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Abstract. The Orlicz Brunn-Minkowski theory originated with

the work of Lutwak, Yang, and Zhang in 2010. In this paper, we

first introduce the Orlicz addition of convex bodies containing the

origin in their interiors, and then extend the Lp Brunn-Minkowski

inequality to the Orlicz Brunn-Minkowski inequality. Furthermore,

we extend the Lp Minkowski mixed volume inequality to the Or-

licz mixed volume inequality by using the Orlicz Brunn-Minkowski

inequality.

1. Introduction

The classical Brunn-Minkowski inequality was inspired by questions

around the isoperimetric problem. Many other consequences in convex

geometry make it a cornerstone of the Brunn-Minkowski theory, which

provides a beautiful and powerful apparatus for conquering all sorts

of geometrical problems involving metric quantities such as volume,

surface area, and mean width.

The classical Brunn-Minkowski inequality (see [13]) states that for

convex bodies K,L in Euclidean n-space Rn, the volume of the bodies

and of their Minkowski sum K + L = {x + y : x ∈ Kand y ∈ L} are

related by

V (K + L)
1
n ≥ V (K)

1
n + V (L)

1
n , (1.1)
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with equality if and only if K and L are homothetic.

In his survey, Gardner [13] summarized the history of the Brunn-

Minkowski inequality and some applications in other fields such as:

probability and statistics, information theory, physics, elliptic partial

differential equations, combinatorics, interacting gases, shapes of crys-

tals and algebraic geometry.

In the early 1960s, Firey [12] defined for each p ≥ 1, what have be-

come known as Minkowski-Firey Lp-additions (or simply Lp-additions)

of convex bodies. For the Lp-additions, Firey [12] also established the

Lp Brunn-Minkowski inequality (an inequality that is also known as the

Brunn-Minkowski-Firey inequality, see [35]). If p > 1, and K,L ⊂ Rn

are convex bodies containing the origin in their interiors, then

V (K +p L)
p
n ≥ V (K)

p
n + V (L)

p
n , (1.2)

with equality if and only if K and L are dilates.

The mixed volume V1(K,L) of convex bodies K,L is defined by

V1(K,L) :=
1

n
lim
ϵ→0+

V (K + ϵL)− V (K)

ϵ
=

1

n

∫
Sn−1

hL(u)dSK(u),

(1.3)

where SK(·) is the surface area measure of K.

The Minkowski mixed volume inequality for convex bodies K,L

states that

V1(K,L) ≥ V (K)
n−1
n V (L)

1
n , (1.4)

with equality if and only if K and L are homothetic.

For p > 1, the Lp mixed volume of convex bodies K,L containing

the origin in their interiors is defined by Lutwak [35] as

Vp(K,L) :=
p

n
lim
ϵ→0+

V (K +p ϵ · L)− V (K)

ϵ
.

Lutwak [35] showed that the Lp mixed volume has the following integral

representation:

Vp(K,L) =
1

n

∫
Sn−1

( hL(u)

hK(u)

)p

hK(u)dSK(u). (1.5)
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Lutwak’s Lp Minkowski mixed volume inequality [35] states

Vp(K,L) ≥ V (K)
n−p
n V (L)

p
n , (1.6)

with equality if and only if K and L are dilates.

In the mid 1990s, it was shown in [35] and [36] that a study of

the volume of Minkowski-Firey Lp-additions leads to an Lp Brunn-

Minkowski theory. This theory has expanded rapidly (see, e.g., [1,2,4–

10,17–19,21–23,27,29–32,34–45,48–51,53–55,58]).

The Orlicz Brunn-Minkowski theory originated with the work of

Lutwak, Yang, and Zhang in 2010. Precisely, Lutwak, Yang, and

Zhang [46, 47] introduced Orlicz projection bodies and Orlicz centroid

bodies, and they successively established the fundamental affine in-

equalities for these bodies. Haberl, Lutwak, Yang, and Zhang [20]

dealt with the even Orlicz Minkowski problem. For related work, see

also [21, 22, 32, 33]. Ludwig and Reitzner [33] introduced what soon

came to be seen as Orlicz affine surface area and Ludwig [32] estab-

lished its fundamental affine inequalities. For the development of the

Orlicz Brunn-Minkowski theory, see [24,56,60].

It seems natural, now, to define the Orlicz addition and to give the

Orlicz Brunn-Minkowski inequality. We consider the Orlicz addition,

which is an extension of Lp-addition.

Let C be the class of convex, strictly increasing functions ϕ : [0,∞) →
[0,+∞) satisfying ϕ(0) = 0. It is not hard to conclude from [52, p. 23-

24] that ϕ ∈ C is continuous on [0,+∞), and the left derivative ϕ′
l

and right derivative ϕ′
r exist. Furthermore, ϕ′

l is left-continuous on

(0,+∞), ϕ′
r is right-continuous on [0,+∞), and ϕ′

l and ϕ′
r are positive

on (0,+∞).

Definition 1. Let ϕ ∈ C, and let K,L ⊂ Rn be convex bodies con-

taining the origin in their interiors. We define the Orlicz sum K +ϕ L

by

hK+ϕL(u) = inf{τ > 0 : ϕ(
hK(u)

τ
) + ϕ(

hL(u)

τ
) ≤ 1}.
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If ϕ(t) = tp, p ≥ 1, then K +ϕ L = K +p L.

Theorem 1 is what we are calling the Orlicz Brunn-Minkowski in-

equality.

Theorem 1. Let ϕ ∈ C, and let K,L ⊂ Rn be convex bodies containing

the origin in their interiors. Then, we have

ϕ
( V (K)

1
n

V (K +ϕ L)
1
n

)
+ ϕ

( V (L)
1
n

V (K +ϕ L)
1
n

)
≤ 1. (1.7)

Equality holds if K and L are dilates. When ϕ is strictly convex, equal-

ity holds if and only if K and L are dilates.

Next we give the definition of Orlicz combination.

Definition 2. Let ϕ ∈ C, and let K,L ⊂ Rn be convex bodies contain-

ing the origin in their interiors. Suppose α > 0 and β ≥ 0. We define

the Orlicz combination Mϕ(α, β;K,L) (or the Orlicz mean of convex

bodies) by

hMϕ(α,β;K,L)(u) = inf{τ > 0 : αϕ(
hK(u)

τ
) + βϕ(

hL(u)

τ
) ≤ 1}. (1.8)

Since the function z → αϕ(hK(u)
z

) + βϕ(hL(u)
z

) is strictly decreasing, we

have

hMϕ(α,β;K,L)(u) = τu, if and only if αϕ(
hK(u)

τu
) + βϕ(

hL(u)

τu
) = 1.

(1.9)

It is obvious that Mϕ(1, 1;K,L) = K +ϕ L.

In Section 2, we will show that hMϕ(α,β;K,L)(·) is indeed a support

function of a convex body which contains the origin in its interior.

When ϕ(t) = tp (p ≥ 1), the convex body Mϕ(α, β;K,L) is precisely

the Firey combination (see [12,35]) α ·K +p β ·L. However, for general
ϕ ∈ C, the “·” could not be defined, which means we cannot write

α ·K +ϕ β · L instead of Mϕ(α, β;K,L).
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Definition 3. Let ϕ ∈ C satisfy ϕ(1) = 1, and let K,L ⊂ Rn be convex

bodies containing the origin in their interiors. The Orlicz mixed volume

is defined by

Vϕ(K,L) =
ϕ′
l(1)

n
lim
ϵ→0+

V (Mϕ(1, ϵ;K,L))− V (K)

ϵ
.

The following theorem shows that the limit in Definition 3 exists and

has an integral representation, which is an extension of (1.5).

Theorem 2. Let ϕ ∈ C satisfy ϕ(1) = 1, and let K,L ⊂ Rn be convex

bodies containing the origin in their interiors. Then, we have

Vϕ(K,L) =
ϕ′
l(1)

n
lim
ϵ→0+

V (Mϕ(1, ϵ;K,L))− V (K)

ϵ

=
1

n

∫
Sn−1

ϕ
( hL(u)

hK(u)

)
hK(u)dSK(u). (1.10)

The following is the Orlicz mixed volume inequality.

Theorem 3. Let ϕ ∈ C satisfy ϕ(1) = 1, and let K,L ⊂ Rn be convex

bodies containing the origin in their interiors. Then,

Vϕ(K,L) ≥ V (K)ϕ
( V (L)

1
n

V (K)
1
n

)
. (1.11)

Equality holds if K and L are dilates. When ϕ is strictly convex, equal-

ity holds if and only if K and L are dilates.

If ϕ(t) = tp, (p ≥ 1), then the corresponding results of Theorems 1-3

in the Lp Brunn-Minkowski theory are obtained.

This paper is organized as follows. Section 2 contains the basic

definition and notations, and shows that the Orlicz combination of

convex bodies is also a convex body. Section 3 lists the elementary

properties of Orlicz combination. In Section 4, we prove a general

case of Theorem 1 using Steiner symmetrization, which is one of the

methods to prove the original Brunn-Minkowski inequality (1.1) (see

e.g. [11, Chapter 5, Section 5] or [57, p. 310-314]). However, for the

Orlicz case, our proof is quite different. Section 5 gives the proof of

Theorem 2 and Theorem 3.
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When we were about to submit our paper, we were informed that

Gardner, Hug, andWeil [15] had also obtained an Orlicz Brunn-Minkowski

inequality and posted their results on the arXiv.org a couple of days be-

fore. Please note that we use a completely different approach technique

of Steiner symmetrization, although our results coincide with theirs.

2. Preliminaries

For quick later reference we collect some notations and basic facts

about convex bodies. Good general references for the theory of convex

bodies are the books of Gardner [14], Gruber [16], Leichtweiss [25], and

Schneider [52].

Let Sn−1 denote the unit sphere, Bn the unit n-ball, ωn the volume of

Bn, and o the origin in the Euclidean n-dimensional space Rn. Denote

by Kn the class of convex bodies (compact, convex sets with non-empty

interiors) in Rn, and let Kn
o be the class of members of Kn containing

the origin in their interiors.

By intA and ∂A we denote, respectively, the interior and boundary

of A ⊂ Rn. The sets relintA and relbdA are the relative interior and

relative boundary, that is, the interior and boundary of A relative to

its affine hull.

We say a sequence {ϕi} ⊂ C is such that ϕi → ϕ ∈ C, provided

max
t∈I

|ϕi(t)− ϕ(t)| → 0,

for every compact interval I ⊂ [0,∞).

The support function hK : Rn → R of a compact convex set K ⊂ Rn

is defined, for x ∈ Rn, by

hK(x) = max{x · y : y ∈ K}, (2.1)

and it uniquely determines the compact convex set.

Obviously, for a pair of compact convex sets K,L ⊂ Rn, we have

hK ≤ hL if and only if K ⊆ L.
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A function is a support function of a compact convex set if and only if

it is positively homogeneous of degree one and subadditive.

Let K ∈ Kn and x ∈ ∂K. Denote by ν(x) an outer normal vector

of K at x. Obviously,

hK(ν(x)) = x · ν(x).

Then, the hyperplane {y ∈ Rn| y · ν(x) = hK(ν(x))} is a support

hyperplane of K at x.

We shall use δ to denote the Hausdorff metric on Kn. If K,L ∈ Kn,

the Hausdorff distance δ(K,L) is defined by

δ(K,L) = min{α : K ⊆ L+ αBn and L ⊆ K + αBn},

or equivalently,

δ(K,L) = max
u∈Sn−1

|hK(u)− hL(u)|.

A class of convex bodies {Ki} is said to converge to a convex body

K if

δ(Ki, K) → 0, as i → ∞.

Let K ∈ Kn. The surface area measure SK(·) of K is a measure on

Sn−1 defined by

SK(ω) =

∫
x∈∂K,ν(x)∈ω

dHn−1(x), ω ⊂ Sn−1,

where Hn−1 denotes the (n−1)-dimensional Hausdorff measure. The

surface area measure has the following property:

Ki → K ⇒ SKi
→ SK weakly. (2.2)

Let ϕ ∈ C, K,L ∈ Kn
o , α > 0 and β ≥ 0. The definition of Or-

licz Minkowski addition and Orlicz combination are given in Section

1. In the following, we check that the Orlicz Minkowski combination

Mϕ(α, β;K,L) is indeed a convex body containing the origin in its

interior. Set M = Mϕ(α, β;K,L); in fact, we need to show that the

function hM(·) is homogeneous of degree one and subadditive, and that

hM is positive.
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First, for γ > 0 we have

hM(γu) = inf{τ > 0 : αϕ
(hK(γu)

τ

)
+ βϕ

(hL(γu)

τ

)
≤ 1}

= γ inf{τ
γ
> 0 : αϕ

(hK(u)

τ/γ

)
+ βϕ

(hL(u)

τ/γ

)
≤ 1}

= γhM(u).

Next, we show that hM(·) is subadditive. Set hM(u) = τu and

hM(v) = τv; then we have αϕ(hK(u)
τu

) + βϕ(hL(u)
τu

) = 1 and αϕ(hK(v)
τv

) +

βϕ(hL(v)
τv

) = 1. Furthermore,

1 =
τu

τu + τv
αϕ

(hK(u)

τu

)
+

τv
τu + τv

αϕ
(hK(v)

τv

)
+

τu
τu + τv

βϕ
(hL(u)

τu

)
+

τv
τu + τv

βϕ
(hL(v)

τv

)
≥ αϕ

(hK(u) + hK(v)

τu + τv

)
+ βϕ

(hL(u) + hL(v)

τu + τv

)
≥ αϕ

(hK(u+ v)

τu + τv

)
+ βϕ

(hL(u+ v)

τu + τv

)
,

which implies that hM(u+ v) ≤ hM(u) + hM(v).

Finally, since

αϕ
( hK(u)

hK(u)/ϕ−1( 1
α
)

)
+ βϕ

( hL(u)

hK(u)/ϕ−1( 1
α
)

)
≥ 1,

from (1.8), we have hM(u) ≥ hK(u)/ϕ
−1( 1

α
) > 0. Thus, Mϕ(α, β;K,L)

contains o in its interior.

3. properties of Orlicz combination

Suppose ϕ ∈ C, a, b, α > 0, and β ≥ 0. Since the function z 7→
αϕ(a

z
) + βϕ( b

z
) is strictly decreasing, we define a positive function

Cϕ(α, β; a, b) by

z = Cϕ(α, β; a, b), if and only if αϕ
(a
z

)
+ βϕ

( b
z

)
= 1. (3.1)

The functions Cϕ(α, β; a, b) have some properties listed in the follow-

ing lemma.
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Lemma 3.1. Suppose ϕ ∈ C and a, b > 0. Let α > 0, β ≥ 0.

(i) If d > 0, then Cϕ(α, β; ad, bd) = dCϕ(α, β; a, b).

(ii) Suppose ϕ1, ϕ2 ∈ C. If ϕ2 ≥ ϕ1, then Cϕ2(α, β; a, b) ≥ Cϕ1(α, β; a, b).

(iii) Suppose ai, bi > 0 are such that ai → a and bi → b. Then,

Cϕ(α, β; ai, bi) → Cϕ(α, β; a, b).

(iv) Suppose {ϕi} ⊂ C are such that ϕi → ϕ. Then, Cϕi
(α, β; a, b) →

Cϕ(α, β; a, b).

(v) Suppose αi > 0, βi ≥ 0 are such that αi → α and βi → β. Then,

Cϕ(αi, βi; a, b) → Cϕ(α, β; a, b).

Proof. (i) Suppose d > 0. By (3.1), we have

1 = αϕ
( ad

Cϕ(α, β; ad, bd)

)
+ βϕ

( bd

Cϕ(α, β; ad, bd)

)
= αϕ

( a

Cϕ(α, β; ad, bd)/d

)
+ βϕ

( b

Cϕ(α, β; ad, bd)/d

)
,

and

1 = αϕ
( a

Cϕ(α, β; a, b)

)
+ βϕ

( b

Cϕ(α, β; a, b)

)
.

Thus, we have Cϕ(α, β; ad, bd) = dCϕ(α, β; a, b).

(ii) Set Cϕi
(α, β; a, b) = zi, i = 1, 2. Since ϕ2 ≥ ϕ1, we have

1 = αϕ2

( a

z2

)
+ βϕ2

( b

z2

)
≥ αϕ1

( a

z2

)
+ βϕ1

( b

z2

)
,

which implies z2 ≥ z1.

(iii) Set zi = Cϕ(α, β; ai, bi), i = 1, 2, ..., and z0 = Cϕ(α, β; a, b).

We will prove (iii) by showing that every subsequence of {zi} has a

subsequence converging to Cϕ(α, β; a, b). From

1 = αϕ
(ai
zi

)
+ βϕ

(bi
zi

)
< (α+ β)ϕ

(ai + bi
zi

)
,

we have zi < (ai + bi)/ϕ
−1( 1

α+β
), and since ai → a, bi → b, there

is a constant R > 0 such that zi ≤ R, i = 1, 2, .... Let {zi} denote

a subsequence of {zi}. Then {zi} has a convergent subsequence, also
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denoted by {zi}, and we suppose that zi → z′0. Since ϕ is continuous,

we have z′0 > 0 and

αϕ
( a

z′0

)
+ βϕ

( b

z′0

)
= lim

i→∞

[
αϕ

(ai
zi

)
+ βϕ

(bi
zi

)]
= 1,

which implies z′0 = z0.

(iv) Set τi = Cϕi
(α, β; a, b), i = 1, 2, ..., and τ0 = Cϕ(α, β; a, b). We

claim that

lim
i→∞

ϕ−1
i (x) = ϕ−1(x), (3.2)

for all x > 0. Let η > 0 be arbitrary. Since ϕ ∈ C, we conclude that

ϕ−1 is concave on [0,∞). Hence ϕ−1 is continuous on (0,∞). Then,

there exists a δ ∈ (0, x), such that

ϕ−1(x− δ) > ϕ−1(x)− η, (3.3)

ϕ−1(x+ δ) < ϕ−1(x) + η. (3.4)

Since ϕi → ϕ uniformly on [ϕ−1(x − δ), ϕ−1(x + δ)], there exists an

N > 0, such that

ϕi(ϕ
−1(x− δ)) < ϕ(ϕ−1(x− δ)) + δ = x, (3.5)

ϕi(ϕ
−1(x+ δ)) > ϕ(ϕ−1(x+ δ))− δ = x, (3.6)

for all i > N. Then, by (3.3), (3.4), (3.5), and (3.6), we have

ϕ−1(x)− η < ϕ−1
i (x) < ϕ−1(x) + η,

for all i > N. Since η > 0 is arbitrary, we complete the proof of our

claim.

From

1 = αϕi

( a

τi

)
+ βϕi

( b

τi

)
< (α+ β)ϕi

(a+ b

τi

)
,

we have τi < (a + b)/ϕ−1
i ( 1

α+β
). By (3.2), there is a constant r > 0,

such that ϕ−1
i ( 1

α+β
) > r, i = 1, 2, .... Thus, {τi} is bounded. Then,
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each subsequence of {τi} has a convergent subsequence, also denoted

by {τi}, and we suppose it converges to τ ′0. Since

1 = αϕi(
a

τi
) + βϕi(

b

τi
) ≥ αϕi(

a

τi
),

then,

τi ≥
a

ϕ−1
i (1/α)

.

Thus, by (3.2), we have τ ′0 ≥ a
ϕ−1(1/α)

> 0.

By the continuity of ϕi(·), and ϕi → ϕ, we have

αϕ
( a

τ ′0

)
+ βϕ

( b

τ ′0

)
= lim

i→∞

[
αϕi

( a

τi

)
+ βϕi

( b

τi

)]
= 1,

which implies τ0 = τ ′0.

(v) Set µi = Cϕ(αi, βi; a, b), i = 1, 2, ..., and µ0 = Cϕ(α, β; a, b). From

1 = αiϕ
( a

µi

)
+ βiϕ

( b

µi

)
> (αi + βi)ϕ

(a+ b

µi

)
,

we obtain µi < (a + b)/ϕ−1( 1
αi+βi

). Noticing that ϕ−1 is continuous,

we have that {µi} is bounded. Hence, each subsequence of {µi} has a

convergent subsequence, denoted also by {µi}, converging to some µ′
0.

By the continuity of ϕ, we have µ′
0 > 0 and

αϕ
( a

µ′
0

)
+ βϕ

( b

µ′
0

)
= lim

i→∞

[
αiϕ

( a

µi

)
+ βiϕ

( b

µi

)]
= 1,

which implies µ0 = µ′
0. �

Notice that hMϕ(α,β;K,L)(u) = Cϕ(α, β;hK(u), hL(u)), and that the

convergence of convex bodies is equivalent to the pointwise convergence

of the corresponding support functions on Sn−1 (see e.g. [52, p. 53-54]).

Therefore, we obtain the following properties of Orlicz combination.

Lemma 3.2. Suppose ϕ ∈ C and K,L ∈ Kn
o . Let α > 0, β ≥ 0.

(i) If d > 0, then Mϕ(α, β; dK, dL) = dMϕ(α, β;K,L).

(ii) Suppose ϕ1, ϕ2 ∈ C. If ϕ2 ≥ ϕ1, then Mϕ2(α, β;K,L) ⊇ Mϕ1(α, β;K,L).

(iii) Suppose Ki, Li ∈ Kn
o are such that Ki → K and Li → L. Then,

Mϕ(α, β;Ki, Li) → Mϕ(α, β;K,L).
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(iv) Suppose {ϕi} ⊂ C are such that ϕi → ϕ. Then, Mϕi
(α, β;K,L) →

Mϕ(α, β;K,L).

(v) Suppose αi > 0, βi ≥ 0 are such that αi → α and βi → β. Then,

Mϕ(αi, βi;K,L) → Mϕ(α, β;K,L).

Properties (ii) and (iv) are not used in this paper, but Properties (i),

(iii) and (v) are basic for our proofs.

4. The Orlicz Brunn-Minkowski inequality

LetK ⊂ Rn be a convex body. For u ∈ Sn−1, denote byKu the image

of the orthogonal projection ofK onto u⊥.We write ℓu(K; y′) : Ku → R
and ℓu(K; y′) : Ku → R for the overgraph and undergraph functions of

K in the direction u; i.e.

K = {y′ + tu : −ℓu(K; y′) ≤ t ≤ ℓu(K; y′) for y′ ∈ Ku}. (4.1)

Thus the Steiner symmetral SuK of K ∈ Kn in the direction u can be

defined as the body whose orthogonal projection onto u⊥ is identical

to that of K and whose overgraph and undergraph functions are given

by

ℓu(SuK; y′) = ℓu(SuK; y′) =
1

2
[ℓu(K; y′) + ℓu(K; y′)]. (4.2)

In this paper, we use the following notations: when u ∈ Sn−1 is fixed,

the point x = (x′, s) always means x′ + su, where x′ ∈ u⊥ and s ∈ R.
We will usually write hK(x

′, s) rather than hK((x
′, s)).

Suppose K ∈ Kn and x′
1, x

′
2 ∈ u⊥. By (4.1), for (a′, s) ∈ K, we have

(a′, s) · (x′
1, 1) = a′ · x′

1 + s ≤ a′ · x′
1 + ℓu(K; a′),

then,

hK(x
′
1, 1) = max

(a′,s)∈K
{(x′

1, 1) · (a′, s)} ≤ max
a′∈Ku

{x′
1 · a′ + ℓu(K; a′)}.

On the other hand, noticing that (a′, ℓu(K; a′)) ∈ K for arbitrary a′ ∈
Ku, we have

hK(x
′
1, 1) = max

(a′,s)∈K
{(x′

1, 1) · (a′, s)} ≥ max
a′∈Ku

{x′
1 · a′ + ℓu(K; a′)}.
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Thus, we get that

hK(x
′
1, 1) = max

a′∈Ku

{x′
1 · a′ + ℓu(K; a′)}. (4.3)

In a similar way, we get that

hK(x
′
2,−1) = max

a′∈Ku

{x′
2 · a′ + ℓu(K; a′)}. (4.4)

The following lemma will be used in the proof of our theorem.

Lemma 4.1. ( [47, Lemma 1.2]) Suppose K ∈ Kn
o and u ∈ Sn−1. For

y′ ∈ relintKu, the overgraph and undergraph functions of K in direction

u are given by

ℓu(K; y′) = min
x′∈u⊥

{hK(x
′, 1)− x′ · y′}

and

ℓu(K; y′) = min
x′∈u⊥

{hK(x
′,−1)− x′ · y′}.

We refer to [47] for a proof. See [4] for an application in the proof of

the Lp Busemann-Petty centroid inequality.

In addition to Lemma 4.1, note the following elementary fact: given

a convex bodyK and a direction u ∈ Sn−1, for each y′ ∈ relintKu, every

outer normal vector at the upper boundary point (y′, ℓu(K; y′)) can be

written as (x′
1, 1), while every outer normal vector at the lower bound-

ary point (y′,−ℓu(K; y′)) can be written as (x′
2,−1), where x′

1, x
′
2 ∈ u⊥.

The following lemma will be used in the proofs of our theorems.

Lemma 4.2. Suppose K ∈ Kn. Let u ∈ Sn−1 and x′
1, x

′
2 ∈ u⊥. Then,

hK(x
′
1, 1) + hK(x

′
2,−1) ≥ 2hSuK(

x′
1 + x′

2

2
, 1), (4.5)

and

hK(x
′
1, 1) + hK(x

′
2,−1) ≥ 2hSuK(

x′
1 + x′

2

2
,−1). (4.6)

Proof. For arbitrary a′0 ∈ Ku, noticing that (a′0, ℓu(SuK; a′0)) ∈ K, we

have

hK(x
′
1, 1) = max

(a′,s)∈K
{(x′

1, 1) · (a′, s)} ≥ x′
1 · a′0 + ℓu(K; a′0). (4.7)
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In a similar way, we have

hK(x
′
2,−1) = max

(a′,s)∈K
{(x′

2,−1) · (a′, s)} ≥ x′
2 · a′0 + ℓu(K; a′0). (4.8)

Then,

hK(x
′
1, 1)+hK(x

′
2,−1) ≥ (x′

1+x′
2) · a′0+ [ℓu(K; a′0)+ ℓu(K; a′0)], (4.9)

for all a′0 ∈ Ku.

By (4.2), (4.3), and (4.4), we have

hSuK(
x′
1 + x′

2

2
, 1) = max

a′∈Ku

{x
′
1 + x′

2

2
· a′ + ℓu(K; a′) + ℓu(K; a′)

2
}, (4.10)

and

hSuK(
x′
1 + x′

2

2
,−1) = max

a′∈Ku

{x
′
1 + x′

2

2
·a′+ℓu(K; a′) + ℓu(K; a′)

2
}. (4.11)

Since (4.9) holds for all a′0 ∈ Ku, equations (4.10) and (4.11) imply

that (4.5) and (4.6) hold. �

Lemma 4.3. Let ϕ ∈ C, α > 0, β ≥ 0, and u ∈ Sn−1. If K,L ∈ Kn
o ,

then

Mϕ(α, β;SuK,SuL) ⊆ Su(Mϕ(α, β;K,L)).

Proof. Set M = Mϕ(α, β;K,L) and MS = Mϕ(α, β;SuK,SuL).

By Lemma 4.1, for arbitrary y′ ∈ relintMu, there are points x
′
1, x

′
2 ∈

u⊥ such that

ℓu(M ; y′) = hM(x′
1, 1)− x′

1 · y′

and

ℓu(M ; y′) = hM(x′
2,−1)− x′

2 · y′.

Suppose z1 = hM(x′
1, 1) and z2 = hM(x′

2,−1). Then,

αϕ
(hK(x

′
1, 1)

z1

)
+ βϕ

(hL(x
′
1, 1)

z1

)
= 1, (4.12)

and

αϕ
(hK(x

′
2,−1)

z2

)
+ βϕ

(hL(x
′
2,−1)

z2

)
= 1. (4.13)
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By adding (4.12) multiplied with z1 and (4.13) multiplied with z2, using

the convexity of ϕ, and by Lemma 4.2, we get

z1 + z2 = z1αϕ
(hK(x

′
1, 1)

z1

)
+ z2αϕ

(hK(x
′
2,−1)

z2

)
+ z1βϕ

(hL(x
′
1, 1)

z1

)
+ z2βϕ

(hL(x
′
2,−1)

z2

)
≥ (z1 + z2)

[
αϕ

(hK(x
′
1, 1) + hK(x

′
2,−1)

z1 + z2

)
+ βϕ

(hL(x
′
1, 1) + hL(x

′
2,−1)

z1 + z2

)]
(4.14)

≥ (z1 + z2)
[
αϕ

(2hSuK(
x′
1+x′

2

2
, 1)

z1 + z2

)
+ βϕ

(2hSuL(
x′
1+x′

2

2
, 1)

z1 + z2

)]
.

(4.15)

Therefore, we obtain

αϕ
(hSuK(

x′
1+x′

2

2
, 1)

(z1 + z2)/2

)
+ βϕ

(hSuL(
x′
1+x′

2

2
, 1)

(z1 + z2)/2

)
≤ 1, (4.16)

which implies that

z1 + z2
2

≥ hMS
(
x′
1 + x′

2

2
, 1). (4.17)

Now (4.17) and Lemma 4.1 show that

ℓu(SuM ; y′) =
1

2
ℓu(M ; y′) +

1

2
ℓu(M ; y′)

=
1

2
(z1 − x′

1 · y′) +
1

2
(z2 − x′

2 · y′)

≥ hMS
(
x′
1 + x′

2

2
, 1)− x′

1 + x′
2

2
· y′

≥ min
x′∈u⊥

{hMS
(x′, 1)− x′ · y′}

= ℓu(MS; y
′).

In the same way, we obtain

ℓu(SuM ; y′) ≥ ℓu(MS; y
′).

Since y′ ∈ relintMu is arbitrary, this completes the proof of the lemma.

�
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Figure 1. Method to find the chords.

We say a chord [x, y] of a convex body K is an interior chord of K

if (x, y) ⊂ intK, where (x, y) denotes the relative interior of [x, y]. We

say a chord is a boundary chord of a convex body if it is contained in

the boundary of this convex body.

It can be concluded from [52, Theorem 1.1.8] that a chord of a convex

body K is an interior chord if and only if there is an interior point of

K that lies in this chord. Therefore, a chord of a convex body is either

an interior chord or a boundary chord.

In order to get the equality condition of (1.7), we need the following

elementary observation.

Lemma 4.4. Suppose K ∈ Kn. If x1, x2 ∈ ∂K are two distinct bound-

ary points of K, then x1 and x2 can be connected by k interior chords

with k ≤ 3.

Proof. Since K is a convex body, we can suppose xo is an interior point

of K. Suppose n ≥ 2, since when n = 1 it is obvious.

Next, we describe how to find the k interior chords (see Figure 1).

(i) If [x1, x2] is an interior chord of K, then [x1, x2] is the chord which

we are searching for.

(ii) If we suppose [x1, x2] is not an interior chord of K, then [x1, x2] ⊂
∂K. There exists a unique point x3 ∈ ∂K, such that xo ∈ (x1, x3). If
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[x3, x2] is an interior chord of K, then [x1, x3], [x3, x2] are the chords

which we are searching for.

(iii) If we suppose [x1, x2] and [x3, x2] are not interior chords of K,

then [x3, x2] ⊂ ∂K. There exists a unique point x4 ∈ ∂K, such that

xo ∈ (x2, x4). If [x4, x1] is an interior chord of K, then [x1, x4], [x4, x2]

are the chords which we are searching for.

(iv) We suppose [x1, x2], [x3, x2] and [x4, x1] are not interior chords of

K. By our construction, the points xo, x1, x2, x3, x4 lie in a 2-dimensional

plane. Let ξ1 be the midpoint of the chord [x1, x4]. Then [ξ1, x2] is an

interior chord of K because (ξ1, x2) ∩ (x1, x3) ̸= ∅. There exists a

unique point ξ2 ∈ (x2, x3) such that xo ∈ (ξ1, ξ2). So, ξ2 ∈ ∂K. It is

clear that the chords [ξ1, ξ2] and [x1, ξ2] are interior chords of K. Then,

[x1, ξ2], [ξ2, ξ1], [ξ1, x2] are the chords which we are searching for. �

Suppose ϕ ∈ C is strictly convex; the following lemma gives the

necessary equality condition in the inequality of Lemma 4.3.

Lemma 4.5. Suppose ϕ ∈ C is strictly convex. Let K,L ∈ Kn
o , and

α, β > 0. If

Mϕ(α, β;SuK,SuL) = Su(Mϕ(α, β;K,L)) (4.18)

for all u ∈ Sn−1, then K and L are dilates.

Proof. Set M = Mϕ(α, β;K,L). Suppose [ξ1, ξ2] is an arbitrary interior

chord of the convex body M . Let u = (ξ1 − ξ2)/∥ξ1 − ξ2∥ ∈ Sn−1,

where ∥ · ∥ denotes the Euclidean norm. Then, [ξ1, ξ2] is parallel to u,

ξ1 is the upper boundary point, and ξ2 is the lower boundary point.

Thus, there exists y′ ∈ relintMu, such that ξ1 = (y′, ℓuM(M ; y′)), and

ξ2 = (y′,−ℓu(M ; y′)).

Since y′ ∈ relintMu, each outer normal vector of M at ξ1 can be

written as (x′
1, 1), and each outer normal vector at ξ2 can be written

as (x′
2,−1), where x′

1, x
′
2 ∈ u⊥. Then, we have

hM(x′
1, 1) = (x′

1, 1) · (y′, ℓu(M ; y′)),
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hence,

ℓu(M ; y′) = hM(x′
1, 1)− x′

1 · y′.

Similarly, we have

ℓu(M ; y′) = hM(x′
2,−1)− x′

2 · y′.

By the same argument as that for Lemma 4.3, we can establish inequal-

ities (4.14), (4.15), and (4.17). If (4.18) holds for all u ∈ Sn−1, then

(4.14), (4.15), and (4.17) are all equalities. Since ϕ is strictly convex,

(4.14) is an equality if and only if

hK(x
′
1, 1)

z1
=

hK(x
′
2,−1)

z2
, and

hL(x
′
1, 1)

z1
=

hL(x
′
2,−1)

z2
,

and then there is a positive constant c0 such that

c0 =
hK(x

′
1, 1)

hL(x′
1, 1)

=
hK(x

′
2,−1)

hL(x′
2,−1)

. (4.19)

For every direction v ∈ Sn−1, there is a point ξ3 ∈ ∂M, such that

v is an outer normal vector at ξ3. If ξ3 ̸= ξ1, by Lemma 4.4, there are

k ≤ 3 interior chords of M, such that they connect ξ1 to ξ3. Clearly, for

each interior chord of M, there is a similar equality as (4.19). Then,

we obtain that

c0 =
hK(x

′
1, 1)

hL(x′
1, 1)

=
hK(v)

hL(v)
.

If ξ3 = ξ1, then v is a normal vector of M at ξ1. Since (4.19) holds for

each normal vector of M at ξ1, we have

c0 =
hK(x

′
2,−1)

hL(x′
2,−1)

=
hK(v)

hL(v)
.

Therefore K and L are dilates because v is arbitrary. �

From Lemma 4.3 and Lemma 4.5 we get the following theorem, which

is indeed an original version of Orlicz Brunn-Minkowski inequality.

Theorem 4.6. Suppose ϕ ∈ C, K,L ∈ Kn
o , and α, β > 0. Let V (K) =

anωn, and V (L) = bnωn, then

V (Mϕ(α, β;K,L)) ≥ Cϕ(α, β; a, b)
nωn. (4.20)
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Equality holds if K and L are dilates. When ϕ is strictly convex, equal-

ity holds if and only if K and L are dilates.

Proof. There is a sequence of directions {ui}, such that the sequence

{Ki} converges to aBn and {Li} converges to bBn, where the sequences

{Ki} and {Li} are defined by

Ki = Sui
· · ·Su1K, and Li = Sui

· · ·Su1L.

Since the Steiner symmetrization preserves the volume, by Lemma

4.3 we have

V (Mϕ(α, β;K,L)) ≥ V (Mϕ(α, β; aB
n, bBn)).

From the definition of Orlicz combination of convex bodies, we get that

Mϕ(α, β; aB
n, bBn) is an n-ball with radius Cϕ(α, β; a, b). This implies

(4.20).

If K and L are dilates, there exists a convex body A ∈ Kn
o whose

volume is ωn, such that A,K, and L are dilates. That is, K = aA, and

L = bA. By (1.9), we have

αϕ
(ahA(u)

τu

)
+ βϕ

(bhA(u)

τu

)
= 1, for all u ∈ Sn−1,

where τu = hMϕ(α,β;K,L)(u). This implies that

hMϕ(α,β;K,L)(u) = Cϕ(α, β; a, b)hA(u), for all u ∈ Sn−1.

Therefore, V (Mϕ(α, β;K,L)) = Cϕ(α, β; a, b)
nωn.

Suppose ϕ is strictly convex. If equality holds in (4.20), then

Mϕ(α, β;SuK,SuL) = Su(Mϕ(α, β;K,L)),

for all u ∈ Sn−1. By Lemma 4.5, we conclude that K and L are dilates.

�

The following theorem is the general version of Theorem 1.

Theorem 4.7. Suppose ϕ ∈ C and K,L ∈ Kn
o . If α, β > 0, then

αϕ
( V (K)

1
n

V (Mϕ(α, β;K,L))
1
n

)
+ βϕ

( V (L)
1
n

V (Mϕ(α, β;K,L))
1
n

)
≤ 1. (4.21)
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Equality holds if K and L are dilates. When ϕ is strictly convex, equal-

ity holds if and only if K and L are dilates.

Proof. Let V (K) = anωn and V (L) = bnωn with a, b > 0. By (4.20),

we have

V (Mϕ(α, β;K,L))
1
n ≥ Cϕ(α, β; a, b)ω

1
n
n .

Since V (K)
1
n = aω

1
n
n , we get

V (K)
1
n

V (Mϕ(α, β;K,L))
1
n

≤ a

Cϕ(α, β; a, b)
.

Therefore,

ϕ
( V (K)

1
n

V (Mϕ(α, β;K,L))
1
n

)
≤ ϕ

( a

Cϕ(α, β; a, b)

)
.

In the same way, we also get

ϕ
( V (L)

1
n

V (Mϕ(α, β;K,L))
1
n

)
≤ ϕ

( b

Cϕ(α, β; a, b)

)
.

Hence,

1 = αϕ
( a

Cϕ(α, β; a, b)

)
+ βϕ

( b

Cϕ(α, β; a, b)

)
≥ αϕ

( V (K)
1
n

V (Mϕ(α, β;K,L))
1
n

)
+ βϕ

( V (L)
1
n

V (Mϕ(α, β;K,L))
1
n

)
.

The equality condition can be obtained as in Theorem 4.6. �

Taking α = β = 1 in Theorem 4.7, we obtain Theorem 1.

5. The Orlicz mixed volumes

In this section, we study the Orlicz mixed volume, which is defined by

(3). Since ϕ ∈ C, the left derivative ϕ′
l and right derivative ϕ′

r exist, ϕ
′
l

is left-continuous and ϕ′
r is right-continuous on [0,+∞). Furthermore,

ϕ′
l and ϕ′

r are positive on (0,+∞).
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Lemma 5.1. Let ϕ ∈ C satisfy ϕ(1) = 1, let a, b > 0, and β ≥ 0. Then,

Cϕ(1, β; a, b) is differentiable at β = 0, and

C ′
ϕ(1, 0; a, b) = lim

β→0+

Cϕ(1, β; a, b)− Cϕ(1, 0; a, b)

β
=

a

ϕ′
l(1)

ϕ
( b
a

)
.

Proof. Set zβ = Cϕ(1, β; a, b), yβ = ϕ
(

a
zβ

)
, for all β ≥ 0. Obviously,

z0 = a and y0 = 1. It follows by Lemma 3.1 (v) that zβ → a+ and

yβ → 1− as β → 0+.

Since ϕ′
l and ϕ′

r are positive on (0,+∞), we have

(ϕ−1)′l(t) =
1

ϕ′
l(ϕ

−1(t))
and (ϕ−1)′r(t) =

1

ϕ′
r(ϕ

−1(t))
, t ∈ (0,+∞).

Since 1− yβ = βϕ
(

b
zβ

)
, we have

lim
β→0+

1− a
zβ

β
= lim

β→0+

1− yβ
β

lim
β→0+

1− a
zβ

1− yβ
= ϕ

( b
a

)
lim

yβ→1−

1− a
zβ

1− yβ
= ϕ

( b
a

) 1

ϕ′
l(1)

.

Hence, we get

C ′
ϕ(1, 0; a, b) = lim

β→0+

zβ − z0
β

= lim
β→0+

zβ · lim
β→0+

1− a
zβ

β

=
a

ϕ′
l(1)

ϕ
( b
a

)
.

�

The following lemma shows that hMϕ(1,ϵ;K,L)(u) is uniformly differ-

entiable at ϵ = 0. This fact plays a key role in the proof of Theorem

2.

Lemma 5.2. Let ϕ ∈ C satisfy ϕ(1) = 1, and let K,L ∈ Kn
o . Then the

convergence in

lim
ϵ→0+

hMϕ(1,ϵ;K,L)(u)− hK(u)

ϵ
=

hK(u)

ϕ′
l(1)

ϕ
( hL(u)

hK(u)

)
(5.1)

is uniform on Sn−1.
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Proof. Set Kϵ = Mϕ(1, ϵ;K,L) for all ϵ ≥ 0. From Lemma 3.2 (v),

Kϵ → K. Since hKϵ(u) = Cϕ(1, ϵ, hK(u), hL(u)) for each u ∈ Sn−1, by

Lemma 5.1, we have

lim
ϵ→0+

hKϵ(u)− hK(u)

ϵ
=

hK(u)

ϕ′
l(1)

ϕ
( hL(u)

hK(u)

)
.

Let g : [0,+∞) → [0,+∞) be a concave function, and let x > y > 0.

Then,

g′l(x)(x− y) < g(x)− g(y) < g′l(y)(x− y). (5.2)

Let yϵ(u) = ϕ
(

hK(u)
hKϵ (u)

)
. Then, yϵ(u) → 1− as ϵ → 0+. From ϕ ∈ C we

conclude that ϕ−1 is concave on [0,+∞). By substituting g = ϕ−1 into

(5.2), and the facts that y0(u) = 1 and ϕ−1(y0(u)) = 1, we have

1

ϕ′
l(1)

(1− yϵ(u)) ≤ 1− ϕ−1(yϵ(u)) ≤
1

ϕ′
l(ϕ

−1(yϵ(u)))
(1− yϵ(u)).

Notice that

hKϵ(u)− hK(u)

ϵ
= hKϵ(u)

1− ϕ−1(yϵ(u))

ϵ
,

and

1− yϵ(u) = ϵϕ
( hL(u)

hKϵ(u)

)
.

Therefore, we have

hKϵ(u)

ϕ′
l(1)

ϕ
( hL(u)

hKϵ(u)

)
≤ hKϵ(u)− hK(u)

ϵ
≤ hKϵ(u)

ϕ′
l(hK(u)/hKϵ(u))

ϕ
( hL(u)

hKϵ(u)

)
.

(5.3)

Since hKϵ(u) → hK(u) (as ϵ → 0+) uniformly on Sn−1, we have

hL/hKϵ converges to hL/hK uniformly, and hK/hKϵ converges to 1 uni-

formly. Thus, hL/hKϵ and hK/hKϵ are uniformly bounded and they lie

in a compact interval I, and ϕ(t) is uniformly continuous on I. So the

left side of (5.3) converges to hK(u)
ϕ′
l(1)

ϕ
(

hL(u)
hK(u)

)
uniformly.

Notice that ϕ′
l(t) is left-continuous at t = 1, hK/hKϵ converges to 1

uniformly, and hK/hKϵ ≤ 1. For arbitrary η > 0, there exists a δ > 0,

such that |ϕ′
l(t) − ϕ′

l(1)| < η for all 1 − δ < t ≤ 1. For this δ, there
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exists a θ > 0, such that

1− δ <
hK(u)

hKϵ(u)
≤ 1,

for all u ∈ Sn−1 and 0 ≤ ϵ < θ. Then,∣∣∣ϕ′
l

( hK(u)

hKϵ(u)

)
− ϕ′

l(1)
∣∣∣ < η,

for all u ∈ Sn−1 and 0 ≤ ϵ < θ. Therefore, ϕ′
l(hK/hKϵ) converges uni-

formly to ϕ′
l(1), and the right side of (5.3) converges to hK(u)

ϕ′
l(1)

ϕ
(

hL(u)
hK(u)

)
uniformly. Thus the convergence in (5.1) is uniform. �

Applying the method in Lutwak [35] (see also [20, Lemma 1]), we

get the proof of Theorem 2 by Lemma 5.2.

Proof of Theorem 2: Set Kϵ = Mϕ(1, ϵ;K,L), ϵ ≥ 0. By Property

(v) in Lemma 3.2, we have that Kϵ → K as ϵ → 0+, which implies that

the surface area measure SKϵ → SK weakly.

Since the measures SKϵ are finite, converging weakly to SK , by

Lemma 5.2, we have

lim
ϵ→0+

∫
Sn−1

hKϵ(u)− hK(u)

ϵ
dSKϵ(u) =

∫
Sn−1

hK(u)

ϕ′
l(1)

ϕ
( hL(u)

hK(u)

)
dSK(u),

and

lim
ϵ→0+

∫
Sn−1

hKϵ(u)− hK(u)

ϵ
dSK(u) =

∫
Sn−1

hK(u)

ϕ′
l(1)

ϕ
( hL(u)

hK(u)

)
dSK(u).

Hence, we have

lim
ϵ→0+

V (Kϵ)− V1(Kϵ, K)

ϵ
= lim

ϵ→0+

V1(K,Kϵ)− V (K)

ϵ

=
1

nϕ′
l(1)

∫
Sn−1

hK(u)ϕ
( hL(u)

hK(u)

)
dSK(u).

(5.4)

Set

l =
1

nϕ′
l(1)

∫
Sn−1

ϕ
( hL(u)

hK(u)

)
hK(u)dSK(u). (5.5)
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From (5.4) and (1.4), we have

l = lim
ϵ→0+

V (Kϵ)− V1(Kϵ, K)

ϵ

≤ lim inf
ϵ→0+

V (Kϵ)
n−1
n

(
V (Kϵ)

1
n − V (K)

1
n

)
ϵ

= V (K)
n−1
n lim inf

ϵ→0+

V (Kϵ)
1
n − V (K)

1
n

ϵ
,

and

l = lim
ϵ→0+

V1(K,Kϵ)− V (K)

ϵ

≥ lim sup
ϵ→0+

V (K)
n−1
n

(
V (Kϵ)

1
n − V (K)

1
n

)
ϵ

= V (K)
n−1
n lim sup

ϵ→0+

V (Kϵ)
1
n − V (K)

1
n

ϵ
.

Thus, we obtain

l = V (K)
n−1
n lim

ϵ→0+

V (Kϵ)
1
n − V (K)

1
n

ϵ
.

Therefore,

lim
ϵ→0+

V (Kϵ)− V (K)

ϵ
= lim

ϵ→0+

(V (Kϵ)
1
n − V (K)

1
n )

n−1∑
i=0

V (Kϵ)
i
nV (K)

n−1−i
n

ϵ

= nV (K)
n−1
n lim

ϵ→0+

V (Kϵ)
1
n − V (K)

1
n

ϵ

= nl. (5.6)

Combining with (5.6) and (5.5), we complete the proof of Theorem 2. �

Based on Theorem 2, we give two proofs of Theorem 3. The first uses

the Orlicz Brunn-Minkowski inequality, while the second uses Jensen’s

inequality. However, the first proof only establishes the inequality,

while the equality condition can be obtained in the second proof.



THE ORLICZ BRUNN-MINKOWSKI INEQUALITY 25

First Proof of Theorem 3: By Theorem 2, the following limit

exists:

Vϕ(K,L) =
ϕ′
l(1)

n
lim
ϵ→0+

V (Mϕ(1, ϵ;K,L))− V (K)

ϵ
.

By the convexity of ϕ (note that ϕ(1) = 1), we have

ϕ′
l(1)(1− x) ≥ 1− ϕ(x). (5.7)

By Theorem 2, (5.6), (5.7), and Theorem 4.7, we have

Vϕ(K,L) =
ϕ′
l(1)

n
lim
ϵ→0+

V (Kϵ)− V (K)

ϵ

= ϕ′
l(1)V (K)

n−1
n lim

ϵ→0+

V (Kϵ)
1
n − V (K)

1
n

ϵ

= ϕ′
l(1)V (K) lim

ϵ→0+

1

ϵ

(
1− V (K)

1
n

V (Kϵ)
1
n

)
≥ V (K) lim inf

ϵ→0+

1

ϵ

(
1− ϕ

( V (K)
1
n

V (Kϵ)
1
n

))
≥ V (K) lim

ϵ→0+
ϕ
( V (L)

1
n

V (Kϵ)
1
n

)
= V (K)ϕ

( V (L)
1
n

V (K)
1
n

)
.

Thus we have established inequality (1.11). �

The second Proof of Theorem 3 uses the Jensen’s inequality.

Second Proof of Theorem 3: By Theorem 2, we have

Vϕ(K,L) =
1

nϕ′
l(1)

∫
Sn−1

ϕ
( hL(u)

hK(u)

)
hK(u)dSK(u).

Since

1

n

∫
Sn−1

hK(u)dSK(u) = V (K),
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hK(·)SK(·)
nV (K)

is a probability measure on Sn−1. By Jensen’s inequality and

(1.4), we have

Vϕ(K,L)

V (K)
=

∫
Sn−1

ϕ
( hL(u)

hK(u)

)hK(u)dSK(u)

nV (K)

≥ ϕ
(∫

Sn−1

hL(u)

hK(u)

hK(u)dSK(u)

nV (K)

)
= ϕ

(V1(K,L)

V (K)

)
≥ ϕ

( V (L)
1
n

V (K)
1
n

)
.

If K,L are dilates, it is easy to see that equality holds in (1.11).

Now suppose ϕ is strictly convex. If equality holds, then, by the

equality condition of Jensen’s inequality, there exists an s > 0 such

that hL(u) = shK(u) for almost every u ∈ Sn−1 with respect to the

measure hK(·)SK(·)
nV (K)

. Then, we have

Vϕ(K,L)

V (K)
= ϕ(s) = ϕ

( V (L)
1
n

V (K)
1
n

)
.

Thus, s = V (L)1/n/V (K)1/n. Furthermore, the equality condition of

(1.4) implies that K and L are homothetic. Then, L = sK + t for

some t ∈ Rn. Since K has interior points, the support of the measure
hK(·)SK(·)
nV (K)

cannot be contained in the great sphere of Sn−1 orthogonal

to t. Hence t = 0, which implies that K, L are dilates. �
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