
AFFINE INEQUALITIES FOR Lp MEAN ZONOIDS
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Abstract. In this paper, the Lp(p ≥ 1) mean zonoid of a convex body K is given, and we

show that it is the Lp centroid body of radial (n+ p)th mean body of K up to a dilation. We

also establish some affine inequalities of these bodies by proving that the volume of the new

bodies are decreasing under Steiner symmetrization.

1. Introduction

The notion of zonoids is basic in the Brunn-Minkowski theory of convex bodies and appear

in different contexts of the mathematical literature (see e.g. [2, 12, 15, 16]). Zonoids are

defined as limits of zonotopes in the Hausdorff metric, where zonotopes are Minkowski sum of

segments. A zonoid Z can also be defined as a convex body whose support function is

hZ(u) =
1

2

∫
Sn−1

|u · v|dµ(v), for all u ∈ Sn−1,

where µ is an even measure on the unit sphere Sn−1.

LetK ⊂ Rn be a convex body (compact, convex set with non-empty interior). As introduced

by Zhang [18], a mean zonoid Z̃K is defined by

hZ̃K(u) =
1

V (K)2

∫
K

∫
K

|u · (x− y)|dxdy, for all u ∈ Sn−1, (1.1)

where V (K) denotes the volume of the body K.

The body Z̃K is indeed a zonoid (limits of Minkowski sums of line segments). It was also

shown by Zhang [18] that the volume of V (Z̃K) satisfies

V (Z̃K) ≥ V (Z̃BK),

where BK is the n-ball with the same volume of K. The equality holds if and only if K is an

ellipsoid.
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Schneider and Weil [16] introduced the notion of Lp zonoids. A finite dimensional real

normed space is isometric to a subspace of Lp if and only if the polar of its unit ball is an Lp

zonoid. Specially, L2 zonoids are ellipsoids in Rn. For p ≥ 1, a Lp zonoid can be defined by

hZp(u)
p =

∫
Sn−1

|u · v|pdµ(v), for all u ∈ Sn−1, (1.2)

where µ is a finite even Borel measure on the unit sphere Sn−1. We refer to [11, 12] for the

study on this subject.

It is natural for us to consider a class of bodies Z̃pK named Lp mean zonoids.

Definition. Let K ⊂ Rn be a convex body, and let p ≥ 1. Then, the Lp mean zonoid Z̃pK of

K is defined by

hZ̃pK
(z) =

( 1

V (K)2

∫
K

∫
K

|z · (x− y)|pdxdy
) 1

p
, for all z ∈ Rn\{0}. (1.3)

The case p = 1 is just the Z̃K defined by Zhang [18]. We will show that Z̃pK is a Lp zonoid

in Section 2.

In their paper, E. Lutwak and G. Zhang [13] introduced the Lp centroid body ΓpK, p ≥ 1,

with Γ1K = ΓK. It was also shown that the volume of the polar of ΓpK is maximized if the

volume of K is given. This gives an Lp version of the Blaschke-Santaló inequality. In [11], it

was proved that the volume of ΓpK is minimized if the volume of K is given. These results

have found applications in asymptotic functional analysis.

Similar to the centroid body ΓK, the Lp centroid body ΓpK is origin dependent. In this

paper, the Lp mean zonoid Z̃pK, which is defined by (1.3), is a translation invariant analog

of the Lp centroid body. Further relationship between the Lp centroid body and the Lp mean

zonoid can be seen in Section 2.

Throughout this paper, we assume that

Cn,p = ωn

[2n+pωn+pω2n+p

ω2
2ωp−1ωn+p−1

]n
p ,

where ωp = π
p
2 /Γ(1 + p

2
).

The main result of this paper is the following theorem. The result of the case p = 1, in our

theorem, is first proved in [18].

Theorem 1. Let K ⊂ Rn be a convex body, and let p ≥ 1. Then, the volumes of Z̃pK and K

satisfy the following inequality:

V (Z̃pK) ≥ Cn,pV (K), (1.4)

with equality if and only if K is an ellipsoid.
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This paper is organized as follows. In Section 2, we observe that Z̃pK is a dilation of

Γp(Rn+pK), where Γp(·) is the Lp centroid operation, and Rn+pK is the radial (n+ p)th mean

body of K. Section 3 contains the proofs of our main results. Note that the volume ratio

V (ΓpL)/V (L) take the minimum if and only if L is an ellipsoid (see [1]), while the volume

ratio V (Rn+pK)/V (K) take the minimum if and only if K is a simplex (see [5, p. 522]), we

found that Theorem 1 can not be obtained from the results above in [1] and [5]. However,

it seems that we could not get a proof using the same method as in [18]. Inspired by the

work of Lutwak, Yang, and Zhang [10], we prove our main theorem by utilizing the Steiner

symmetrization. In Section 4, two inclusion relationships are established: one of them is

between Z̃pK and ΓpΠ
∗K, the other is between Z̃pK and Z̃p(∆K), where Π∗K is the polar

projection body of K, and ∆K = (K −K)/2. The results of the case p = 1 are first obtained

in [18].

2. Preliminary

2.1. Definitions and notation. Let Rn denote the Euclidean n-dimensional space. Let Sn−1

denote the unit sphere, Bn the unit n-ball and o the origin in Rn. Denote by Kn the class of

convex bodies (compact, convex sets with non-empty interiors) in Rn, let Kn
o be the class of

members of Kn containing the origin in their interiors, and let Kn
s be the class of o-symmetric

members of Kn. If u ∈ Sn−1, we denote by u⊥ the (n− 1)-dimensional subspace orthogonal to

u, by lu the line through o parallel to u and by lu(x) the line through the point x parallel to u.

Lebesgue k-dimensional measure Vk in Rn, k = 1, . . . , n, can be identified with k-dimensional

Hausdorff measure in Rn. We also generally write V instead of Vn. Let ωn = V (Bn), and thus

nωn = Vn−1(S
n−1). Associated with a convex body K is its support function hK defined for all

x ∈ Rn\{0} by

hK(x) := max{x · y : y ∈ K}.

We shall use δ to denote the Hausdorff metric on Kn : If K,L ∈ Kn, δ(K,L) is defined by

δ(K,L) = max
u∈Sn−1

|hK(u)− hL(u)|,

or equivalently,

δ(K,L) = min{λ : K ⊆ L+ λBn and L ⊆ K + λBn}.

The projection body ΠK of a convex body K is defined in [14] by

hΠK(u) = Vn−1(K|u⊥) =
1

2

∫
Sn−1

|u · v|dSK(v),
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for each u ∈ Sn−1, where K|u⊥ is the orthogonal projection of K on u⊥, SK(·) is the surface

area measure of K.

A set L is star-shaped with respect to the point x if every line passing through x crosses the

boundary of L at exactly two points different from x. If L is a compact set that is star-shaped

with respect to x, its radial function ρL(x, z) : Rn\{x} → [0,∞) with respect to x is defined

by

ρL(x, z) = max{c : x+ cz ∈ L}, for all z ∈ Rn\{x}. (2.1)

When x is the origin, we also denote ρL(o, z) by ρL(z) and refer to it simply as the radial

function of L. By a star body we mean a compact set L whose radial function is positive and

continuous. Note that this implies o ∈ intL.

The Lp centroid body ΓpK of a star body K is defined by

hΓpK(u)
p =

1

V (K)

∫
K

|u · x|pdx =
1

(n+ p)V (K)

∫
Sn−1

|u · v|pρK(v)n+pdv, (2.2)

for all u ∈ Sn−1. We denote the polar body of K by K∗. The difference body DK of K is

defined by DK = K −K.

Let K ∈ Kn, for all r ≥ 0 and u ∈ Sn−1, define

EK(r, u) = {y ∈ u⊥ : |lu(y) ∩K| ≥ r}

and

aK(r, u) = Vn−1(EK(r, u)).

In [18] aK(r, u) is called the restricted chord projection function ofK. It is clear that EK(0, u) =

K|u⊥, and aK(0, u) = hΠK(u). When r > ρDK(u), aK(r, u) = 0.

The following inequality can be found in [5] or [18] that

V (K) ≥ 1

n
aK(0, u)ρDK(u), (2.3)

with equality if and only if K is a simplex.

If λ > 0, Zhang (see [18, (2.2)]) proved that∫ ∞

0

aK(r, u)r
λdr ≤ nλ+1β(λ+ 1, n)V (K)λ+1aK(0, u)

−λ, (2.4)

with equality if and only if K is a simplex.

Let K be a convex body and p > −1. The radial pth mean body RpK is defined in [5] by

ρRpK(z)
p =

1

V (K)

∫
K

ρK(x, z)
pdx, (2.5)
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and it has been shown that∫
K

ρK(x, u)
pdx =

∫ ∞

0

aK(r, u)r
pdr =

∫ ρDK(u)

0

aK(r, u)r
pdr. (2.6)

The formula

V (K) =

∫ ∞

0

aK(r, u)dr =

∫ ρDK(u)

0

aK(r, u)dr (2.7)

can be obtained from (2.6).

When p ≥ 0, it has also been proved in [5] that RpK is a o-symmetric convex body.

2.2. The Lp mean zonoids. Let K be a convex body and p ≥ 1, the Lp mean zonoid Z̃pK

of K is defined by (1.3). We can consistently define Z̃∞K by

hZ̃∞K(u) = max
x,y∈K

|u · (x− y)|, for all u ∈ Sn−1.

In fact Z̃∞K = DK. From Jensen’s inequality, it is obvious that

Z̃pK ⊆ Z̃qK ⊆ DK, for 1 ≤ p ≤ q.

By (1.3), (2.1), the Fubini theorem, (2.5) and (2.2)

h
Z̃pK

(z) =
( 1

V (K)2

∫
K

∫
K
|z · (x− y)|pdxdy

) 1
p

=
( 1

V (K)2

∫
K

∫
Sn−1

∫ ρK(y,v)

0
|z · v|prn+p−1drdvdy

) 1
p

=
( 1

(n+ p)V (K)2

∫
Sn−1

|z · v|p
∫
K
ρK(y, v)n+pdydv

) 1
p

(2.8)

=
( 1

(n+ p)V (K)

∫
Sn−1

|z · v|pρRn+pK(v)n+pdv
) 1

p
(2.9)

=
( V (Rn+pK)

(n+ p)V (K)

) 1
p
hΓp(Rn+pK)(z). (2.10)

From (2.10), h
Z̃pK

(z) is obviously a support function, and

Z̃pK =
( V (Rn+pK)

(n+ p)V (K)

) 1
p
Γp(Rn+pK). (2.11)

Since Rn+pK is o-symmetric, 1
(n+p)V (K)ρRn+pK(v)n+p can be seen as a density function of an even

Borel measure, thus Z̃pK is a Lp zonoid from (2.9) and (1.2).

Using (2.8) and (2.6), we have the following useful formula

h
Z̃pK

(z) =
( 1

(n+ p)V (K)2

∫
Sn−1

|z · v|p
∫ ρDK(u)

0
aK(r, u)rn+pdrdv

) 1
p
. (2.12)
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3. Proof of main result

We first give some notation and definitions about Steiner symmetrization that will be used in this

Section. Let K be a convex body and u ∈ Sn−1, denote by Ku the image of the orthogonal projection

of K onto u⊥. We write ℓu(K; y′) : Ku → R and ℓu(K; y′) : Ku → R for the overgraph and undergraph

functions of K in the direction u; i.e.

K = {y′ + tu : −ℓu(K; y′) ≤ t ≤ ℓu(K; y′) for y′ ∈ Ku}.

Thus the Steiner symmetral SuK of K ∈ Kn in direction u can be defined as the body whose

orthogonal projection onto u⊥ is identical to that ofK and whose overgraph and undergraph functions

are given by

ℓu(SuK; y′) = ℓu(SuK; y′) =
1

2
[ℓu(K; y′) + ℓu(K; y′)].

For y′ ∈ Ku, define my′ = my′(u) by

my′(u) =
1

2
[ℓu(K; y′)− ℓu(K; y′)].

So that the midpoint of the chord K∩ lu(y
′) is y′+my′(u)u, where lu(y

′) is the line through y′ parallel

to u. The length |K ∩ lu(y
′)| of this chord is denote by σy′ = σy′(u).

Throughout this section, we denote x = (x′, s) ∈ Rn−1 × R, and we will usually write hK(x′, s)

rather than hK((x′, s)).

The following lemma will be used in the proofs of our theorems.

Lemma 3.1. ([10, Lemma 1.2]) Suppose K ∈ Kn
o and u ∈ Sn−1. For y′ ∈ relintKu, the overgraph

and undergraph functions of K in direction u are given by

ℓu(K; y′) = min
x′∈u⊥

{hK(x′, 1)− x′ · y′}, (3.1a)

and

ℓu(K; y′) = min
x′∈u⊥

{hK(x′,−1)− x′ · y′}. (3.1b)

We refer to [10] for a proof, and [1] for an application to the proof of the Lp Busemann-Petty

centroid inequality.

We next show the operation Z̃p : Kn → Kn
s is continuous.

Lemma 3.2. Suppose p ≥ 1,Ki ∈ Kn, and Ki → K ∈ Kn, then Z̃pKi → Z̃pK.

Proof. Suppose u0 ∈ Sn−1. We will show that

h
Z̃pKi

(u0) → h
Z̃pK

(u0).

Since Ki → K implies {Ki} are uniformly bounded, there is R > 0, such that Ki ⊆ RBn.
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By (1.3) and Minkowski’s inequality, we have

|h
Z̃pKi

(u0)− h
Z̃pK

(u0)| =
∣∣∣( 1

V (Ki)2

∫
RBn

∫
RBn

1Ki(x)1Ki(y)|u0 · (x− y)|pdxdy
) 1

p

−
( 1

V (K)2

∫
RBn

∫
RBn

1K(x)1K(y)|u0 · (x− y)|pdxdy
) 1

p
∣∣∣

≤
( 1

V (Ki)2

∫
RBn

∫
RBn

|1Ki(x)1Ki(y)− 1K(x)1K(y)||u0 · (x− y)|pdxdy
) 1

p

+
∣∣∣(( 1

V (Ki)2
− 1

V (K)2
)

∫
RBn

∫
RBn

1K(x)1K(y)|u0 · (x− y)|pdxdy
) 1

p
∣∣∣.

Obviously these two integrals converge to 0 when Ki → K in the Hausdorff metric, thus h
Z̃pKi

(u0) →
h
Z̃pK

(u0).

Since for support functions on Sn−1 pointwise and uniform convergence are equivalent, we complete

the proof. �

We show that the operator Z̃p : Kn → Kn
s is GL(n) covariant in the following lemma.

Lemma 3.3. Suppose p ≥ 1. For a convex body K ∈ Kn, and a linear transform ϕ ∈ GL(n), then

Z̃p(ϕK) = ϕ(Z̃pK).

Proof. By (1.3) and the substitution x = ϕx1, y = ϕy1 we have

h
Z̃p(ϕK)

(z) =
( 1

V (ϕK)2

∫
ϕK

∫
ϕK

|z · (x− y)|pdxdy
) 1

p

=
( 1

V (ϕK)2
|ϕ|2

∫
K

∫
K
|z · (ϕx− ϕy)|pdx1dy1

) 1
p

=
( 1

V (K)2

∫
K

∫
K
|ϕtz · (x1 − y1)|pdx1dy1

) 1
p

= h
Z̃pK

(ϕtz) = h
ϕ(Z̃pK)

(z).

Thus, Z̃p(ϕK) = ϕ(Z̃pK). �

The following lemma plays a key role in the proof of Theorem 1.

Lemma 3.4. Let K ∈ Kn, p ≥ 1, and u ∈ Sn−1. If z′1, z
′
2 ∈ u⊥, then

h
Z̃p(SuK)

(
z′1 + z′2

2
, 1) ≤ 1

2
h
Z̃pK

(z′1, 1) +
1

2
h
Z̃pK

(z′2,−1), (3.2a)

and

h
Z̃p(SuK)

(
z′1 + z′2

2
,−1) ≤ 1

2
h
Z̃pK

(z′1, 1) +
1

2
h
Z̃pK

(z′2,−1). (3.2b)

Equality in (3.2a) or (3.2b) implies that all of the chords of K parallel to u, have midpoints that lie

in a hyperplane.
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Proof. From the definition of Lp mean zonoid, we have

h
Z̃pK

(z′1, 1) =
( 1

V (K)2

∫
K

∫
K
|(z′1, 1) · (x− y)|pdxdy

) 1
p

=
( 1

V (K)2

∫
Ku

∫ my′+
1
2
σy′

my′−
1
2
σy′

∫
Ku

∫ mx′+
1
2
σx′

mx′−
1
2
σx′

|(z′1, 1) · ((x′, s1)− (y′, s2))|pds1dx′ds2dy′
) 1

p

=
( 1

V (K)2

∫
Ku

∫ my′+
1
2
σy′

my′−
1
2
σy′

∫
Ku

∫ mx′+
1
2
σx′

mx′−
1
2
σx′

|z′1 · (x′ − y′) + s1 − s2|pds1dx′ds2dy′
) 1

p

=
( 1

V (K)2

∫
Ku

∫ 1
2
σy′

− 1
2
σy′

∫
Ku

∫ 1
2
σx′

− 1
2
σx′

|z′1 · (x′ − y′) + t1 − t2 +mx′ −my′ |pdt1dx′dt2dy′
) 1

p

=
( 1

V (SuK)2

∫
SuK

∫
SuK

|z′1 · (x′ − y′) + t1 − t2 +mx′ −my′ |pdt1dx′dt2dy′
) 1

p
,

by making the change of variables t1 = −mx′ + s1, t2 = −my′ + s2, and

h
Z̃pK

(z′2,−1) =
( 1

V (K)2

∫
K

∫
K
|(z′2,−1) · (x− y)|pdxdy

) 1
p

=
( 1

V (K)2

∫
Ku

∫ my′+
1
2
σy′

my′−
1
2
σy′

∫
Ku

∫ mx′+
1
2
σx′

mx′−
1
2
σx′

|(z′2,−1) · ((x′, s1)− (y′, s2))|pds1dx′ds2dy′
) 1

p

=
( 1

V (K)2

∫
Ku

∫ my′+
1
2
σy′

my′−
1
2
σy′

∫
Ku

∫ mx′+
1
2
σx′

mx′−
1
2
σx′

|z′2 · (x′ − y′)− s1 + s2|pds1dx′ds2dy′
) 1

p

=
( 1

V (K)2

∫
Ku

∫ 1
2
σy′

− 1
2
σy′

∫
Ku

∫ 1
2
σx′

− 1
2
σx′

|z′2 · (x′ − y′) + t1 − t2 −mx′ +my′ |pdt1dx′dt2dy′
) 1

p

=
( 1

V (SuK)2

∫
SuK

∫
SuK

|z′2 · (x′ − y′) + t1 − t2 −mx′ +my′ |pdt1dx′dt2dy′
) 1

p
,

by making the change of variables t1 = mx′ − s1, t2 = my′ − s2.

Then, by Minkowski’s inequality, we have

2h
Z̃p(SuK)

(
z′1 + z′2

2
, 1) = 2

( 1

V (SuK)2

∫
SuK

∫
SuK

|(z
′
1 + z′2
2

, 1) · (x− y)|pdxdy
) 1

p

=
( 1

V (SuK)2

∫
SuK

∫
SuK

|(z′1 + z′2) · (x′ − y′) + 2t1 − 2t2|pdt1dx′dt2dy′
) 1

p

≤
( 1

V (SuK)2

∫
SuK

∫
SuK

|z′1 · (x′ − y′) + t1 − t2 +mx′ −my′ |pdt1dx′dt2dy′
) 1

p

+
( 1

V (SuK)2

∫
SuK

∫
SuK

|z′2 · (x′ − y′) + t1 − t2 −mx′ +my′ |pdt1dx′dt2dy′
) 1

p

= h
Z̃pK

(z′1, 1) + h
Z̃pK

(z′2,−1).

Thus we established (3.2a), and (3.2b) can be obtained by the same way.
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Since the inequality is obtained by Minkowski’s inequality, it takes equality in (3.2a) or (3.2b) if

and only if there is λ ≥ 0, such that

z′1 · (x′ − y′) + t1 − t2 +mx′ −my′ = λ(z′2 · (x′ − y′) + t1 − t2 −mx′ +my′),

for all (x′, t1), (y
′, t2) ∈ K. This is equivalent to

(z′1 − λz′2) · (x′ − y′) + (1 + λ)(mx′ −my′) = (λ− 1)(t1 − t2), (3.3)

for all (x′, t1), (y
′, t2) ∈ K.

If we fix x′, y′ and change t1, t2 in (3.3) such that (x′, t1), (y
′, t2) ∈ K, then the left of (3.3) will

not change, this implies that λ = 1. Thus, equality in (3.2a) or (3.2b) implies all of the chords of K

parallel to u, have midpoints that lie in a hyperplane. �

The theorems will be proved using the following lemma.

Lemma 3.5. Let K ∈ Kn, p ≥ 1, and u ∈ Sn−1, then

Z̃p(SuK) ⊆ Su(Z̃pK). (3.4)

If the inclusion is an identity then all of the chords of K parallel to u, have midpoints that lie in a

hyperplane.

Proof. Suppose y′ ∈ relint(Z̃pK)u. By Lemma 3.1 there exist z′1 = z′1(y
′) and z′2 = z′2(y

′) in u⊥ such

that

ℓu(Z̃pK; y′) = h
Z̃pK

(z′1, 1)− z′1 · y′,

ℓu(Z̃pK; y′) = h
Z̃pK

(z′2,−1)− z′2 · y′.

By (3.2) and (3.1), we have

ℓu(Su(Z̃pK); y′) =
1

2
ℓu(Z̃pK; y′) +

1

2
ℓu(Z̃pK; y′)

=
1

2
(h

Z̃pK
(z′1, 1)− z′1 · y′) +

1

2
(h

Z̃pK
(z′2,−1)− z′2 · y′)

=
1

2
h
Z̃pK

(z′1, 1) +
1

2
h
Z̃pK

(z′2,−1)− (
1

2
z′1 +

1

2
z′2) · y′

≥ h
Z̃p(SuK)

(
z′1 + z′2

2
, 1)− (

1

2
z′1 +

1

2
z′2) · y′

≥ min
x′∈u⊥

{h
Z̃p(SuK)

(x′, 1)− x′ · y′}

= ℓu(Z̃p(SuK); y′),

and

ℓu(Su(Z̃pK); y′) =
1

2
ℓu(Z̃pK; y′) +

1

2
ℓu(Z̃pK; y′)

=
1

2

(
h
Z̃pK

(z′1, 1)− z′1 · y′
)
+

1

2

(
h
Z̃pK

(z′2,−1)− z′2 · y′
)
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=
1

2
h
Z̃pK

(z′1, 1) +
1

2
h
Z̃pK

(z′2,−1)− (
1

2
z′1 +

1

2
z′2) · y′

≥ h
Z̃p(SuK)

(
z′1 + z′2

2
,−1)− (

1

2
z′1 +

1

2
z′2) · y′

≥ min
x′∈u⊥

{h
Z̃p(SuK)

(x′,−1)− x′ · y′}

= ℓu(Z̃p(SuK); y′).

If the inclusion is an identity, it must take equality in both (3.2a) and (3.2b), this implies all of

the chords of K parallel to u, have midpoints that lie in a hyperplane. �

Proof of Theorem 1. Choose a sequence of directions {ui} such that the sequence {Ki} defined

by

Ki+1 = SuiKi, K0 = K

converges to BK , where BK is the n-ball such that V (K) = V (BK).

Since the Steiner transform keeps the volume, by Lemma 3.5 and Lemma 3.2 we have

V (Z̃pK) ≥ V (Z̃pBK).

If K is an ellipsoid, then V (Z̃pK) = V (Z̃pBK) according to Lemma 3.3.

Conversely, if V (Z̃pK) = V (Z̃pBK), the inclusion in (3.4) must be identity for all u ∈ Sn−1. This

shows that all of the chords ofK parallel to u, have midpoints that lie in a hyperplane for all u ∈ Sn−1,

and thus K is an ellipsoid. �
Thus, we have

V (Z̃pK) ≥ V (Z̃pBK), (3.5)

where BK is the n-ball with the same volume of K, with equality if and only if K is an ellipsoid.

We claim that [V (Z̃pBK)

ωn

] 1
n
=

( 1

V (BK)2

∫
BK

∫
BK

|u · (x− y)|pdxdy
) 1

p

=
( (n+ p)ωn+p

nω2ωp−1ωnV (K)2

∫
BK

∫
BK

|x− y|pdxdy
) 1

p
.

Since h
Z̃pBK

(u) is a constant independent of u, it is clear that Z̃pBK is a n-ball, we get the first

equality. The second equality is obtained by integral∫
Sn−1

|u · (x− y)|pdu =
(n+ p)ωn+p

ω2ωp−1
|x− y|p.

By using the spherical polar coordinates, (2.1), the Fubini theorem, and (2.6),∫
BK

∫
BK

|(x− y)|pdxdy =

∫
BK

∫
Sn−1

∫ ρBK
(y,u)

0
rn+p−1drdudy

=
1

n+ p

∫
Sn−1

∫
BK

ρBK
(y, u)n+pdydu
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=
1

n+ p

∫
Sn−1

∫ ρDBK
(u)

0
aBK

(r, u)rn+pdrdu

=
ωn−1V (K)

2n+p
n

n+ p

∫
Sn−1

∫ 2

0
(1− (

r

2
)2)

n−1
2 rn+pdrdu

=
2n+pnωnωn−1

n+ p
β(

n+ 1

2
,
n+ p+ 1

2
)V (K)2+

p
n

=
2n+pnωnω2n+p

(n+ p)ω2ωn+p−1
V (K)2+

p
n .

Combining these together, we have[V (Z̃pBK)

ωn

] 1
n
=

[2n+pωn+pω2n+p

ω2
2ωp−1ωn+p−1

] 1
p
V (K)

1
n . (3.6)

From (3.5) and (3.6), we get (1.4). �

4. Further results

In this section, we assume that

CK(n, p) = n
n+p+1

p β(n+ p+ 1, n)
1
pV (K)

n+p−1
p V (Π∗K)

1
p .

Theorem 4.1. Let K ∈ Kn and p ≥ 1, then

Z̃pK ⊆ CK(n, p)ΓpΠ
∗K,

with equality if and only if K is a simplex.

Proof. Let u ∈ Sn−1. We will prove

h
Z̃pK

(u) ≤ CK(n, p)hΓpΠ∗K(u), (4.1)

with equality for some u if and only if K is a simplex.

By (2.12) and (2.4), we have

h
Z̃pK

(u) ≤
(
nn+pβ(n+ p, n+ 1)V (K)n+p−1

∫
Sn−1

|uv|paK(0, v)−n−pdv
) 1

p
. (4.2)

By (2.2) and the fact that ρΠ∗K(v) = aK(0, v)−1,

hΓpΠ∗K(u) =
( 1

(n+ p)V (Π∗K)

∫
Sn−1

|uv|paK(0, v)−n−pdv
) 1

p
. (4.3)

Then, (4.2) and (4.3) imply (4.1), with equality if and only if K is a simplex. �

The following lemma is crucial in the proof of Theorem 4.3.
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Lemma 4.2. Suppose p ≥ 1, K ∈ Kn. Let ∆K = 1
2(K −K), r ≥ 0 and u ∈ Sn−1, then

aK(r, u) ≤ a∆K(r, u), (4.4)

with equality for all (r,u) if and only if K is symmetric.

Proof. Let L ∈ Kn, denote GL(r, u) by

GL(r, u) = {x ∈ L|ρL(x, u) + ρL(x,−u) ≥ r}.

We first prove that

1

2
GK(r, u)− 1

2
GK(r, u) ⊆ G∆K(r, u). (4.5)

Let x, y ∈ GK(r, u), it is easy to see that

x+ ρK(x, u)u− y + ρK(y,−u)u ∈ K −K,

x− ρK(x,−u)u− y − ρK(y, u)u ∈ K −K.

Then

ρ∆K(
x− y

2
, u) + ρ∆K(

x− y

2
,−u) ≥ ρK(x, u) + ρK(y,−u)

2
+

ρK(x,−u) + ρK(y, u)

2
≥ r,

we have (x− y)/2 ∈ G∆K(r, u), for arbitrary x, y ∈ K, thus we get (4.5).

Noticing that GK(r, u)|u⊥ = EK(r, u), using the Brunn-Minkowski’s inequality, we have

a∆K(r, u)
1

n−1 = V [(K/2−K/2)r|u⊥]
1

n−1

≥ V [(GK(r, u)/2−GK(r, u)/2)|u⊥]
1

n−1

≥ 1

2
V (GK(r, u)|u⊥)

1
n−1 +

1

2
V (−GK(r, u)|u⊥)

1
n−1

= aK(r, u)
1

n−1 .

If K is symmetric, it is clear that aK(r, u) = a∆K(r, u) for all (r, u).

Conversely, if equality holds in (4.4) for all (r, u), we have V (K) = V (∆K) by (2.7). By using

Brunn-Minkowski’s inequality, we have V (∆K) ≥ V (K), with equality if and only ifK is a translation

of −K. Thus we complete the proof. �

Theorem 4.3. Suppose p ≥ 1. Let K ∈ Kn and ∆K = 1
2(K −K), then

Z̃pK ⊆ [V (∆K)/V (K)]
2
p Z̃p(∆K),

with equality if and only if K is symmetric.
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Proof. For each u ∈ Sn−1, by (2.12) and Lemma 4.2, we have

h
Z̃pK

(u) ≤ [V (∆K)/V (K)]
2
ph

Z̃p(∆K)
(u).

Then

Z̃pK ⊆ [V (∆K)/V (K)]
2
p Z̃p(∆K),

with equality if and only if

aK(r, u) = a∆K(r, u)

for all r ≥ 0 and u ∈ Sn−1, this is equivalent to K is symmetric by Lemma 4.2. �
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