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Abstract. In this paper, we demonstrate the existence part of

the discrete Orlicz Minkowski problem, which is a non-trivial ex-

tension of the discrete Lp Minkowski problem for 0 < p < 1.

1. Introduction

One of the cornerstones of the classical Brunn-Minkowski theory is

the Minkowski problem. At the turn of the 19th into the 20th Centu-

ry, Minkowski proposed this problem and solved the discrete case. The

Minkowski problem was completely solved by Alexandrov [1], Fenchel

and Jessen [12]. Analytic versions and algorithmic issues of this prob-

lem are still subject of current research and highly relevant (see, e.g.,

Chou and Wang [10], Jerison [26], Klain [27], and references therein).

In the middle of the last century, Firey (see [38] for references) ex-

tended Minkowski addition to Lp Minkowski-Firey addtion. As a part

of the Lp Minkowski theorey, Lutwak [30] introduced the Lp Minkows-

ki problem. It asks for necessary and sufficient conditions on a Borel

measure µ on Sn−1 to be the Lp surface area measure of a convex body,

i.e., is there a convex body K such that

h1−pK dSK = dµ ?
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Here, hK is the support function of K and SK is the surface area mea-

sure of K. The solutions of the Lp Minkowski problem have important

applications to affine isoperimetric inequalities, see, e.g., Zhang [46],

Lutwak, Yang and Zhang [33], Haberl and Schuster [18–20].

The even Lp Minkowski problem for p > 1 but p 6= n was solved

in [30]. An equivalent volume-normalized version of the Lp Minkowksi

problem was proposed in [34], and the even case was also solved for p =

n. A solution to the Lp Minkowski problem for p > n was given

by Chou and Wang [11], in which they also solved the problem for

polytopes for all p > 1, while an alternate approach to this problem

was presented by Hug et al [25]. Zhu [47–49], deal with the existence

for the solution to the discrete Lp Minkowski problem for 0 ≤ p < 1 and

p = −n. Other studies with respect to the Lp Minkowski problem have

also been extensively studied (see, e.g., [5, 8, 9, 22, 35, 39–41, 43, 50]).

Quite recently, Huang, Lutwak, Yang and Zhang [24] proposed the

dual Minkowski problem and proved existence theorem. Since [24],

a number of works on the dual Minkowski problem have appeared.

Zhao [44], Böröczky, Henk and Pollehn [7] and Böröczky, Lutwak, Yang,

Zhang, and Zhao [6] combined completely solved existence part of the

even dual Minkowski problem when the index q ∈ (1, n). Zhao [45]

proved both the existence and the uniqueness of the solution to the

dual Minkowski problem when q < 0. Henk and Pollehn [21] showed

a necessary condition for the even dual Minkowski problem when q ≥
n+ 1.

The Orlicz Brunn-Minkowski theory originated from the work of Lut-

wak, Yang, and Zhang in 2010, see [36,37], and the 2010 work of Lud-

wig [28] and Ludwig and Reitzner [29]. For the development of the

Orlicz Brunn-Minkowski theory, see [14,15,17,28,42]. Haberl, Lutwak,

Yang and Zhang [17] first proposed the following Orlicz Minkowski

problem: Given a suitable continuous function ϕ : (0,+∞)→ (0,+∞)

and a Borel measure µ on Sn−1, is there a convex body K such that
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for some c > 0

cϕ(hK)dSK = dµ ?

Set ϕ(t) = t1−p (p 6= n), this problem reduces to the Lp Minkowski

problem.

The even Orlicz Minkowski problem was solved by Haberl, Lutwak,

Yang and Zhang in [17] under some suitable conditions on ϕ. One of

their results is:

Theorem 1.1. [17] Suppose ϕ : (0,∞) → (0,∞) is a continuous

function such that φ(t) =
∫ t
o

1
ϕ(s)

ds exists for every positive t and is

unbounded as t → ∞, and µ is an even finite Borel measure on Sn−1

that is not concentrated on any great subsphere of Sn−1, then there

exists an origin symmetric convex body K ⊂ Rn and c > 0 such

that cϕ(hK)dSK = dµ.

When ϕ(t) = t1−p, p > 0, we obtain the even Lp Minkowski problem

for p > 0.

Later, the existence of the general Orlicz Minkowski problem without

assuming that µ is an even measure was solved by Huang and He [23].

But besides the assumptions on ϕ in [17], they assume that ϕ(s) tends

to infinity as s → 0+. As we can see, the Lp Minkowski problem for

p > 1 is a special case of this result. However, the Lp Minkowski

problem for 0 < p < 1 is not contained in this result.

In this paper, we aim to introduce a new version of Orlicz Minkows-

ki problem for polytopes, which contains the discrete Lp Minkowski

problem for 0 < p < 1.

Our main result can be formulated as follows:

Theorem 1.2. Suppose ϕ : (0,∞) → (0,∞) is continuously dif-

ferentiable, strictly increasing and ϕ(s) tends to 0 as s → 0+ such

that φ(t) =
∫ t
o

1
ϕ(s)

ds exists for every positive t and unbounded as t →
∞. If µ =

∑N
i=1 αiδui, where δui is Kronecker delta, α1, . . . , αN >

0 and u1, . . . , uN ∈ Sn−1 are not contained in any closed hemisphere,
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then there exists a polytope P which contains the origin in its interior

and c > 0 such that

µ = cϕ(h(P, ·))S(P, ·). (1.1)

Let ϕ(s) = s1−p, 0 < p < 1, we get Zhu’s result in [47].

Corollary 1.3. Suppose vectors u1, . . . , uN ∈ Sn−1 are not contained in

any closed hemisphere, α1, . . . , αN > 0 and µ =
∑N

i=1 αiδui, where δui is

Kronecker delta. If 0 < p < 1, then there exists a polytope P which

contains the origin in its interior such that

µ = h(P, ·)1−pS(P, ·).

The work of Zhu [47] inspired us a lot. However, when it comes to the

Orlicz case, the functional ϕ may not be homogeneous, so it is difficult

to show that the map ξφ(Pr) has a right derivative at r = 0, which

is needed to use the Lagrange multiplier rule. Thus, we need many

new steps, for details, see section 4. This paper is organized as follows:

In section 2, we list some basic facts regarding convex bodies for quick

reference. In section 3, we give some properties about ΦP (ξ). In section

4, we prove the differentiability of ξφ(Pr). The proof of Theorem 1.2 is

presented in Section 5.

2. Preliminaries

In this section, we collect some terminologies and notations about

convex bodies. We recommend the books of Gardner [13], Gruber [16],

and Schneider [38] as excellent references on convex geometry.

For x, y ∈ Rn , let [x, y] = {(1 − λ)x + λy : 0 ≤ λ ≤ 1}, and let

(x, y) = {(1− λ)x+ λy : 0 < λ < 1} when x 6= y. We also denote their

inner product by x · y and the Euclidean norm of x by |x| =
√
x · x.

The unit sphere {x ∈ Rn : |x| = 1} is denoted by Sn−1. Let V stand for

n-dimensional Lebesgue measure, and |µ| = µ(Sn−1) for a finite Borel

measure µ on Sn−1.
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A convex body is a compact convex set in Rn with nonempty interior.

For a convex body K, the support function hK is defined by hK(u) =

h(K, u) = max{x · u : x ∈ K}. We also denote Hu,t = {x ∈ Rn :

x · u = t} and H−u,t = {x ∈ Rn : x · u ≤ t}. For u ∈ Sn−1, the support

hyperplane F (K, u) in direction u is defined by

F (K, u) = {x ∈ Rn : x · u = h(K, u)},

the half-space H−(K, u) in direction u is defined by

H−(K, u) = {x ∈ Rn : x · u ≤ h(K, u)}.

If the unit vectors u1, . . . , uN (N > n + 1) are not contained in any

closed hemisphere, we denote by P(u1, . . . , uN) a subset of polytopes,

which satisfies

P =
N⋂
k=1

H−(P, uk), ∀P ∈ P(u1, . . . , uN).

It is easy to see that if P ∈ P(u1, . . . , uN), then P has at most N

facets, and the outer unit normals of P are a subset of {u1, . . . , uN}.
Let PN(u1, . . . , uN) denote the subset of P(u1, . . . , uN) such that if

P ∈ PN(u1, . . . , uN), then P has exactly N facets.

A point z is said to be a vertex of a polytope P if it can not be written

in the form z = (1−λ)x+λy with x, y ∈ P, x 6= y, and λ ∈ (0, 1). The

set of vertices of P is denoted by vertP .

For a Borel set ω ⊂ Sn−1, the surface area measure SK(ω) of the

convex body K is the (n − 1)-dimensional Hausdorff measure of the

set of all boundary points of K for which there exists a normal vector

of K belonging to ω, i.e.,

SK(ω) =

∫
x∈ν−1

K (ω)

dHn−1(x),

where νK : ∂′K → Sn−1 is the Gauss map of K, defined on ∂′K, the

set of boundary points of K that have a unique outer unit normal, and

Hn−1 is (n − 1)-dimensional Hausdorff measure. Observe that for the
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surface area measure of cK we have

ScK = cn−1SK , c > 0. (2.1)

Lemma 2.1. Suppose ϕ : (0,∞)→ (0,∞) is differentiable, strictly in-

creasing and ϕ(s) tends to 0 as s→ 0+ such that φ(t) =
∫ t
o

1
ϕ(s)

ds exists

for every positive t. Let φ(0) = lim
t→0+

φ(t). Then

φ′(t) =
1

ϕ(t)
for t > 0, lim

t→0+

t

φ(t)− φ(0)
= 0 (2.2)

and φ is strictly concave on [0,∞).

Proof. The first equation of (2.2) is clear and the second follows from

L′hopital’s rule. Since ϕ : (0,∞) → (0,∞) is differentiable, strictly

increasing, we have

φ′′ = −ϕ
′

ϕ2
< 0. (2.3)

Thus φ is strictly concave on (0,∞). Then, for ∀x, y ∈ (0,∞),

φ((1− λ)x+ λy) > (1− λ)φ(x) + λφ(y), ∀λ ∈ (0, 1). (2.4)

Let x→ 0+, we have

φ(λy) ≥ (1− λ)φ(0) + λφ(y), ∀λ ∈ (0, 1). (2.5)

These two inequalities (2.4) and (2.5) imply that φ is concave on [0,∞).

We claim that φ is also strictly concave on [0,∞). If not, then there

exist λ′, x′ with 0 < λ′ < 1, x′ > 0 such that

φ(λ′x′) = (1− λ′)φ(0) + λ′φ(x′). (2.6)

Then for λ′ < µ < 1, by the concavity of φ, we have

φ(λ′x′) = φ(
µ− λ′

µ
· 0 +

λ′

µ
µx′) ≥ µ− λ′

µ
φ(0) +

λ′

µ
φ(µx′). (2.7)

Combining with (2.6), we have

φ(µx′) ≤ (1− µ)φ(0) + µφ(x′).

Note that φ(µx′) = φ((1− µ) · 0 + µx′) ≥ (1− µ)φ(0) + µφ(x′), thus,

φ(µx′) = (1− µ)φ(0) + µφ(x′). (2.8)
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From (2.6) and (2.8), it follows that

φ(µx′) =
1− µ
1− λ′

φ(λ′x′) +
µ− λ′

1− λ′
φ(x′),

which contradicts the fact that φ is strictly concave on (0,∞). There-

fore, φ is strictly concave on [0,∞). �

3. An extremal problem to the Orlicz Minkowski problem

Suppose that α1, . . . , αN ∈ R+, the unit vectors u1, . . . , uN (N ≥ n+

1) are not contained in any closed hemisphere and P ∈ P(u1, . . . , uN).

Now we define the function ΦP : P → R by

ΦP (ξ) =
N∑
k=1

αkφ (h(P, uk)− ξ · uk) , (3.1)

where φ is as described in Theorem 1.2 and φ(0) := lim
t→0+

φ(t).

In this section, we study the following extremal problem

sup{V (Q) : sup
ξ∈Q

ΦQ(ξ) = 1 and Q ∈ P(u1, . . . , uN)}. (3.2)

Next, we will prove that ΦP (ξ) is concave on P and that there exists a

unique ξφ(P ) ∈ Int(P ) such that

ΦP (ξφ(P )) = sup
ξ∈P

ΦP (ξ).

We want to prove that there exists a polytope with u1, . . . , uN as

its outer unit normals and this polytope is a solution of problem (3.2).

Now, we prove the concavity of ΦP (ξ).

Lemma 3.1. If α1, . . . , αN ∈ R+, the unit vectors u1, . . . , uN (N ≥
n+ 1) are not contained in any closed hemisphere, φ is strictly concave

on [0,∞) and P ∈ P(u1, . . . , uN), then ΦP (ξ) is strictly concave on P .
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Proof. Since φ is strictly concave on [0,∞). Then, for 0 < λ < 1 and

ξ1, ξ2 ∈ P ,

λΦP (ξ1) + (1− λ)ΦP (ξ2)

=
N∑
k=1

αk [λφ (h(P, uk)− ξ1 · uk) + (1− λ)φ (h(P, uk)− ξ2 · uk)]

≤
N∑
k=1

αkφ (h(P, uk)− (λξ1 + (1− λ)ξ2) · uk)

=ΦP (λξ1 + (1− λ)ξ2),

with equality if and only if ξ1 · uk = ξ2 · uk for all k = 1, . . . , N.

Since u1, . . . , uN are not concentrated on any closed hemisphere, Rn =

Span{u1, . . . , uN}. Thus, ξ1 = ξ2. Therefore, ΦP (ξ) is strictly concave

on P . �

Next we prove the existence and uniqueness of ξφ(P ).

Lemma 3.2. Suppose α1, . . . , αN ∈ R+, the unit vectors u1, . . . , uN (N ≥
n+1) are not concentrated on any closed hemisphere and P ∈ P(u1, . . . , uN).

If ϕ : (0,∞) → (0,∞) is differentiable, strictly increasing, ϕ(s) tends

to 0 as s→ 0+ such that φ(t) =
∫ t
o

1
ϕ(s)

ds exists for every positive t and

unbounded as t→∞ and φ(0) := lim
t→0+

φ(t), then there exists a unique

ξφ(P ) ∈ Int(P ) such that

ΦP (ξφ(P )) = max
ξ∈P

ΦP (ξ).

Proof. It follows from Lemma 2.1 and Lemma 3.1 that ΦP (ξ) is strictly

concave on P . Since P is a compact convex set, there exists a unique

ξφ(P ) ∈ P such that

ΦP (ξφ(P )) = max
ξ∈P

ΦP (ξ).

We next prove that ξφ(P ) ∈ Int(P ). Otherwise, suppose ξφ(P ) ∈ ∂P
with

h(P, uk)− ξφ(P ) · uk = 0
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for k ∈ {i1, . . . , is} and

h(P, uk)− ξφ(P ) · uk > 0

for k ∈ {1, . . . , N}\{i1, . . . , is}, where 1 ≤ i1 ≤ . . . ≤ is ≤ N and

1 ≤ s ≤ N − 1. Choose x0 ∈ Int(P ). Let

u0 =
x0 − ξφ(P )

|x0 − ξφ(P )|
and

[h(P, uk)− (ξφ(P ) + δu0) · uk]− [h(P, uk)− ξφ(P ) · uk] = ckδ, (3.3)

where ck = −u0 · uk. Since h(P, uk)− ξφ(P ) · uk = 0 for k ∈ {i1, . . . , is}
and x0 is an interior point of P , then ck = −u0 · uk > 0 for k ∈
{i1, ..., is}. Let

c0 = min {h(P, uk)− ξφ(P ) · uk : k ∈ {1, . . . , N}\{i1, . . . , is}} > 0,

and choose δ > 0 small enough so that ξφ(P ) + δu0 ∈ Int(P ) and

min{h(P, uk)− (ξφ(P ) + δu0) · uk : k ∈ {1, . . . , N}\{i1, . . . , is}} >
c0
2
.

Since φ is differentiable, strictly increasing and concave (Lemma 2.1),

for x0, x0 + ∆x ∈ ( c0
2
,∞), we have

|φ(x0 + ∆x)− φ(x0)| < φ′(
c0
2

)|∆x|.

From these two inequalities, h(P, uk) = ξφ(P ) · uk for k ∈ {i1, . . . , is},
ck > 0 for k ∈ {i1, ..., is} and equations (3.3), it follows that

Φp(ξφ(P ) + δu0)− Φp(ξφ(P ))

=
N∑
k=1

αk[φ(h(P, uk)− (ξφ(P ) + δu0) · uk)− φ(h(P, uk)− ξφ(P ) · uk)]

≥−
∑

k∈{1,...,N}\{i1,...,is}

|φ(h(P, uk)− (ξφ(P ) + δu0) · uk)

− φ(h(P, uk)− ξφ(P ) · uk)|+
∑

k∈{i1,...,is}

αk(φ(ckδ)− φ(0))

≥−
∑

k∈{1,...,N}\{i1,...,is}

αkφ
′(
c0
2

)|ckδ|+
∑

k∈{i1,...,is}

αk(φ(ckδ)− φ(0)).
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Note that limt→0+
t

φ(t)−φ(0) = 0 (Lemma 2.1), then there exists a small

enough δ0 > 0 such that ξφ(P ) + δ0u0 ∈ Int(P ) and

ΦP (ξφ(P ) + δ0u0) > ΦP (ξφ(P )),

which contradicts the definition of ξφ(P ). Therefore, the conclusion

follows. �

Note that, if Pi ∈ P(u1, . . . , uN) and Pi converges to a polytope P ,

then P ∈ P(u1, . . . , uN). In order to use approximation, we need the

following lemma.

Lemma 3.3. Suppose ϕ : (0,∞) → (0,∞) is differentiable, strictly

increasing and ϕ(s) tends to 0 as s→ 0+ such that φ(t) =
∫ t
o

1
ϕ(s)

ds ex-

ists for every positive t and unbounded as t→∞. If φ(0) = lim
t→0+

φ(t),

α1, . . . , αN ∈ R+, the unit vectors u1, . . . , uN (N ≥ n+ 1) are not con-

centrated on any closed hemisphere, Pi ∈ P(u1, . . . , uN) and Pi con-

verges to a polytope P , then limi→∞ ξφ(Pi) = ξφ(P ) and

lim
i→∞

ΦPi(ξφ(Pi)) = ΦP (ξφ(P )).

Proof. By Lemma 3.2, ξφ(Pi) exists. Since Pi → P and ξφ(Pi) ∈
Int(Pi), ξφ(Pi) is bounded. Suppose ξφ(Pi) does not converge to ξφ(P ),

then there exists a subsequence Pij of Pi such that Pij converges to P ,

ξφ(Pij) → ξ0 but ξ0 6= ξφ(P ). It follows from the continuity of φ that

ΦP (ξ) is continuous with respect to P and ξ. Then by ξ0 ∈ P , we have

lim
j→∞

ΦPij
(ξφ(Pij)) = ΦP (ξ0)

< ΦP (ξφ(P ))

= lim
j→∞

ΦPij
(ξφ(P )),

which contradicts the fact that

ΦPij
(ξφ(Pij)) ≥ ΦPij

(ξφ(P )).

Therefore, limi→∞ ξφ(Pi) = ξφ(P ). Thus,

lim
i→∞

ΦPi(ξφ(Pi)) = ΦP (ξφ(P )).
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�

For convex body K in Rn, we define

R(K) = max
x∈K
|x|.

The following lemma is needed to prove the boundness.

Lemma 3.4. Suppose φ : [0,∞) → [0,∞) is continuous, strictly in-

creasing and φ(t) tends to infinity as t→∞. If α1, . . . , αN ∈ R+, the

unit vectors u1, . . . , uN (N ≥ n+ 1) are not concentrated on any closed

hemisphere, Pk ∈ P(u1, . . . , uN), o ∈ Pk, and R(Pk) is not bounded,

then
N∑
i=1

αiφ(h(Pk, ui))

is not bounded.

Proof. By taking subsequences, we can assume

lim
k→∞

R(Pk) =∞. (3.4)

Let

h+(t) = max{0, t}, f(u) =
N∑
i=1

αiφ(h+(ui · u)),

where t ∈ R, u ∈ Sn−1.
Since u1, . . . , uN are not contained in any closed hemisphere, Rn =

Span{u1, . . . , uN}. Thus, for u ∈ Sn−1 there exists i ∈ {1, . . . , N} such

that h+(ui · u) > 0, then we have f(u) > 0 for all u ∈ Sn−1. Note

that max{h+(ui ·u) : i ∈ {1, . . . , N}} is a continuous function on Sn−1.

Thus, there exists a constant a0 > 0 such that

max {h+(ui · u) : i ∈ {1, . . . , N}} > a0, for all u ∈ Sn−1. (3.5)

Suppose
∑N

i=1 αiφ(h(Pk, ui)) is bounded, then there exists M ∈ R
such that

φ(h(Pk, ui)) < M, for all i ∈ {1, . . . , N}.
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Since φ is continuous, strictly increasing and φ(t) tends to infinity

as t→∞, there exists a unique t0 ∈ R+ such that φ(t0) = M . Together

with φ(h(Pk, ui)) < M , we have

t0 > h(Pk, ui), ∀i ∈ {1, . . . , N}. (3.6)

Choose vk ∈ Sn−1 such that R(Pk)vk ∈ Pk. Since o ∈ Pk,

h(Pk, ui)) ≥ h+(R(Pk)vk · ui) = R(PK)h(ui · vk).

Together with (3.6) and (3.5), we have

t0 > R(Pk) max
i
h(ui · vk) > R(Pk)a0,

which contradicts (3.4). Thus
∑N

i=1 αiφ(h(Pk, ui)) is unbounded. �

4. the differentiability of ξφ(Pr)

In fact, Lemma 3.4 guarantees that there exists a polytope P that

solves (3.2). See Lemma 4.9 for details. In this section, Let δkm be Kro-

necker delta. This means if k = m, then δkm = 1, otherwise, δkm = 0 . We

want to prove that P has exactly N faces. If P ∈ PN (u1, . . . , uN), then

the differentiability of ξφ(Pr) is easy. See the following two lemmas.

Lemma 4.1. Suppose the unit vectors u1, . . . , uN (N ≥ n+ 1) are not

concentrated on any closed hemisphere. Let P ∈ PN (u1, . . . , uN) and

Pr =
N⋂
k=1

{x : x · uk ≤ h(P, uk)− rδkm},

where m ∈ {1, 2, . . . , N}. Then there exists a number r0 > 0 such that

h(Pr, uk) = h(P, uk)− rδkm for every |r| < r0.

Proof. Since P ∈ PN (u1, . . . , uN), by Lemma 2.4.13 in [38], one can

choose r0 > 0, such that Pr has exactly N facets for |r| < r0, which

implies h(Pr, uk) = h(P, uk)− rδkm. �

Lemma 4.2. Suppose ϕ : (0,∞) → (0,∞) is continuously differen-

tiable, strictly increasing and ϕ(s) tends to 0 as s→ 0+ such that φ(t) =∫ t
o

1
ϕ(s)

ds exists for every positive t. If φ(0) = lim
t→0+

φ(t), α1, . . . , αN ∈
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R+, the unit vectors u1, . . . , uN (N ≥ n + 1) are not concentrated on

any closed hemisphere, P ∈ PN(u1, . . . , uN) and |r| small enough such

that

Pr =
N⋂
k=1

{x : x · uk ≤ h(P, uk)− rδkm} ∈ PN(u1, . . . , uN),

where m ∈ {1, 2, . . . , N}. Then there exists a number r0 > 0 such

that ξ(r) = ξφ(Pr) is continuously differentiable with respect to r in

(−r0, r0).

Proof. Let ξ(r) = ξφ(Pr) and

Φ(r) = max
ξ∈Pr

N∑
k=1

αkφ (h(Pr, uk)− ξ · uk)

=
N∑
k=1

αkφ (h(Pr, uk)− ξ(r) · uk) .

From this and the fact ξ(r) is an interior point of Pr, we have

N∑
k=1

αkφ
′ (h(Pr, uk)− ξ(r) · uk)uk,i = 0, (4.1)

for i = 1, . . . , n, where uk = (uk,1, . . . , uk,n)T .

Next, we use the inverse function theorem to prove the conclusion.

Let ξ0 = ξ(0) and

Fi(r, ξ1, . . . , ξn) =
N∑
k=1

αkφ
′ (h(Pr, uk)− ξ · uk)uk,i,

where i ∈ {1, . . . , n} and ξ = (ξ1, . . . , ξn). Since P ∈ PN(u1, . . . , uN),

by Lemma 4.1, we have h(Pr, uk) = h(P, uk)− rδkm. Then,

∂Fi
∂r

= −αmφ′′ (h(P, um)− r − ξ · um)um,i and

∂Fi
∂ξj

= −
N∑
k=1

αkφ
′′ (h(Pr, uk)− ξ · uk)uk,iuk,j

are obviously continuous.
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Let r = 0, then, the Jacobian matrix of F := (F1, . . . , FN) at ξ0

equals (
∂F

∂ξj

∣∣∣∣
ξ0

)
n×n

= −
N∑
k=1

αkφ
′′ (h(P, uk)− ξ0 · uk)uk · uTk ,

where uku
T
k is an n× n matrix.

Since u1, . . . , uN are not contained in any closed hemisphere, Rn =

Span{u1, . . . , uN}. Thus, for any x ∈ Rn with x 6= 0, there exists a

uim ∈ {u1, . . . , uN} such that uim · x 6= 0. Together with the fact that

φ is twice differentiable and strictly concave, we have

xT ·

(
−

N∑
k=1

αkφ
′′ (h(P, uk)− ξ0 · uk)uk · uTk

)
· x

=−
N∑
k=1

αkφ
′′ (h(P, uk)− ξ0 · uk) (x · uk)2

≥− αimφ′′ (h(P, uim)− ξ0 · uk) (x · uim)2 > 0.

Thus, ( ∂F
∂ξj

∣∣∣
(0,ξ0)

) is positive definite. From this, equation (4.1), the

inverse function theorem and the fact that Fi has continuous partial

derivative for ξ and r, the conclusion follows. �

Remark 4.1. For t > 0, by a similar method in Lemma 4.2, we have

ξφ(tP ) is continuously differentiable in a small neighborhood of t. Thus,

ξφ(tP ) is continuous for every t > 0. Therefore, ΦtP (ξφ(tP )) is contin-

uous for t > 0.

In order to prove that every polytope which solves (3.2) has ex-

actly N faces, we need one-sided differentiability of ξφ(Pr) for P ∈
P(u1, . . . , uN). First, we study the property of h(Pr, uk), for which the

following three lemmas are prepared.

Lemma 4.3. Let P be a polytope, then for every u ∈ Sn−1, F (P, u)

is the convex hull of the set vertP ∩ F (P, u), where vertP denotes the

vertices of P .
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Proof. If y ∈ F (P, u), then it can be expressed by

y =
m∑
i=1

aiyi, where yi ∈ vertP,

where 0 < ai ≤ 1 and
∑
ai = 1.

Note that y ·u = h(P, u) and yi ·u ≤ h(P, u). We have yi ·u = h(P, u)

for 1 ≤ i ≤ m. Thus, the conclusion follows. �

Lemma 4.4. Let P be a polytope, u ∈ Sn−1. Then there exists a real

number r′ > 0 such that

P ∩Hu,h(P,u)−r ⊂ conv{F (P, u) ∪ (P ∩Hu,h(P,u)−r′)},∀r ∈ (0, r′).

Proof. We can choose r′ > 0 small enough such that

z · u < h(P, u)− r′, ∀z ∈ vertP/F (P, u).

Let 0 < r < r′ and x ∈ P ∩ Hu,h(P,u)−r, then x has the following

representation

x =

p∑
i=1

aiyi +

q∑
j=1

bjzj,

p∑
i=1

ai +

q∑
j=1

bj = 1,

where 0 < ai, bj < 1, p, q ∈ N, yi ∈ F (P, u), zj ∈ vertP/F (P, u) and

zj · u < h(P, u)− r′.
We may write

x = λ

p∑
i=1

ai
λ
yi + (1− λ)

q∑
j=1

bj
1− λ

zj, λ :=

p∑
i=1

ai.

Note that(
p∑
i=1

ai
λ
yi

)
· u = h(P, u),

(
q∑
j=1

bj
1− λ

zj

)
· u < h(P, u)− r′.

Thus, we can choose a point

z ∈

(
p∑
i=1

ai
λ
yi,

q∑
j=1

bj
1− λ

zj

)
⊂ P

such that

z · u = h(P, u)− r′.
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Combining with x ∈ P ∩Hu,h(P,u)−r, we have x ∈
[∑p

i=1
ai
λ
yi, z

]
, which

is equivalent to the assertion of the lemma. �

Lemma 4.5. Suppose the unit vectors u1, . . . , uN (N ≥ n+ 1) are not

concentrated on any closed hemisphere. Let P ∈ P(u1, . . . , uN), r′ > 0

and

Pr =
N⋂
k=1

{
x : x · uk ≤ h(P, um)− rδkm

}
such that h(Pr, um) = h(P, um) − r for 0 ≤ r ≤ r′, where m ∈
{1, 2, . . . , N}. Then there exists a number rm with 0 < rm < r′ such

that

i) vertPr ∩ F (Pr, um) ⊂ {(1 − λ)y + λz : y ∈ vertP ∩ F (P, um), z ∈
vertPrm ∩ F (Prm , um)}, where r ∈ (0, rm) and λ = r

rm
.

ii) F (Pr, um) = {(1− λ)y + λz : y ∈ vertP ∩ F (P, um), z ∈ vertPrm ∩
F (Prm , um)}, where r ∈ (0, rm) and λ = r

rm
.

Proof. Since h(Pr, um) = h(P, um)−r for 0 ≤ r ≤ r′, then F (Pr, um) =

P ∩Hum,h(P,um)−r for 0 ≤ r ≤ r′. Thus, by Lemma 4.4 , there exists a

number rm with 0 < rm < r′ such that

F (Pr, um) ⊂ conv{F (P, um) ∪ (F (Prm , um))},∀r ∈ (0, rm). (4.2)

For i), let x ∈ vertPr ∩ F (Pr, um), by (4.2) and Lemma 4.3, it can

be expressed as

x =

p∑
i=1

biyi +

q∑
j=1

cjzj,

where p, q ∈ N, 0 < bi, cj < 1,
∑
bi = 1 − λ,

∑
cj = λ, λ = r

rm
and

yi ∈ vertP ∩ F (P, um), zj ∈ vertPrm ∩ F (Prm , um). If p = q = 1, the

assertion is clear. Otherwise, we can rewrite x as

x =

p∑
i=1

bi
1− λ

(1− λ)yi +

q∑
j=1

cj
λ
λzj

=
∑
i,j

bicj
(1− λ)λ

((1− λ)yi + λzj),
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where
∑

i,j
bicj

(1−λ)λ = 1 . This contradicts the fact x ∈ vertPr, since

(1− λ)yi + λzj ∈ F (Pr, um) ⊂ Pr.

The assertion ii) follows from i), Lemma 4.3 and ((1−λ)y+λz)·um =

h(P, um)− r,∀y ∈ vertP ∩F (P, um),∀z ∈ vertPrm ∩F (Prm , um), where

λ = r
rm

.

�

Now, we prove the property of h(Pr, uk) for P ∈ P(u1, . . . , uN).

Lemma 4.6. Suppose the unit vectors u1, . . . , uN (N ≥ n+ 1) are not

concentrated on any closed hemisphere. Let P ∈ P(u1, . . . , uN) and

Pr =
N⋂
k=1

{x : x · uk ≤ h(P, uk)− rδkm},

where m ∈ {1, 2, . . . , N}. Then there exists a number r0 > 0 such that

for 0 ≤ r ≤ r0,

h(Pr, uk) =

{
h(P, uk)− r, if k = m

h(P, uk)− akr, if k 6= m

where ak is a constant with ak ≥ 0.

Proof. We first prove h(Pr, um) = h(P, um)− r for small enough r. Let

x ∈ vertP ∩ F (P, um). Suppose that

h(P, uk) = x · uk

for k ∈ {m, i1, . . . , is} and

h(P, uk) > x · uk (4.3)

for k ∈ {1, . . . , N}\{m, i1, . . . , is}, where 1 ≤ i1 ≤ . . . ≤ is ≤ N and

1 ≤ s ≤ N − 1.

Note that the set
{
uk : k ∈ {m, i1, i2 . . . , is}

}
is contained in an

open hemisphere. Thus, we can choose a unit vector u0 such that

u0 · uk > 0, ∀k ∈ {m, i1, i2 . . . , is}. (4.4)
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By (4.3), there exists a number r′ > 0 such that

h(P, uk) > (x− r

u0 · um
u0) · uk (4.5)

for ∀0 ≤ r ≤ r′ and ∀k ∈ {1, . . . , N}\{m, i1, . . . , is}. It follows from

(4.4) and (4.5) that

(x− r

u0 · um
u0) · uk ≤ h(P, uk)− rδkm,∀k ∈ {1, . . . , N}.

Hence

x− r

u0 · um
u0 ∈ Pr and (x− r

u0 · um
u0) · um = h(P, um)− r.

This implies

h(Pr, um) = h(P, um)− r for ∀0 ≤ r ≤ r′. (4.6)

Now, we turn to deal with the case k 6= m. If F (P, uk) 6⊂ F (P, um),

then there exists xk ∈ F (P, uk) such that

xk · uk = h(P, uk) but xk · um < h(P, um).

Then there exists a number rk such that xk · um < h(P, um) − r for

r < rk. This implies xk ∈ Pr for r < rk and

h(Pr, uk) = xk · uk = h(P, uk). (4.7)

If F (P, uk) ⊂ F (P, um), we claim that F (Pr, uk) ⊂ F (Pr, um) for

small enough r. In fact, let x ∈ Pr \ F (Pr, um). By (4.6), we have

h(P, um)− r = h(Pr, um) > x · um,

which implies x /∈ F (P, um). Thus, x /∈ F (P, uk), that is, x · uk <

h(P, uk).

Let y ∈ F (P, uk) ⊂ F (P, um), then

y · um − r > x · um, and y · uk > x · uk.

Then, there exists a point zr ∈ (x, y), such that

y · um − r > zr · um, and zr · uk > x · uk.

Thus, zr ∈ Pr and h(Pr, uk) ≥ zr·uk > x·uk. This implies x /∈ F (Pr, uk),

and hence the claim is clear.
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Using the claim, and Lemma 4.5 with (4.6), we can choose an 0 <

r0 < r′ such that

F (Pr, um) = {(1− λ)y + λz : y ∈ vertP ∩ F (P, um),

z ∈ vertPr0 ∩ F (Pr0 , um)},
(4.8)

and

F (Pr, uk) ⊂ F (Pr, um) if F (P, uk) ⊂ F (P, um) (4.9)

where r ∈ (0, r0) and λ = r
r0

.

For any r ∈ (0, r0), by (4.9), there exists xk ∈ vertPr∩F (Pr, um) such

that h(Pr, uk) = xk·uk. By the definition of support function, h(Pr, uk) =

sup{x · uk : x ∈ F (Pr, um). By (4.8), we have h(Pr, uk) = {((1− λ)y +

λz) · uk : y ∈ vertP ∩ F (P, um), z ∈ vertPr0 ∩ F (Pr0 , um)}.
Together with F (P, uk) ⊂ F (P, um) and F (Pr0 , uk) ⊂ F (Pr0 , um), it

follows that

h(Pr, uk) = (1− λ)h(P, uk) + λh(Pr0 , uk),

which is equivalent to

h(Pr, uk) = h(P, uk)− akr, (4.10)

where ak =
h(P,uk)−h(Pr0 ,uk)

r0
≥ 0.

The conclusion follows from (4.6), (4.7) and (4.10). �

With tackle in hand, now, we aim to prove that ξφ(Pr) has one-sided

derivative at 0 for P ∈ P(u1, . . . , uN).

Lemma 4.7. Suppose ϕ : (0,∞) → (0,∞) is continuously differen-

tiable, strictly increasing and ϕ(s) tends to 0 as s→ 0+ such that φ(t) =∫ t
o

1
ϕ(s)

ds exists for every positive t. Assume that φ(0) = lim
t→0+

φ(t),

α1, . . . , αN ∈ R+, the unit vectors u1, . . . , uN (N ≥ n + 1) are not

concentrated on any closed hemisphere, P ∈ P(u1, . . . , uN) and r ≥ 0

small enough such that

Pr =
N⋂
k=1

{x : x · uk ≤ h(P, uk)− rδkm} ∈ P(u1, . . . , uN),
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where m ∈ {1, 2, . . . , N}. If the continuous function λ : [0,∞) →
(0,∞) is continuously differentiable on (0,∞) and lim

r→0
λ′(r) exists, then

ξφ(λ(r)Pr) has right derivative at 0.

Proof. Let F = (F1, . . . , Fn) and

Fi(r, ξ1, . . . , ξn) =
N∑
k=1

αkφ
′ (h(λ(r)Pr, uk)− ξ · uk)uk,i, (4.11)

where i ∈ {1, . . . , n} and ξ = (ξ1, . . . , ξn). Since P ∈ P(u1, . . . , uN), by

Lemma 4.6, for small enough r ≥ 0, we have

h(λ(r)Pr, uk) =

{
λ(r)h(P, uk)− λ(r)r, if k = m

λ(r)h(P, uk)− akλ(r)r, if k 6= m
(4.12)

where ak is a constant with ak ≥ 0.

By a similar method in Lemma 4.2 and the inverse function theorem,

ξ(r) := ξφ(λ(r)Pr) is continuously differentiable for every r > 0 and
dξ1
dr
dξ2
dr
...
dξn
dr

 =


∂F1

∂ξ1

∂F1

∂ξ2
· · · ∂F1

∂ξn
∂F2

∂ξ1

∂F2

∂ξ2
· · · ∂F2

∂ξn
...

∂Fn
∂ξ1

∂Fn
∂ξ2
· · · ∂Fn

∂ξn


−1

∂F1

∂r
∂F2

∂r
...

∂Fn
∂r

 .

Letting am = 1, then by (4.11) and (4.12), we have

∂Fi
∂ξj

=−
N∑
k=1

αkφ
′′ (h(λ(r)Pr, uk)− ξ · uk)uk,iuk,j and

∂Fi
∂r

=
N∑
k=1

αkφ
′′ (λ(r)h(P, uk)− akλ(r)r − ξ · uk)

· (λ′(r)h(P, uk)− akλ′(r)r − akλ(r))uk,i

By a similar proof in Lemma 4.2, the matrix (∂Fi
∂ξj

) is positive definite.

Thus, limr→0+ ξ
′(r) exists.

It follows from the Lagrange mean value theorem that for every r > 0

and 1 ≤ i ≤ n, there exists a εi(r) with 0 < εi(r) < r such that

ξi(r)− ξi(0)

r
= ξ′i(εi(r)).
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Let r → 0+, then the conclusion follows. �

Now, we turn to prove that there exists a polytope with u1, . . . , uN

as its outer unit normals and this polytope is a solution of problem

(3.2). Before this, we need the following lemma.

Lemma 4.8. [47, Lemma 3.5] If P is a polytope in Rn and v0 ∈ Sn−1

with Vn−1(F (P, v0)) = 0, then there exists a δ0 > 0 such that for 0 ≤
δ < δ0,

V (P ∩ {x : x · v0 ≥ h(P, v0)− δ}) = cnδ
n + . . .+ c2δ

2,

where cn, . . . , c2 are constants that depend on P and v0.

Next, we prove the existence of a solution in (3.2).

Lemma 4.9. Suppose ϕ : (0,∞) → (0,∞) is continuously differen-

tiable, strictly increasing and ϕ(s) tends to 0 as s→ 0+ such that φ(t) =∫ t
o

1
ϕ(s)

ds exists for every positive t and unbounded as t→∞. If φ(0) =

lim
t→0+

φ(t), α1, . . . , αN ∈ R+, the unit vectors u1, . . . , uN (N ≥ n + 1)

are not concentrated on any closed hemisphere, then there exists a

P ∈ PN(u1, . . . , uN) such that ξφ(P ) = o and

V (P ) = sup{V (Q) : max
ξ∈Q

ΦQ(ξ) = 1 and Q ∈ P(u1, . . . , uN)}.

Proof. Note that, for P,Q ∈ P(u1, . . . , uN), if Q is a translate of P ,

then

ΦP (ξφ(P )) = ΦQ(ξφ(Q)).

Thus, we can choose a sequence Pi ∈ P(u1, . . . , uN) with ξφ(Pi) = o

such that V (Pi) converges to

sup{V (Q) : max
ξ∈Q

ΦQ(ξ) = 1 and Q ∈ P(u1, . . . , uN)}.

We claim that Pi is bounded. Otherwise, from Lemma 3.4, ΦPi(ξφ(Pi))

converges to +∞. This contradicts ΦPi(ξφ(Pi)) = 1. Therefore, Pi is

bounded.
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From Lemma 3.3 and the Blaschke selection theorem, there exists

a subsequence of Pi that converges to a polytope P such that P ∈
P (u1, . . . , uN), ξφ(P ) = o and

V (P ) = sup{V (Q) : max
ξ∈Q

ΦQ(ξ) = 1 and Q ∈ P(u1, . . . , uN)}. (4.13)

We next prove that F (P, ui) are facets for all i = 1, . . . , N.Otherwise,

there exists a i0 ∈ {1, . . . , N} such that F (P, ui0) is not a facet of P.

Choose δ ≥ 0 small enough so that the polytope

Pδ = P
⋂
{x : x · ui0 ≤ h(P, ui0)− δ} ∈ P(u1, . . . , uN)

and (by Lemma 4.8)

V (Pδ) = V (P )− (cnδ
n + . . .+ c2δ

2),

where cn, . . . , c2 are constants that depend on P and direction ui0 . By

Lemma 4.6, we can assume δ ≥ 0 is small enough so that

h(Pδ, uk) = h(P, uk)− akδ, (4.14)

where ak is a constant with ak ≥ 0 and ai0 = 1.

From Lemma 3.3, for any δi → 0, it is always true that ξφ(Pδi)→ o.

We have

lim
δ→0

ξφ(Pδ) = o.

Let

λ(δ) =

(
V (Pδ)

V (P )

)− 1
n

=

(
1− (cnδ

n + . . .+ c2δ
2)

V (P )

)− 1
n

.

then we have V (λ(δ)Pδ) = V (P ) and λ′(0) = 0.

Let ξ(δ) = ξφ(λ(δ)Pδ) and

Φ(δ) = max
ξ∈λ(δ)Pδ

N∑
k=1

αkφ (h(λ(δ)Pδ, uk)− ξ · uk)

=
N∑
k=1

αkφ (h(λ(δ)Pδ, uk)− ξ(δ) · uk) .

(4.15)
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From this and the fact ξ(δ) is an interior point of λ(δ)Pδ, we get

N∑
k=1

αkφ
′ (h(P, uk))uk = 0. (4.16)

It follows from Lemma 4.7 that ξφ(λ(δ)Pδ) has right derivative at 0.

Together with (4.14), (4.15), (4.16), λ′(0) = 0 and the definition of φ ,

we have the right derivative

d

dδ

∣∣∣
δ=0+

Φ(δ) =−
N∑
k=1

αkakφ
′ (h(P, ui0)) +

N∑
k=1

αkφ
′(h(P, uk)) (ξ′r(0) · uk)

=−
N∑
k=1

αkakφ
′ (h(P, ui0)) + ξ′r(0) ·

N∑
k=1

αkφ
′(h(P, uk))uk

=−
N∑
k=1

αkakφ
′ (h(P, ui0)) < 0.

Note that o = ξφ(P ) ∈ IntP , there exists a δ0 > 0 such that Pδ0 ∈
P(u1, . . . , uN), o ∈ Pδ0 and

Φλ0Pδ0
(ξφ(λ0Pδ0)) < ΦP (ξφ(P )) = 1,

where λ0 =
(
V (Pδ0 )

V (P )

)− 1
n
. Let P0 := λ0Pδ0 , then P0 ∈ P (u1, . . . , uN),

o ∈ P0, V (P0) = V (P ), and

sup
ξ∈P0

ΦP0(ξ) < 1.

Then by Lemma 3.4 and Remark 4.1, there exists a real number β > 1

such that

sup
ξ∈βP0

ΦβP0(ξ) = 1.

But V (βP0) > V (P0) = V (P ), which contradicts equation (4.13).

Therefore, P ∈ PN(u1, . . . , uN). �

5. The Orlicz Minkowski problem for polytopes

This section is devoted to the proof of our main theorem by using

the Lagrange multiplier rule. In the following, we denote by RN
+ the
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set of all x = (x1, . . . , xN) ∈ RN with positive components. To use the

Lagrange multiplier rule, we need the following lemma.

Lemma 5.1. [25, Lemma 3.2] Let u1, . . . , uN ∈ Sn−1 be pairwise dis-

tinct vectors which are not contained in any closed hemisphere. For x ∈
RN

+ , let P (x) =
⋂N
i=1H

−
ui,xi

. Then V (P (x)) is continuously differen-

tiable and ∂iV (P (x)) = S(P (x), {ui}) for i = 1, . . . , N .

Now, we turn to prove Theorem 1.2.

Proof. Let P (x) =
⋂N
i=1H

−
ui,xi

, where x ∈ RN
+ , such that

max
ξ∈P (x)

ΦP (x)(ξ) = 1.

Then (3.2) becomes

sup{V (P (x)) : ΦP (x)(ξφ(P (x)) = 1}.

From this restriction condition and the fact ξφ(P (x)) is an interior point

of P (x), we have

N∑
k=1

αkφ
′ (h(P (x), uk)− ξφ(P (x)) · uk)uk = o. (5.1)

From Lemma 4.9, there exists a polytope P ∈ PN(u1, · · · , uN) with

ξφ(P ) = o such that

V (P ) = sup{V (Q) : max
ξ∈Q

ΦQ(ξ) = 1 : Q ∈ P(u1, . . . , uN)}.

Let z = (h(P, u1), h(P, u2), . . . , h(P, uN)) = (z1, . . . , zN), then

ΦP (z)(ξφ(P (z))) = 1,

V (P (z)) = sup{V (P (x)) : ΦP (x)(ξφ(P (x))) = 1},

and (5.1) becomes
N∑
k=1

αkφ
′ (zk)uk = o. (5.2)

Since P ∈ PN(u1, · · · , uN), by Lemma 2.4.13 in [38] and Lemma

4.2, we can choose a small neighborhood D(z) of z, such that ∀x ∈
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D(z), h(P (x), ui) = xi and the partial differential ∂iξφ(P (x)) exist-

s, where i ∈ {1, . . . , N}.
By the Lagrange multiplier rule there is some λ ∈ R such that

∇V (P (z)) = λ∇

(
m∑
k=1

αkφ(zk − ξφ(P (z)) · uk)

)
,

where V (P (z)) is differentiable by Lemma 5.1, φ′(zi) exists since zi >

0 for all i = 1, . . . ,m. Therefore, by (5.2)

Si :=S(P (z), ui)

=λαiφ
′(zi)− λ

N∑
k=1

αkφ
′(zk)∂iξφ(P (z)) · uk

=λαiφ
′(zi)− λ∂iξφ(P (z)) ·

N∑
k=1

αkφ
′(zk)uk

=λαiφ
′(zi),

where i ∈ {1, . . . , N}.
Then, we have

nV (P (z)) =
N∑
i=1

Sizi = λ
N∑
i=1

αiφ
′(zi)zi.

Therefore, for i = 1, . . . , N ,

S(P (z), ui) = Si =
1

c
αiφ

′(zi),

where c = 1
nV (P (z))

∑N
i=1 αiφ

′(zi))zi. Indeed, from the definition of φ, it

follows that

µ =
N∑
i=1

αiδui = cϕ(h(P, ·))S(P, ·).

�

Corollary 1.3 follows from this theorem and (2.1).
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[5] K. Böröczky, P. Hegedűs, and G. Zhu, On the discrete logarithmic Minkowski

problem. Int. Math. Res. Not. 6 (2016), 1807-1838.
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