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ON CONVERGENCE OF THE IMMERSED BOUNDARY

METHOD FOR ELLIPTIC INTERFACE PROBLEMS

ZHILIN LI

Abstract. Peskin’s Immersed Boundary (IB) method has been one of the
most popular numerical methods for many years and has been applied to prob-
lems in mathematical biology, fluid mechanics, material sciences, and many
other areas. Peskin’s IB method is associated with discrete delta functions. It
is believed that the IB method is first order accurate in the L∞ norm. But
almost no rigorous proof could be found in the literature until recently [Mori,
Comm. Pure. Appl. Math: 61:2008] in which the author showed that the
velocity is indeed first order accurate for the Stokes equations with a periodic
boundary condition. In this paper, we show first order convergence with a log h
factor of the IB method for elliptic interface problems with Dirichlet boundary
conditions.

1. Introduction

Since its introduction in 1970s, the Immersed Boundary (IB) method [16] has
been applied to mathematics, engineering, biology, fluid mechanics, and many areas;
see for example, [17] for a review and references therein. The IB method is not only
a mathematical modeling tool in which a complicated boundary condition can be
treated as a source distribution but also a numerical method in which a discrete
delta function is used. The IB method is robust, simple, and has been applied to
many problems.

It is widely believed that Peskin’s IB method is only first order accurate in the
L∞ norm. However, there was almost no rigorous proof in the literature until
recently [15], in which the author has proved the first order accuracy of the IB
method for the Stokes equations with a periodic boundary condition. The proof
is based on some known inequalities between the fundamental solution and the
discrete Green function with a periodic boundary condition for Stokes equations.
In [4], the author showed that the pressure obtained from IB method has O(h1/2)
order of convergence in the L2 norm for a 1D model. In [20, 21], the authors
designed some level set methods based on discrete delta functions. With suitable
quadrature formulas in the integral form using the Green functions, the authors
show that their approach can get the expected accuracy. However, there are few
theoretical proofs on the IB method for elliptic interface problems with general
boundary conditions. This is the main motivation of this paper. One difficulty
is that there are little known estimates between the fundamental solution and the
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1170 ZHILIN LI

discrete Green function with Dirichlet or other boundary conditions on rectangular
domains. Compared with the case of periodic boundary conditions where there are
existing estimates between the discrete Green function and the continuous one [8],
there is almost none for Dirichlet and other boundary conditions. The main goal of
this paper is to provide a convergence proof for the IB method for elliptic interface
problems with Dirichlet boundary conditions. We will show that with commonly
used discrete delta functions that satisfy the zeroth moment condition and first
order interpolation property, the IB method is indeed first order convergent in
the L∞ norm with a log h factor. The key in our proof is to establish a connection
between the discrete Green function and the continuous one. Our proof is essentially
independent of the boundary conditions and it is valid in 1D, 2D, and 3D cases.
The result should be applicable for many IB methods involving Stokes and Navier-
Stokes solvers.

2. Proof of the convergence of the IB method in 1D

We will give a proof for the 1D model,

(2.1) u′′ = c δ(x− α), 0 < x < 1, 0 < α < 1, u(0) = u(1) = 0,

in this section. Note that the analytic solution to the equation above is

(2.2) u(x) =

{
−cx (1− α) if x ≤ α,

−cα (1− x) otherwise.

Given a uniform Cartesian grid xi = ih, i = 0, 1, · · · , n, h = 1/n, the IB method
leads to the following system of linear equations,

(2.3)
Ui−1 − 2Ui + Ui+1

h2
= c δh (xi − α) , i = 1, 2, · · · , n− 1,

where Ui is the finite difference approximation of the solution u(xi), and δh(xi−α)
is a discrete delta function applied to the grid point xi. In the matrix-vector form,
the above finite difference equations can be written as AhU = F, where Ah is the
tri-diagonal matrix formed by the discrete Laplacian. It is well known that −Ah is
a symmetric positive definite matrix (SPD) and diagonally dominant. Note that, a
discrete delta function has compact support in the neighborhood of the interface α,
that is, δh(x) �= 0 only if |x| ≤ Wh, whereW is a constant. Commonly used discrete
delta functions include the hat discrete delta function (δhat(x) with W = 1):

(2.4) δhath (x) =

{
(h− |x|)/h2, if |x| < h,

0, if |x| ≥ h,

and Peskin’s original discrete cosine delta function (δcosine(x) with W = 2):

(2.5) δh(x)
cosine =

⎧⎨
⎩

1

4h
(1 + cos (πx/2h)) , if |x| < 2h,

0, if |x| ≥ 2h;

see for example, [13]. Note that, when we use the hat delta function, the result
is the same as that of the IIM for the simple model. The solution to the finite
difference equations is the same as the true solution if there are no round-off errors,
that is,

u(xi−1)− 2u(xi) + u(xi+1)

h2
= c δhath (xi − α) , i = 1, 2, · · · , n− 1;(2.6)
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CONVERGENCE OF THE IB METHOD 1171

see for example, [3, 13]. But this is not the case for other discrete delta functions.
We define the error vector as E = {Ei}, where Ei = u(xi)− Ui. We also define

u = {u(xi)}. The local truncation error is defined as T = {Ti},

Ti =
u(xi−1)− 2u(xi) + u(xi+1)

h2
− c δh (xi − α) .(2.7)

With the definition, we have AhU = F, Ahu = F + T, and therefore AhE = T.
For the hat discrete delta function, we have |Ti| = 0 for all i’s for the simple model.
For the cosine discrete delta function or other discrete delta functions, generally
we have |Tj | = O(1/h) for a few grid points neighboring the interface α; see for
example Table 1 on page 1187. So one interesting question is: Why is the IB
method still first order accurate, that is, ‖E‖∞ = O(h)? To answer this question,
we first introduce the following lemma.

Lemma 2.1. Let Ahy = ek and y0 = yn = 0, where ek is the k-th unit base vector,
then

(2.8) yi =

{
−hxi (1− xk) if i ≤ k,

−hxk (1− xi) otherwise.

The significance of this lemma is that the solution is order h smaller than the
concentrated source.

Proof. We note the following identity:

Ahy = h
ek
h

= h δhath (0) ek.(2.9)

For this simple case, the IB method using the hat discrete delta function is identical
to the IIM; see [13]. Thus from the Immersed Interface Method (see [3,13]) we know
that y is the exact discrete solution at the grid points of the following boundary
value problem

(2.10) u′′ = h δ(x− xk), 0 < x < 1, u(0) = u(1) = 0,

whose solution is

(2.11) y(x) =

{
−hx (1− xk) if x ≤ xk,

−hxk (1− x) otherwise.

This completes the proof. Note that |y(x)| ≤ h. �

From this lemma, we have the following corollary.

Corollary 2.2. Let Ahy = r, then |y(x)| ≤ hW‖r‖∞, where W is the number of
non-zero components of r.

The proof is straightforward from (2.11) and the fact that 0 ≤ x ≤ 1 and
0 ≤ 1 − x ≤ 1. Notice that for a discrete delta function, it should satisfy at least
the zeroth moment equation (see [3]), that is,

(2.12)
∑
i

δh(xi − α) = 1,

corresponding to the continuous case
∫
δh(x−α)dx = 1 if α is in the interval of the

integration. Now we are ready to prove the main theorem.
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1172 ZHILIN LI

Theorem 2.3. Let u(x) be the solution to (2.1) and U is the solution obtained
from the immersed boundary method (2.3) using a discrete delta function δh(x) for
(2.1). Then U is first order accurate, that is,

‖E‖∞ ≤ C̄h,(2.13)

where C̄ is a constant.

Proof. We can decompose the local truncation error into two groups,

T = Treg +Tirreg,(2.14)

where ‖Treg‖∞ = 0 corresponds to the local truncation errors at regular grid points
where δh(xi − α) = 0 and the true solution is piecewise linear. Note that, we have

n−1∑
i=1

Ti =
∑

Treg +
∑

Tirreg = O +
∑

Tirreg.(2.15)

On the other hand, we also have

u(xi−1)− 2u(xi) + u(xi+1)

h2
= c δhath (xi − α)(2.16)

since the finite difference method using the discrete delta function gives the exact
solution at all the grid points. Thus we have

(2.17)

n−1∑
i=1

Ti =
n−1∑
i=1

(
u(xi−1)− 2u(xi) + u(xi+1)

h2
− c δh (xi − α)

)

=

n−1∑
i=1

c δhath (xi − α)−
n−1∑
i=1

c δh(xi − α) = 0,

from the zeroth moment equation (2.12). Thus we have
∑

i T
irreg
i = 0. We divide

T irreg
i into two groups, one with all positive Ti’s denoted as T irreg,+

i ; the other one

with all the negative Ti’s denoted as T irreg,−
i . Since

∑
T irreg,+
i +

∑
T irreg,−
i = 0,

T irreg,+
i and T irreg,−

i must have the same order of the magnitude O(1/h) although
those index i are different except that |xi − α| ≤ Wh is true for all irregular grid
points. Because the solution is linear with c, we have

E = A−1
h T.(2.18)
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CONVERGENCE OF THE IB METHOD 1173

From the solution expression, we know that,

El =
(
A−1

h T
)
l
= −

⎛
⎝ ∑

xl≤xi

T irreg
i xl(1− xi) +

∑
xl>xi

T irreg
j xi(1− xl)

⎞
⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−xl

∑
xl≤xi

T irreg
i (1− xi) if xl ≤ min

i
xirreg
i ,

−(1− xl)
∑

xl>xi

T irreg
j xi if xl > min

i
xirreg
i ,

−

⎛
⎝xl

∑
xl≤xi

T irreg
i (1− xi) + (1− xl)

∑
xl>xi

T irreg
j xi

⎞
⎠ otherwise

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−xl

∑
xl≤xi

T irreg
i (1− α) +O(Wh) if xl ≤ min

i
xirreg
i ,

−(1− xl)
∑

xl>xi

T irreg
j α+O(Wh) if xl > min

i
xirreg
i ,

−

⎛
⎝ ∑

xl≤xi

T irreg
i α(1− α) +

∑
xl>xi

T irreg
j α(1− α)

⎞
⎠+O(Wh) otherwise

= 0 +O(Wh),

after we expand all xi’s at α and since all related xi and xj are within Wh distance
from the interface α. This completes the proof. �

3. Proof of the convergence of the IB method in 2D

The discussion for 2D problems is much more challenging since the interface is
often a curve instead of a point. In [15], the author has proved the first order
convergence of the IB method for the Stokes equations with a periodic boundary
condition in 2D based on existing estimates between the discrete Green function
and the continuous one in [8]. However, there are almost no theoretical proofs on
the IB method for elliptic interface problems or other PDEs with general boundary
conditions. We will prove that the result obtained from the IB for the elliptic
interface problem with a Dirichlet boundary condition is indeed first order accurate
in this section.

Consider the following 2D elliptic interface problem,

Δu(x, y) = f(x, y) +

∫
Γ

v(s)δ (x−X(s)) (y − Y (s)) ds, (x, y) ∈ Ω,(3.1)

u(x, y)|∂Ω = u0(x, y),

where we assume that f(x, y) ∈ C(Ω), Γ ∈ C1, v(s) ∈ C1. Without loss of general-
ity, we assume that Ω is a unit square 0 ≤ x, y ≤ 1, see Figure 1 for an illustration.
The problem can be decomposed as the sum of the solutions of the following two
problems. The first one is

(3.2)
Δu1(x, y) = f(x, y),

u1(x, y)|∂Ω = u0(x, y),
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Figure 1. A diagram of a 2D elliptic interface problem. The
interface is Γ.

which is a regular problem whose solution is smooth, that is, u1(x, y) ∈ C2(Ω).
The second problem is

(3.3)
Δu2(x, y) =

∫
Γ

v(s)δ (x−X(s)) (y − Y (s)) ds,

u2(x, y)|∂Ω = 0.

The solution to the second problem is equivalent to the following problem,

(3.4)
Δu2(x, y) = 0, [u2]Γ = 0,

[
∂u2

∂n

]
Γ

= v(s),

u2(x, y)|∂Ω = 0.

The solution to the original problem is u = u1 + u2. Since u1 is the solution to a
regular problem, it is enough just to consider u2(x, y). Thus we will simply use the
notation u(x, y) for u2(x, y).

Peskin’s IB method for the problem includes the following steps:

• Generate a uniform Cartesian mesh xi = ih, yj = jh, i, j = 0, 1, · · · , n.
Here we use a uniform mesh for simplicity. We denote Ωh as the set of all
grid points; and ∂Ωh as the grid points on the boundary.

• Replace the partial derivatives with the finite difference approximation and
use a discrete delta function to spread the singular source to nearby grid
points, that is, for i, j = 1, 2, · · · , n− 1,

(3.5)

Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Uij

h2
= CIB

ij ,

CIB
ij =

Nb∑
k=1

vkδh (xi −Xk) δh (yj − Yk)Δsk,
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CONVERGENCE OF THE IB METHOD 1175

where (Xk, Yk), k = 1, 2, · · · , Nb, is a discretization of the interface Γ,
and vk ≈ v(sk), which we assume it is at least first order approximation,
vk = v(sk) +O(h).

• Solve the finite difference system of equations above to get an approxi-
mation solution {Uij}. This can be done by calling a fast Poisson solver,
say [1].

3.1. Discrete delta functions and discrete Green functions. As a common
practice, we assume that max

k
{Δsk} = Δs ∼ O(h). In Peksin’s IB method, a

discrete delta function is used for two purposes. One is to spread the singular
source to the nearby grids. The other one is to interpolate a grid function, say
the velocity, to get its values on the interface. Thus the discrete delta function
used should satisfy at least the zeroth moment condition as described in [3]. The
interpolation using the discrete delta function should be at least first order accurate,
that is,

(3.6)
n−1∑
i,j=1

h2
Nb∑
k=1

vkδh (xi −Xk) δh (yj − Yk)Δsk =

∫
Γ

v(s)ds+O(h),

which corresponds to

(3.7)

∫∫
Ω

∫
Γ

v(s)δ (x−X(s)) δ (y − Y (s)) dsdxdy =

∫
Γ

v(s)ds.

From
∫∫

Ω
u(x, y)δ (x−X) δ (y − Y ) dxdy = u(X,Y ), we should also have the in-

terpolation property,

(3.8)
n−1∑
i,j=1

h2u(xi, yj)δh (xi −Xk) δh (yj − Yk) = u(X,Y ) +O(h).

In (3.6) and (3.8), the error terms depend on the first order derivatives of v(s) and
u(x, y), respectively.

A discrete delta function has a compact support, that is,

(3.9)
δh (xi −Xk) = 0, if |xi −Xk| > Wh,

and δh (yj − Yk) = 0, if |yj − Yk| > Wh,

where xij = (xi, yj), and W is a constant.
We define the error vector as E = {Eij}, where Eij = u(xi, yj) − Uij . We also

define U = {u(xi, yj)}. The local truncation error is defined as T = {Tij},

Tij =
u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1)− 4u(xi, yj)

h2
− CIB

ij .

In the matrix vector form, we have AhU = F, Ahu = F+T, and therefore AhE =
T, where Ah is the matrix formed by the discrete Laplacian. We have |Tij | = O(h2)
at regular grid points where CIB

ij = 0. In general, we have |Tij | = O(1/h) for
grid points neighboring the interface Γ except for the correction terms using the
Immersed Interface Method (IIM) [11–13] for which we have |T IIM

ij | = O(h) at
irregular grid points where the interface cuts through the standard five-point stencil.

It is interesting that the local truncation errors can have order O(1/h) at some
grid points, but the global error is still of O(h). There has to be some kind of
cancelations of the errors, which can be seen from our proof process.
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1176 ZHILIN LI

Definition 3.1. Let elm be the unit grid function whose values are zero at all
grid points except at xlm = (xl, ym) where its component is elm = 1. The discrete
Green function centered at xlm with homogeneous boundary condition is defined
as

Gh (xij ,xlm) =

(
A−1

h elm
1

h2

)
ij

, Gh (∂Ωh,xlm) = 0,(3.10)

where ∂Ωh denotes the grid points on the boundary ∂Ω.

Note that from Remark 4.4.6 in [7], we know that Gh(xij ,xlm) is symmetric,

(3.11) Gh (xij ,xlm) = Gh
(
xlm,xij

)
.

The usual discrete Green function, also called a discrete fundamental solution, on
the entire integer lattice is defined as

(3.12) Δhgh (xij ,xlm) =

⎧⎨
⎩

1

h2
, if xij = xlm,

0, otherwise,

for all integers i and j; see, for example, [2, 6, 7, 10, 15, 18, 19] for more discussions
about the discrete Green’s functions. Note that gh (xij ,xlm) is also symmetric,
that is, gh (xij ,xlm) = gh (xlm,xij).

To prepare the convergence proof, we first list some lemmas that are either
directly or indirectly used in the convergence proof. The following lemma is the
discrete first Green formula. Although it is not directly used in the proof, it shows
how the discrete summation is related to the integral form; and how the source
distribution is related to the jump conditions.

Lemma 3.2 (The discrete first Green formula and an error estimate). Let u(x, y)
be the solution to (3.1). Thus u(x, y) is in the piecewise C1(Ω) space, that is,
u(x, y) ∈ C1(Ω \Γ). Assuming that the distance between Γ and ∂Ω is O(1), that is,
dist(Γ, ∂Ω) ∼ O(1), then we have

(3.13)

n−1∑
i,j=1

Δhu(xi, yj)h
2 =

∫
∂Ω

∂u

∂n
ds+O(h) =

∫
Γ

v(s)ds+O(h),

where

Δhu(xi, yj) =
u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1)− 4u(xi, yj)

h2
,

is the discrete Laplacian using the standard five-point stencil, and the summation
is over all the interior grid points.

Proof. We first prove the discrete first Green formula by expanding the summation.
After cancellation of interior terms, only boundary terms are left in the summation
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CONVERGENCE OF THE IB METHOD 1177

as follows:

∑
ij

Δhu(xi, yj)h
2 =

n−1∑
j=1

h
u(x0, yj)− u(x1, yj)

h
+

n−1∑
j=1

h
u(xn, yj)− u(xn−1, yj)

h

+

n−1∑
i=1

h
u(xi, y0)− u(xi, y1)

h
+

n−1∑
i=1

h
u(xi, yn)− u(xi, yn−1)

h

=

∫
∂Ω

∂u

∂n
ds+O(h).

On the other hand, by integrating both sides of the partial differential equation
(3.1) with f(x, y) = 0 and u0(x, y) = 0, we get∫∫

Ω

Δudxdy =

∫∫
Ω

(∫
Γ

v(s)δ (x−X(s)) (y − Y (s)) ds

)
dxdy,

or equivalently, ∫
∂Ω

∂u

∂n
ds =

∫
Γ

v(s) ds.

This completes the proof. �

Ωε
+

Γε
−

Γ

Γε
+

Ωε
−

Ωε 

Figure 2. A diagram of the domain, interface, and integration.

Remark 3.3. The double integral
∫∫

Ω
Δudxdy can be divided into three parts∫∫

Ω

Δudxdy =

∫∫
Ω+

ε

Δudxdy +

∫∫
Ω−

ε

Δudxdy +

∫∫
Ωε

Δudxdy

=

∫
∂Ω

∂u

∂n
ds−

∫
Γ+
ε

∂u

∂n
ds+

∫
Γ+
ε

∂u

∂n
ds,

see Figure 2 for an illustration, see also [12]. As ε → 0, we have

lim
ε→0

∫∫
Ωε

Δudxdy =

∫
Γ

v(s) ds =

∫
Γ

[
∂u

∂n

]
ds
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1178 ZHILIN LI

from the partial differential equation (3.1) with f(x, y) = 0 and u0(x, y) = 0. Thus
we get

lim
ε→0

∫∫
Ωε

Δudxdy =

∫
∂Ω

∂u

∂n
ds.

While Lemma 3.2 is not directly used in our convergence proof, it is easier to
illustrate the relation between the boundary integral along ∂Ω and the source dis-
tribution along Γ for the first Green formula than for the second Green formula
that is used in the proof.

3.2. Interpolating the discrete delta function. We know that Gh(xij ,xlm)
defined in (3.10) is a grid function with a homogeneous Dirichlet boundary condition
at the boundary grid points. The discrete Laplacian ΔhG

h(xij ,xlm) is zero at all
interior grid points except that it is 1/h2 at xlm. We can interpolate Gh(xij ,xlm)
to the entire domain to get an interpolation function Gh

I (x,xlm). We consider any
such an interpolation function that satisfies the following:

• Gh
I (xij ,xlm) = Gh(xij ,xlm).

• Gh
I (x,xlm) ∈ C1(Ω) ∩H2(Ω).

• ΔhG
h
I (xij ,xlm) = ΔhG

h(xij ,xlm) = 0, that is, zero for all i and j except
for i = l and j = m.

• The interpolation is second or higher order accurate, that is,

(3.14)
∣∣∂αGh (xij ,xlm)− ∂αGh

I (xij ,xlm)
∣∣ ≤ Ch3−‖α‖1 , for ‖α‖1 ≤ 2,

where the derivatives of Gh(xij ,xlm) is defined from finite differences (see
[19]) and α is the summation notation as used in the literature for the
Sobolev spaces.

•
∫∫

Rlm
ΔGh

I (x,xlm)dxdy = O(h) except for the four neighboring squares

centered at xlm on which
∫∫

Rlm
ΔGh

I (x,xlm)dxdy = 1 + O(h), where Rlm

is the square [xl − h, xl + h]× [ym − h, ym + h] and so on.

We provide a construction of such an interpolation function in Appendix A.

Lemma 3.4. Let Gh
I (x,xlm) be an interpolation function of Gh(xij ,xlm) that

satisfies the conditions above, then we have the following estimates:

Gh
I (x,xlm) ≤ 1

4
+

1

16
log

(
‖x− xlm‖22 + h2

)
+O(h),(3.15)

∣∣∂αGh
I (x,xlm)

∣∣ ≤ C

(‖x− xlm‖2 + h)‖α‖1
+O(h), if ‖α‖1 ≤ k − 1,(3.16)

where k is the order of interpolation and C is a constant. The inequality (3.16) is
true if dist(x, ∂Ω) ∼ O(1) and dist(∂Ω,xlm) ∼ O(1).

Proof. From Remark 4.4.8 in [7], we know that

Gh(xij ,xlm) ≤ 1

4
+

1

16
log

(
‖xij − xlm‖22 + h2

)
.

Thus from the order requirement of the interpolation function, we have the first
inequality. To prove the second inequality, we use the expression from (4.11) in [18]:

(3.17) Gh (xij ,xlm) = gh (xij ,xlm)− ŝ (xij ,xlm)− s (xij ,xlm) ,
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CONVERGENCE OF THE IB METHOD 1179

where ŝ(xij ,xlm) is chosen such that ΔhG
h(xij ,xlm) = 0 at the grid points on

the boundary of the unit square using the method of images. Thus ŝ(xij ,xlm) is a
combination of gh(xij ,xlm) at points outside of the unit square. From Theorem 3.1

in [19], we have |∂αgh(xij ,xlm)| ≤ C/ (‖xij − xlm‖2 + h)‖α‖1 . The same can be
said for ŝ(xij ,xlm). The term s(xij ,xlm) is chosen such that Gh(xij ,xlm) = 0 at
the grid points on the boundary of the unit square and Δhs(xij ,xlm) = 0 at all
other grid points. Thus s(xij ,xlm)|∂Ωh

is the trace of gh(xij ,xlm) − ŝ(xij ,xlm);
see Remark on page 297 in [5]. Since the values of s(xij ,xlm)|∂Ωh

are from the
discrete Laplacian, it can be smoothly extended to the entire boundary ∂Ω. Thus
from Lemma 2.7.5 in [9] and the maximum principle, we have

(3.18)
∣∣∣ ∂αs (x,xlm)

∣∣∣ ≤ (
C‖α‖1

dist(x, ∂Ω)

)‖α‖1

sup
Ω

|s| =
(

C‖α‖1
dist(x, ∂Ω)

)‖α‖1

sup
∂Ω

|s|,

where C is another constant. From Section 4.4 in [18], we know that s(xij ,xlm) =
O(1) as long as dist(∂Ω,xlm) = O(1). Thus as long as dist(x, ∂Ω) ∼ O(1), we have∣∣ ∂αs (x,xlm)

∣∣ ∼ O(1). This completes the proof of the lemma. �

Remark 3.5. The interpolation function is not unique. Along the boundary ∂Ω,
from the requirement of the interpolation function, ∂

∂nG
h
I (xij ,xlm) does exist and

is continuous. We have, for example,

(3.19)
∂Gh

I (xij ,xlm)

∂x
=

Gh
I (x1j ,xlm)−Gh

I (x0j ,xlm)

h
+O(h)

along the boundary x = 0.

Using a similar procedure in proving the discrete Green formula, we can get the
second discrete Green formula.

Lemma 3.6. Let u(x, y) be the solution to (3.1) and Gh
I (x,xlm) be an interpolation

function of Gh(xij ,xlm) that satisfies the conditions listed in Section 3.2. If l,m �=
1 or n− 1, then we have,

∑
ij

Δhu(xi, yj)G
h(xij ,xlm)h2 =

∫
Γ

v(s)Gh
I (X(s),xlm)ds+O(h).

Proof. Again, we show the second discrete Green formula by expanding the sum-
mation. After cancellation of interior terms, only boundary terms and a source are
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left. Thus, we get

n−1∑
i,j=1

Δhu(xi, yj)G
h(xij ,xlm)h2 =

n−1∑
j=1

h
u(x0, yj)− u(x1, yj)

h
Gh(x1j ,xlm)

+
n−1∑
j=1

h
u(xn, yj)− u(xn−1, yj)

h
Gh(xn−1,j ,xlm)

+

n−1∑
i=1

h
u(xi, y0)− u(xi, y1)

h
Gh(xi1,xlm)

+

n−1∑
i=1

h
u(xi, yn)− u(xi, yn−1)

h
Gh(xi,n−1,xlm)

−
n−1∑
j=1

h
Gh(x0j ,xlm)−Gh(x1j ,xlm)

h
u(x1, yj)

−
n−1∑
j=1

h
Gh(xn,j ,xlm)−Gh(xn−1,j ,xlm)

h
u(xn−1, yj)

−
n−1∑
i=1

h
Gh(xi0,xlm)−Gh(xi1,xlm)

h
u(xi, y1)

−
n−1∑
i=1

h
Gh(xi,n,xlm)−Gh(xi,n−1,xlm)

h
u(xi, yn−1)

+
n−1∑
i,j=1

u(xi, yj)ΔhG
h(xij ,xlm)h2

=

∫
∂Ω

(
∂u

∂n
(x)Gh

I (x,xlm)− ∂Gh
I (x,xlm)

∂n
u(x)

)
ds+ u(xlm) +O(h).

On the other hand, by integrating both sides of the partial differential equation
(3.1) with f = 0 and u0 = 0, we get

∫∫
Ω

Gh
I (x,xlm)Δudxdy =

∫∫
Ω

(∫
Γ

v(s)δ (x−X(s)) (y − Y (s)) ds

)
Gh

I (x,xlm)dxdy,

or equivalently,

∫
∂Ω

(
∂u

∂n
Gh

I (x,xlm)− ∂Gh
I (x,xlm)

∂n
u

)
ds+

∫∫
Ω

uΔGh
I (x,xlm)dxdy

=

∫
Γ

v(s)Gh
I (X(s),xlm)ds.

Licensed to North Carolina St Univ. Prepared on Sun Mar 12 21:11:17 EDT 2017 for download from IP 152.1.253.230.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CONVERGENCE OF THE IB METHOD 1181

Note that∫∫
Ω

u(x)ΔGh
I (x,xlm)dxdy =

∑
Rij\Rlm

∫∫
Ω

u(x)ΔGh
I (x,xlm)dxdy

+

∫∫
Rlm

u(x)ΔGh
I (x,xlm)dxdy

=
∑

Rij\Rlm

∫∫
Rij

(
u(xij) +O(h)

)
O(h)dxdy

+

∫∫
Rlm

(
u(xlm) +O(h)

)
ΔGh

I (x,xlm) dxdy

=
∑

Rij\Rlm

(
u(xij) +O(h)

)
O(h3) + u(xlm)

∫∫
Rlm

ΔGh
I (x,xlm)dxdy +O(h)

= O(h) + u(xlm) +O(h) = u(xlm) + O(h),

where Rij is the square centered at xij . In the derivations above, we have used the
fact that ΔGh

I (x,xlm) = O(h) except for the square Rlm, and the area of Rij is
h2. This completes the proof. �

Lemma 3.7. Let CIB
ij be the correction terms in the immersed boundary method

(3.5), v(s) ∈ C1 be defined in (3.1), and Gh
I (x,xlm) be an interpolation function of

Gh(xij ,xlm) that satisfies the conditions listed in Section 3.2. Then we have the
following estimate:∑

ij

CIB
ij Gh(xij ,xlm)h2 =

∫
Γ

v(s)Gh
I

(
X(s),xlm

)
ds+O(h logh).

Proof. We denote hs = max{Δsk} ∼ h, then∑
ij

CIB
ij Gh(xij ,xlm)h2

=
∑
ij

Nb∑
k=1

vkδh (xi −Xk) δh (yj − Yk)ΔskG
h(xij ,xlm)h2

=

Nb∑
k=1

vkΔsk
∑
ij

δh (xi − x) δh (yj − y)Gh
I (xij ,xlm)h2

=

Nb∑
k=1

vkΔsk
(
Gh

I (Xk,xlm) + Ek

)
.

From the expression (4.2) and Lemma 4.1 in [3], we know that

|Ek| ≤ Ch
∑

‖α‖1=1

∣∣∂αGh
I (ξk,xlm)

∣∣ .
The summation

∑Nb

k=1 vkΔsk
(
Gh

I (Xk,xlm) + Ek

)
is the composite trapezoidal rule

for the line integral. We divide the summation into three groups, one with the
summation of k that ‖Xk − xlm‖2 ≥

√
h, one with h ≤ ‖Xk − xlm‖2 ≤

√
h, and
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the other is for the remaining k’s. The contributions from the boundary points are
split as half and half for each group. For the first two groups, we have

∑
‖Xk−xlm‖2≥h

′′vkΔsk
(
Gh

I (Xk,xlm) + Ek

)
=

∫
Γ−Γh

xlm

v(s)Gh
I (X(s),xlm) ds+ E1

h,

where ′′ means the coefficients are half at the two boundary points, and Γh
xlm

is the
part of the interface that intersects the circle centered at xlm with radius h. For
the part ‖Xk − xlm‖2 ≥

√
h, we have

∣∣E1
h

∣∣ ≤ Ch2
s max

k

1

(‖Xk − xlm‖2 + h)
2 ≤ Ch2

s

1(√
h+ h

)2 ≤ Ch,

due to the second order partial derivatives of Gh
I (X(s),xlm) and the first order

derivatives of Ek.
For the part h ≤ ‖Xk − xlm‖2 ≤

√
h, the error estimate is a little bit tricky.

From the error estimate of the trapezoidal rule in each interval, we have

∣∣E1
h

∣∣ ≤ h2
s

12

∑
k

hs

∑
‖α‖1=2

∣∣∂αGh
I (ξk,xlm)

∣∣ ≤ Ch2
s

∑
k

hs(
‖ξk − xlm)‖2 + h

)2

≤ Ch2
s

∫ √
hs

hs

dr(
r + h

)2 ≤ Ch2
s

∫ √
hs

hs

dr

r2
≤ Ch.

For the last group, we have

∑
‖Xk−xlm‖2≤h

′′vkΔsk
(
Gh

I (Xk,xlm) + Ek

)
=

∫
Γh
xlm

v(s)Gh
I (X(s),xlm) ds+ E2

h

≤ max
s

v(s)h log h+ E2
h,

from the estimate of Gh
I (X(s),xlm) in (3.16). For the error term E2

h, since the
length of the integral is O(h), we have

∣∣E2
h

∣∣ ≤ Ch2hmax
Xk

1

(‖Xk − xlm‖2 + h)
2 ≤ Ch3 1

(h+ h)
2 ≤ Ch.

This completes the proof of the lemma. �

Now we are ready to prove the main result of the paper.

Theorem 3.8. Let u(x, y) be the solution to (3.1) and U is the solution vector
obtained from the immersed boundary method (3.5) using a discrete delta function.
Then U is first order accurate with a logarithm factor in the L∞ norm, that is,

|Eij | ≤ Ch log h, i, j = 1, 2, · · · , n− 1.(3.20)
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CONVERGENCE OF THE IB METHOD 1183

Proof. Consider the error at a grid point Elm, if xlm is close to the interface, that
is, dist(Γ,xlm) ≤ Wh, we have

Elm =
(
(Ah)

−1TIB
)
lm

=
(
(Ah)

−1TIB
reg

)
lm

+
(
(Ah)

−1TIB
irr

)
lm

= O(h2) +
(
(Ah)

−1TIB
irr

)
lm

=
∑

dist(xij ,Γ)≤Wh

(
h2Tij(Ah)

−1eij
1

h2

)
lm

+O(h2)

=
∑

dist(xij ,Γ)≤Wh

h2
(
Δhu(xi, yj)− CIB

ij

)
Gh(xij ,xlm) +O(h2)

=
∑
ij

h2Δhu(xi, yj)G
h(xij ,xlm)−

∑
ij

h2CIB
ij Gh(xij ,xlm) +O(h2)

=

(∫
Γ

v(s)Gh
I (X(s),xlm)ds−

∑
k

vkG
h
I (Xk),xlm)Δsk

)
+O(h)

= O(h logh),

after we apply Lemma 3.6 and Lemma 3.7. Note that, in the expansion of the
summation from dist(xij ,Γ) ≤ Wh to all interior grid points, we have used the fact
that Δhu(xi, yj) = O(h2) and CIB

ij = 0 when dist(xij ,Γ) > Wh. If dist(Γ,xlm) >
Wh, the proof above is still valid except that we are not going to have the singular
integration. Thus, we do not need to have the log h factor. This means that for the
IB method, the larger errors often occur near or on the interface. �

4. Conclusions and discussions

We give a convergence proof of the immersed boundary (IB) method in the L∞

norm. The key of the proof is to establish a connection between the discrete Green
function and a continuous one with the same boundary conditions. We show that
the IB method is indeed first order accurate with a log h factor if a reasonable
discrete delta function is used. The reasonable conditions are the following: the
discrete delta function should satisfy the zeroth moment condition (summation
equals to the unity); with a local support (non-zero only in a small band of the
interface with band width Wh); and the interface does not intersect the boundary.
The conclusion of the first order convergence should be applicable to other linear
boundary conditions in addition to the Dirichlet type as long as the method of
images applies. Furthermore, since quite a few Stokes and Navier-Stokes solvers
such as the projection method, stream-vorticity formulations use fractional time
splitting methods and Poisson/Helmholtz equations, that is, at each time step, the
solvers involve solving several Helmholtz/Poisson equations. Thus the analysis in
this manuscript for a single scalar equation can be applied.

The paper’s result about the convergence of the IB method applies to any
moment-preserving discrete delta functions. The first order convergence is guaran-
teed for any discrete delta function that satisfies the zeroth moment condition with
a local support.
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On the other hand, whether the local truncation errors always behave like O(1/h)
depends on several factors. Note that most moment-preserving discrete delta func-
tions in the literature are derived for accurate line/surface integrals, but not for
pointwise discretizations. Thus, we believe that for general interfaces, the local
truncation errors near/on the interface do behave like O(1/h) for most of the dis-
crete delta functions that have appeared in the literature. Some sophisticated dis-
crete delta functions such as the one obtained from the source removal technique
in [14] are a few exceptions.

Appendix A. The construction of an interpolation function

of the discrete Green function

We construct an interpolation function from the grid function ΔGh
I (xij ,xlm)

to the discrete Green function ΔGh
I (x,xlm) that satisfies the conditions listed on

page 1178.
Let φ(x, y) be the function that satisfies the following conditions:

•

(A.1) ΔGh
I (x,xlm) = δh(x, y),

∫∫
lm

δh(x, y)dxdy =
1

h2
.

• ΔGh
I (x,xlm) takes values of Gh

I (xij ,xlm) at four corners and the center.

In other words, we choose the source term and the boundary condition so that the
two conditions above are satisfied.

Then, we construct the interpolation function Gh
I (x,xlm) on other squares from

the values of ΔGh
I (x,xlm) using Qk(K) ∈ C1(Ω), where Qk is defined as the finite

element space

Qk(K) =

⎧⎨
⎩v(x, y), on each Rîĵ , v(x, y) =

k∑
i=0,j=0

βijx
iyj , v(x, y) ∈ C1(Ω)

⎫⎬
⎭

over a quadrilateral mesh K, Rîĵ is a square of h by h. In the paper [23], the author

has proposed a system to construct C1-Qk finite element spaces on quadrilaterals
meshes.

We have implemented and tested the interpolation function Gh
I (x,xlm) of

Q5(K) ∈ C1(Ω), which is third order accurate (k = 3). As usual, we just need
to construct a shape function over a unit square. The total degree of freedom of
Q5(K) ∈ C1(Ω) is 36. In our construction, we specify the values of v, vx, vy, vxx,
vxy, vyy, which imposes 24 constraints. To keep the continuity of the solution and
first order partial derivatives, for example, along the side x = 0, we impose the
coefficients of xy5 and xy4 to be zero. That is, there are two constraints along each
side, which add an additional 8 constraints. Using the undetermined coefficient
method for the 36 constraint with the 32 conditions, we have a system of equations
with 36 unknowns and 32 equations (constraints). The condition number of the
coefficient matrix, the ratio of the largest and smallest non-zero singular values is
8.9851× 103, which indicates the matrix has full row rank and the system of equa-
tions has an infinite number of solutions. We suggest choosing the SVD solution as
the interpolation function.

To see that the interpolation function is in C1, we use the side x = 0 as an
example. Along this side, the function is a fifth polynomial, which is uniquely
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CONVERGENCE OF THE IB METHOD 1185

Figure 3. A plot of the shape function in Q5(K) ∈ C1(Ω) at two
neighboring squares.

determined by its values, the first and second order derivatives at two points. Thus
the interpolation function and its tangential derivative are continuous along this
side. The normal derivative is in general still a fifth polynomial of y along x = 0.
After we impose the constraints that its coefficients of xy5 and xy4 to be zero, it
becomes a cubic polynomial which is uniquely determined by its values (vx) and
tangential derivatives (vxy) at two points. In Figure 3, we show a plot of such
an interpolation function in two neighboring squares with a function value at one
corner being a unit while others and all the derivatives are zero.

A.1. Numerical verification of (3.15) and (3.16). We also verify the inequal-
ities (3.15) and (3.16) numerically. Without loss of generality, we solve the dis-
crete Laplacian on the square [−1, 1] × [−1, 1] using different meshes m = n =
32, 64, 128, 256, 512, and 1024. Since the solution is symmetric with x and y, we

just check Gh
I ,

∂Gh
I

∂x , and
∂2Gh

I

∂x2 . We check the inequalities of (3.15) and (3.16) at all
the grid points and find the closest differences in the following matrix:

(A.2) −

⎡
⎢⎣

0.2502 0.2501 0.2500 0.2500 0.2500 0.2500

0.7032 0.7051 0.7061 0.7066 0.7068 0.7070

0.5188 0.5093 0.5046 0.5023 0.5011 0.5006

⎤
⎥⎦ .

We can see that all the inequalities (3.15) for Gh
I , and (3.16) for

∂Gh
I

∂x , and
∂2Gh

I

∂x2

with C = 1 are true. We also verify the inequalities of (3.15) and (3.16) graphically
in Figure 4 (b)–(d) by plotting the differences of the quantities between the left-
and right-hand sides of (3.15) and (3.16).
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Figure 4. Plot (a), a discrete Laplacian with a 32 by 32 mesh.
Plot (b), the differences of the quantities between the left- and
right-hand sides of (3.15) for Gh

I ; Plot (c)-(d), the differences of
the quantities between the left- and right-hand sides of (3.16) for
∂Gh

I

∂x and
∂2Gh

I

∂x2 with C = 1, respectively.

Appendix B. A numerical example

We use a numerical example to show that the immersed boundary method is
indeed first order accurate and its local truncation error is of order O(1/h). The
differential equation is

(B.1) Δu(x, y) =

∫
Γ

2δ(x−X(s))δ(y − Y (s))ds, −1 < x, y < 1,

where the interface Γ is the circle r = 1/2, where r =
√
x2 + y2. The function

(B.2) u(x, y) =

{
1 if r ≤ 1

2 ,

1 + log(2r) if r > 1
2 ,

satisfies the PDE. This example is taken from [11]. We use the IB method to solve
the PDE with the Dirichlet boundary condition given by (B.2). In Table 1, we list
the results of a grid refinement analysis. In Table 1, the number N is the number
of grid lines in the x and y directions. The interface r = 1/2 is discretized by
Xk = 0.5 cos(2kπ/N) Yk = 0.5 sin(2kπ/N), k = 0, 1, · · · , N − 1.
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Table 1. A grid refinement analysis of the IB method using the
discrete cosine and hat delta functions.

N ‖Ecos‖∞ ordercos ‖T cos‖∞ ‖Ehat‖∞ orderhat ‖That‖∞
20 5.7217 10−2 17.3534 2.1724 10−2 9.1327
40 2.7226 10−2 1.0715 34.9848 9.9933 10−3 1.1202 20.6630
80 1.3399 10−2 1.0228 69.9772 5.2761 10−3 0.9215 43.5721
160 6.7340 10−3 0.9926 139.254 4.5365 10−3 2.1789 117.289
320 3.3510 10−3 1.0066 279.483 1.8853 10−3 1.2667 195.664
640 1.6737 10−3 1.0018 556.360 1.1985 10−3 0.6536 495.791
1280 8.4663 10−4 0.88326 1122.01 5.4021 10−4 1.1497 892.463

In the second and fifth columns of Table 1, we show the L∞ errors of the com-
puted solution of the IB method using the discrete cosine and hat delta functions,
respectively. The third and sixth columns show the approximate convergence order
using the two consecutive errors. We see clearly first order convergence. In the
fourth and seventh columns we show the local truncation errors in the L∞ norm.
We see that the largest local truncation error increases in the order of O(1/h).
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