and (2.3),
we get

g—1

S, (Z|K Nei, +sen], ) (e) = Sp(s™m ¢Z[Kﬂei,ien],~)(e )
P V(ZIK Ney, £sey)) P V(s oZIK Net, +en))
—@-ve , Sp(Z[K Net,Ee,],")

= T O K nel, ten))

(6 ten).

Since |e,, - u| > 0 for all u € S"~ 1\ el and the L,-surface area measure of n-

dimensional bodies is not concentrated on any great sphere, we conclude that

PO Sy(Z[K Net, +en], )
P V(ZIK Nel, +en))
1

— ~uPdS,(Z[K Ne-, + .
V(Z[Kﬁef;,:l:en})/snfl len - ul?dS5,(ZIK N &, eal, u) > 0

(¢_1en)

Thus,%—pzo,soqg—n—l—l. O

Lemma 4.10. Let Z : KI' — (K7, %%) be a continuous, SL(n) covariant valuation
which is homogeneous of degree ¢ = —n + 1. Define the map Z; : K: — (K", +p)
by

Sp(ZK,- . _
c, V((ZK))(J:) dim K =n,

WZ1K,2)" = { €, 222 (2 v)w) dim K =n -1,

0 dim K <n—2,

for every x € R™, where v is a unit vector perpendicular to lin K. Then Z, is a

SL(n) contravariant L,-Minkowski valuation which is homogeneous of degree n—1.

Proof. Obviously, the definition of Z; is independent of the choice of v, so it is
well defined. Next, we show that Z; is a L,-Minkowski valuation. We still use the
notation of the proof of Lemma 4.4. The case (1,) is the same as and the case
(1,—1) is similar to (Change w2z to (x - v)v) the corresponding parts in the proof
of Lemma 4.4. The cases (1;),0 <k <n—2 and (24),1 <k <n —2 are trivial.
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Now we consider the case (2,,). It is enough to show

p p _ np p
h71K + hZ(KmuL) o h71(1mu+) + hZ(Kmm) (4'11)

for dim K = n and a unit vector v € lin K such that K Nu™, K Nu~ are both
n-dimensional. Let by, --,b, be an orthonormal basis of R"™ such that v = b,.

With the valuation property of case (1,,), we have

C SP(Z[KviSbn]a )
P V(Z|K, £sby))
Sp(ZIK Nb, +sby], )

Sp(Z|K Nbyt, +sby],-)
O+ SR b sba)) Y
Sy(Z[K N by, £sba, )

= O zE b 1) O OV ZE b sty Y (4.12)
for sufficiently small s > 0. Define a linear map ¢ by
Gby, = Sby, db; = by, i=1,--- ,n—1.
The covariance of Z, and relations(3.1) as well as (2.3) give
o S, (Z[K NbL, +sb,], )(x) EPECESIERS Sp(Z[KObfL,j:bn],-)(qux)

PTV(Z[K NbL, £sbn)) PTV(Z[K N bL, £by))
S,(Z[K NbE, +by,],-)

P V(Z[K Nk, +b,))

—(g=1)p
=3 e P

(s~ ).
(4.13)

Note that lim s¢ 'z = (2 - by,)b,. Since ¢ = —n + 1,
s—0t

i . L .
le ¢ Sp(ZIE Nby, £, ) Sp(ZIK N b, £b,], )

S IR bt 2sh]) D T PV ZIR AbL 2b,]) (& b))

So if s tends to zero in (4.12), then we immediately obtain (4.11).

The case (2,,—1) is similar to the case (2,). We will show the relation (4.11) is
still true for dim K = n — 1 and a unit vector u € lin K such that K Nu™, K Nu~
are both (n — 1)-dimensional. Let by,--- ,b, be an orthonormal basis of R™ such
that lin K = lin {by, -+ ,bp_1}, and w = b,—1. Thus choose v = b,. With the
valuation property of case (1,—1), we have

S (Z|K, £5bn_1,4by], -
CP 9((2[[1(, T, ibn]]) (- bp)
Sp(Z[K Nby_y, £sbp_1,£by], )

n—1

o )by
O V(Z[Kﬁb#_laisbn—hibn]) ((l‘ ) )
S (Z[Kﬂb;:, ,iSbn—laibn]v')
=G, N (@ bn)n)
V(Z[K N bnfl’ iSbnflvibn])
S,(ZIKNb,_ _{,+8b,_1,%b,],-
3 »(Z] n-1 S0n—1 ] )((a:-bn)bn) (4.14)
V(Z[K n bn—l’ :tSbn—h ib’f‘b])
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for sufficiently small s > 0. Define a linear map ¢ by

Pbp_1 = 8by_1,0b; = b;, i £ n— 1.
The covariance of Z, and relations(3.1) as well as (2.3) give

Sp(Z[K Nbit_ |, £sb,_1,%by],)

n—1

V(ZIK Nbt_ |, +sb,_1,%b,]) ((z - bn)by)
= oo, SR N 20 ) (oa ),

P V(Z[K Nbt, +b,))

Note that lim ¢~ (x - b,)b, = (z - by)by. Since ¢ = —n + 1,
s—0t

Sy(ZIK Nb:_ | +sby_1,+by],)

li n_l’ “bp)b,) = 0.
o IR A bl by 1, b)) & On)on)

So if s tends to zero in (4.14), then we immediately obtain (4.11). Hence we proved
that Z; is a L,-Minkowski valuation.

Moreover it is easy to calculate that Z; is a SL(n) contravariant L,-Minkowski
valuation which is homogeneous of degree n — 1 on n-dimensional convex bodies.
Lemma 4.2 implies that Z; is a SL(n) contravariant L,-Minkowski valuation which

is homogeneous of degree n — 1. ([

Lemma 4.11. Let Z : KI' — (K2, ;ﬁ,) be a continuous, SL(n) covariant valuation
which is homogeneous of degree ¢ < —n + 1. Define the map Zs : K: — (K", +p)
by

S,(ZK, )
h(ZyK,z)P = Cp \z((ZK)) () dim K = n,
0 dimK =k < n,

for every x € R™. Then Zs is a SL(n) contravariant L,-Minkowski valuation which

is homogeneous of degree r = —q.

Proof. To prove that Zs is a L,-Minkowski valuation, as in the proof of Lemma

4.5, we just need to show

S, (ZIK NbL, £sby], )
1 p n )
S o 2K A b, Lsba])

(z) = 0. (4.15)

Actually, since ¢ < —n—+1, by the relation (4.13), we immediately get the conclusion.
Moreover, it is easy to calculate that Zs is a SL(n) covariant L,-Minkowski

valuation which is homogeneous of degree r = —gq. (I
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As in the contravariant case, we also need following results from [20] to classify
SL(n) covariant normalized symmetric L,-Blaschke valuations.

For —1 < 7 <1, define H; on the set of all convex bodies containing the origin
in their interiors by

W(IT K, v)P :/S (ol 7o 0))PdS, (K w)
for v € R™. In particular, HgK is the L,-projection body of K. To extend the
operator II} to polytopes that contain the origin in their boundaries, for P € f:,
the set of polytopes which contain the origin, define f[;P by
WP, o) = / (o ul + (v w)PdS,(P,u), (4.16)
Snil\wo(P)

where w,(P) is the set of outer unit normal vectors to facets of P that contain the

origin.

Lemma 4.12. [20] Let Z : P, — (K", +4,) be a L,-Minkowski valuation, p >
1,m > 3, which is SL(n) contravariant and homogeneous of degree r. If r = n/p—1,
then there are constants a > 0 and —1 < 7 < 1 such that

ZP = dll}P

for every P € P... In all other cases, ZP = {0} for every P € P,.

Let Z : ﬁi — (K2,+,) be a L,-Minkowski valuation, p > 1, which is SL(2)
contravariant and homogeneous of degree r. If r = 2/p+1, then there are constants
a>0and —1 <7 <1 such that

ZP = ay ;s M P

for every P € fz. If r = 1, then there are constants ag, by > 0 and a;,b; € R with
ag + a;, bg+b; >0, i = 1,2 such that

ZP =g a(aoP +p bo(=P) +p Zp(aiEi +p bi(—E5)))

for every P € 557 where " denotes the L,-Minkowski sum which is taken over
E; € &(P). If r = 2/p — 1, then there are constants ¢ > 0 and —1 < 7 < 1 such
that

ZP = all}P

for every P € fi. In all other cases, ZP = {0} for every P € fi.

Now we classify continuous, homogeneous, SL(n) covariant normalized symmet-

ric L,-Blaschke valuations.
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Theorem 4.13. Let n > 3, p > 1 and p not an even integer. Then there exist
no continuous, homogeneous, SL(n) covariant normalized symmetric L,-Blaschke
valuations on k7).

Let p > 1 and p not an even integer. If Z : K2 — (IC?:,%EP) 18 a continuous,
homogeneous, SL(2) covariant valuation, then there exists a constant ¢ > 0 such
that

ZK = cipr joAPK

for every K € K2.

Proof. Assume that Z : K — (K7, %&p> is a continuous, SL(n) covariant valuation
which is homogeneous of degree q. Lemma 4.9 shows ¢ < —n + 1.

We firstly consider the cases n > 3. If ¢ < —n+1, then Z5, introduced in Lemma
4.11, is a SL(n) contravariant L,-Minkowski valuation which is homogeneous of
degree r > n — 1. By Lemma 4.12, we have ZyP = {0} for every P € P.. If
q¢=—n+1, Zy, introduced in Lemma 4.10, is a SL(n) contravariant L,-Minkowski
valuation which is homogeneous of degree n — 1. By Lemma 4.12, Z{ P = {o} for
every P € P,,.

Combined with the injectivity relation of the L,-cosine transform (2.1), all cases

q < —n + 1 imply that

Sp(ZP,") —0
V(ZP)
for every P € ﬁ:. It is a contradiction to the existence of continuous, homogeneous,
SL(n) covariant normalized symmetric L,-Blaschke valuations on 7.

Next we consider the case n = 2. If ¢ < —1, ¢ # —2/p — 1, then Z,, introduced
in Lemma 4.11, is a SL(2) contravariant L,-Minkowski valuation which is homoge-
neous of degree r > 1, 7 # 2/p+ 1. By Lemma 4.12, we have Z,P = {o} for every
P e fi. Combined with the injectivity relation of the L,-cosine transform (2.1),

we get S{}(é];’)') = 0. That is a contradiction.

If g = —2/p — 1, then Z,, introduced in Lemma 4.11, is a SL(2) contravariant
L,-Minkowski valuation which is homogeneous of degree 2/p+ 1. By Lemma 4.12,
there are constants @ > 0 and —1 < 7 < 1 such that

ZoP = athy )y M P

for every P € fi. Thus, ’(/}_W/QZQP = aMy P for every P € P2. Assumption that
Z does not contain {0} in its range gives a > 0. Since Zy P is origin-symmetric, we

get 7= 0. Thus, 9_,/5( 2P

v (#p)i) = aMy P for every P € PJ. Since the operators
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" ILZ ndT ti s on K2, and P2 is d in K2 btai
—n/2, yimp and 'y are continuous on K7, and Py is dense in K7, we obtain

,7K

T/LW/Q(W) = GM;?K

for every K € K2. By rewriting this in terms of the L,-cosine transforms (via
relation (2.6) and (¢, V(K))¥ T, K = MOK), we get

c Sp(ZK,-)

LR eja®) = By ()™ + k() )()

2

for a suitable constant b > 0. Since

C Sp(w—ﬂ'/QZK, )
P V(¢—w/2ZK)

Sp(ZK,-)

(z) = Cpmww/zx)

(by relation (2.3)), the injectivity property (2.1) and the definition of the normalized

symmetric Ly-curvature image operator finally show
V_njaZK = cAPK
for a suitable constant ¢ > 0. Hence,
ZK = cipr o ALK

for every K € K2

If g = —1, Zy, introduced in Lemma 4.10, is a SL(2) contravariant L,-Minkowski
valuation which is homogeneous of degree 1. By Lemma 4.12, there are constants
ag,bg > 0 and a;,b; € R with ag + a;, bg + b; > 0, i = 1,2 such that

= P
Z1P = ¢ﬂ/2(a0P +p bo(—P) +p Z (aiEi +p bz(—El)))
for every P € fi, where Y7 denotes the L,-Minkowski sum, and the sum is taken

over E; € £,(P). For Py = [tey, tes], we have

m,zr
V(TW = 07/}71/21307

for a suitable ¢ > 0. Assumption that Z does not contain {o} in its range gives
¢ > 0. For p > 1, every support set of a L,-projection body consists of precisely
one point (Lemma 4.6). However, v/, Py has a support set [e1, e2] which does not

consist of precisely one point. That is a contradiction. O

Theorem 3.2 and Theorem 4.13 now directly imply Theorem 1.2.
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5. L,-BLASCHKE VALUATIONS

We firstly give the relationship between normalized symmetric L,-Blaschke val-

uations and symmetric L,-Blaschke valuations.

Lemma 5.1. If Z : Q — (K7, #,) is a symmetric L,-Blaschke valuation, then
Z:Q— <K?,%ﬁp>, defined by
S,(ZK,")

YR - S, (ZK) (5.1)

for every K € Q, is a normalized symmetric L,-Blaschke valuation. Moreover, Z
is continuous if Z is continuous, Z is SL(n) covariant (or contravariant) if Z is
SL(n) covariant (or contravariant respectively), and 7 is homogeneous of degree

q(p—n)/p if Z is homogeneous of degree q.
Proof. Since Z is a symmetric Ly-Blaschke valuation,
Sp(Z(KUL),-)+Sp(Z(KNL),-)=8(ZK, ) + Sp(ZL, ),

whenever K, L, K UL, KNL € Q. By the definition of Z and normalized L,-
Blaschke sum, Z is a normalized symmetric L,-Blaschke valuation.

We can prove continuity of Z in a similar way to show continuity of the normal-
ized symmetric Ly-curvature image. But because of the existence of ZK, we can
prove it in an easier way (without using Lemma 3.1).

By the uniqueness of the volume-normalized even L,-Minkowski problem, we

can rewrite relation (5.1) as
ZK =V(ZK)"Y?ZK (5.2)
for every K € K™. Since V(ZK) > 0, if ZK; — ZK,
ZK; =V(ZK) YPZK; - V(ZK) Y’ ZK = ZK.

Thus, if Z is continuous, then Z is continuous.
If Z(AK) = MZK, for every A > 0, then

Z(AK) = V(ZAK) " YPZAK = X10=/Py (Z2K)~YPZK = \aP=/PZ K

Thus, if Z is homogeneous of degree ¢, 7 is homogeneous of degree ¢(p — n)/p.
The proof of covariance or contravariance of Z is similar to the proof of homo-

geneity. [l

Lemma 5.1 introduces a map from the space of symmetric L,-Blaschke valuations
to the space of normalized symmetric L,-Blaschke valuations, and the continuity,

homogeneity or SL(n) covariance (or contravariance) of symmetric L,-Blaschke
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valuations are inherited by the corresponding normalized cases. For p # n, the

relation (5.1) can also be rewritten as
V(ZK)V/ =" ZK = ZK (5.3)

for every K € Q. Then we get the following lemma in a similar way. Hence, the

map is a bijection and these properties are also transferred by the inverse map.

Lemma 5.2. If Z : Q — (Kkr, %ép> is a normalized symmetric L,-Blaschke valua-
tion, p # n, then Z : Q@ — (K, #p), defined by

ZK =V(ZK)'/?=" ZK (5.4)

for every K € Q, is a symmetric L,-Blaschke valuation. Moreover, Z is continuous
if Z is continuous, Z is SL(n) covariant (or contravariant) if Z is SL(n) covariant
(or contravariant respectively), and Z is homogeneous of degree qp/(p — n) if Z is

homogeneous of degree q.

Lemma 5.1, Lemma 5.2 together with Theorem 1.1 (or Theorem 3.2 as well as
Theorem 4.8) provide a classification of continuous, homogeneous SL(n) contravari-

ant symmetric L,-Blaschke valuations on 7.

Theorem 5.3. Forn > 2, p > 1, p # n and p not an even integer, a map
Z Kl — (KZ, #p) is a continuous, homogeneous, SL(n) contravariant symmetric

Ly,-Blaschke valuation, if and only if there exists a constant ¢ > 0 such that
ZK =cANPK
for every K € K.
Proof. Since Z is a continuous, homogeneous SL(n) contravariant symmetric L,-
Blaschke valuation, Z defined in Lemma 5.1 is a continuous, homogeneous SL(n)

contravariant normalized symmetric L,-Blaschke valuation. Theorem 4.8 implies

that there exists a constant ¢ > 0 such that
ZK = cAPK
for every K € K. Note that ALK = V(APK)Y (P~ APK. By relation (5.3),
ZK =V(ZE)YP M ZK = V(eAPK)Y/ P~ AP K = /P~ AP (5.5)
for every K € K.
On the other hand, Theorem 3.2 implies that K{:’ K is a continuous, homogeneous
SL(n) contravariant normalized symmetric L,-Blaschke valuation. Then, APK is

a continuous, homogeneous, SL(n) contravariant symmetric L,-Blaschke valuation

by Lemma 5.2. (]
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Lemma 5.1 and Lemma 5.2 together with Theorem 1.2 (or Theorem 3.2 as well

as Theorem 4.13) imply the following theorem.

Theorem 5.4. Let n > 3, p > 1 and p not an even integer. Then there exist no
continuous, homogeneous, SL(n) covariant symmetric L,-Blaschke valuations on
Ko
Let p > 1 and p not an even integer. If Z : K2 — (K2,#,) is a continuous,
homogeneous, SL(2) covariant symmetric L,-Blaschke valuation, then there exists
a constant ¢ > 0 such that
ZK = ctpr oAV K

for every K € K2.

Proof. For n > 3, we argue by contradiction. Assume that Z is a continuous, homo-
geneous, SL(n) covariant symmetric L,-Blaschke valuation, Z defined in Lemma 5.1
is a continuous, homogeneous, SL(n) covariant normalized symmetric L,-Blaschke
valuation. But Theorem 4.13 implies that there are no continuous, homogeneous,
SL(n) covariant normalized symmetric L,-Blaschke valuations on K. That is a
contradiction.

For n = 2, the proof is almost the same as in Theorem 5.3. O
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