
GENERAL AFFINE INVARIANCES RELATED TO MAHLER VOLUME

DONGMENG XI AND YIMING ZHAO

Abstract. General affine invariances related to Mahler volume are introduced. We establish
their affine isoperimetric inequalities by using a symmetrization scheme that involves a total of 2n
elaborately chosen Steiner symmetrizations at a time. The necessity of this scheme, as opposed
to the usual Steiner symmetrization, is demonstrated with an example (see the Appendix).

1. Introduction

The study of affine isoperimetric inequalities is fundamental in modern convex geometry. Dif-
ferent from their classical Euclidean relatives, affine isoperimetric inequalities compare two affine
invariant (invariant under special linear transforms) functionals associated with convex bodies
(or more general sets). The survey articles of Lutwak [32] and Zhang [54] are good references
related to this topic.

An affine invariant quantity of immense interest is the Mahler volume

|K||K∗|.
Here K is an o-symmetric (symmetric with respect to the origin o) convex body (compact
convex set with non-empty interior), |K| denotes its volume and K∗ its polar body defined
as {x ∈ Rn : x · y ≤ 1,∀y ∈ K}. The Mahler volume describes how “round” an o-symmetric
convex body is. Its sharp upper bound was obtained by Santaló [46] and is known as the
Blaschke-Santaló inequality. The sharp lower bound of the Mahler volume is known as the
Mahler conjecture [40]. A breakthrough was made in 2017 by Iriyeh and Shibata [21] where they
solved the three dimensional case of Mahler conjecture. The proof has since then been simplified
by Fradelizi, Hubard, Meyer, Roldán-Pensado & Zvavitch [11]. The conjecture is still open for
higher dimensions. Its history and related studies can be seen in, for instance, [4, 23,24,49].

Mahler volume is closely related to many other important affine objects, including centroid
bodies and projection bodies. The classical centroid body dates back at least to Dupin. If K is
an o-symmetric convex body, then the centroid body of K is the body whose boundary consists of
the locus of the centroids of the halves of K formed when K is cut by codimension 1 subspaces.
The affine isoperimetric inequality describing the lower bound of the volume of the centroid
body in terms of the volume of the convex body itself is known as the Busemann-Petty centroid
inequality, see Petty [43] and Schneider [48]. The projection bodies were introduced at the turn
of the previous century by Minkowski. The affine isoperimetric inequality related to its polar
body is called the Petty projection inequality, see Petty [44]. The detailed history can also be
found in the books of Schneider [48], Gardner [12], and Leichtweiß [25].

There are two ways to extend these classical affine objects. One way is to view them as
convex bodies generated by cosine transforms. In particular, Lutwak & Zhang [39] defined the
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Lp centroid body ΓpK (see also [34,37]) whose support function is

hΓpK(u) =
( 1

cn,p|K|

∫
K

|x · u|pdx
) 1

p
.

Lutwak & Zhang [39] revealed that the Blaschke-Santaló inequality can in fact be recovered as
the limiting case (p→∞) of the affine isoperimetric inequality for p-th polar centroid body

|K||Γ∗pK| ≤ ω2
n, (1.1)

The above inequality is now known as the Lp Blaschke-Santaló inequality. In [34], Lutwak,
Yang, & Zhang established two families of affine isoperimetric inequalities, one for Lp centroid
bodies and the other for Lp projection bodies. All these affine isoperimetric inequalities are
crucial ingredients of the Lp Brunn-Minkowski theory (introduced by Lutwak [31, 33]), which
is a highly non-trivial extension of the Brunn-Minkowski theory. Since its introduction, the Lp
Brunn-Minkowski theory has become the center in the field of convex geometry, see, for example,
[1–3, 6, 8, 14, 16, 18, 19, 22, 26, 26–29, 51, 52, 56–58]. Utilising the Petty projection inequality and
the solution of Minkowski problem, Zhang [55] established the affine Sobolev-Zhang inequality,
which is stronger than the classical Sobolev inequality. After that, Lutwak, Yang & Zhang
[35] established a family of functional affine isoperimetric inequalities in the Lp setting. These
inequalities have since then been extended to more general cases and inspired many functional
isoperimetric inequalities, see, for example, [15, 17,50].

Another way to extend the classical Busemann-Petty centroid inequality, is to view the volume
of classical centroid body as the expected value of the volume of random simplices with vertices
sampled from K,

1

|K|n

∫
K

. . .

∫
K

|[o, x1, ..., xn]|dx1 . . . dxn.

Here [o, x1, ..., xn] denotes the simplex whose vertices are o, ..., xn. In this setting, the Busemann-
Petty centroid inequality was extended by Paouris & Pivovarov [41] into quite general cases. See
also Dann, Paouris & Pivovarov [10] for other functional versions of Busemann’s random simplex
inequality. These results, including rearrangement inequalities for functions, can also be seen in
the surveys of Lutwak [32] and Paouris & Pivovarov [42].

The difference between the aforementioned two ways of extensions can be summarized as: one
is from “inner product”, and the other is from “exterior product”.

The Orlicz-Brunn-Minkowski theory stems from the two papers by Lutwak, Yang & Zhang
[37, 38] and the papers by Ludwig & Reitzner [28] and Ludwig [27]. A systematic study on
the framework of Orlicz Brunn-Minkowski theory was initiated by Gardner, Hug & Weil [13].
The results for convex bodies were obtained independently Xi, Jin & Leng [53]. See also [42]
for a probabilistic approach common to the Lp and Orlicz settings. Over the years, a great
deal of effort has gone into trying to extend things from the Lp Brunn-Minkowski theory to the
Orlicz theory. Among these results are the affine isoperimetric inequalities for centroid bodies,
projection bodies, and the random simplices. These extensions are often non-trivial. The fact
that one loses homogeneity when replacing |t|p by a generic convex function often makes the
proofs fundamentally different and challenging.

Our main effort in this paper is to give a general version of the Lp Blaschke-Santaló inequality.
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This article is dedicated to study the following functional

Nφ(K,L) := inf

{
λ > 0 :

1

|K||L|

∫
K

∫
L

φ
(x · y

λ

)
dxdy ≤ 1

}
,

where K and L are convex bodies, and φ : R → [0,+∞) is an even convex function such that
limx→∞ φ(x) =∞. We remark that an application of Fatou’s lemma together with the continuity
of φ immediately imply that the above infimum can be obtained.

It is easy to see that Nφ(K,L) satisfies

Nφ(K,L) = Nφ(AK,A−tL)

for all A ∈ GL(n). Our first main result can be written as follows. Note that the Lp version of the
quantity Nφ(K,L) was studied by Lutwak, Yang & Zhang [36] as well as Campi and Gronchi [7].

Theorem 1.1. Let K,L ⊂ Rn be convex bodies and φ be an even convex function defined on R
with limx→∞ φ(x) =∞. Then,

Nφ(K,L) ≥ Cφ|K|
1
n |L|

1
n , (1.2)

where Cφ = Nφ(B,B)/ω
2
n
n is a constant depending only on φ and n, and B is the Euclidean unit

ball. Moreover, if φ is strictly convex, equality holds in (1.2) if and only if K and L are dilates
of a pair of polar reciprocal origin-symmetric ellipsoids.

The to-be-established inequality contains the inequality (1.1). In fact, choosing φ(t) = |t|p and
L = (ΓpK)∗ recovers it. If we take L = K∗ and write for abbreviation that

Nφ(K) = Nφ(K,K∗),

then (1.2) becomes

Nφ(K) ≥ Cφ · |K|
1
n |K∗|

1
n = Nφ(BK),

where BK is the o-symmetric ball that has the same volume as K. Clearly, Nφ(K) is affine
invariant, i.e., Nφ(AK) = Nφ(K), ∀A ∈ GL(n).

Note that, the appearance of “inner product” in the affine invariance Nφ(K,L) makes this
extension non-trivial. We also obtain the following rearrangement inequality.

Theorem 1.2. Let f, g be two non-negative, quasi-concave, and integrable functions on Rn. Let
φ be an even convex function on R. Then∫

Rn

∫
Rn

φ(x · y)f(x)g(y)dxdy ≥
∫
Rn

∫
Rn

φ(x · y)f ∗(x)g∗(y)dxdy, (1.3)

Moreover, if φ is strictly convex, then equality holds if and only if the closures of {x ∈ Rn : f(x) >
t} and {y ∈ Rn : g(y) > s} are dilates of a common pair of polar reciprocal origin-symmetric
ellipsoids, for almost all t, s > 0.

Here f ∗ and g∗ are the symmetric decreasing rearrangement (see Section 2 for the definition)
of f and g respectively. When the quantity φ(x · y) is replaced by φ(x − y), inequality (1.3)
with its sign reversed is the well known Riesz rearrangement inequality; see the work of C.
A. Rogers [45], and Brascamp-Lieb-Luttinger [5] for a general version. The main difficulty in
establishing Theorem 1.1 is that the quantity∫

K

∫
L

φ(x · y)dxdy (1.4)
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could increase under one single application of Steiner symmetrization (see the example in the
Appendix). A new symmetrization scheme which involves a total of 2n elaborately chosen Steiner
symmetrizations at a time to K and L is introduced in the current work. It will be shown that
the quantity (1.4) is non-increasing with respect to this symmetrization scheme. See Lemma 4.2.
Properties of Steiner symmetrization, particularly regarding the newly introduced symmetriza-
tion scheme, are included in Section 3.

A quantity related to (1.4) is ∫
∂K

∫
∂L

|σK(x) · σL(y)|dxdy, (1.5)

where σK and σL are the Gauss maps of K and L, respectively. When ∂K and ∂L are sufficiently
smooth with everywhere positive Gauss curvature, (1.5) may be reformulated as∫

Sn−1

∫
Sn−1

|u · v|fK(u)fL(v)dudv,

where fK and fL are the reciporical Gauss curvature of K and L (viewed as functions on the
normal sphere). This can be viewed as a spherical analog of the integral in Theorem 1.2. Another
spherical analog can be found in [20]. Quantity (1.5) is closely related to Petty’s conjecture (see
Page 570 in [48]), which is one of the major problems in the area of affine isoperimetric inequality
for volume of projection bodies. Lutwak [30] showed that the conjecture that the minimum of
(1.5) for K and L with fixed volume is attained at a pair of polar-reciprocal ellipsoids is equivalent
to Petty’s conjecture. The volume of projection body shares a common feature with the central
quantity (1.4) considered in the current paper: it does not necessarily decrease under the usual
Steiner symmetrization. An example of this was provided in Theorem 3 in [47]. It is unknown
whether the symmetrization scheme adopted in the current paper could be developed to deal
with the quantity (1.5).

2. Basic notations

At times, we will use x(i) to denote the i-th component of a point x ∈ Rn.
Throughout the paper, by convex body, we mean a compact convex subset of Rn with non-

empty interior. We will write Kn for the set of all convex bodies in Rn. For K ∈ Kn, we shall
write BK for the ball in Rn centered at the origin with the same volume as K.

Given a convex body K contains the origin in its interior, it is not hard to see that for a
linear transformation φ, we have (φK)∗ = φ−tK∗. Thus, the polar body of an origin-symmetric
ellipsoid is also an origin-symmetric ellipsoid. In particular, if E = φB, then E∗ = φ−tB. Here
B is the unit ball in Rn. Such a pair of ellipsoids are said to be polar reciprocal to each other.

For u ∈ Sn−1, denote by Ku the image of the orthogonal projection of K onto u⊥. We write
`u(K; y′) : Ku → R and `u(K; y′) : Ku → R for the overgraph and undergraph functions of K in
the direction u; i.e.

K = {y′ + tu : −`u(K; y′) ≤ t ≤ `u(K; y′) for y′ ∈ Ku}.

Clearly, they are concave functions if K is a convex body.
The Steiner symmetral SuK of K ∈ Kn in the direction u can be defined as the body whose

orthogonal projection onto u⊥ is identical to that of K and whose overgraph and undergraph
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functions are given by

`u(SuK; y′) = `u(SuK; y′) =
1

2
[`u(K; y′) + `u(K; y′)].

Let f be an integrable function on Rn. The symmetric decreasing rearrangement of f , denoted
by f ∗, is the radial symmetric and decreasing function such that for each t ∈ R,

Hn({x ∈ Rn : f(x) > t}) = Hn({x ∈ Rn : f ∗(x) > t}).

Here, by radial symmetric, we mean the superlevel sets of f ∗ are origin-centered balls.
A function f : Rn → R is said to be quasi-concave, if

f
(
(1− φ)x+ φy

)
≥ min{f(x), f(y)}, ∀φ ∈ [0, 1], ∀x, y ∈ Rn.

3. Steiner symmetrization and its properties

By the definition of Steiner symmetrization, we have (SuK)u = Ku for each u ∈ Sn−1. More-
over, the Steiner symmetral SuK is symmetric with respect to the hyperplane u⊥. Also obvious
is the fact that if K ⊂ L, then

SuK ⊂ SuL, (3.1)

for each u ∈ Sn−1.

Lemma 3.1. Let K ⊂ Rn be a convex body and u ∈ Sn−1. Suppose v ∈ u⊥ ∩ Sn−1. If K is
symmetric with respect to v⊥, then SuK is also symmetric with respect to v⊥.

Proof. For each x ∈ Rn, write x as

x = tu+ sv + y′′,

where t, s ∈ R and y′′ ∈ u⊥ ∩ v⊥.
Suppose x0 ∈ SuK and x0 = t0u+ s0v+ y′′0 . Let y′0 = s0v+ y′′0 ∈ u⊥ and z′0 = −s0v+ y′′0 . Since

K is symmetric with respect to v⊥, the orthogonal image Ku is also symmetric with respect to v⊥.
Hence z′0 ∈ Ku. Also, since K is symmetric with respect to v⊥, the point tu+ sv+ y′′0 ∈ K if and
only if tu− sv + y′′0 ∈ K, where t, s ∈ R. Hence lu(K; y′0) = lu(K; z′0) and lu(K; y′0) = lu(K; z′0).
Thus, we have

t0u− s0v + y′′0 ∈ SuK.
Hence SuK is symmetric with respect to v⊥. �

The next corollary follows immediately from the previous lemma and that the Steiner symme-
tral SuK is symmetric with respect to u⊥.

Corollary 3.2. Let K ⊂ Rn be a convex body and e1, · · · , en be an orthonormal basis. Define

Q = Se1 Se2 · · ·SenK.

The convex body Q is 1-unconditional; i.e., Q is symmetric with respect to e⊥i for all i =
1, 2, · · · , n.

For each convex body K, write BK for the ball centered at the origin with the same volume
as K. Let u ∈ Sn−1. We claim that if dH(K,BK) is less than the radius of BK , then

dH(SuK,BK) ≤ dH(K,BK). (3.2)
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To see this, write r0 to be the radius of BK . By the definition of Hausdorff distance, for any
dH(K,BK) < ε < r0, we have

K ⊂ BK + εB, (3.3)

and
BK ⊂ K + εB,

or, equivalently by the fact that ε < r0,

(r0 − ε)B ⊂ K. (3.4)

Applying Steiner symmetrization Su to both sides of (3.3) and (3.4), and using (3.1), we have

SuK ⊂ BK + εB, (3.5)

and
(r0 − ε)B ⊂ SuK,

or, equivalently by the fact that ε < r0,

BK ⊂ SuK + εB. (3.6)

Equations (3.5) and (3.6), definition of Hausdorff distance, and the fact that ε can be arbitrarily
close to dH(K,BK), immediately imply (3.2).

The proof of the following lemma is modified from the proof of Theorem 10.3.2 in [48].

Lemma 3.3. Let K be a convex body in Rn. There exists a sequence of ordered orthonormal
bases ei1, . . . , e

i
n such that

Ki converges to BK in Hausdorff metric,

where BK is the ball centered at the origin with V (BK) = V (K). Here, K0 = K and Ki =
Sein . . . Sei1K

i−1.

Proof. Let I : e1, . . . , en be an ordered orthonormal basis for Rn. We shall write for simplicity
that SI = Sen · · ·Se1 .

Define the set

Q = {SIkSIk−1
. . . SI1K : orthonormal bases I1, . . . , Ik and k > 0}.

For each Q ∈ Kno , write rQ as the outer radius of Q, i.e., the smallest r > 0 such that Q ⊂ rB.
Set r0 = infQ∈Q rQ. Let Qi be a sequence in Q such that rQi

→ r0. Since the set Q is uniformly
bounded as a result of (3.1), we can invoke Blaschke’s selection theorem and assume (by possibly
taking a subsequence) that Qi converges in Hausdorff metric to a non-empty compact convex set
Q0.

By the choice of r0, it is apparent that Q0 ⊂ r0B. We claim that Q0 = r0B. To see this, we
prove by contradiction. Assume that Q0 is strictly contained in r0B and Q0 6= r0B. Therefore,
there exists x0 ∈ ∂(r0B) and a neighborhood U of x0 such that U ∩ ∂(r0B) contains non-empty
interior with respect to the induced topology on ∂(r0B) and U ∩Q0 = ∅. Note that for any line
ξ passing through U ∩ ∂(r0B) and not tangent to r0B, the length of the line segment ξ ∩ r0B is
strictly larger than the length of the line segment ξ ∩ Q0. This suggests that for each ordered
orthonormal basis I : e1, . . . , en, the convex body SIK will not intersect U∩∂(r0B) and Ci, where
Ci is the reflection of U ∩ ∂(r0B) with respect to e⊥i . Since ∂(r0B) is compact, we may choose a
finite number of orthonormal bases, say I1, . . . , Ik, so that U∩∂(r0B) together with the reflections
generated by it with respect to u⊥ for u ∈ ∪kIk will form a finite cover of ∂(r0B). Therefore
SIk · · ·SI1Q0 ⊂ intQ0 and as a result, the outer radius of SIk · · ·SI1Q0 is strictly smaller than r0.
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Towards this end, choose a subsequence of {Qi} so that SIk · · ·SI1Qi converges to a non-empty
convex compact set Q′0. It is not hard to see that this implies that Q′0 ⊂ SIk · · ·SI1Q0, see, for
example, Lemma 10.3.1 in [48]. This, combined with what we concluded about SIk · · ·SI1Q0,
implies that the outer radius of Q′0 is strictly smaller than r0. Thus, there must exist i0 such
that SIk · · ·SI1Qi0 ∈ Q has its outer radius strictly smaller than r0. This is a contradiction to
the choice of r0.

Hence, there exists a sequence Qi ∈ Q such that Qi → r0B in Hausdorff metric. Moreover, it
can be easily seen that r0B = BK since Steiner symmetrization preserves volume.

Towards this end, let εk be a sequence of sufficiently small positive numbers (less than r0)
and εk → 0. Choose K1 ∈ Q such that dH(K1, BK) < ε1. Now, applying the above argument
again but this time on K1 instead of on K allows us to conclude the existence of I1, I2, . . . , Im
and K2 = SIm · · ·SI1K1 ∈ Q such that dH(K2, BK1) < ε2. Notice that BK1 = BK since Steiner
symmetrization preserves volume. Hence dH(K2, BK) < ε2. Carrying on this process, we can
find a sequence Ki ∈ Q such that dH(Ki, BK) < εi.

To reach the desired result, we only need to use (3.2) to conclude that the Hausdorff distance
is non-increasing after applying each Steiner symmetrization. �

Lemma 3.4. Let K and L be two convex bodies in Rn. There exists a sequence of orthonormal
bases ei1, . . . , e

i
n such that

Ki and Li converges to BK and BL in Hausdorff metric respectively,

where BK and BL are the balls centered at the origin with V (BK) = V (K) and V (BL) = V (L).
Here, K0 = K, L0 = L and

Ki = Sein · · ·Sei1K
i−1, Li = Sei1 · · ·SeinL

i−1.

Proof. Suppose I : e1, . . . , en. For simplicity, we shall write SI = Sen · · ·Se1 and S−I = Se1 · · ·Sen .
Let εk be a sequence of sufficiently positive numbers such that εk → 0.

By Lemma 3.3, there exists orthonormal bases I1, . . . , Ik1 such that dH(K̃1, BK) < ε1 for

K̃1 = SIk1 · · ·SI1K.

Let L̃1 = S−IK1
· · ·S−I1L. Applying Lemma 3.3 to L̃1, we have that there exists orthonormal

bases Ik1+1, . . . , Ik1+k2 such that dH(L̃2, BL̃1
) = dH(L̃2, BL) < ε2 for L̃2 = S−Ik1+k2

· · ·S−Ik1+1
L̃1.

Set K̃2 = SIk1+k2
· · ·SIk1+1

K̃1. We continue in this fashion, by applying Lemma 3.3 alternatively

to the sequences K̃i and L̃i. This allows us to conclude a sequence of orthonormal bases Ii and

sequences K̃i, L̃i such that K̃i → BK and L̃i → BL.
Equation (3.2) now allows us to conclude that Ii is the desired sequence of orthonormal bases.

�

The following lemma is a direct consequence of Lemma 3.4 and the fact that convergence in
Hausdorff metric implies convergence of characteristic functions in L1 norm.

Lemma 3.5. Let K and L be two convex bodies in Rn. There exists a sequence of ordered
orthonormal bases ei1, . . . , e

i
n such that

lim
i→∞
‖1Ki − 1BK

‖1 = 0, lim
i→∞
‖1Li − 1BL

‖1 = 0, (3.7)
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where K0 = K, L0 = L, and

Ki = Sein . . . Sei1K
i−1, Li = Sei1 . . . SeinL

i−1. (3.8)

For any fixed convex body K and u ∈ Sn−1, write x ∈ K as

x = y′ + tu,

where y′ ∈ u⊥ and t ∈ R. Define φK,u : K → SuK by

φK,u(x) = x− 1

2
(lu(K; y′)− lu(K; y′))u,

where x ∈ K and x = y′+ tu. Intuitively, the map φK,u moves each point x in K in the direction
of u so that φK,u(K ∩ {y′ + tu : t ∈ R) is a line segment symmetric about the hyperplane u⊥.

Note that φK,u is one-to-one and onto. Let ψK,u : SuK → K be the inverse of φK,u; i.e., for
each x ∈ SuK,

ψK,u(x) = x+
1

2
(lu(K; y′)− lu(K; y′))u, (3.9)

where x = y′ + tu.

Lemma 3.6. Let K ⊂ Rn be a convex body and u ∈ Sn−1. The map ψK,u as defined in (3.9)
is Lipschitz continuous on any compact subset of intSuK. Moreover, if x ∈ intSuK is a
differentiable point for ψK,u, then the Jacobian matrix of ψK,u at x has determinant 1.

Proof. That ψK,u is Lipschitz continuous on any compact subset of intSuK is immediate from

the fact that both lu(K; ·) and lu(K; ·) are concave.
That the Jacobian matrix of ψK,u has determinant 1 at each differentiable point x ∈ SuK

comes from the fact that

ψK,u(x) · v = x · v,
for each v ∈ u⊥. �

Let K ⊂ Rn be a convex body and I : e1, . . . , en be an ordered orthonormal basis for Rn.
Define K0 = K and

Ki = SeiKi−1,

for i = 1, . . . , n. Define ΨK,I : Kn → K0 = K as

ΨK,I = ψK0,e1 ◦ ψK1,e2 ◦ . . . ψKn−1,en (3.10)

where the ψ’s are as defined in (3.9). Note that by Corollary 3.2, the convex body Kn is 1-
unconditional.

The map ΨK,I may be expressed using the following lemma.

Lemma 3.7. Let K ⊂ Rn be a convex body and I : e1, . . . , en be an ordered orthonormal basis

for Rn. Define ΨK,I as in (3.10). Then, for each i = 1, . . . n, there exists l
(i)
K : Kn → R such that

l
(i)
K is symmetric in its first i arguments and the i-th coordinate of ΨK,I may be expressed as[

ΨK,I(x
(1), . . . , x(n))

](i)
= x(i) + l

(i)
K (|x(1)|, . . . , |x(i)|, x(i+1), . . . , x(n)), (3.11)

for each x = (x(1), . . . , x(n)) ∈ Kn. Moreover, the map ΨK,I is Lipschitz continuous on any
compact subset of intKn and its Jacobian is 1 wherever it is defined.
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Proof. Note that by the definition of Steiner symmetrization, the i-th coordinate of a point
x ∈ Kn can only be changed by ψKi−1,ei . Hence,[

ΨK,I(x
(1), . . . , x(n))

](i)
= ψKi−1,ei ◦ ψKi,ei+1

◦ · · · ◦ ψKn−1,en(x(1), . . . , x(n)).

The same observation shows that the first i coordinates remain unchanged under ψKi,ei+1
◦ · · · ◦

ψKn−1,en ; that is,

ψKi,ei+1
◦ · · · ◦ ψKn−1,en(x(1), . . . , x(n)) = (x(1), . . . , x(i), x̃(i+1), . . . , x̃(n)),

where x̃(j) = x̃(j)(x(1), . . . , x(n)) are functions of (x(1), . . . , x(n)). Note that by Lemma 3.1,
the convex bodies Ki, . . . , Kn are symmetric with respect to e⊥1 , . . . , e

⊥
i . This implies that

x̃(j)(x(1), . . . , x(n)) is symmetric with respect to its first i arguments; that is,

x̃j = x̃j(x
(1), . . . , x(n)) = x̃j(|x(1)|, . . . , |x(i)|, x(i+1), . . . , x(n)). (3.12)

By (3.9),[
ψKi−1,ei ◦ · · · ◦ ψKn−1,en(x(1), . . . , x(n))

](i)
=
[
ψKi−1,ei(x

(1), . . . , x(i), x̃(i+1), . . . , x̃(n))
](i)

=x(i) +
1

2
(lei(Ki−1; (x(1), . . . , x(i−1), 0, x̃(i+1), . . . , x̃(n)))− lei(Ki−1; (x(1), . . . , x(i−1), 0, x̃(i+1), . . . , x̃(n))))

(3.13)
Note that Ki−1 symmetric with respect to e⊥1 , . . . , e

⊥
i−1. Hence, both lei(Ki−1; ·) and lei(Ki−1; ·)

are symmetric with respect to the first (i− 1) arguments. Define l
(i)
K as

l
(i)
K (x(1), . . . , x(n))

=
1

2
(lei(Ki−1; (x(1), . . . , x(i−1), 0, x̃(i+1), . . . , x̃(n)))− lei(Ki−1; (x(1), . . . , x(i−1), 0, x̃(i+1), . . . , x̃(n)))).

(3.14)
By (3.12) and the symmetry property we observed about lei(Ki−1; ·) and lei(Ki−1; ·), we conclude

that l
(i)
K is symmetric with respect to its first i arguments; that is,

l
(i)
K (x(1), . . . , x(n)) = l

(i)
K (|x(1)|, . . . , |x(i)|, x(i+1), . . . , x(n)). (3.15)

Equations (3.13), (3.14), and (3.15) imply (3.11).
The facts that ΨK,I is Lipschitz continuous on any compact subset of intKn and its Jacobian

is 1 wherever it is defined follow immediately from its definition, Lemma 3.6, and the fact that
Steiner symmetrization is volume preserving. �

4. Proof of the main results

Let I : e1, . . . , en be an ordered orthonormal basis for Rn. Denote by −I the orthonormal basis
in reversed order; that is −I : en, . . . , e1. Let K and L be two convex bodies in Rn. For each
i = 1, . . . ,m, define K0 = K, L0 = L, and

Ki = SeiKi−1, Li = Sen−i+1
Li−1, (4.1)

for i = 1, . . . , n. Consider ΨK,I and ΨL,−I as in (3.10). In particular,

ΨK,I = ψK0,e1 ◦ ψK1,e2 ◦ · · · ◦ ψKn−1,en ,

ΨL,−I = ψL0,en ◦ ψL1,en−1 ◦ · · · ◦ ψLn−1,e1 .
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By Lemma 3.7, there exist l
(k)
K : Kn → R and l

(k)
L : Ln → R such that

Ψ
(k)
K,I(x) = x(k) + l

(k)
K (x) = x(k) + l

(k)
K (|x(1)|, . . . , |x(k)|, x(k+1), . . . , x(n)),

Ψ
(k)
L,−I(y) = y(k) + l

(k)
L (y) = y(k) + l

(k)
L (y(1), . . . , y(k−1), |y(k)|, . . . , |y(n)|).

(4.2)

For notational simplicity, write

d
(k)
K (x) =

1

2
l
(k)
K (x)− 1

2
l
(k)
K (−x), (4.3)

and

d
(k)
L (x) =

1

2
l
(k)
L (x)− 1

2
l
(k)
L (−x). (4.4)

Denote by dK : Kn → Rn and dL : Ln → Rn the maps whose k-th coordinate function are

precisely d
(k)
K and d

(k)
L .

By (4.2), d
(k)
K is symmetric with respect to its first k arguments and d

(k)
L is symmetric with

respect to its last (n− k + 1) arguments; that is

d
(k)
K (x(1), . . . , x(n)) = d

(k)
K (|x1|, . . . , |xk|, x(k+1), . . . , x(n)),

d
(k)
L (y(1), . . . , y(n)) = d

(k)
L (y(1), . . . , y(k−1), |y(k)|, . . . , |y(n)|).

(4.5)

Obviously, it follows from (4.3) and (4.4) that the functions d
(k)
K and d

(k)
L are odd. In particular,

d
(n)
K = 0 = d

(1)
L . (4.6)

Moreover, by Lemma 3.7

ΨK,I(x)−ΨK,I(−x) = 2x+ 2dK(x),

ΨL,−I(y)−ΨL,−I(−y) = 2y + 2dL(y).

Denote by Ω the set of n by n diagonal matrices whose diagonal entries are either 1 or −1.

Lemma 4.1. For each x, y, we have

1

2n

∑
A∈Ω

(Ax+ dK(Ax)) · (Ay + dL(Ay)) = x · y. (4.7)

Proof. To see this, write

fk,1(x, y) = x(k)y(k),

fk,2(x, y) = x(k)d
(k)
L (y),

fk,3(x, y) = y(k)d
(k)
K (x),

fk,4(x, y) = d
(k)
K (x)d

(k)
L (y).

Using the new notation, we only need to show

1

2n

∑
A∈Ω

n∑
k=1

(fk,1(Ax,Ay) + fk,2(Ax,Ay) + fk,3(Ax,Ay) + fk,4(Ax,Ay)) = x · y.

We shall show that
∑

A∈Ω fk,2(Ax,Ay) = 0 for each k ∈ {1, .., n}. Notice that by (4.5),

d
(k)
L (−y(1), . . . ,−y(k−1), y(k), . . . , y(n)) = −d(k)

L (y(1), . . . , y(n)),
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which implies that

fk,2(A0Ax,A0Ay) + fk,2(Ax,Ay) = 0,

for each A ∈ Ω and A0 = diag(−1, . . . ,−1, 1, . . . , 1) where there are (k− 1) many (−1)’s. Hence,∑
A∈Ω

fk,2(Ax,Ay) = 0.

The same argument, but this time with A0 = diag(1, . . . , 1,−1, . . . ,−1) where there are k many
1’s, will imply ∑

A∈Ω

fk,3(Ax,Ay) = 0.

Now, take A0 = diag(−1, . . . ,−1, 1, . . . , 1) again, where there are (k − 1) many (−1)’s. For any
A ∈ Ω, by (4.5), we have

d
(k)
K (A0Ax) = d

(k)
K (Ax), d

(k)
L (A0Ay) = −d(k)

L (Ay),

and hence

fk,4(A0Ax,A0Ay) + fk,4(Ax,Ay) = 0.

Taking summation over all A ∈ Ω, we have∑
A∈Ω

fk,4(Ax,Ay) = 0.

On the other side, it is trivial to see that∑
A∈Ω

n∑
k=1

fk,1(Ax,Ay) = 2nx · y.

�

Lemma 4.2. Let K,L ⊂ Rn be two convex bodies and φ be an even convex function defined on
R. Suppose I : e1, . . . , en is an ordered orthonormal basis for Rn and Ki and Li are as defined
in (4.1). Then ∫

K

∫
L

φ(x · y)dxdy ≥
∫
Kn

∫
Ln

φ(x · y)dxdy. (4.8)

Proof. By Lemma 3.7, we have∫
K

∫
L

φ(x · y)dxdy =

∫
Kn

∫
Ln

φ(ΨK,I(x) ·ΨL,−I(y))dxdy. (4.9)

To see that the change of variable formula works, one notes first that since ΨK,I and ΨL,−I are
Lipschitz on any compact subsets of intKn and intLn (by Lemma 3.7), respectively, the change
of variable formula can be applied to any compact subset of intKn and intLn. Since φ is an even
convex function, it is bounded from below. Now, the change of variable in (4.9) holds because one
can take advantage of the monotone convergence theorem, and the fact that the n dimensional
Hausdorff measure of the boundary of a convex body is zero.
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Since Kn and Ln are 1-unconditional, the following four integrals are identical:∫
Kn

∫
Ln

φ(ΨK,I(x) ·ΨL,−I(y))dxdy,

∫
Kn

∫
Ln

φ(ΨK,I(−x) ·ΨL,−I(y))dxdy,∫
Kn

∫
Ln

φ(ΨK,I(−x) ·ΨL,−I(−y))dxdy,

∫
Kn

∫
Ln

φ(ΨK,I(x) ·ΨL,−I(−y))dxdy.

Taking advantage that φ is even and convex, we have∫
Kn

∫
Ln

φ(ΨKI
(x) ·ΨL,−I(y))dxdy

≥
∫
Kn

∫
Ln

φ

(
1

4
(ΨK,I(x)−ΨK,I(−x)) · (ΨL,−I(y)−ΨL,−I(−y))

)
dxdy

=

∫
Kn

∫
Ln

φ
((
x+ dK(x)

)
·
(
y + dL(y)

))
dxdy.

(4.10)

Recall that Ω is the set of all n by n diagonal matrices whose diagonal entries are either 1
or -1. By the fact that Kn and Ln are symmetric with respect to each e⊥i , that φ is even and
convex, and Lemma 4.1, we have∫

Kn

∫
Ln

φ
((
x+ dK(x)

)
·
(
y + dL(y)

))
dxdy

=
1

2n

∑
A∈Ω

∫
Kn

∫
Ln

φ
((
Ax+ dK(Ax)

)
·
(
Ay + dL(Ay)

))
dxdy

≥
∫
Kn

∫
Ln

φ

(
1

2n

∑
A∈Ω

(
Ax+ dK(Ax)

)
·
(
Ay + dL(Ay)

))
dxdy

=

∫
Kn

∫
Ln

φ (x · y) dxdy.

(4.11)

The desired inequality can now be obtained by combining the above inequalities. �

Lemma 4.3. If φ : R → R is strictly convex, then equality holds in (4.8) if and only if there is
a linear transform T ∈ SL(n) such that ΨK,I(x) = Tx and ΨL,I(y) = T−ty.

Proof. Suppose equality holds in (4.8). Then equality must hold in (4.11). For simplicity, we
write

fi(x, y) = fi,1(x, y) + fi,2(x, y) + fi,3(x, y) + fi,4(x, y).

Since φ is strictly convex, this implies that

n∑
i=1

fi(Ax,Ay) =
n∑
i=1

fi(x, y), a.e. for x ∈ Kn, y ∈ Ln,

for all A ∈ Ω. This, together with (4.7), shows that

n∑
i=1

fi(x, y) =
n∑
i=1

x(i)y(i), a.e. for x ∈ Kn, y ∈ Ln.
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Or, equivalently by the definition of fi,

n∑
i=1

(
x(i)d

(i)
L (y) + yid

(i)
K (x) + d

(i)
K (x)d

(i)
L (y)

)
= 0, (4.12)

for almost all x ∈ Kn and y ∈ Ln. By continuity of d
(i)
K and d

(i)
L , (4.12) is valid for all x ∈ Kn

and y ∈ Ln.
On the other side, equality in (4.8) implies equality in (4.10), which implies that

ΨK,I(x) ·ΨL,−I(y) =
1

2
(ΨK,I(x)−ΨK,I(−x)) ·ΨL,−I(y),

for almost all x ∈ Kn and y ∈ Ln. This implies that

ΨK,I(x) · y =
1

2
(ΨK,I(x)−ΨK,I(−x)) · y,

for almost all x ∈ Kn and y ∈ L. Since L contains interior points, we conclude that

ΨK,I(x) =
1

2
(ΨK,I(x)−ΨK,I(−x)) .

By this, and the continuity of the map ΨK,I , we have

ΨK,I(x) = −ΨK,I(−x), (4.13)

for all x ∈ Kn. This, in turn, implies that K is origin-symmetric. To see this, suppose y ∈ K,
then there exists x ∈ Kn such that y = ΨK,I(x). Since Kn is 1-unconditional, −x ∈ Kn. Hence
−y = −ΨK,I(x) = ΨK,I(−x) ∈ K.

The same argument for L implies that L is also origin-symmetric. Therefore, there exists r > 0
such that

r
√
nBn ⊂ int(K ∩ L).

Towards this end, for each k = 1, 2, . . . , n, let xk = (r, r, . . . , r, 0, . . . , 0) ∈ Rn where r appears

k times. By (4.5) and the fact that d
(i)
K is odd (from (4.3)), we have

d
(i)
K (xk) = 0, (4.14)

for i ≥ k.
We will show, by induction (on i), that there exists constants ci,j with 2 ≤ i ≤ n and 1 ≤ j ≤

i− 1 such that

d
(i)
L (y) = ci,1y

(1) + . . .+ ci,i−1y
(i−1), (4.15)

for y ∈ Ln.
Consider the case i = 2. Inserting x = x2 in (4.12) and using (4.14), we have

rd
(1)
L (y) + rd

(2)
L (y) + y1d

(1)
K (x2) + d

(1)
K (x2)d

(1)
L (y) = 0.

This, together with (4.6), implies

d
(2)
L (y) = −

(
d

(1)
K (x2)/r

)
· y(1),

which proves (4.15) for the case i = 2 by choosing c2,1 = −d(1)
K (x2)/r.
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For the inductive step, assume (4.15) is valid for i ≤ k ≤ n− 1. For the case i = k + 1, insert
x = xk into (4.12). By (4.6), We have

r

k+1∑
i=2

d
(i)
L (y) +

k∑
i=1

yid
(i)
K (xk) +

k∑
i=2

d
(i)
K (xk)d

(i)
L (y) = 0,

or,

d
(k+1)
L (y) = −

(
r

k∑
i=2

d
(i)
L (y) +

k∑
i=1

y(i)d
(i)
K (xk) +

k∑
i=2

d
(i)
K (xk)d

(i)
L (y)

)/
r.

This and (4.15) for the cases i ≤ k show that d
(k+1)
L (y) is a linear combination of y1, . . . , yk, thus

establishing (4.15) for the case i = k.
Equations (4.15) and (4.6) immediately implies the existence of an n×n matrix ML such that

(d
(1)
L (y), . . . , d

(n)
L (y))t = ML(y(1), . . . , y(n))t.

The same argument applied to K will imply the existence of an n× n matrix MK such that

(d
(1)
K (x), . . . , d

(n)
K (x))t = MK(x(1), . . . , x(n))t.

This, (4.13), the definition of ΨK,I (see (3.10)), and the definition of d
(i)
K (see (4.3)) imply that

ΨK,I(x) =
1

2
(ΨK,I(x)−ΨK,I(−x)) = (In +MK)x,

where I is the identity matrix. Similarly,

ΨL,I(y) = (In +ML)y.

Now, since (4.12) is valid for all x ∈ K and and y ∈ L, we have

M t
L +MK +MKM

t
L = 0,

or equivalently
(In +MK)(In +ML)t = In.

This implies ΨL,I(y) = (In + MK)−ty. To see that (In + MK) ∈ SL(n), we simply use the fact
that Steiner symmetrization preserves volume. This settles the “only if” part of the lemma.

To see the “if” part, assume there is T ∈ SL(n) such that ΨK,I(x) = Tx and ΨL,I(y) = T−ty.
Then Kn = T−1K and Ln = T tL. That the equality holds in (4.8) follows trivially from a change
of variable in integral. �

Theorem 4.4. Let K,L ⊂ Rn be convex bodies and φ be an even convex function defined on R.
Then, ∫

K

∫
L

φ(x · y)dxdy ≥
∫
BK

∫
BL

φ(x · y)dxdy, (4.16)

Moreover, if φ is strictly convex, equality holds in (4.16) if and only if K and L are dilates of a
pair of polar reciprocal origin-symmetric ellipsoids.

Proof. By Lemma 3.5, there exists a sequence of ordered orthornomal bases ei1, . . . , e
i
n such that

(3.7) holds. Let Ki and Li be as defined in (3.8). Repeated use of Lemma 4.2 shows that∫
K

∫
L

φ(x · y)dxdy ≥
∫
Ki

∫
Li

φ(x · y)dxdy.
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Let i go to ∞. By (3.7), we have∫
K

∫
L

φ(x · y)dxdy ≥
∫
BK

∫
BL

φ(x · y)dxdy.

The rest of the proof is dedicated to show the equality condition.
Suppose equality holds in (4.16). By Lemma 4.2,∫

Ki−1

∫
Li−1

φ(x · y)dxdy =

∫
Ki

∫
Li

φ(x · y)dxdy,

for each i. This and Lemma 4.3 imply that there exists Ti ∈ SL(n) such that

Ki−1 = Ti(K
i), Li−1 = T−ti (Li).

Let Gi = T1 · · ·Ti. Hence K = Gi(K
i) and L = G−ti (Li). This implies that K and L are

o-symmetric and there are r0, R0 > 0 such that

r0Bn ⊂ K,L ⊂ R0Bn.

Equation (3.1) implies

r0Bn ⊂ Ki, Li ⊂ R0Bn

for all i ≥ 1. Hence,

Gix,G
−t
i x ∈ R0Bn

for each x ∈ r0Bn, which implies that the sequences of linear transformations Gi and G−ti are
uniformly bounded. Thus, there exists a convergent subsequence, which we also denote by Gi,
such that

Gi → Ḡ ∈ SL(n), and G−ti → Ḡ−t ∈ SL(n).

By the properties of the support function,

|hGiKi(u)− hḠBK
(u)| ≤ |hGiKi(u)− hGiBK

(u)|+ |hGiBK
(u)− hḠBK

(u)|
= |hKi(Gt

iu)− hBK
(Gt

iu)|+ |hBK
(Gt

iu)− hBK
(Ḡtu)|

≤ ‖hKi
− hBK

‖∞ · |Gt
iu|+ |hBK

(Gt
iu)− hBK

(Ḡtu)|.

This, the facts that the quantity |Gt
iu| is bounded, and Gt

iu → Ḡtu for each u ∈ Sn−1, imply
that

hGiKi(u)→ hḠBK
(u),

for each u ∈ Sn−1. Note that GiK
i = K. Hence K = ḠBK .

Using the same argument (but this time to L), we have L = Ḡ−tBL. Since both BK and BL

are Euclidean balls, we conclude that K is an ellipsoid centered at the origin and that L is a
dilation of its polar.

To see that equality holds when K is an ellipsoid centered at the origin and that L is a dilation
of its polar, one simply needs to use the change of variable formula for integrals. �

When φ(t) = |t|p, an immediate consequence is:

Theorem 4.5. Let K,L ⊂ Rn be two convex bodies and p ≥ 1. Then,∫
K

∫
L

|x · y|pdxdy ≥ cp|K|
n+p
n |L|

n+p
n , (4.17)
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where cp is an easy-to-compute constant when K = L = B. Moreover, when p > 1, equality
holds in (4.17) if and only if K and L are dilates of a pair of polar reciprocal origin-symmetric
ellipsoids.

Proof. Let φ(t) = |t|p. Note that when p ≥ 1, the function φ is even and convex. By Theorem
1.1, ∫

K

∫
L

|x · y|pdxdy ≥
∫
BK

∫
BL

|x · y|pdxdy.

Equation (4.17) follows immediately by homogeneity.
When p > 1, the function φ is strictly convex and the equality condition follows directly from

the equality condition of Theorem 1.1. �

It is important to note that Theorem 4.5 is due to Lutwak, Yang & Zhang [36] and relies on
the polar Lp polar centroid body inequality established by Lutwak & Zhang [39]. See also Campi
& Gronchi [7]. We would also like to refer the readers to [9], where stronger stochastic polar Lp-
centroid body inequalities for measures with spherically decreasing densities (not just Lebesgue
measure) were presented. The corresponding Orlicz versions follow similarly. A concrete special
case can be found in Example 8 in Section 5 of [42] where level sets of the logarithmic Laplace
transform are discussed.

We shall now show that Theorem 4.4 directly implies Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.4, if λ > 0 is such that

1

|K||L|

∫
K

∫
L

φ
(x · y

λ

)
dxdy ≤ 1,

then, it must be the case that

1

|BK ||BL|

∫
BK

∫
BL

φ
(x · y

λ

)
dxdy ≤ 1. (4.18)

Write rK = ω
− 1

n
n |BK |

1
n and rL = ω

− 1
n

n |BL|
1
n . A change of variable x = rKx

′ and y = rLy
′ in

(4.18) immediately implies

1 ≥ 1

|BK ||BL|

∫
BK

∫
BL

φ
(x · y

λ

)
dxdy

=
1

ω2
n

∫
B

∫
B

φ

(
x′ · y′

r−1
K r−1

L λ

)
dxdy.

This immediately implies that Nφ(K,L) ≥ Cφ|K|
1
n |L| 1n .

For the equality condition, assume now that φ is strictly convex. Equality holds in (1.2), if
and only if there exists a common λ0 > 0 such that

1

|K||L|

∫
K

∫
L

φ

(
x · y
λ0

)
dxdy = 1 =

1

|BK ||BL|

∫
BK

∫
BL

φ

(
x · y
λ0

)
dxdy.

The desired equality condition follows immediately from the equality condition in Theorem 4.4.
�

Using layer-cake representation, we may now prove the promised Theorem 1.2.
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Proof of Theorem 1.2. For each t, s > 0, define

Kt = {x ∈ Rn : f(x) > t}, Ls = {y ∈ Rn : g(y) > s}.

Since f is integrable, then Kt are bounded for t > 0. Similarly, Ls are bounded for s > 0.
Since f and g are quasi-concave, both Kt and Ls are convex, and hence their boundary are of

measure 0 with respect to the Lebesgue measure. By this, the layer-cake representation, Theorem
4.4, and the definition of rearrangement, we have∫

Rn

∫
Rn

λ(x · y)f(x)g(y)dxdy =

∫ ∞
0

ds

∫ ∞
0

dt

∫
Kt

∫
Ls

λ(x · y)dxdy

=

∫ ∞
0

ds

∫ ∞
0

dt

∫
clKt

∫
clLs

λ(x · y)dxdy

≥
∫ ∞

0

ds

∫ ∞
0

dt

∫
BKt

∫
BLs

λ(x · y)dxdy

=

∫
Rn

∫
Rn

λ(x · y)f ∗(x)g∗(y)dxdy,

(4.19)

where clKt and clLs are the closure of Kt and Ls respectively.
To see the equality condition when λ is strictly convex, assume the equality holds. Then, for

almost all t ∈ [0,∞) and almost all s ∈ [0,∞),∫
clKt

∫
clLs

λ(x · y)dxdy =

∫
K∗

t

∫
L∗
s

λ(x · y)dxdy.

By the equality condition in Theorem 4.4, there is a linear tansform T ∈ SL(n), such that for
almost all t ∈ [0,∞) and almost all s ∈ [0,∞), clKt = TBKt and clLs = T−tBLs . This shows
the “only if” part of the equality condition.

To see the “if” part of the equality condition, one only needs to use the equality condition in
Theorem 4.4 to conclude that equality holds in (4.19).

�

5. Appendix

The following example in R2 shows precisely why we need the new symmetrization scheme in
Lemma 4.4.

Let m be an arbitrary integer. Consider the convex bodies

K =

{
(x(1), x(2)) ∈ R2 : −m ≤ x(1) ≤ m,−x(1) − 1

m
≤ x(2) ≤ −x(1) +

1

m

}
,

and

L =

{
(y(1), y(2)) ∈ R2 : −m ≤ y(1) ≤ m, y(1) − 1

m
≤ y(2) ≤ y(1) +

1

m

}
.

Note that K is the convex hull generated by {−m}×[m− 1
m
,m+ 1

m
] and {m}×[−m− 1

m
,−m+ 1

m
]

and L is the convex hull generated by {−m} × [−m− 1
m
,−m+ 1

m
] and {m} × [m− 1

m
,m+ 1

m
].

Let e = (0, 1) ∈ S1. Then by the definition of Steiner symmetrization (given in Section 3), it
is simple to show that SeK = SeL = [−m,m]× [− 1

m
, 1
m

].



18 DONGMENG XI AND YIMING ZHAO

Example. For sufficiently large m, the convex bodies K and L as defined above satisfy∫
K

∫
L

|x · y|dydx <
∫
SeK

∫
L

|x · y|dydx, (5.1)

and ∫
K

∫
L

|x · y|dydx <
∫
SeK

∫
SeL

|x · y|dydx. (5.2)

The statements above follow from direct computation. By definition of K and L,∫
K

∫
L

|x · y|dydx =

∫ m

−m

∫ m

−m

∫ −x(1)+ 1
m

−x(1)− 1
m

∫ y(1)+ 1
m

y(1)− 1
m

|x(1)y(1) + x(2)y(2)|dy(2)dx(2)dy(1)dx(1)

By the change of variable u1 = x(1)/m, v1 = y(1)/m, u2 = m(x(2) + x(1)), and v2 = m(y(2)− y(1)),
we have∫

K

∫
L

|x · y|dxdy =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣∣ 1

m2
u2v2 + v1u2 − u1v2

∣∣∣∣ dv2du2dv1du1

≤ 4

m2

∫ 1

−1

∫ 1

−1

|u2v2|du2dv2 +

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

|v1u2 − u1v2| dv2du2dv1du1

→
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

|v1u2 − u1v2| dv2du2dv1du1,

as m→∞.
Similarly,∫

SeK

∫
L

|x · y|dydx =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣∣m2u1v1 +
1

m2
u2v2 + v1u2

∣∣∣∣ dv2du2dv1du1

≥ 4m2

∫ 1

−1

∫ 1

−1

|u1v1| dv1du1 −
4

m2

∫ 1

−1

∫ 1

−1

|u2v2| dv2du2

− 4

∫ 1

−1

∫ 1

−1

|v1u2| du2dv1

→∞,
as m→∞.

Also, ∫
SeK

∫
SeL

|x · y|dydx =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣∣m2u1v1 +
1

m2
u2v2

∣∣∣∣ dv2du2dv1du1

≥ 4m2

∫ 1

−1

∫ 1

−1

|u1v1| dv1du1 −
4

m2

∫ 1

−1

∫ 1

−1

|u2v2| dv2du2

→∞,
as m→∞.

Hence, for sufficiently large m, both (5.1) and (5.2) are valid.
The above example shows that in R2, applying Steiner symmetrization once is not good enough

to show Theorem 4.4. Similar counterexample can be constructed in n-dimensional case, and it
will imply that (n− 1)-times Steiner symmetrization is not enough to prove Theorem 4.4.
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