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Abstract. The original goal of this paper is to extend the affine isoperimetric

inequality and Steiner type inequality of Orlicz projection bodies (which originated to

Lutwak, Yang, and Zhang [36]), from convex bodies to Lipschitz star bodies (whose

radial functions are locally Lipschitz).

In order to achieve it, we investigate the graph functions of the given Lipschitz star

body K: Along almost all directions u, we can define the graph functions on an open

dense subset of the orthogonal projection of K onto u⊥.
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1 Introduction

The classical isoperimetric inequality is formulated by

S(K) ≥ nω1/n
n |K|(n−1)/n,

where S(K) and |K| denote respectively the surface area and volume of a domain

K ⊂ Rn, and ωn denotes the volume of the unit ball B. If K happens to be a convex

body in Rn, then Cauchy’s integral formula of surface area tells us

S(K) =
1

ωn−1

∫
Sn−1

|Pu⊥K|du. (1.1)

Here |Pu⊥K| denotes the (n − 1)-dimensional volume of the orthogonal projection of

K onto u⊥. While the volume is affine invariant in the sense that |AK| = |K| for

any A ∈ SL(n), the surface area S(K) is not. Motivated by (1.1), the integral affine

surface area Φ(K) is defined by

Φ(K) =
cn
ωn−1

(∫
Sn−1

|Pu⊥K|−ndu
)−1/n

,

1



where cn = (nωn)(n+1)/n is a normalizing constant so that Φ(B) = S(B). This quantity

is proved to be affine invariant (see e.g., [29, 39, 48]), and is different from the affine

surface area via a differential geometric viewpoint [20,31,41,44].

Petty [39] proved the affine isoperimetric inequality

Φ(K) ≥ nω1/n
n |K|(n−1)/n. (1.2)

For convex bodies, (1.2) is stronger than the classical one, since one can easily see that

S(K) ≥ Φ(K).

Note that the classical isoperimetric inequality holds for general non-convex sets, and

it seems natural to watch the affine counterparts.

The integral affine surface area Φ(K) can be computed as the volume of the so-called

polar projection body by Minkowski, which dates back to the turn of 20th century. For

a quick review of its history, we would like to refer the interested readers to [33]. Two

fundamental affine inequalities related to the projection body are the Petty and Zhang

projection inequalities [46], which respectively characterized the ellipsoids and simplex-

es. Utilising the Petty projection inequality and a convexification method (from the

solution of Minkowski problem), Zhang [47] established the affine Sobolev inequality,

which connects affine convex geometry and functional analysis and is stronger than the

classical Sobolev inequality. Lutwak [29] conjectured in 1984 that the generalizations

of (1.2) hold, for the k-th affine quermassintegrals, which is not confirmed until the

recent work of Milman & Yehudayoff [38].

During the past four decades, extensive studies related to the Petty projection

inequality and its functional analogs sprang out, including [7, 16, 17, 22, 24, 25, 27, 33,

34, 36, 42]. Ludwig [25, 28], and Haberl [15] (see Li & Leng [21] for the L∞ case)

characterized the Lp projection body by affine contravariant valuation properties, and

these leads to a study of nonsymmetric projection bodies, see e.g. [16]. Ludwig-Xiao-

Zhang [27] studied the affine inequality of Lp projection body for star bodies with

Lipschitz boundary. In 2010, Lutwak-Yang-Zhang [35, 36] respectively evolved the

centroid and projection inequalities into the Orlicz setting. After that the Orlicz Brunn-

Minkowski theory developed rapidly, see e.g. [3, 11–14,18,22,24,45,49,50].

SupposeK is a convex body containing the origin in its interior. Its Orlicz projection

body ΠφK is a convex body whose support function is

hΠφK(z) = inf

{
λ > 0 :

∫
∂K

φ

(
z · νK(x)

λx · νK(x)

)
x · νK(x)dHn−1(x) ≤ n|K|

}
. (1.3)
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Here φ : R→ [0,∞) is a convex function such that φ(0) = 0, and νK is the unit normal

of K at x. This means that φ must be decreasing on (−∞, 0] and increasing on [0,∞).

We will assume throughout the article that one of these is strictly so; i.e., φ is either

strictly decreasing on (−∞, 0] or strictly increasing on [0,∞).

It is straightforward to extend definition (1.3) to non-convex sets, provided with

“nice” boundary conditions. However, the Orlicz Petty projection inequality were

merely studied for convex bodies until now. Technically, to extend definition (1.3), we

need that the normal νK needs to be well-defined, and the quantity x · νK needs to be

positive. The Lipschitz star body (whose radial function is locally Lipschitz, see Section

2 for the detailed definition of radial function) naturally comes to our sight. Note that

it is a natural extension since the radial function of a convex body is always locally

Lipschitz. Now we state our main result.

Theorem 1.1. If K is a Lipschitz star body in Rn, then the volume ratio

|Π∗φK|/|K|

is maximized when K is an ellipsoid centered at the origin. If φ is strictly convex, then

the ellipsoids centered at the origin are the only maximizers.

For other extensions of the classical and Lp projection inequalities [27, 42], the

authors used the idea of “convexification” mentioned above. It seems that this con-

vexification method cannot be applied to the Orlicz case.

Our Theorem 1.1 is proved by using the Steiner symmetrization, which is a well-

known powerful tool for the isoperimetric problem as well as its affine analogue. For

the sets of finite perimeter, Chleb́ık-Cianchi-Fusco [5] characterized the equality cases

of the Steiner’s inequality

S(E) ≥ S(SuE).

Here SuE denotes the Steiner symmetrization of E (see Section 2). In [2], Barchiesi-

Cagnetti-Fusco studied its stability for general Steiner symmetrization. However, it is

still unknown if there are the affine isoperimetric inequalities and Steiner’s inequalities

of general affine surface areas, for non-convex sets.

After an investigation of the graph functions of star bodies (see the text below), for

almost all u ∈ Sn−1, we establish the Steiner type affine inequality in Section 7

|Π∗φSuK| ≥ |Π∗φK|.
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In our humble opinion, one technical obstacle to the Orlicz affine inequalities and

Steiner type inequalities for non-convex sets in a geometric way might be that there

is no corresponding “graphfunctions”. Suppose that K is a convex body. Given a

direction u, we denote K ′ to be the orthogonal projection of K onto u⊥, and (x′, t) to

be the point x′ + tu. Then, there are graph functions f and g representing the convex

body K, such that

K =
{

(x′, t) : f(x′) ≤ t ≤ g(x′), x′ ∈ K ′
}
.

The representation means that, given an (n − 1)-dimensional convex body K ′ ⊂ u⊥,

and concave functions g and −f , we can recover the convex body K by⋃
x′∈K′

[
(x′, f(x′)), (x′, g(x′))

]
, (1.4)

and for almost all direction u, the boundary of K is the union of coordinate surfaces

∂K =
{(
x, f(x′)

)
: x′ ∈ K ′

}
∪
{(
x, g(x′)

)
: x′ ∈ K ′

}
. (1.5)

Here
[
(x′, f(x′)), (x′, g(x′))

]
denotes the line segment connecting the two points. These

facts were important in [16,33,36]. Because of these, we dive into the following

Question: Does a set of finite perimeter and its reduced boundary have the geometric

representations in the form of (1.4) and (1.5) via graph functions?

If no condition is assumed, the structures of the reduced boundary and the projec-

tion of a set of finite perimeter can be very wild! Lipschitz star bodies can simplify the

situation to some extent, as we will see in sections 2-4. Our main result regarding to

the graph functions reads as follows.

Theorem 1.2. Let K be a Lipschitz star body in Rn. Then, for almost all u ∈ Sn−1,

there is a sequence of disjoint open subsets Gm ⊂ K ′, and two sequences of graph

functions

fj, gj :
∞⋃
m=j

Gm → R,

satisfying

(i)
⋃∞
m=1 Gm is open dense in K ′, and f1 < g1 < · · · < fj < gj;

(ii) K has the representation (if we neglect an Hn-null set)

K =
∞⋃
m=1

⋃
x′∈Gm
1≤j≤m

[
(x′, fj(x

′)), (x′, gj(x
′))
]
,
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and ∂K has the representation (if we neglect an Hn−1-null set)

∂K =
∞⋃
m=1

m⋃
j=1

{(
x, fj(x

′)
)

: x′ ∈ Gm

}
∪
{(
x, gj(x

′)
)

: x′ ∈ Gm

}
.

Theorem 1.2 is obtained by combining Theorem 3.1 and Corollary 4.2.

The remaining part of this paper is organized as follows. Section 2 collects some

notations, definitions, and basic facts. The construction of graph functions appears in

section 3. In section 4, we obtain the canonical area formulas of Lipschitz star bodies

in regard to the graph functions, thanks to applications of geometric measure theory.

Section 5 studies the radial convergence of Steiner symmetrization via “admissible”

directions. In Section 6, we show the properties of the polar Orlicz projection body,

including the affine covariant property (Lemma 6.4), and the “weak convergence” for

Lipschitz star bodies (Lemma 6.3). Finally, Theorem 1.1 is proved in Section 7.

2 Preliminaries

We collect some basic definitions and facts of convex geometry and measure theory.

The books [8–10,20,37,40] are good general references.

2.1 Basic Notation

Let B and Sn−1 respectively denote the Euclidean unit ball and unit sphere. Sup-

pose u ∈ Sn−1 is a certain direction. We will always denote K ′ to be the orthogonal

projection of K onto u⊥; and for an x ∈ Rn, x′ always denotes its projection onto u⊥.

In this sense, we will write x = (x′, t), which is understood as

x = x′ + tu, where x′ ∈ u⊥.

For x′ ∈ u⊥, lu(x
′) denotes the ling passing through x′ and parallel to u. If E is a Borel

subset of Rn and E is of Hausdorff dimension k, then we may use |E| to denote Hk(E).

Let ∂E and int E denote the boundary of E and the interior of E, respectively.

Let K, L be two compact sets in Rn. Their Minkowski sum K + L is defined by

K + L = {x+ y : x ∈ K, y ∈ L}.

For λ > 0, the scalar multiplication λK is given by

λK = {λx : x ∈ K}.

5



The Hausdorff distance between the compact sets is defined by

δH(K,L) = min{t ≥ 0 : K ⊂ L+ tB, L ⊂ K + tB}.

If a sequence of compact sets {Ki} satisfies δH(Ki, K0) → 0, then we say that Ki

converges to K0 in Hausdorff metric. We shall make use of a fact: The Hausdorff limit

of a convergent sequence of compact sets is unique.

Let C be the class of convex function φ : R → [0,∞) such that φ(0) = 0 and such

that φ is either strictly decreasing on (−∞, 0] or φ is strictly increasing on [0,∞). The

subclass of C consisting of those φ ∈ C that are strictly convex will be denoted by Cs.
Define cφ by

cφ = max{c > 0 : max{φ(c), φ(−c)} ≤ 1}. (2.1)

We shall make use of a basic fact for convex functions: If φ ∈ C, for a, b ∈ R and a 6= 0,

then the function

Ψ(t) := φ(at− b) + φ(−at− b), t > 0 (2.2)

is increasing. Moreover, if φ is strictly convex, then Ψ(t) is strictly increasing.

2.2 Convex bodies

Suppose K is a convex body. Let hK : Rn → R denote its support function, namely,

hK(x) = max{x · y : y ∈ K}.

It is sublinear (positively homogeneous and convex). An important fact is that one can

uniquely construct a convex body from a sublinear function of Rn into R.

It follows immediately that for any general linear transform A ∈ GL(n), there is

hAK(x) = hK(Atx), x ∈ Rn.

If K contains the origin in its interior, then its polar body K∗ is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

It is easy to see that

(AK)∗ = A−tK∗, ∀ A ∈ GL(n). (2.3)
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2.3 Star bodies: Representing functions, radial distance, and

Lipschitz constants

A compact set K ⊂ Rn is star-shaped (with respect to the origin) if the intersection

of every line through the origin with K is a line segment. Denote ρK : Rn\{0} → R to

be its radial function, namely

ρK(x) = max{λ ≥ 0 : λx ∈ K}. (2.4)

K is called a star body if ρK is positive and continuous. Let Sno denote the class of star

bodies in Rn. Clearly,

ρcK(x) = cρK(x), ρK(cx) = c−1ρK(x), ∀c > 0.

Throughout this paper, we set

rK = min
u∈Sn−1

ρK(u), and RK = max
u∈Sn−1

ρK(u). (2.5)

Define the gauge function pK : Rn → [0,∞) by

pK(x) = ρK(x)−1 when x 6= 0, and pK(0) = 0, (2.6)

which is 1 homogeneous. Clearly, if ρK is locally Lipschitz on Rn \ {0}, then pK is

locally Lipschitz on Rn. If K happens to be a convex body, then

pK(x) = hK∗(x) = ρK(x)−1, x ∈ Rn \ {0}.

For two star bodies K and L, define their radial distance by

δ̃(K,L) := |ρK − ρL|∞ = max
u∈Sn−1

|ρK(u)− ρL(u)|. (2.7)

A sequence {Ki} ⊂ Sno is said to be converging to a star body K with respect to radial

distance, if δ̃(Ki, K)→ 0. A useful fact is that

δH(K,L) ≤ δ̃(K,L),

and hence the radial convergence implies the Hausdorff convergence.

If ρK is locally Lipschitz continuous on Rn \ {0}, then we say K is a Lipschitz star

body. The class of Lipschitz star bodies will be denoted by S̄no . We remark that a

convex body containing the origin in its interior is always in S̄no . Let Ω ⊂⊂ Rn \ {0}
(compactly contained). We denote LK(Ω) to be the Lipschitz constant of ρK on Ω:

LK(Ω) = sup
{ |ρK(x)− ρK(y)|

|x− y|
: x, y ∈ Ω, and x 6= y

}
. (2.8)

Since ρK is −1-homogeneous, the following statements are clearly equivalent
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1. K is a Lipschitz star body.

2. ρK is Lipschtz on the sphere Sn−1.

3. ρK is Lipschtz on (RK) \
(
int(rK)

)
with 0 < r < R.

For convenience, we choose a large enough set and denote

LK = LK

((2RK

rK
K
∖ rK

2RK

intK
)⋃( 2

rK
K
∖ 1

2RK

intK
))

. (2.9)

Note that both Sn−1 and ∂K are compactly contained in the interior of the set in (2.9).

Therefore, LK(Sn−1) ≤ LK . We will use the constants LK and LK(Sn−1) in this paper.

2.4 Boundary structure of the Lipschitz star body

Let K ∈ S̄no . Since ρK is Lipschitz on Sn−1, it can be seen that ∂K is Hn−1-

rectifiable, and hence K is a set of finite perimeter. We refer to [1, 9, 37] for good and

general literature in regard to this topic.

Denote its reduced boundary by

∂∗K = {x ∈ ∂K : the gradient ∇ρK(x) exists at x},

and it coincides with the reduced boundary in the theory of sets of finite perimeter.

For x ∈ ∂∗K, the unit outer normal vector is given by

νK(x) = − ∇ρK(x)

|∇ρK(x)|
. (2.10)

It coincides with the outer normal vector in the meaning of differential geometry as

well as in the measure theory. The computation in Section 4 indicates that νK(x) can

equivalently be represented by gauge function pK .

The following lemma shows that |∇ρK | never vanishes, and x · νK(x) is strictly

positive and uniformly bounded from below on ∂∗K. Note that x · νK(x) may be zero

or negative if K is supposed to be a general set, e.g., a set of finite perimeter. This

partly explains why we consider Lipschitz star bodies in current paper, when studying

the Orlicz Petty projection bodies.

Lemma 2.1. If K ∈ S̄no , then Hn−1(∂K) is finite, and

Hn−1(∂K\∂∗K) = 0. (2.11)
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Moreover, for x ∈ ∂∗K, we have

1

LK
≤ x · νK(x) ≤ RK . (2.12)

Proof. 1. The statement Hn−1(∂K) < ∞ follows from the fact that ρK(u)u :

Sn−1 → ∂K is a Lipschitz map.

Since ρK : Rn\{0} → (0,∞) is locally Lipschitz, the gradient ∇ρK(x) exists for

Hn-a.e. x ∈ Rn. Since ρK is −1 homogeneous,

ρK(tx) =
1

t
ρK(x), t > 0, x 6= 0, (2.13)

∇ρK(x) exists if and only if ∇ρK(tx) exists for any t > 0. Therefore, ∇ρK(u)

exists Hn−1-a.e. on Sn−1. This, together with the fact that ρK(u)u : Sn−1 → ∂K

is a Lipschitz map, implies that ∇ρK(x) exists for Hn−1-a.e. x ∈ ∂K.

2. Differentiating the equation (2.13) at t = 1 gives

−x · ∇ρK(x) = ρK(x). (2.14)

Therefore, for x ∈ ∂∗K, we have

RK |∇ρK(x)| ≥ |x||∇ρK(x)| ≥ ρK(x) = 1. (2.15)

Recall the Lipschitz constant LK given by (2.9). For x ∈ ∂∗K and sufficiently

small t, we have

|ρK(x+ tu)− ρK(x)| ≤ LK |t|, ∀u ∈ Sn−1,

and hence

|∇ρK(x)| ≤ LK . (2.16)

By(2.10), (2.14), (2.15) and (2.16), for x ∈ ∂∗K, we have

1

LK
≤ x · ν(x) =

1

|∇ρK(x)|
≤ RK .

For u ∈ Sn−1, let

∂∗uK = {x ∈ ∂∗K : ν(x) · u = 0}. (2.17)

The following lemma is an analogue of the Ewald-Larman-Rogers theorem of convex

bodies, and it is a corollary of [24, Lemma 5.9]. We note that the openness of Ω in [24]

was indeed not necessary. For completeness, we restate the results in the Appendix of

current paper.
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Lemma 2.2. Suppose K ∈ S̄no . There is a set T (K) ⊂ Sn−1, such that Hn−1
(
Sn−1 \

T (K)
)

= 0 and for any u ∈ T (K),

∂∗uK = {x ∈ ∂∗K : ν(x) · u = 0}

is an Hn−1-null set.

2.5 Steiner symmetrization

Steiner symmetrization is a classical and well-known device, which has seen a

number of applications to problems of geometric and functional nature, see, e.g.,

[4–6,16,22,24].

Let K be a compact subset of Rn, and u ∈ Sn−1. The Steiner symmetral SuK along

with u is defined by

SuK :=
{

(x′, t) : |t| ≤ |lu(x
′) ∩K|
2

, x′ ∈ K ′
}
.

If K happens to be a convex body, SuK turns out to be a new convex body whose

graph functions are (g− f)/2 and (f − g)/2. Here we recall that the definitions of the

graph functions f and g are in Section 1.

When K happens to a Lipschitz star body, as studied in the next whole section, we

can define its j-th graph functions on an open dense subset of K ′,
⋃∞
m=1Gm say, and

the new body SuK can be formulated by (3.6).

We recall some basic facts of Steiner symmetrization. If K is a star body, then

SuK + εB ⊂ Su(K + εB), ∀ε > 0. (2.18)

A basic fact is that the radial distance between K and a centered Ball is non-increasing

under Steiner symmetrization. Actually, if K is a star body, such that δ̃(K, rB) ≤ a

with 0 < a < r, then one can deduce from the definition that

(r − a)B ⊂ SuK ⊂ (r + a)B. (2.19)

It is easy to see from the definition that the radial distance of a star body K and

a centered Ball is non-increasing under Steiner symmetrization. The following tool

developed in [36] will also be used.

Lemma 2.3. [36, Lemma 1.1] Suppose K,M are convex bodies containing the origin

in their interiors, and consider K,M ⊂ Rn−1 × R. Then SenK
∗ ⊂M∗ if and only if

hK(x′, t) = 1 = hK(x′,−s), with t 6= −s =⇒ hM

(
x′,

1

2
t+

1

2
s

)
≤ 1.
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In addition, if SenK
∗ = M∗, then hK(x′, t) = 1 = hK(x′,−s), with t 6= −s, implies

that hM(x′, 1
2
t+ 1

2
s) = 1.

3 The graph functions of Lipschitz star bodies

In order to locally define the graph functions (Lemma 3.1), it is quite natural to

consider the implicit function theorem. Since we do not have the continuous differ-

entiability, we would like to invoke the implicit function theorem in [19, Theorem E].

Since the [19, Theorem E] was proved by using Brouwer’s fixed point theorem, we do

not directly obtain the uniqueness of the implicit function. We consider it in Lemma

3.3.

Lemma 3.1. Suppose x0 = (x′0, t0) ∈ ∂∗K, and u · ν(x0) 6= 0. Then, for each small

neighbourhood I0 = (t0− ε, t0 + ε), there exists a neighborhood of x′0, say Nx′0
, and there

is a continuous function g(x′) defined on Nx′0
, such that g(Nx′0

) ⊂ I0, g is differentiable

at x′0 and

ν(x0) = sgn(u · ν(x0))
(−∇g(x′0), 1)√
1 + |∇g(x′0)|2

. (3.1)

Here ∇g means the gradient of g in u⊥, and is also understood as a vector in Rn in

the sense u⊥ ⊂ Rn.

Proof. Since x0 ∈ ∂∗K and u · ν(x0) 6= 0, we know that ρK is differentiable at x0 =

(x′0, t0), and u · ∇ρK(x′0, t0) 6= 0. Then, by the implicit function theorem without

continuous differentiability assumption (see e.g. [19, Theorem E]), the equation

ρK(x′, t) = 1

determines a continuous implicit function t = g(x′), in a neighborhood of x′0. And the

function g is differentiable at x′0, such that g(Nx′0
) ⊂ I0 and

ρK(x′, g(x′)) = 1.

This means (x′, g(x′)) ∈ ∂K, and the computation of ν(x0) follows immediately from

(2.10) and the implicit function theorem.

Now we construct a equivalent subset of intK ′, on which we can define the graph

functions.

11



Lemma 3.2. Suppose u ∈ Sn−1 and Hn−1(∂∗uK) = 0. Let ∂0K = ∂∗K \ ∂∗uK, and let

K ′0 = K ′ \
(
Pu⊥(∂K \ ∂0K)

)
.

be the relative complement of the orthogonal projection of ∂K \ ∂0K onto u⊥. Then,

we have

(i) ∂0K is equivalent to ∂K, and K ′0 is equivalent to K ′. That is to say,

Hn−1(∂K \ ∂0K) = 0, and Hn−1(K ′ \K ′0) = 0.

(ii) For any x′ ∈ K ′0, the intersection lx′ ∩ ∂K is contained in ∂∗K and has finite

elements.

(iii) K ′0 ⊂ intK ′, and Hn−1(rel∂K ′0) = 0.

Proof. (i) It follows from Lemma 2.1 that Hn−1(∂K \ ∂∗K) = 0. This together with

the assumption Hn−1(∂∗uK) = 0 implies Hn−1(∂K \ ∂0K) = 0. Since the projection

map is a contraction, we also have Hn−1(K ′ \K ′0) = 0.

(ii) Let x′ ∈ K ′0 and (x′, t) ∈ lx′ ∩ ∂K. That lx′ ∩ ∂K ⊂ ∂∗K is obvious from the

definition of K ′0. We claim that (x′, t) must be an isolated point of the compact set

lx′ ∩ ∂K. To see this, we observe from our construction that (x′, t) lies in ∂0K, and

hence ρK(x′, t) is differentiable. If (x′, t) is not isolated, there is a disjoint sequence

tk → t so that ρK(x′, tk) = 1, and then the directional derivative u · ∇ρK(x′, t) = 0,

which contradicts to the fact (x′, t) /∈ ∂∗uK.

Now we have shown our claim. Therefore, lx′ ∩ ∂K, as a compact set of isolated

points, must be finite.

(iii) Let x′ ∈ K ′0, and (x′, t) ∈ lx′ ∩ ∂K. If x′ ∈ rel∂K ′0, since (x′, t) is a differential

point of ρK , we must have νK(x′, t) ·u = 0, which is a contradiction. For the statement

that Hn−1(rel∂K ′0) = 0, we only need to notice that K ′ is an (n− 1) dimensional star

body.

Note that our local graph function obtained in Lemma 3.1 used the implicit function

theorem in [19], and it may not be unique. But for the Lipschitz star bodies, we have

the following.

Lemma 3.3. Let x′ ∈ K ′0, and (x′, t) ∈ ∂∗K. Suppose there is an open ball N0 ⊂ u⊥

containing x′, and there is a continuous function f : N0 → R, such that

f(x′) = t, and (y′, f(y′)) ∈ ∂K, y′ ∈ N0.

Then, the function satisfying conditions above is unique on N0.
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Proof. Suppose there are two functions f1 and f2 defined on N0, such that for j = 1, 2,

fj(x
′) = t, and (y′, fj(y

′)) ∈ ∂K, y′ ∈ N0.

Let M0 ⊂ N0 be the set of all points y′ ∈ N0 so that f1(y′) = f2(y′). We will show that

M0 is open and closed in N0. The closeness is obvious, and we only have to show the

openness.

Define two open subsets of ∂K by

Dj = {(y′, fj(y′)) : y′ ∈ N0}.

Let ωj ⊂ Sn−1 be open subsets defined by

ωj =

{
x

|x|
∈ Sn−1 : x ∈ Dj

}
.

Since ρK is continuous and positive, |x| never vanishes on ∂K. Now, let ω = ω1 ∩ ω2.

Then ω is open in Sn−1. Denote Cω to be the open cone generated by ω:

Cω = {λv : λ > 0, v ∈ ω}. (3.2)

If y′ ∈M0, then (y′, fj(y
′)) ∈ D1∩D2, and then (y′, fj(y

′)) ∈ Cω∩∂K. If λv ∈ Cω∩∂K,
then λ = ρK(v), and v ∈ ω1 ∩ ω2. This implies the existence of y′1, y

′
2, such that

v =
(y′1, f1(y′1))

|(y′1, f1(y′1))|
=

(y′2, f2(y′2))

|(y′2, f2(y′2))|
.

And since K is a star body, we must have

|(y′1, f1(y′1))| = |(y′2, f2(y′2))| = ρK(v), and (y′1, f1(y′1)) = (y′2, f2(y′2)).

Therefore, M0 is exactly the orthogonal projection of Cω ∩ ∂K, and hence it is open.

Since x′ ∈M0, and M0 is open and closed in N0, M0 must be N0 itself.

Lemma 3.4. The set K ′0 in Lemma 3.2 can be split into subsets G∗1, ..., G
∗
m, ..., m =

1, 2, ..., such that for each x′ ∈ G∗m, we have the following:

(i) The intersection lx′ ∩ ∂K has 2m elements;

(ii) For each x′ ∈ G∗m, there is an open neighborhood N0 containing x′, and there

are 2m graph functions defined on N0, such that

f1(y′) < g1(y′) < ... < fm(y′) < gm(y′), y′ ∈ N0;
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(iii) There is an open ball Nx′ ⊂ N0 and for each y′ ∈ Nx′, the intersection ly′ ∩K
is exactly

m⋃
k=1

[(y′, fk(y
′)), (y′, gk(y

′))];

(iv) The sets G∗m are relative open.

Proof. For x′ ∈ K ′0, we know that it satisfies all the conditions in Lemma 3.2. Thus,

we can suppose that the elements of lx′ ∩ ∂K are exactly

(x′, t1), ..., (x′, tk) ∈ ∂∗K, and t1 < ... < tk,

and they satisfy ∇ρK(x′, ti) · u 6= 0. We claim that

∇ρK(x′, t1) ·u > 0, ∇ρK(x′, t2) ·u < 0, · · · , ∇ρK(x′, tk−1) ·u > 0, ∇ρK(x′, tk) ·u < 0.

(3.3)

To prove the first inequality, we observe that t1 is the smallest number t so that

(x′, t) ∈ K. Thus, ρK(x′, t) < 1,∀t < t1. By the differentiability of ρK at (x′, t1), we

have

∇ρK(x′, t1) · u = lim
t→t−1

ρK(x′, t)− ρK(x′, t1)

t− t1
≥ 0.

This together with ∇ρK(x′, t1) · u 6= 0 implies that ∇ρK(x′, t1) · u > 0. By this, and

the definition of directional derivative, we see that in a small right neighborhood of t1,

ρK(x′, t) is larger than 1. This means ρK(x′, t) > 1 for any t1 < t < t2. Successively

using similar argument as above, we will have

∇ρK(x′, t2) · u < 0, · · · , ∇ρK(x′, tk−1) · u > 0, ∇ρK(x′, tk) · u < 0.

Now we proved our claim, and hence k is always even. Moreover,

lx′ ∩K = [(x′, t1), (x′, t2)] ∪ · · · ∪ [(x′, tk−1), (x′, tk)]. (3.4)

This explains the statement (i), and we can define G∗m to be the set of x′ ∈ K ′0 so that

H0(lx′ ∩ ∂K) = 2m. Clearly K ′0 =
⋃∞
m=1G

∗
m.

For x′ ∈ G∗m, and for each ti, we can choose its neighborhood Ii, such that tj /∈ Ii,
∀j 6= i. By Lemma 3.1, there is a small open ball containing x′, say N0, such that

continuous functions fi are defined on N0, and

y′ 7→ (y′, fi(y
′)) ∈ ∂K.
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By the local uniqueness provided by Lemma 3.3, the graphs

{(y′, fi(y′)) : y′ ∈ N0}

must be disjoint. This implies the statement (ii).

Now we trun to prove (iii). Denote R0 to be the open cylinder generated by N0:

R0 = {y′ + tu : t ∈ R, y′ ∈ N0}.

We define the boundary pieces Dj and the open cone Cj, respectively, by

Dj = {(y′, fi(y′)) : y′ ∈ N0}, when j = 2i−1 , Dj = {(y′, gi(y′)) : y′ ∈ N0}, when j = 2i,

and

Cj = {λx : λ > 0, x ∈ Dj}.

Note that R0 ∩ ∂K may not be the union of Dj, and actually our aim is to choose a

smaller open set in N0, such that it follows.

Since R0 ∩ Cj is always open, there is an closed bounded cylinder Qj in the form

Qj = {(y′, t) : |t− tj| ≤ hj, 0 ≤ |y′ − x′| ≤ rj}, with rj, hj > 0,

such that Qj ⊂ R0 ∩ Cj.
On one hand, since K is a star body, the construction of Cj imply that Qj ⊂ Cj

will not contain any other boundary points except the points in Dj.

On the other hand, by (3.4) and the continuity of ρK , there exists ε > 0 so that

ρK(x′, t) > 1+ε, t ∈ [t1+h1, t2−h2]∪[t3+h3, t4−h4]∪· · ·∪[t2m−1+h2m−1, t2m−h2m],

and

ρK(x′, t) < 1−ε, t ∈ [t2+h2, t3−h3]∪[t4+h4, t5−h5]∪· · ·∪[t2m−2+h2m−2, t2m−1−h2m−1].

Since ρK is locally Lipschitz, we can choose r0 > 0 so that

ρK(y′, t) > 1+
ε

2
, t ∈ [t1+h1, t2−h2]∪[t3+h3, t4−h4]∪· · ·∪[t2m−1+h2m−1, t2m−h2m],

and

ρK(y′, t) < 1− ε
2
, t ∈ [t2+h2, t3−h3]∪[t4+h4, t5−h5]∪· · ·∪[t2m−2+h2m−2, t2m−1−h2m−1],

for all |y′ − x′| < r0.

Let rx′ = min{r0, r1, ..., r2m}, and let Nx′ be the open ball centered at x′ with radius

rx′ in u⊥. Then statement (iii) follows, and statement (iv) is just a corollary of it.
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By Lemma 3.4, we can define a bit larger open set Gm by

Gm =
⋃

x′∈G∗m

Nx′ , (3.5)

such that the 2m graph functions are well-defined on Gm.

Theorem 3.1. Let K ∈ S̄no , and let u ∈ Sn−1 satisfying Hn−1(∂∗uK) = 0. There are

open subsets Gm ⊂ K ′, measurable subsets G∗m ⊂ Gm, and functions

fj, gj :
∞⋃
m=j

Gm → R,

satisfying the following properties.

(i) Hn−1(K ′\
⋃∞
m=1Gm) = 0 and Hn−1(Gm\G∗m) = 0, and f1 < g1 < · · · < fm < gm;

(ii) K has the representation (if we neglect an Hn-null set)

∞⋃
m=1

⋃
x′∈Gm
1≤j≤m

[(x′, fj(x
′)), (x′, gj(x

′))];

(iii) fj, gj are differentiable at each x′ ∈ G∗m, and

νK(x′, fj(x
′)) =

(∇fj(x′),−1)√
1 + |∇fj(x′)|2

, νK(x′, gj(x
′)) =

(−∇gj(x′), 1)√
1 + |∇gj(x′)|2

.

Proof. Combine Lemmas 3.1-Lemma 3.4 with the definition of Gm in (3.5).

By Theorem 3.1, the Steiner symmetral of K in direction u turns out to be

SuK :=
∞⋃
m=1

⋃
x′∈Gm

[(
x′,

m∑
j=1

fj(x
′)− gj(x′)

2

)
,
(
x′,

m∑
j=1

gj(x
′)− fj(x′)

2

)]
. (3.6)

Moreover, Lemma 3.3 and the fact that SuK is also a Lipschitz star body implies that∑
j(fj − gj)/2 and

∑
j(gj − fj)/2 are precisely its graph functions.

4 Area and coarea formulas

In regard to the graph functions, we would like to show the following area formula for

the Lipschitz star body K. Although it has fine geometric explanations, it still requires

a proof since we have no idea on that whether or not fj, gj are locally Lipschitz. Its

proof is based on a result in geometric measure theory (see Theorem A below).
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Theorem 4.1. If u ∈ Sn−1 is a direction satisfying Hn−1(∂∗uK) = 0, then for any

integrable Borel function F , we have∫
∂K

F (x)dHn−1(x) =
∞∑
m=1

m∑
j=1

∫
Gm

F (x′, fj(x
′))
√

1 + |∇fj(x′)|2dHn−1(x′)

+
∞∑
m=1

m∑
j=1

∫
Gm

F (x′, gj(x
′))
√

1 + |∇gj(x′)|2dHn−1(x′).

Theorem 4.1 together with Theorem 3.1 implies the following corollary, which states

the relation of areas of the surface and projection.

Corollary 4.1. If u ∈ Sn−1 is a direction satisfying Hn−1(∂∗uK) = 0, then∫
∂K

(
u · νK(x)

)
+
dHn−1(x) =

∫
∂K

(
u · νK(x)

)
−dH

n−1(x)

=
∞∑
m=1

m · Hn−1(Gm)

≥Hn−1(K ′).

Since K is contained in the cylinder K ′ × [−RKu,RKu], by Corollary 4.1, we have∫
∂K

(
u · νK(x)

)
+
dHn−1(x) =

∫
∂K

(
u · νK(x)

)
−dH

n−1(x) ≥ Hn−1(K ′) ≥ |K|
2RK

. (4.1)

Taking F = 1 in Theorem 4.1, and recalling Theorem 3.1, we obtain the following.

Corollary 4.2. If u ∈ Sn−1 is a direction satisfying Hn−1(∂∗uK) = 0, then ∂K has the

representation (if we neglect an Hn−1-null set)

∂K =
∞⋃
m=1

m⋃
j=1

{(
x, fj(x

′)
)

: x′ ∈ Gm

}
∪
{(
x, gj(x

′)
)

: x′ ∈ Gm

}
.

The following Theorem A is a variation of [5, Theorem F], which applied to the

reduced boundary of a set of finite perimeter. More precisely, both are consequences

of [1, Theorem 2.93, (2.72)], which takes the Lipschitz map f to be the projection map

Pu⊥ restricted on the rectifiable set E, where E and f are as in [1, Theorem 2.93].

Theorem A. (Area formula.) Let E ⊂ Rn be an Hn−1-rectifiable set, and let G be a

nonnegative Borel function on Rn. Then∫
E

G(x)|u · νE(x)|dHn−1(x) =

∫
u⊥

∫
E∩lu(x′)

G(x′, t)dH0(t)dHn−1(x′). (4.2)
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Proof of Theorem 4.1. In order to obtain Theorem 4.1, we notice that ∂K is actually

Hn−1-rectifiable. Let p : u⊥ → Sn−1 \ {u} be the reverse stereographic projection map.

Since p is Lipschitz, and ρK restricted on Sn−1 is also Lipschitz, we infer that the map

ψ(x) = ρK(p(x))p(x) : u⊥ → ∂K \ {ρK(u)u}

is Lipschitz. Then, in Theorem A, we take E = ∂K and G(x) = F (x)/|u · νK(x)|.
Here we notice that Hn−1(∂∗uK) = 0, and hence |u · νK(x)| > 0 for almost all x ∈ ∂K.
Combining these with Theorem 3.1, we complete the proof. �

We also refer to [37, Theorem 11.6] for the area formula. The following coarea

formula can be found in [1, (2.74)]. A remark is that both Theorem A and B are

special cases of [1, Theorem 2.93].

Theorem B. (Coarea formula.) Let G be a nonnegative Borel function on Rn, and let

E ⊂ Rn be a Borel set. If F : Rn → R is a Lipschitz function, then∫
E

G(x)|∇F (x)|dx =

∫ ∞
−∞

∫
E∩{F=t}

G(x)dHn−1(x)dt. (4.3)

Taking F (x) to be the gauge function pK(x) (see (2.6)), E = K, a direct computa-

tion leads to

∇pK(x) = −∇ρK(x)

ρK(x)2
= −∇ρK

(
ρK(x)x

)
.

∇pK(x) is 0-homogeneous, and is parallel to the normal vector at the boundary point

x̄ = ρK(x)x. By (2.14), |∇pK(x)| = x̄ · νK(x̄). Note that x̄ · νK(x̄) never vanishes.

Let H be a nonnegative Borel function on Rn. Taking G(x) = H
(
ρK(x)x

)
/|∇pK(x)|

in Theorem B, we obtain the cone-volume type formula∫
K

H
(
ρK(x)x

)
dx =

1

n

∫
∂K

H(x)x · νK(x)dHn−1(x). (4.4)

Specially, if H(x) ≡ 1, we have the cone-volume formula for Lipschitz star body

|K| = 1

n

∫
∂K

x · νK(x)dHn−1(x).

The other useful application of (4.4) is that we can obtain an equivalent representation

of the definition (1.3). Since νK(x) = ∇pK(x)/|∇pK(x)| and |∇pK(x)|−1 = x · νK(x),

for λ > 0, we have

φ
( u · νK(x)

λx · νK(x)

)
= φ

(u · ∇pK(x)

λ

)
,

which is 0-homogeneous. Therefore, by (4.4) and (1.3), we have∫
∂K

φ

(
u · νK(y)

λx · νK(x)

)
x · νK(x)dHn−1(x) = n

∫
K

φ
(u · ∇pK(x)

λ

)
dx. (4.5)
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5 The convergence of Steiner symmetrization

So far the graph functions have been defined with respect to somewhat “admissible”

directions. Given a star body K, we denote

T (K) = {u ∈ Sn−1 : Hn−1(∂∗uK) = 0}.

Although it is inferred from Lemma 2.2 that T (K) is dense in Sn−1, it can vary a lot

with the change of K. This explains why we need to prove the following convergence

result.

We also note that the Hausdorff convergence is not enough in studying the Orlicz

projection operator for star bodies.

Theorem 5.1. For any K ∈ S̄no , let T (K) = {u ∈ Sn−1 : Hn−1(∂∗uK) = 0}. Then

there exists {ui}∞i=1 ⊂ Sn−1 such that u1 ∈ T (K),

ui+1 ∈ T (Ki), where Ki = Sui . . . Su1K, i ≥ 1, (5.1)

and

Ki → BK with respect to radial distance. (5.2)

Here BK means the centered Euclidean ball having the same volume as K.

The following lemma guarantees that the bodies Ki are always in S̄no .

Lemma 5.1. If K ∈ S̄no , then SuK ∈ S̄no and LSuK ≤ LK.

Proof. We will prove a stronger result: For arbitrary 0 < s1 < s2, there is

LSuK

(
(s2SuK)\int(s1SuK)

)
≤ LK

(
(s2K)\int(s1K)

)
. (5.3)

Let x, y ∈ (s2SuK) \int (s1SuK) be such that

ρSuK(y)− ρSuK(x)

|x− y|
= LSuK

(
(s2SuK)\int(s1SuK)

)
.

Denote ρSuK(x) = h1, ρSuK(y) = h2 with 1/s2 ≤ h1 < h2 ≤ 1/s1. Then x ∈ 1
h1
∂(SuK)

and y ∈ 1
h2
∂(SuK).

Let ε > 0. On one hand, we have the following observation

1

h2

K + εB ⊂ 1

h1

K ⇐⇒ dist
( 1

h2

∂K,
1

h1

∂K
)
≥ ε.
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On the other hand, if 1
h2
K + εB ⊂ 1

h1
K, then it follows from the basic fact (2.18) that

1

h2

SuK + εB ⊂ Su

(
1

h2

K + εB

)
⊂ 1

h1

SuK.

Recalling that x ∈ 1
h1
∂(SuK) and y ∈ 1

h2
∂(SuK), we conclude

|x− y| ≥ dist
( 1

h1

∂(SuK),
1

h2

∂(SuK)
)
≥ dist

( 1

h1

∂K,
1

h2

∂K
)
.

Then, there are x̄ ∈ 1
h1
∂K and ȳ ∈ 1

h2
∂K, such that

h2 − h1

|x̄− ȳ|
≥ h2 − h1

|x− y|
= LSuK

(
(s2SuK)\int(s1SuK)

)
.

This implies (5.3). By this, recalling the definition of the Lipschitz constant (2.9), and

by

rK ≤ rSuK ≤ RsuK ≤ RK ,

we complete the proof of this Lemma.

Since LK is the Lipschitz constant chosen on a large enough set containing the

sphere Sn−1, Lemma 5.1 immediately implies the following.

Corollary 5.1. Let Ki be as in Theorem 5.1. Then there exists an absolute constant

L0 such that

LKi(S
n−1) ≤ LKi ≤ L0.

Lemma 5.2. If Ki ∈ S̄no , i = 0, 1, . . . ,∞, satisfying

(i) There are absolute constants 0 < r < R such that rB ⊂ Ki ⊂ RB;

(ii) There is an absolute constant L0 > 0 bounds the Lipschitz constants LKi(S
n−1)

LKi(S
n−1) ≤ L0;

(iii) Ki converges to a compact set K0 in Hausdorff metric.

Then, we have

1. K0 ∈ S̄no and Ki converges to K0 with respect to radial distance;

2. If u ∈ Sn−1, then SuKi converges to SuK0 with respect to radial distance.

Proof. 1. Our proof of this statement follows from the following two points.
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(a) By (i) and (ii), the sequence {ρKi} is uniformly bounded and has bounded

Lipschitz constant on the sphere. Let ρKij be an arbitrary subsequence

of ρKi . It follows directly from the Arzelà-Ascoli theorem that ρKij has

a uniformly convergent subsequence, converging to a Lipschitz continuous

function ρ ∈ C(Sn−1). By condition (i), ρ is also positive on Sn−1.

(b) Let K be the star body whose radial function is ρ. Since the radial con-

vergence implies the Hausdorff convergence, Kij must converge to K in

Hausdorff metric. Now condition (iii) tells us K = K0.

Combining (a) and (b), we deduce that any subsequence of ρKi has a uniformly

convergent subsequence converging to ρK0 . Hence ρKi → ρK0 uniformly on Sn−1.

2. By (i), for any ε > 0, there exists a positive integer N such that i > N

(1− ε)K0 ⊂ Ki ⊂ (1 + ε)K0.

Therefore,

(1− ε)SuK0 ⊂ SuKi ⊂ (1 + ε)SuK0,

which implies that SuKi converges to SuK0 with respect to radial distance.

Proof of Theorem 5.1. Define

ΘK = {Suk . . . Su1K : k ∈ N, u1 ∈ T (K), u2 ∈ T (K1), . . . , uk ∈ T (Kk−1)},

where Kj = Suj . . . Su1K, j = 1, . . . , k − 1.

For K ∈ S̄no , let RK = maxx∈K |x| to be the outer radius of K, i.e., the smallest

r > 0 such that K ⊂ rB. Set R1 = infC∈ΘK RC , where C ∈ ΘK .

Since R1 is the infimum, there is a sequence of {Ci} ⊂ ΘK so that RCi → R1. The

sequence {Ci} is clearly bounded, because each Ci is contained in RKB. By Blaschke’s

selection theorem (see e.g., [40, Theorem 1.8.5]), there is a subsequence Cij converging

to a compact set K̄ in Hausdorff metric. By Lemma 5.2, K̄ ∈ S̄no and RK̄ = R1.

Denote B1 = R1B, and clearly K̄ ⊂ B1. We claim that

R1 =
|K| 1n
|B| 1n

, and Cij → B1 in Hausdorff metric. (Claim)

Assume the contrary that R1 > |K|
1
n/|B| 1n and B1 6= K̄. Then, there exists an

open spherical cap U ⊂ ∂B1, such that clU ∩ K̄ = ∅. For any line ξ such that
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ξ ∩ U 6= ∅, we have |ξ ∩ B1| > |ξ ∩ K̄|. It suggests that in any direction v ∈ Sn−1, the

Steiner symmetral SvK̄ fails to intersect both U and the new cap Uv, which denotes

the reflection of U with respect to the hyperplane v⊥. Since ∂B1 is compact, there is a

finite set of directions {v1, . . . , vm} ⊂ Sn−1 such that
⋃m
i=1 Uvi covers the whole sphere

∂B1. This suggests that the output star body K̃ = Svm . . . Sv1K̄ is strictly contained

in B1, and hence RK̃ < R1.

Moreover, since a reflection is a continuous map, we can choose a sufficiently small

δ > 0 such that Sn−1 ⊂
⋃m
i=1 Uui , for any ui ∈ B(vi, δ) ∩ Sn−1. Here B(vi, δi) denotes

the open ball centered at vi with radius δi, and i = 1, ...,m. Same as shown above, the

outer radius of Sum . . . Su1K̄ is also strictly smaller than R1.

Now we are going to construct a sequence of convergent bodies in ΘK . There exists

directions u1, ..., um, such that

u1 ∈ B(v1, δ) ∩ Sn−1 ∩
∞⋂
j=1

T (Cij),

and

uk ∈ B(vk, δ) ∩ Sn−1 ∩
∞⋂
j=1

T (Suk−1
. . . Su1Cij),

for k = 2, ...,m. Denote C̃ij = Sum · · ·Su1Cij . Since Cij → K̄, by Lemma 5.2, we have

C̃ij = Sum · · ·Su1Cij → Sum · · ·Su1K̄ =: K̄1.

Then, for sufficiently large j, we have RC̃ij
< R1. But this contradicts with the

assumption that R1 is the infimum.

Now we have confirmed our claim, and we are going to apply it consecutively. Let

εk be a sequence of positive numbers so that εk → 0+. By the claim for K, there is

D1 := Sui1 · · ·Su1K ∈ ΘK , such that δH(D1, BK) < ε1.

Applying (claim) for D1, there is

D2 := Sui2 . . . Sui1+1
D1 ∈ ΘD1 , such that δH(D2, BK) < ε2.

Continue the process, and we get a sequence {Dj}∞j=1

Dj := Suij . . . Suij−1+1
Dk−1 ∈ ΘDj−1

, such that δH(Dj, BK) < εj.

Therefore Dj → BK in Hausdorff metric. By Lemma 5.2, Dj → BK with respect to

radial distance. Denote Kl = Sul · · ·Su1K, and notice the basic fact that the radial dis-

tance of a star body and a centered ball is non-increasing under Steiner symmetrization

(see (2.19)). Now Kl → BK , and we complete the proof.
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6 Properties of Orlicz projection bodies for Lips-

chitz star bodies

Let φ ∈ C. Recall that the definition of Orlicz projection operator Πφ is given by

hΠφK(x) = inf

{
λ > 0 :

∫
∂∗K

φ

(
x · ν(y)

λy · ν(y)

)
y · ν(y)dHn−1(y) ≤ n|K|

}
.

The following Lemma 6.1 states some basic properties of ΠφK. Since its proof is

canonical and is same as its convex counterpart in [36, Lemma 2.1-2.2], we omit it

here.

Lemma 6.1. Suppose φ ∈ C and K ∈ S̄no . Then, we have

1. If z ∈ Rn\{0}, then hΠφK(z) = λ0 if and only if

1

n|K|

∫
∂∗K

φ

(
z · νK(x)

λ0x · νK(x)

)
x · νK(x)dHn−1(x) = 1.

2. hΠφK is sublinear. Namely, it defines a convex body whose support function is

given by hΠφK.

The following lemma gives the explicit upper and lower bounds of ΠφK.

Lemma 6.2. Let φ ∈ C and K ∈ S̄no . Then

1

2ncφRK

≤ hΠφK(u) ≤ LK
cφ
, ∀u ∈ Sn−1.

Proof. Since T (K) is dense in Sn−1 and hΠφK is continuous, we may assume u ∈ T (K).

Suppose hΠφK(u) = λ0. Then

1

n

∫
∂∗K

φ

(
u · νK(x)

λ0x · νK(x)

)
x · νK(x)

|K|
dHn−1(x) = 1.

1. The lower bound. By (2.1), the definition of cφ, either φ(cφ) = 1 or φ(−cφ) = 1.

Without loss of generality, suppose φ(cφ) = 1. By the fact that φ is non-negative

and increasing on [0,∞), estimate (2.12), cone-volume formula (4.4) and Jensen’s

inequality, and finally (4.1), we have

φ(cφ) = 1 =
1

n

∫
∂∗K

φ

(
u · νK(x)

λ0x · νK(x)

)
x · νK(x)

|K|
dHn−1(x)

≥ 1

n

∫
∂∗K

φ

(
(u · νK(x))+

λ0x · νK(x)

)
x · νK(x)

|K|
dHn−1(x)

≥ φ

(
1

n

∫
∂∗K

(u · νK(x))+

λ0|K|
dHn−1(x)

)
≥ φ

(
1

2nλ0RK

)
.
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Since φ is monotone increasing on [0,+∞), we obtain 1/(2ncφRK) ≤ λ0.

2. The upper bound. By (2.12), we have∣∣∣ u · νK(x)

λ0x · νK(x)

∣∣∣ ≤ LK
λ0

.

It follows by the properties of φ and (4.4) that

1 =

∫
∂∗K

φ

(
u · νK(x)

λ0x · νK(x)

)
x · νK(x)

n|K|
dHn−1(x) ≤ max

{
φ

(
LK
λ0

)
, φ

(
−LK
λ0

)}
.

Since the even function t 7→ max{φ(t), φ(−t)} is monotone increasing on [0,∞),

we conclude λ0 ≤ LK/cφ.

The following lemma provides the weak continuity of the Orlicz projection operator

Π∗φ : S̄no → Kno .

Lemma 6.3. Let Ki, K, and BK be as in Theorem 5.1. Then, there exists a subse-

quence of ΠφKi, denoted by ΠφKij , such that ΠφKij converges to a convex body Q̄ in

Hausdorff metric. Moreover, Q̄ contains the origin, and satisfies

Q̄∗ ⊂ Π∗φBK . (6.1)

Proof. By Lemma 5.1, there is a constant L0 so that

LKi ≤ L0, ∀i.

It follows from this and Lemma 6.2 that {ΠφKi} is uniformly bounded, so that we can

apply Blaschke’s selection theorem. After passing to a subsequence, we assume that

ΠφKi converges to a convex body Q̄.

Recall the definition of the gauge function (2.6), which is locally Lipschitz on Rn.

When x 6= 0, we have

∇pKi(x) =
∇ρKi(x)

ρKi(x)2
= ∇ρKi

(
ρKi(x)x

)
.

Since ρKi(x)x always lies on ∂Ki, we have

|∇pKi(x)| = |∇ρKi
(
ρKi(x)x

)
| ≤ LKi ≤ L0.
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Let
◦
BR denote int(RB). Since ρKi → ρBK uniformly, there exists R0 > 0, such that

Ki ⊂
◦
BR0 for any i ≥ 0. Set

p̄Ki(x) = min{pKi(x), 1}.

Then p̄Ki is Lipschitz on Rn, and hence in the Sobolev space W1,q(
◦
BR0) for any q ≥ 1.

Moreover, since |∇p̄Ki | is uniformly bounded, by [1, Proposition 2.5 (b)], we have

p̄Ki → p̄BK weakly in W1,q(
◦
BR0).

Let u ∈ Sn−1, and let λ be an arbitrary real number satisfying λ < hΠφBK (u). Since φ

is a convex function, the integral∫
◦
BR0

φ
(u · ∇p̄Ki(x)

λ

)
dx

is lower semicontinuous with respect to weak convergence in W1,q(
◦
BR0) (see e.g., [8,

Theorem 1 in P.19]). That is to say,∫
◦
BR0

φ
(u · ∇p̄BK (x)

λ

)
dx ≤ lim inf

i→∞

∫
◦
BR0

φ
(u · ∇p̄Ki(x)

λ

)
dx. (6.2)

Since ∇pK(x) is 0-homogenous, by the cone-volume formula (4.4), we have∫
∂∗Ki

φ
( u · νKi(x)

λx · νKi(x)

)
x · νKi(x)dHn−1(x)

=n

∫
Ki

φ
(u · ∇pKi(x)

λ

)
dx,

=n

∫
◦
BR0

φ
(u · ∇p̄Ki(x)

λ

)
dx.

Combining this, (6.2), the fact that |BK | = |Ki| and λ < hΠφ(BK)(u), we have

1 <

∫
∂∗BK

φ
( u · νBK (x)

λx · νBK (x)

)x · νBK (x)

n|BK |
dHn−1(x) ≤ lim inf

i→∞

∫
∂∗Ki

φ
( u · νKi(x)

λx · νKi(x)

)x · νKi(x)

n|Ki|
dHn−1(x).

By the inequalities above, we can select a subsequence {Kij}, such that for sufficiently

large j, there is ∫
∂∗Kij

φ
( u · νKij (x)

λx · νKij (x)

)x · νKij (x)

n|Kij |
dHn−1(x) > 1.

Since limi ΠφKi = Q̄, we have hQ̄(u) = limj→∞ hΠφKij(u) ≥ λ. Since λ is an arbitrary

number satisfying λ < hΠφBK (u), we obtain hQ̄ ≥ hΠφBK . Hence Q̄∗ ⊂ Π∗φBK .

25



We now demonstrate the affine invariance of the polar of the Orlicz projection body.

Lemma 6.4. If K ∈ S̄no and A ∈ GL(n), then

Π∗φ(AK) = A(Π∗φK). (6.3)

Proof. Let x ∈ ∂K, and put x̄ = Ax. By the definition of gauge function, we have

pAK(x̄) = pK(x). Clearly pAK is also locally Lipschitz, and pAK is differentiable at x̄ if

and only if pK is differentiable at x. Thus

∇pAK(x̄) = ∇pAK(Ax) = A−t∇pK(x). (6.4)

By equations (1.3) and (4.5), then equation (6.4) and that |AK| = | detA||K|, we have

hΠφ(AK)(u) = inf

{
λ > 0 :

∫
AK

φ
(u · ∇pAK(x̄)

λ

)
dx̄ ≤ |AK|

}
= inf

{
λ > 0 :

∫
K

φ
((A−1u) · ∇pK(x)

λ

)
dx ≤ |K|

}
=hΠφK(A−1u) = hA−t(ΠφK)(u),

which implies ΠφAK = A−tΠφK. This together with (2.3) yields the desired result.

7 Proof of the Orlicz Petty projection inequality

for star bodies

For an open set Ω ⊂ Rn−1 and a function f : Ω → R whose gradient exists a.e.

x′ ∈ Ω, we shall use the symbol 〈f〉 : Ω→ R which is defined by

〈f〉 = f(x′)− x′ · ∇f(x′).

We shall often make use of the fact that 〈·〉 is a linear operator; i.e., for f1, f2 : Ω→ R
whose gradient exists in Ω, and α1, α2 ∈ R,

〈α1f1 + α2f2〉 = α1〈f1〉+ α2〈f2〉.

Let K ∈ S̄no and Hn−1(∂∗uK) = 0. Using the symbol 〈·〉, the area formula in Theorem

4.1 can be written as∫
∂K

φ

(
(y′, t) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x) =

∞∑
m=1

m∑
j=1

∫
Gm

φ

(
t− y′ · ∇gj(x′)
〈gj〉(x′)

)
〈gj〉(x′)dx′

+
∞∑
m=1

m∑
j=1

∫
Gm

φ

(
−t+ y′ · ∇fj(x′)
〈−fj〉(x′)

)
〈−fj〉(x′)dx′.

(7.1)
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By (3.6), the formula of SuK turns to∫
∂(SuK)

φ

(
(y′, t) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x)

=
∞∑
m=1

∫
Gm

φ

(
t−
∑m

j=1 y
′ · ∇

(gj−fj
2

)
(x′)∑m

j=1

〈gj−fj
2

〉
(x′)

)
m∑
j=1

〈gj
2
− fj

2

〉
(x′)dx′

+
∞∑
m=1

∫
Gm

φ

(
−t−

∑m
j=1 y

′ · ∇
(gj−fj

2

)
(x′)∑m

j=1

〈gj−fj
2

〉
(x′)

)
m∑
j=1

〈gj
2
− fj

2

〉
(x′)dx′. (7.2)

We now prove that the Steiner symmetrization decreases the volume of Orlicz pro-

jection body.

Theorem 7.1. Suppose φ ∈ C. If K ∈ S̄no and Hn−1(∂∗uK) = 0, then

SuΠ
∗
φK ⊂ Π∗φ(SuK). (7.3)

If φ ∈ Cs and Su(Π
∗
φK) = Π∗φ(SuK), then lu(x

′) ∩K is a line segment ∀x′ ∈ K ′, and

all the midpoints of lu(x
′) ∩K lie in a common hyperplane passing through the origin.

Proof. Assume hΠφK(y′, t) = 1 and hΠφK(y′,−s) = 1, with t 6= −s. By Lemma 6.1,

we have

1

n|K|

∫
∂∗K

φ

(
(y′, t) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x) = 1 (7.4)

and

1

n|K|

∫
∂∗K

φ

(
(y′,−s) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x) = 1. (7.5)

Now we invoke Lemma 2.3 to prove (7.3), and it suffices to show

hΠφ(SuK)

(
y′,

1

2
t+

1

2
s
)
≤ 1. (7.6)
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It follows from (7.2), the inequality (2.2), Jensen’s inequality, and (7.1) that∫
∂∗(SuK)

φ

(
(y′, t+s

2
) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x)

=
∞∑
m=1

∫
Gm

φ

 t+s
2
− y′ ·

∑m
j=1∇(

gj
2
− fj

2
)(x′)∑m

j=1

〈
gj
2
− fj

2

〉
(x′)

 m∑
j=1

〈
gj
2
− fj

2

〉
(x′)dx′

+
∞∑
m=1

∫
Gm

φ

− t+s
2
− y′ ·

∑m
j=1∇(

gj
2
− fj

2
)(x′)∑m

j=1

〈
gj
2
− fj

2

〉
(x′)

 m∑
j=1

〈
gj
2
− fj

2

〉
(x′)dx′

≤
∞∑
m=1

∫
Gm

φ

m · t+s2
− y′ ·

∑m
j=1∇(

gj
2
− fj

2
)(x′)∑m

j=1

〈
gj
2
− fj

2

〉
(x′)

 m∑
j=1

〈
gj
2
− fj

2

〉
(x′)dx′

+
∞∑
m=1

∫
Gm

φ

−m · t+s2
− y′ ·

∑m
j=1∇(

gj
2
− fj

2
)(x′)∑m

j=1

〈
gj
2
− fj

2

〉
(x′)

 m∑
j=1

〈
gj
2
− fj

2

〉
(x′)dx′

≤1

2

∞∑
m=1

m∑
j=1

(∫
Gm

φ

(
t− y′ · ∇gj(x′)
〈gj〉(x′)

)
〈gj〉(x′)dx′ +

∫
Gm

φ

(
−t+ y′ · ∇fj(x′)
〈−fj〉(x′)

)
〈−fj〉(x′)dx′

)

+
1

2

∞∑
m=1

m∑
j=1

(∫
Gm

φ

(
−s− y′ · ∇gj(x′)
〈gj〉(x′)

)
〈gj〉(x′)dx′ +

∫
Gm

φ

(
s+ y′ · ∇fj(x′)
〈−fj〉(x′)

)
〈−fj〉(x′)dx′

)
=

1

2

∫
∂∗K

φ

(
(y′, t) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x) +

1

2

∫
∂∗K

φ

(
(y′,−s) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x).

(7.7)

This, together with (7.4), (7.5) and the fact |SuK| = |K|, implies that

1

n|SK|

∫
∂∗(SK)

φ

(
(y′, 1

2
t+ 1

2
s) · ν(x)

x · ν(x)

)
x · ν(x)dHn−1(x) ≤ 1.

This and a glance at definition (1.3), gives (7.6), and thus (7.3) is proved.

Suppose that φ is strictly convex and Su(Π
∗
φK) = Π∗φ(SuK). Lemma 2.3 forces

hΠφ(SuK)

(
y′,

1

2
t+

1

2
s

)
= 1,

and equality holds in (7.7). The strict convexity of φ together with the inequality (2.2)

implies that the open sets Gm must be empty unless m = 1. Then, relintK ′ = G1, and

there are only two graph functions f1, g1. It also suggests that lu(x
′) ∩ K must be a

line segment, for each x′ ∈ K ′.
Moreover, since equality holds in the second inequality of (7.7), we have

t− y′ · ∇g1(x′)

〈g1〉(x′)
=
s+ y′ · ∇f1(x′)

〈−f1〉(x′)
and

−s− y′ · ∇g1(x′)

〈g1〉(x′)
=
−t+ y′ · ∇f1(x′)

〈−f1〉(x′)
(7.8)
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for all x′ ∈ G∗1. Let y′ = 0 and note that s and t cannot vanish at the same time. We

deduce that 〈g1〉(x′) = 〈−f1〉(x′). Namely,(
x′, g1 + f1

)
·
(
∇(g1 + f1)(x′),−1

)
= 0. (7.9)

The fact that 〈g1〉(x′) = 〈−f1〉(x′), together with (7.8) also shows that

y′ · ∇(g1 + f1)(x′) = t− s. (7.10)

Since y′ can be chosen in any direction in u⊥, ∇(g1 + f1)(x′) must be a constant vector

in u⊥, say v0 ∈ u⊥. Substituting this into (7.9) shows that the midpoints of lu(x
′)∩K

lie in a common hyperplane, for all x′ ∈ G∗1. Since K is a star body and G1 = relintK ′,

we complete the proof.

Proof of Theorem 1.1. By the monotonicity of the Orlicz projection operator (The-

orem 7.1), the convergence of Steiner symmetrizations (Theorem 5.1), and the weak

continuity of the Orlicz projection operator (Lemma 6.3), we have

|Π∗φK| ≤ |Q̄∗| ≤ |Π∗φBK |.

By the affine invariance of the polar Orlicz projection operator (Lemma 6.4), the volume

ratio |Π∗φK|/|K| is maximized when K is an ellipsoid centered at the origin.

If φ ∈ Cs and |Π∗φK|/|K| = |Π∗φBK |/|BK |, then SuΠ
∗
φK = Π∗φ(SuK), for any u ∈

T (K). By Theorem 7.1, lu(x
′) ∩ K is a line segment for every x′ ∈ K ′, and all

of the midpoints of lu(x
′) ∩ K lie in a common hyperplane that passes through the

origin. Since T (K) is dense in Sn−1, K must be an ellipsoid centered at the origin (see

e.g., [24, Theorem 5.4]) for the characterization of ellipsoid).

8 Appendix

We restate the [24, Lemma 5.8] and [24, Lemma 5.9] after a little modification. The

proof of them are completely same as [24], and we would like to refer the reader to the

the updated version “arXiv:2008.07026” for a detailed proof.

Lemma 8.1. Let (X,Σ, µ) be a measure space with µ(X) < ∞. Let Du ∈ Σ be a

measurable subset of X for every u ∈ Sn−1. If there exists a Borel set S ⊂ Sn−1

such that Hn−1(S) > 0 and µ(Du) > 0 for every u ∈ S, then there exist n linearly

independent vectors u1, u2, . . . , un ∈ S such that

µ

(
n⋂
i=1

Dui

)
> 0. (8.1)
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Lemma 8.2. Let Ω be a set of finite perimeter in Rn and let

Du = {x ∈ ∂∗Ω : u · vΩ(x) = 0}. (8.2)

Then there exists a set T1 ⊂ Sn−1 such that Hn−1(Sn−1 \ T1) = 0 and Hn−1(Du) = 0

for any u ∈ T1.
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