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Abstract. In 1999, Dar conjectured if there is a stronger version of the celebrated
Brunn-Minkowski inequality. However, as pointed out by Campi, Gardner, and
Gronchi in 2011, this problem seems to be open even for planar o-symmetric convex
bodies. In this paper, we give a positive answer to Dar’s conjecture for all planar
convex bodies. We also give the equality condition of this stronger inequality.

For planar o-symmetric convex bodies, the log-Brunn-Minkowski inequality was
established by Böröczky, Lutwak, Yang, and Zhang in 2012. It is stronger than
the classical Brunn-Minkowski inequality, for planar o-symmetric convex bodies.
Gaoyong Zhang asked if there is a general version of this inequality. Fortunately,
the solution of Dar’s conjecture, especially, the definition of “dilation position”,
inspires us to obtain a general version of the log-Brunn-Minkowski inequality. As
expected, this inequality implies the classical Brunn-Minkowski inequality for all
planar convex bodies.

1. Introduction

Let Kn be the class of convex bodies (compact, convex sets with non-empty inte-
riors) in Euclidean n-space Rn, and let Kn

o be the class of members of Kn contain-
ing o (the origin) in their interiors. The classical Brunn-Minkowski inequality (see,
e.g., [17, 18,25,33]) states that

|K + L|
1
n ≥ |K|

1
n + |L|

1
n , (1.1)

with equality if and only if K and L are homothetic. Here K,L ∈ Kn, | · | denotes
the n-dimensional Lebesgue measure, K + L denotes the Minkowski sum of K and
L:

K + L = {x+ y : x ∈ K and y ∈ L}.
In his survey article, Gardner [17] summarized the history of the Brunn-Minkowski

inequality and some applications in many other fields. For recent related work about
this inequality, see e.g., [5, 13–15,19,30,37].
In 1999, Dar [9] conjectured that

|K + L|
1
n ≥ M(K,L)

1
n +

|K| 1n |L| 1n
M(K,L)

1
n

, (1.2)
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for convex bodies K and L. Here M(K,L) is defined by

M(K,L) = max
x∈Rn

|K ∩ (x+ L)|.

Dar’s conjecture has a close relationship with the stability of the Brunn-Minkowski
inequality, and plays an important role in asymptotic geometric analysis. The sta-
bility estimates are actually strong forms of Brunn-Minkowski inequality in special
circumstances. Original works about this issue are due to Diskant, Groemer, and
Schneider referred in [10,12,22–24,33]. Dar [9] pointed out that the “weak estimates”
about the “geometric Banach-Mazur distance” cannot be essentially improved. In
fact, this might be why Dar proposed his conjecture (1.2).
Figalli, Maggi, and Pratelli [13,14] tackled the stability problem for convex bodies

with a more natural distance, i.e., “relative asymmetry” (which has a close relation-
ship with the functionalM(K,L)), by using mass transportation approach. Using the
same distance as in [13, 14], Segal [34] improved the constants that appeared in the
stability versions in these inequalities for convex bodies. He also showed in [34, Page
391] that Dar’s conjecture (1.2) will lead to a stronger stability version of Brunn-
Minkowski inequality for convex bodies.
Dar [9] showed that (1.2) implies (1.1) for convex bodies. He also proved (1.2) in

some special cases, such as:
(1) K is unconditional with respect a basis {ei}ni=1 and L = TK, where T is linear

and diagonal with respect to the same basis;
(2) K and L are ellipsoids;
(3) K ⊂ R2 is a parallelogram and L is a planar symmetric convex body;
(4) K is a simplex and L = −K.
In their article, Campi, Gardner, and Gronchi [8, Page 1208] described this as “a

fascinating conjecture”. However, they also pointed out that Dar’s conjecture “seems
to be open even for planar o-symmetric bodies”. Besides, the equality condition of
(1.2) is also unknown.
In this paper, we prove that the inequality (1.2) holds for all planar convex bodies,

and we also give the equality condition.

Theorem 1. Let K,L be planar convex bodies. Then, we have

|K + L|
1
2 ≥ M(K,L)

1
2 +

|K| 12 |L| 12
M(K,L)

1
2

. (1.3)

Equality holds if and only if one of the following conditions holds:
(i) K and L are parallelograms with parallel sides, and |K| = |L|;
(ii) K and L are homothetic.

In our proof of Theorem 1, the definition of “dilation position” plays a key role.
It makes us be able to do a further study on the other stronger version of (1.1), i.e.,
the log-Brunn-Minkowski inequality.
The log-Brunn-Minkowski inequality for planar o-symmetric (symmetry with re-

spect to the origin) convex bodies was established by Böröczky, Lutwak, Yang, and
Zhang [5]. It states that:
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If K and L are o-symmetric convex bodies in the plane, then for all real λ ∈ [0, 1],

|(1− λ) ·K +o λ · L| ≥ |K|1−λ|L|λ. (1.4)

When λ ∈ (0, 1), equality in (1.4) holds if and only if K and L are dilates or K
and L are parallelograms with parallel sides. Here hK and hL are support functions
(see Section 2 for the definition); (1 − λ) · K +o λ · L is the geometric Minkowski
combination of K and L, which is defined in [5] for K,L ∈ Kn

o as the Aleksandrov
body (see, e.g., [1]) associated with the function h1−λ

K hλ
L.

For o-symmetric convex bodies K and L, Böröczky, Lutwak, Yang, and Zhang [5]
also established the following log-Minkowski inequality:∫

S1

log
hL

hK

dVK ≥ |K|
2

log
|L|
|K|

. (1.5)

Equality holds if and only if K and L are dilates or K and L are parallelograms with
parallel sides.
On one hand, we observe that the equality condition of (1.3) is similar to (1.4)

and (1.5), equivalently to say, the uniqueness of the logarithmic Minkowski problem,
see [5, 6, 35, 36] for details. We study the relationship between Dar’s conjecture and
the log-Brunn-Minkowski inequality in Section 4.
On the other hand, it is nature to ask if there is a general version of (1.4) for planar

convex bodies that are not o-symmetric. Although there is a counterexample shown
in [5] that: let K be an o-centered cube, and L be a translate of K, then (1.4) cannot
hold; however, there exists a translate of K, say, K, such that K and L satisfy (1.4).
Here we only require that K and L are at a “dilation position” (see the definition
below).
The following Problem was proposed by Professor Gaoyong Zhang when he was

visiting Shanghai University in 2013.

Problem 1. Let K,L ∈ K2. Is there a “good” position of the origin o, such that K
and an “appropriate” translate of L satisfy (1.4)?

The following Theorem 2 is an answer to Problem 1. Before this, we give the
definition of the so-called dilation position.
Let K,L ∈ Kn. We say K and L are at a dilation position, if o ∈ K ∩ L, and

r(K,L)L ⊂ K ⊂ R(K,L)L. (1.6)

Here r(K,L) and R(K,L) are relative inradius and relative outradius (e.g., see [5,11,
21,32]) of K with respect to L, i.e.,

r(K,L) = max{t > 0 : x+ tL ⊂ K and x ∈ Rn},
R(K,L) = min{t > 0 : K ⊂ x+ tL and x ∈ Rn}.

It is clear that
r(K,L) = 1/R(L,K). (1.7)

By the definition, it is clear that two o-symmetric convex bodies are always at a
dilation position. Therefore, Theorem 2 and Theorem 3 below are extensions of (1.4)
and (1.5).
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When K and L are at a dilation position, by Lemma 2.1, o may be in ∂K ∩ ∂L.
Therefore, we should extend the definition of “geometric Minkowski combination”
slightly. Let K,L ∈ Kn with o ∈ K ∩L. The geometric Minkowski combination of K
and L is defined as follows:

(1− λ) ·K +o λ · L :=
∩

u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)
1−λhL(u)

λ}, (1.8)

for λ ∈ (0, 1); (1 − λ) ·K +o λ · L := K for λ = 0; and (1 − λ) ·K +o λ · L := L for
λ = 1.
Lemma 2.2 shows that (1 − λ) · K +o λ · L defined by (1.8) is always a convex

body, as long as K and L are at a dilation position. The following is the general
log-Brunn-Minkowski inequality for planar convex bodies.

Theorem 2. Let K,L ∈ K2 with o ∈ K ∩ L. If K and L are at a dilation position,
then for all real λ ∈ [0, 1],

|(1− λ) ·K +o λ · L| ≥ |K|1−λ|L|λ. (1.9)

When λ ∈ (0, 1), equality in the inequality holds if and only if K and L are dilates
or K and L are parallelograms with parallel sides.

The following is the general log-Minkowski inequality for planar convex bodies.

Theorem 3. Let K,L ∈ K2 with o ∈ K ∩ L. If K and L are at a dilation position,
then ∫

S1

log
hL

hK

dVK ≥ |K|
2

log
|L|
|K|

. (1.10)

Equality holds if and only if K and L are dilates or K and L are parallelograms with
parallel sides.

Here VK denotes the cone-volume measure (see Section 2 for its definition). It can
be seen from (1.6) that {hK = 0} = {hL = 0}. The integral in (1.10) should be
understood to be taken on S1 except the set {hK = 0}, which is of measure 0, with
respect to the measure VK .
For o-symmetric convex bodies in the plane, it has been shown in [5] that the log-

Brunn-Minkowski inequality (1.4) is stronger than the classical Brunn-Minkowski
inequality (1.1). In this paper, by Lemma 2.1 and Theorem 2, together with the
fact (1 − λ) · K +o λ · L ⊂ (1 − λ)K + λL, we see that (1.9) implies the classical
Brunn-Minkowski inequality (1.1) for all planar convex bodies.
In [5], the proofs of (1.4) and (1.5) use the o-symmetry in several crucial ways.

However, in the general case, our proofs require new approaches. First, we prove
(1.10) for bodies in K2

o under the assumption that the cone-volume measure of a
body satisfies the strict subspace concentration inequality. See Section 2 for the def-
inition and the development history of the subspace concentration condition. Then,
by establishing 2 approximation lemmas, we show that (1.10) does not require the
subspace concentration condition, and it holds even for the case that o is in the
boundary. That is to say, the definition of “dilation position” is natural.
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This paper is organized as follows. Section 2 contains the basic notation and
definitions, and some basic properties of dilation position. Section 3 proves Dar’s
conjecture of dimension 2, and gives the equation condition. In Section 4, we show
a connection between Dar’s conjecture and the log-Brunn-Minkowski inequality. In
Section 5, we show some properties of dilation position, and prove the equivalence of
the log-Brunn-Minkowski inequality (1.9) and the log-Minkowski inequality (1.10).
Section 6 proves a version of the log-Minkowski inequality (1.10) under an assump-
tion. In the final Section 7, we establish 2 approximation lemmas, and thereby prove
Theorems 2 and 3.

2. Preliminaries

In this section, we collect some basic notation and definitions about convex bodies,
and we show some basic properties of the dilation position. Good general references
for the theory of convex bodies are the books of Gardner [18], Gruber [25], Leichtweiss
[29], and Schneider [33].
Denote by Bn the unit ball in Rn. By intA, clA and ∂A we denote, respectively,

the interior, closure and boundary of A ⊂ Rn.
Suppose A1, A2, ..., Ak ⊂ Rn are compact. Denote by [A1, A2, ..., Ak] the convex

hull of A1 ∪A2 ∪ ... ∪Ak. When Ai = {xi} is a single point set, we will usually write
[A1, A2, ..., xi, ..., Ak] rather than [A1, A2, ..., {xi}, ..., Ak]. Thus, for distinctive points
x1 and x2, [x1, x2] is a line segment. We also denote by l(x1x2) the line through the
points x1, x2.
The scalar product “·” in Rn will often be used to describe hyperplanes and half-

spaces. A hyperplane can be written in the form

Hu,α = {x ∈ Rn : x · u = α}.

The hyperplane Hu,α bounds the two closed half-spaces

H−
u,α = {x ∈ Rn : x · u ≤ α},

H+
u,α = {x ∈ Rn : x · u ≥ α}.

Especially, a hyperplane in R2 is just a line. Similarly, lu,α denotes a line. We also
denote by l− and l+ two closed half-spaces bounded by the line l. Then, l−u,α and
l+u,α are two closed half-spaces bounded by lu,α; l(x1x2)

− and l(x1x2)
+ are two closed

half-spaces bounded by l(x1x2).
Let A ⊂ R2 be a subset and l a line. We say that l supports A at x if x ∈ A ∩ l

and either A ⊂ l+ or A ⊂ l−. We call l a support line of A at x. In this paper, if l is
a support line of a planar convex body K, we always assume K ⊂ l−.
The support function hK : Rn → R of a compact convex set K ⊂ Rn is defined, for

x ∈ Rn, by

hK(x) = max{x · y : y ∈ K}.
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We shall use dH to denote the Hausdorff metric on Kn. If K,L ∈ Kn, the Hausdorff
distance dH(K,L) is defined by

dH(K,L) = min{α : K ⊂ L+ αBn and L ⊂ K + αBn},

or equivalently,

dH(K,L) = max
u∈Sn−1

|hK(u)− hL(u)|.

Let K ∈ Kn. The surface area measure SK(·) of K is a Borel measure on Sn−1

defined for a Borel set ω ⊂ Sn−1 by

SK(ω) = Hn−1(ν−1
K (ω)),

where νK : ∂′K → Sn−1 is the Gauss map of K, defined on ∂′K, the set of points
of ∂K that have a unique outer unit normal, and Hn−1 is the (n − 1)-dimensional
Hausdorff measure.
Let K ∈ Kn with o ∈ K. The cone-volume measure VK of K is a Borel measure on

Sn−1 defined by

dVK =
1

n
hKdSK .

We shall collect the notion of subspace concentration condition, which is defined
in [6]. It limits how concentrated a measure can be in a subspace.
A finite Borel measure µ on Sn−1 is said to satisfy the subspace concentration

inequality if, for every subspace ξ of Rn, such that 0 < dimξ < n,

µ(ξ ∩ Sn−1) ≤ 1

n
µ(Sn−1)dimξ. (2.1)

The measure is said to satisfy the subspace concentration condition if in addition to
satisfying the subspace concentration inequality (2.1), whenever

µ(ξ ∩ Sn−1) =
1

n
µ(Sn−1)dimξ,

for some subspace ξ, then there exists a subspace ξ′, which is complementary to ξ in
Rn, so that also

µ(ξ′ ∩ Sn−1) =
1

n
µ(Sn−1)dimξ′,

or equivalently so that µ is concentrated on Sn−1 ∩ (ξ ∪ ξ′).
The measure µ on Sn−1 is said to satisfy the strict subspace concentration inequality

if the inequality in (2.1) is strict for each subspace ξ ⊂ Rn, such that 0 < dimξ < n.
It was first proved by He, Leng, and Li [27] that the cone-volume measures of

o-symmetric polytopes in Rn satisfy the subspace concentration inequality (2.1), see
Xiong [38] for an alternate proof. Böröczky, Lutwak, Yang, and Zhang [6] proved
that the subspace concentration condition is both necessary and sufficient for the
existence of a solution to the even logarithmic Minkowski problem. Recently, Henk
and Linke [28] proved that polytopes in Rn with centroid at o satisfy the subspace
concentration condition.
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Suppose K,L ⊂ Rn are convex bodies. The mixed volume V1(K,L) of K,L is
defined by

V1(K,L) =
1

n
lim
ϵ→0+

|K + ϵL| − |K|
ϵ

=
1

n

∫
Sn−1

hL(u)dSK(u). (2.2)

When n = 2, it is clear that V1(K,L) = V1(L,K), and we will write V (K,L) rather
than V1(K,L).
Let K be a convex body in Rn. For x ∈ K, the extended radial function ρK(x, z)

of K is defined by

ρK(x, z) = max{λ ≥ 0 : x+ λz ∈ K} for z ∈ Rn\{0}.
Note that x could be in the boundary of K. Generally, see [20] for the definition of
extended radial function of star-shaped set with respect to the point x.
Now we show some basic properties of the dilation position. Let K,L ∈ Kn with

o ∈ K ∩ L. K and L are at a dilation position if they satisfy (1.6). Note that:
(1) dilation position may not be unique, i.e., if K and L are at a dilation position,

then a translate of K and a translate of L may also be at a dilation position (e.g.,
K,L are parallelograms with parallel sides and centered at o);
(2) if K and L are at a dilation position, then K and a dilation of L are also at a

dilation position;
(3) for arbitrary convex bodies K and L, they may not be at a dilation position,

however, the following is true.

Lemma 2.1. Let K,L ∈ Kn.
(i) There is a translate of L, say L, and a translate of K, say K, so that K and L
are at a dilation position.
(ii) If K and L are at a dilation position, then o ∈ int(K ∩ L) ∪ (∂K ∩ ∂L).

Proof. Set R = R(K,L) and r = r(K,L).
(i) If K and L are homothetic, then R = r, and there exists a point t0 ∈ Rn such
that

K = rL+ t0.

Choose a p0 ∈ L. Let L = L− p0, and let K = rL. Then we are done.
Assume K and L are not homothetic, then R > r. There are points t1, t2 ∈ Rn so

that
Lr := rL+ t1 ⊂ K ⊂ RL+ t2 =: LR.

Let t′ be given by

t′ :=
R

R− r
t1 −

r

R− r
t2.

Let

L =
1

r
(Lr − t′) and K = K − t′.

By a direct computation, we see that K and L are at a dilation position.

(ii) By the definition, o ∈ K ∩ L and rL ⊂ K ⊂ RL. Then, there does not exist this
case: o ∈ ∂K but o ∈ intL. Otherwise, there is a δ > 0 such that δBn ⊂ L ⊂ 1

r
K. It
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follows that o ∈ intK, a contradiction. Similarly, there does not exist this case: o ∈
∂L but o ∈ intK. Therefore, either o ∈ ∂K ∩∂L or o ∈ intK ∩ intL = int(K ∩L). �
Let K ∈ Kn

o and L ∈ Kn. If K and L are at a dilation position, then, by Lemma
2.1, o ∈ intL, and

R(K,L) = max
u∈Sn−1

hK(u)

hL(u)
= max

u∈Sn−1

ρK(u)

ρL(u)
, (2.3)

and

r(K,L) = min
u∈Sn−1

hK(u)

hL(u)
= min

u∈Sn−1

ρK(u)

ρL(u)
. (2.4)

The following lemma shows that (1− λ) ·K +o λ · L is well defined for K,L ∈ Kn

that at a dilation position.

Lemma 2.2. Let K,L ∈ Kn with o ∈ K ∩ L. Suppose K and L are at a dilation
position. Then, for all real λ ∈ [0, 1], the geometric Minkowski combination of K and
L defined by (1.8) is a convex body.
Moreover, (1 − λ) · K +o λ · L → K as λ → 0, and (1 − λ) · K +o λ · L → L as

λ → 1, with respect to the Hausdorff measure.

Proof. Set r = r(K,L), and R = R(K,L). Since (1 − λ) · K +o λ · L is defined by
the intersection of closed and convex sets, it is also closed and convex. It remains
to show that (1 − λ) · K +o λ · L is bounded, and has interior points. Since rL ⊂
K ⊂ RL, we have rhK(u) ≤ hL(u) ≤ RhK(u) for all u ∈ Sn−1. It follows that
rλhK(u) ≤ hK(u)

1−λhL(u)
λ ≤ RλhK(u) for all u ∈ Sn−1 and λ ∈ (0, 1). This and the

fact K =
∩

u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)} show that

rλK ⊂ (1− λ) ·K +o λ · L ⊂ RλK. (2.5)

Since (1 − λ) ·K +o λ · L := K for λ = 0, and (1 − λ) ·K +o λ · L := L for λ = 1,
hence (2.5) holds even for λ ∈ {0, 1}. Therefore (1− λ) ·K +o λ · L is bounded, and
has interior points, for all λ ∈ [0, 1].
From (2.5), it is easy to see that (1 − λ) ·K +o λ · L → K as λ → 0. In a similar

way, it follows that (1− λ) ·K +o λ · L → L as λ → 1. �
In this paper, we shall make use of the overgraph and undergraph functions. Let

K ∈ Kn. For u ∈ Sn−1, denote by Ku the image of the orthogonal projection of K
onto u⊥. Define the overgraph function f(K; x) and undergraph function g(K; x) of
K as follows:

K = {x+ tu : −g(K;x) ≤ t ≤ f(K; x) for x ∈ Ku}. (2.6)

Then, f(K; x) and g(K;x) are concave on Ku.

3. Proof of Dar’s conjecture of dimension 2

In order to prove Theorem 1, we need 7 Lemmas. The relative Bonnesen inequality
plays an important role, it states that:
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Lemma 3.1. [5] If K,L ∈ K2, then for r(K,L) ≤ t ≤ R(K,L),

|K| − 2tV (K,L) + t2|L| ≤ 0. (3.1)

The inequality is strict whenever r(K,L) < t < R(K,L). When t = r(K,L), equality
will occur in (3.1) if and only if K is the Minkowski sum of a dilation of L and a
line segment. When t = R(K,L), equality will occur in (3.1) if and only if L is the
Minkowski sum of a dilation of K and a line segment.

Bonnesen [4] proved this inequality for L = B2; the proof for the relative case was
established by Blaschke [2] and may also be found in [16]. We refer to [5, Lemma
4.1] for a detailed proof. Further study of Bonnesen-type inequalities can be seen
in [3, 12,21,32].

Lemma 3.2. Let K,L ∈ K2. Suppose that K ∩ L has nonempty interior. Then, the
set ∂K\∂L is the union of at most countably many disjoint connected open subsets
(with respect to the relative topology in ∂K) of ∂K.

Proof. Let po ∈ int(K ∩ L). Then, we have

∂K\∂L = {x ∈ ∂K : ρL(po, x− po) ̸= 1}. (3.2)

Suppose there exists a point x0 ∈ ∂K ∩ ∂L. Without loss of generality, we assume
x0−po

∥x0−po∥ = (1, 0), where ∥ ·∥ denotes the Euclidean norm, and (cos θ, sin θ) denotes the

coordinate of a unit vector. Note that the map θ 7→ (cos θ, sin θ) is a homeomorphism
from [0, 2π) to S1. We define the function gK(θ) of a planar convex body K by

gK(θ) := ρK(po, (cos θ, sin θ)) for θ ∈ [0, 2π). (3.3)

It is clear that the map θ 7→ po + gK(θ)(cos θ, sin θ) is a homeomorphism from [0, 2π)
to ∂K, and θ 7→ po + gL(θ)(cos θ, sin θ) is a homeomorphism from [0, 2π) to ∂L.
Notice that the set {θ ∈ [0, 2π) : gK(θ) ̸= gL(θ)} is open on R1, because gK(0) =

gL(0). By the structure of open sets on a line, the set {θ ∈ [0, 2π) : gK(θ) ̸= gL(θ)}
is the union of at most countably many disjoint open intervals (αi, βi). It is also easy
to see that gK(αi) = gL(αi) and gK(βi) = gL(βi).
Note that {x ∈ ∂K : ρL(po, x− po) ̸= 1} is just the image set

{po + gK(θ)(cos θ, sin θ) : gK(θ) ̸= gL(θ) and θ ∈ [0, 2π)},
and the map θ 7→ gK(θ)(cos θ, sin θ) is a homeomorphism from [0, 2π) to ∂K. Thus,
we complete the proof of this lemma. �
Now we give the definition of an arc. Let K,L ∈ K2. Suppose that K ∩ L has

nonempty interior. From Lemma 3.2, we have

∂K\∂L =
∪
i∈I

(ãibi)K .

Here I contains at most countably many elements, (ãibi)K are disjoint connected open
subsets (with respect to the relative topology in ∂K) of ∂K, and ai, bi ∈ ∂K ∩∂L are

endpoints of (ãibi)K . Note ai, bi /∈ (ãibi)K . We call (ãibi)K an arc on ∂K with respect

to L (or simply arc), for i ∈ I. The arc (ãibi)K is precisely the boundary part of K
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from ai to bi counterclockwise. In addition, (ãibi)L, i ∈ I, are precisely all the arcs
on ∂L with respect to K.
Note that ∂K\∂L is the union of (∂K\L) and (∂K∩ intL), two open subsets (with

respect to the relative topology in ∂K) of ∂K. Thus, an arc (ãibi)K is either contained
in (∂K\L) or contained in (∂K ∩ intL).

Lemma 3.3. Let K,L ∈ K2. Suppose Lr = r(K,L)L + t1 ⊂ K and Lr ̸= K, where

t1 ∈ R2. Let (ãb)K ⊂ ∂K\Lr be an arc on ∂K with respect to Lr. Suppose that (ãb)K
is contained in l−(ab). Then, the arc (ãb)K satisfies the following property (P):
(P): there are two support lines: l1 support K at a, and l2 support K at b, such that
l1 ∩ l2 ⊂ intl−(ab).

Proof. At the beginning, we will give an equivalent statement of property (P).
Set u = (a − b)/∥a − b∥. Let v be the unit vector orthogonal to u and such that

l+(ab) = l+v,α for some α. Choose a Cartesian system, such that v is the positive
direction of e1−axis, and u is the positive direction of e2−axis. Without loss of
generality, suppose v = (1, 0) and u = (0, 1).
For this u, let the overgraph and undergraph functions f(K;x), g(K; x) and f(Lr; x),

g(Lr; x) be defined by (2.6). Let [sK , tK ] denote the projection of K on e1−axis, and
let [sLr , tLr ] denote the projection of Lr on e1−axis. Then f(K;x) and g(K; x) are
concave on [sK , tK ], and f(Lr; x), g(Lr;x) are concave on [sLr , tLr ]. Here x should be
understood as a coordinate as well as a point on the e1−axis.
Denote by f ′

−(K; ·) and g′−(K; ·) the left derivatives of f(K; ·) and g(K; ·).
Note the following facts:
(1) if l1//l2 (i.e., with opposite outer normal vectors), then l1 ∩ l2 = ∅ ⊂ intl−(ab);
(2) a line l is tangent to the graph of f(K;x) at (0, f(K; 0)) if and only if l supports

K at a, and a line l′ is tangent to the graph of −g(K;x) at (0,−g(K; 0)) if and only
if l′ supports K at b;
(3) let λ1 be the slope of a tangent line of the graph of f(K; x) at (0, f(K; 0)), and

λ2 be the slope of a tangent line of the graph of −g(K;x) at (0,−g(K; 0)), then

f ′
+(K; 0) ≤ λ1 ≤ f ′

−(K; 0), −g′−(K; 0) ≤ λ2 ≤ −g′+(K; 0).

From the facts above it is easy to see that property (P) is equivalent to

f ′
−(K; 0) + g′−(K; 0) ≥ 0. (3.4)

To prove this lemma, we suppose the contrary, i.e.,

f ′
−(K; 0) + g′−(K; 0) < 0.

Since f ′
−(K; x) and g′−(K;x) are left-continuous, there exists a constant δ > 0, such

that

f ′
−(K;x) + g′−(K;x) < 0,

for all x ∈ [−δ, 0]. Let c1 = f ′
−(K;−δ) + g′−(K;−δ) < 0, c2 = f ′

−(K;−δ), and
c3 = g′−(K;−δ). Then, by the concavity of f(K; ·) and g(K; ·), we have

f(K;x− ϵ) ≥ f(K; x)− c2ϵ, and g(K;x− ϵ) ≥ g(K; x)− c3ϵ, (3.5)
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for all x ∈ [− δ
2
, tLr ] and ϵ < δ

2
.

Since (ãb)K ⊂ ∂K\L, and the functions f(K; ·), g(K; ·), f(Lr; ·), and g(Lr; ·) are
continuous, there exist m1,m2 > 0 such that

f(K; x− ϵ)− f(Lr;x) ≥ m1 > 0, and g(K;x− ϵ)− g(Lr; x) ≥ m1 > 0, (3.6)

for all x ∈ [sLr ,− δ
2
] and ϵ < m2. Note: (ãb)K ⊂ ∂K\L implies sLr > sK , and hence

we can choose m2 sufficiently small so that x− ϵ ∈ [sK , tK ].
Note that c2 + c3 = c1 < 0. For 0 < ϵ < min{ δ

2
, m1

|c3|−c1
,m2}, let η be such that

0 < η < −c1ϵ. Then, by (3.5) and (3.6), we have

f(K;x− ϵ) ≥ f(K; x)− c1ϵ+ c3ϵ > f(K;x) + c3ϵ+ η ≥ f(Lr; x) + c3ϵ+ η,

g(K;x− ϵ) ≥ g(K; x)− c3ϵ > g(Lr; x)− c3ϵ− η,

for all x ∈ [−1
2
δ, tLr ]; and

f(K; x− ϵ) ≥ f(Lr;x) + c3ϵ+m1 − c3ϵ > f(Lr;x) + c3ϵ+ η,

g(K;x− ϵ) ≥ g(Lr;x)− c3ϵ+m1 + c3ϵ > g(Lr; x)− c3ϵ− η,

for all x ∈ [sLr ,− δ
2
].

Note that f(K;x−ϵ) = f(K+ϵv; x), g(K; x−ϵ) = g(K+ϵv;x), f(Lr;x)+c3ϵ+η =
f(Lr + (c3ϵ+ η)u;x), and g(Lr;x)− c3ϵ− η = g(Lr + (c3ϵ+ η)u;x). Then, the body
L1 = Lr−ϵv+(c3ϵ+η)u is contained in the interior ofK. This leads to a contradiction,
since a larger homothetic copy of L1 will be also contained in K.

Therefore, we get (3.4). This means that the arc (ãb)K satisfies property (P). �
Lemma 3.4. Let K,L ∈ K2 satisfy o ∈ K ∩ L and r(K,L) < 1. Suppose K and L

are at a dilation position. Let (ãb)K ⊂ ∂K\L be an arc on ∂K with respect to L.

Suppose that (ãb)K is contained in l−(ab). Then, (ãb)K satisfies property (P).

Proof. Since K and L are at a dilation position, hence

Lr := r(K,L)L ⊂ K.

By the assumptions (ãb)K ⊂ ∂K\L and r(K,L) < 1, we see that (ãb)K ⊂ ∂K\Lr.

Since (ãb)K is a connected open subset (with respect to the relative topology in ∂K)

of ∂K, there exists an arc Ã on ∂K with respect to Lr, such that (ãb)K ⊂ Ã. By

Lemma 3.3, Ã satisfies property (P). It follows from the convexity of K that the arc

(ãb)K must satisfy property (P), too. �
Let K,L ∈ K2 with o ∈ K ∩L. Suppose K and L are at a dilation position. Then

K ∩ L has nonempty interior. Denote the arcs on ∂K with respect to L by (ãibi)K ,
i ∈ I, where I contains at most countably many elements. For i ∈ I, we define the

branch BK
i of K with respect to the arc (ãibi)K by

BK
i := {λx : x ∈ cl(ãb)K and 0 ≤ λ ≤ ρK(x)}.

We also define C(K,L) by

C(K,L) := {λx : x ∈ ∂K ∩ ∂L and 0 ≤ λ ≤ ρK(x)}. (3.7)
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Figure 1. The Branches BK
i and BL

i in Lemma 3.5.

Since I contains at most countably many elements, we have∑
i∈I

|BK
i |+ |C(K,L)| = |K|, (3.8)

and ∑
i∈I

|BL
i |+ |C(K,L)| = |L|. (3.9)

The following lemma is crucial in the proof of Theorem 1.

Lemma 3.5. Let K,L ∈ K2 satisfy o ∈ K ∩ L and r(K,L) < 1 < R(K,L). Suppose

K and L are at a dilation position. Let (ãibi)K ⊂ ∂K\L and (ãibi)L ⊂ ∂L ∩ intK be

arcs. Denote by BK
i the branch of K with respect to (ãibi)K , and by BL

i the branch

of L with respect to (ãibi)L. Then, we have

(2R(K,L)− 1)|BL
i | ≥ |BK

i |. (3.10)

Suppose (ãibi)K ⊂ l−(aibi). If equality holds in (3.10), then there are parallel (i.e.,
with opposite outer normal vectors) support lines of K at ai and bi, and there are no
other support lines of K at ai and bi satisfying property (P).

Proof. Set R = R(K,L). Suppose that (ãibi)K is contained in l−(aibi). Then, by
Lemma 3.4, there are two support lines: l1 support K at ai, and l2 support K at bi,
such that l1 ∩ l2 ⊂ intl−(aibi). The lines l1 and l2 are either parallel or meeting at a
point s ∈ l−(aibi). Let l3 be such that o ∈ l3 and l3//l1//l2 in the first case, and let
l3 = l(os) in the second case. See Figure 1 for details. Note: our proof is feasible
even for the case ∠aiobi ≥ π.



DAR’S CONJECTURE AND THE LOG-BRUNN-MINKOSKI INEQUALITY 13

Suppose K ⊂ l−1 ∩ l−2 . Set c̃
i
2d

i
2 = (R · (ãibi)L) ∩ l−1 ∩ l−2 , where ci2 ∈ l1, d

i
2 ∈ l2. Let

c̃i1d
i
1 =

1
R
c̃i2d

i
2, then c̃i1d

i
1 ⊂ (ãibi)L. Define E(c̃i2d

i
2) and E(c̃i1d

i
1) as follows:

E(c̃i2d
i
2) = {λx : x ∈ clc̃i2d

i
2 and λ ∈ [0, 1]},

E(c̃i1d
i
1) = {λx : x ∈ clc̃i1d

i
1 and λ ∈ [0, 1]}.

There are points ci4, d
i
4, c

i
3, d

i
3 ∈ l3 such that ci1 ∈ (ai, c

i
3), d

i
1 ∈ (bi, d

i
3), [c

i
2, c

i
4]//[c

i
1, c

i
3],

and [di2, d
i
4]//[d

i
1, d

i
3]. By the convexity of K and L, it is clear that

R · E(c̃i1d
i
1) = E(c̃i2d

i
2); (3.11)

R · [o, ci1, ci3] = [o, ci2, c
i
4], R · [o, di1, di3] = [o, di2, d

i
4]; (3.12)

E(c̃i1d
i
1) ∪ [o, ai, c

i
1] ∪ [o, bi, d

i
1] ⊂ BL

i ; (3.13)

BK
i ⊂ E(c̃i2d

i
2) ∪ [o, ai, c

i
2] ∪ [o, bi, d

i
2]; (3.14)

E(c̃i1d
i
1) ⊂ [o, ci1, c

i
3] ∪ [o, di1, d

i
3]; (3.15)

E(c̃i2d
i
2) ⊂ [o, ci2, c

i
4] ∪ [o, di2, d

i
4]. (3.16)

Set V1 = |[o, ai, ci1]|, V2 = |[o, bi, di1]|, V3 = |E(c̃i1d
i
1)|. By (3.11), (3.12), (3.13), and

(3.14), to prove (3.10), it suffices to prove

(2R− 1)(V1 + V2 + V3) ≥ R2V3 + |[o, ai, ci2]|+ |[o, bi, di2]|.

Since ∥ci2∥ = R∥ci1∥ and ∥di2∥ = R∥di1∥, it suffices to show

(R− 1)(V1 + V2) ≥ (R− 1)2V3. (3.17)

Let ci5 ∈ [ci2, c
i
4] and di5 ∈ [di2, d

i
4] be such that [ci1, c

i
5]//[d

i
1, d

i
5]//l3. (R − 1)V1 is

just the area of [ai, c
i
1, c

i
2], (R − 1)V2 is the area of [bi, d

i
1, d

i
2]. By (3.15) and (3.16),

(R− 1)2V3 is less than or equal to the sum of |[ci2, ci1, ci5]| and |[di2, di1, di5]|. Recall that
l1, l2 and l3 are either parallel or meeting at a common point s ∈ l−(aibi). Thus, we
will deduce that

|[ci2, ci1, ci5]| ≤ |[ci1, ai, ci2]|, (3.18)

and

|[di2, di1, di5]| ≤ |[di1, bi, di2]|. (3.19)

In fact, if l1//l2//l3, then [ai, c
i
2, c

i
5, c

i
1] and [bi, d

i
2, d

i
5, d

i
1] are parallelograms, and e-

qualities hold in (3.18) and (3.19). If l1, l2 and l3 meet at an s ∈ l−(aibi), then
∥ci2− ci5∥ < ∥ai− ci1∥ and ∥di2−di5∥ < ∥bi−di1∥, and the inequalities (3.18) and (3.19)
are strict.
Thus, (3.17) holds, and (3.10) is established. If equality holds in (3.10), then (3.18)

and (3.19) must be equalities, which implies l3//l1 and l3//l2, and there are no other
support lines of K at ai and bi satisfying property (P). Therefore, we complete the
proof of this lemma. �

To establish the equality condition, we need the following 2 lemmas.



14 D. XI AND G. LENG

Lemma 3.6. Let K ∈ K2. Suppose a1, a2, a3, a4 ∈ ∂K are distinctive, and they locate
counterclockwise on ∂K. If there is a pair of parallel support lines (i.e., with opposite
outer normal vectors) of K at a1, a2, and there is a pair of parallel support lines of
K at a3, a4, then [a1, a4], [a2, a3] ⊂ ∂K.

Proof. Denote the outer normal vectors of these support lines of K at a1, a2, a3, a4
by (cos θ1, sin θ1), (cos θ2, sin θ2), (cos θ3, sin θ3), (cos θ4, sin θ4) respectively.
Since a1, a2, b1, b2 are distinctive and locate counterclockwise on the boundary of

the planar convex body K, we can assume

0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ 2π. (3.20)

Since (cos θ1, sin θ1) and (cos θ2, sin θ2) are opposite, we have θ2 = π+θ1. Similarly,
θ4 = π + θ3. Therefore, the inequality (3.20) becomes

0 ≤ θ1 ≤ π + θ1 ≤ θ3 ≤ π + θ3 ≤ 2π,

which implies
θ1 = 0, θ2 = π = θ3, θ4 = 2π.

Thus, by the convexity of K, we get the desired result. �
Lemma 3.7. [31] Let K1 and K2 be two convex bodies in Rn and u ∈ Sn−1. For
y ∈ Pu(Ki), i = 1, 2, write

ϕ+
i (y) = max{t : tu+ y ∈ Ki},
ϕ−
i (y) = min{t : tu+ y ∈ Ki},

and
f(r) = |K1 ∩ (ru+K2)|,

where Pu(Ki) denotes the projection of Ki onto u⊥. Then, we have

f ′
+(0) = Hn−1(C+

u (1, 2))−Hn−1(C−
u (2, 1)),

f ′
−(0) = Hn−1(C−

u (1, 2))−Hn−1(C+
u (2, 1)),

where
C+

u (1, 2) = Pu(K1 ∩K2) ∩ {ϕ+
1 > ϕ+

2 ≥ ϕ−
1 > ϕ−

2 },
C−

u (1, 2) = Pu(K1 ∩K2) ∩ {ϕ+
1 ≥ ϕ+

2 > ϕ−
1 ≥ ϕ−

2 },
and C±

u (2, 1) are defined analogously.

Proof of Theorem 1. Set R1 = R(K,L), and R2 = R(L,K). If R1 ≤ 1 or R2 ≤
1, then M(K,L) = min{|K|, |L|}, and (1.3) is just the classical Brunn-Minkowski
inequality (1.1). In this case, equality holds in (1.3) if and only if the condition (ii)
holds.
In the following, we may assume R1, R2 > 1. We claim that either R1M(K,L) ≥

|K| or R2M(K,L) ≥ |L|.
By Lemma 2.1, we can assume without loss of generality that K and L are at a

dilation position. Denote the arcs on ∂K with respect to L by (ãibi)K , i ∈ I, where I
contains at most countably many elements. Denote the branches of K with respect

to the arc (ãibi)K by BK
i , and the branches of L with respect to the arc (ãibi)L by
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BL
i . Let C(K,L) be defined by (3.7). Note that (ãibi)K ⊂ ∂K\L is equivalent to

BL
i ⊂ BK

i . We define index sets I1 and I2 as follows:

I1 = {i : BL
i ⊂ BK

i };
I2 = {j : BK

j ⊂ BL
j }.

By Lemma 3.5, we have

(2R1 − 1)
∑
i∈I1

|BL
i | ≥

∑
i∈I1

|BK
i |,

and
(2R2 − 1)

∑
j∈I2

|BK
j | ≥

∑
j∈I2

|BL
j |.

If
∑
i∈I1

|BL
i | ≥

∑
j∈I2

|BK
j |, then

R2

∑
j∈I2

|BK
j |+ (R2 − 1)

∑
i∈I1

|BL
i | ≥

∑
j∈I2

|BL
j |. (3.21)

Since
|K ∩ L| =

∑
i∈I1

|BL
i |+

∑
j∈I2

|BK
j |+ |C(K,L)|,

by (3.9), (3.21), and R2 > 1, we get

R2M(K,L) ≥ R2|K ∩ L| = R2(
∑
i∈I1

|BL
i |+

∑
j∈I2

|BK
j |+ |C(K,L)|) ≥ |L|.

In a similar way, if
∑
j∈I2

|BK
j | ≥

∑
i∈I1

|BL
i |, then we get

R1M(K,L) ≥ |K|.
Therefore, we have proved either R1M(K,L) ≥ |K| or R2M(K,L) ≥ |L|. Note that

r(K,L) = 1
R2
, and we have assumedR1, R2 > 1. Then, either |K|

M(K,L)
∈ [r(K,L), R(K,L)]

or M(K,L)
|L| ∈ [r(K,L), R(K,L)]. Substituting t = |K|

M(K,L)
or t = M(K,L)

|L| in (3.1), we

obtain

2V (K,L) ≥ M(K,L) +
|K||L|

M(K,L)
. (3.22)

By the arithmetic-geometric mean inequality, we have

|K|+ |L| ≥ 2|K|
1
2 |L|

1
2 . (3.23)

This together with (3.22) and the fact |K + L| = |K|+ 2V (K,L) + |L|, give (1.3).
Now we turn to the equality condition. Note that we have assumed R1, R2 > 1,

which implies K and L are not homethetic. When K and L satisfy condition (i) in
Theorem 1, it is easy to verify that equality holds in (1.3).
Conversely, suppose equality holds in (1.3). Since (1.3) is established by using

(3.23) and (3.1), then |K| = |L|, and either |K|/M(K,L) = R1 or |L|/M(K,L) = R2.
From the proof above, this implies that equality holds in (3.10) for all branches BK

i

and BL
j , i ∈ I1 and j ∈ I2. By Lemma 3.5, there are parallel support lines of K
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Figure 2. The cases n1 = n2 = 1 and n1 = 1, n2 = 2.

at ai, bi for i ∈ I1, and parallel support lines of L at aj, bj for j ∈ I2. Moreover,
M(K,L) = |K ∩ L| and |C(K,L)| = 0.
Let n1 be the number (the finiteness can be seen in the following) of the arcs

contained in ∂K\L, and n2 be the number of arcs contained in ∂L\K. Then, n1, n2 ≥
1. Otherwise, we will get L ⊂ K or K ⊂ L, a contradiction. If n1 ≥ 3, then it

follows from n2 ≥ 1 that there are arcs (ã1b1)K and (ã2b2)K contained in ∂K\L, so
that a1, b1, a2, b2 are distinctive. Suppose a1, b1, a2, b2 locate counterclockwise on ∂K.
Then, it follows from Lemma 3.6 that [b1, a2], [a1, b2] ⊂ ∂K. Then, there will not be

any other arcs contained in ∂K\L except (ã1b1)K and (ã2b2)K , a contradiction. So
n1 ≤ 2. In a similar way, we deduce 1 ≤ n2 ≤ 2, too. Therefore, there are only 4
cases: n1 = n2 = 2; n1 = n2 = 1; n1 = 1 and n2 = 2; n1 = 2 and n2 = 1.
When n1 = n2 = 2, suppose

(ã1b1)K , (ã2b2)K ⊂ ∂K\L, and (ã3b3)L, (ã4b4)L ⊂ ∂L\K.

If a1, b1, a2, b2 are not distinctive, assume b1 = a2, a1 ̸= b2. By the necessary condition

of Lemma 3.5 for (ã1b1)K , (ã2b2)K respectively, it must be the case that: there is a
unique support line of K at b1 = a2, say l1, and there is a common support line
of K through a1 and b2 parallel to l1. Then, [a1, b2] ⊂ ∂K, and there are no more
than 1 arc contained in ∂L\K, a contradiction. Thus, a1, b1, a2, b2 are distinctive,
and a3, b3, a4, b4 are distinctive too. From Lemma 3.6, it follows that K ∩ L is a

parallelogram, and the arcs (ã1b1)L, (ã2b2)L, (ã3b3)K , (ã4b4)K are all line segments.
Furthermore, equality in (3.17) implies that (3.14) and (3.16) are also equalities for
i = 1, 2, 3, 4. Then, K and L must be parallelograms with parallel sides in this case.

When n1 = n2 = 1, suppose (ã1b1)K ⊂ ∂K\L and (ã2b2)L ⊂ ∂L\K. Then, we
have

∂K\((ã1b1)K ∪ (ã2b2)K) ⊂ ∂K ∩ ∂L.

These two arcs must have a common endpoint, and we suppose b1 = a2. Other-
wise, we will get |C(K,L)| > 0, a contradiction. |C(K,L)| = 0 also implies that
[o, a1], [o, b2] ⊂ ∂K ∩ ∂L. Consider the branch BK

1 , and use the same notation
c12, d

1
2 as in Lemma 3.5 (let i = 1). Equality in (3.17) implies that (3.13), (3.14),

(3.15) and (3.16) are all equalities. Then, (ã1b1)L is either a line segment or the
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union of two line segments, and so is (ã2b2)K . Let v1 = (a1 − c12)/∥a1 − c12∥, and
substitute K1 = L, K2 = K into Lemma 3.7. The existence of parallel support
lines at a1, b1 implies Pv1(K ∩ L) = Pv1 [a1, b1]. Since [o, b2] ⊂ ∂K ∩ ∂L, we have
Pv1 [a1, b1] ∩ {ϕ−

2 ≥ ϕ−
1 } = ∅. Thus, H1(C−

v1
(2, 1)) = 0. Since M(K,L) = |K ∩ L|, by

Lemma 3.7, it must be H1(C+
v1
(1, 2)) = 0. Note that {ϕ+

2 ≥ ϕ−
1 > ϕ−

2 } = Pv1 [a1, b1].
Then, C+

v1
(1, 2) = Pv1 [a1, b1] ∩ {ϕ+

1 > ϕ+
2 }, and hence H1(C+

v1
(1, 2)) = 0 if and only

if (ã2b2)K is the line segment [a2, b2]. Similarly, we deduce that (ã1b1)L is the line
segment [a1, b1]. If [o, a1] is not parallel to [a2, b2], let v2 = −a1/∥a1∥. By a direct
computation as above, we will get H1(C−

v2
(2, 1)) = 0, and H1(C+

v2
(1, 2)) > 0, which

is contradict to M(K,L) = |K ∩ L|. Thus, [o, a1]//[a2, b2]. Similarly, [o, b2]//[a1, b1].
Therefore, K ∩L is a parallelogram. Equality in (3.17) implies that (3.14) and (3.16)
are also equalities for i = 1, 2. Therefore, K and L are parallelograms with parallel
sides in this case.
When n1 = 1, n2 = 2, suppose the 3 arcs are (ã1b1)K ⊂ ∂K\L, and (b̃1a2)L,

(b̃2a1)L ⊂ ∂L\K. If a1, b1, a2, b2 are not distinctive, assume without loss of generality
that a2 = b2, a1 ̸= b1. By the necessary condition of Lemma 3.5 (consider the 2
branches of L), it must be the case that: there is a unique support line of K at
a2 = b2, say l′, there is a common support line of K through a1 and b1 parallel to l′.
Then, [a1, b1], [a2, b2] ⊂ ∂L, here [b1, a2] should be seen as a degenerate line segment.

If a1, b1, a2, b2 are distinctive, by Lemma 3.6, [a1, b1], [a2, b2] ⊂ ∂L, and (ã1b1)L is
a line segment. Consider the branch BK

1 , and use the same notation c12, d
1
2 as in

Lemma 3.5 (for i = 1). Let v3 = (a1 − c12)/∥a1 − c12∥. By computing H1(C+
v3
(1, 2)),

H1(C−
v3
(2, 1)), and using Lemma 3.7, a similar way as in the case n1 = n2 = 1, we

deduce that K and L must be parallelograms with parallel sides.
The case n1 = 2, n2 = 1 is similar to the case n1 = 1, n2 = 2. Therefore, we com-

plete the proof of Theorem 1. �

4. Connection of Dar’s conjecture and the log-Brunn-Minkowski
inequality

From Theorem 1, we find that the equality condition of Dar’s conjecture coin-
cides with the log-Brunn-Minkowski inequality’s. Actually, we have the following
proposition.

Proposition 4.1. Let K,L ∈ K2 with o ∈ K ∩ L and |K| = |L|. If K and L are at
a dilation position, then VK = VL if and only if

|K + L|
1
2 = M(K,L)

1
2 +

|K| 12 |L| 12
M(K,L)

1
2

. (4.1)

We will show this by establishing Lemma 4.2, which is an extension of [5, Lemma
5.1]. However, the equality case needs different steps.
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Lemma 4.2. Let K,L ∈ K2 with o ∈ K ∩ L. Suppose K and L are at a dilation
position. Then, ∫

S1

hK

hL

dVK ≤ 1

2
· |K|
|L|

∫
S1

hLdSK , (4.2)

with equality if and only if K and L are dilates, or K and L are parallelograms with
parallel sides.

Note that the set {hK = 0} = {hL = 0} is of measure 0, with respect to the
measure VK . Thus, the integral in (4.2) is well-defined.

Proof. By Lemma 2.1, either o ∈ int(K ∩ L) or o ∈ ∂K ∩ ∂L. We will consider these
cases simultaneously.
Since r(K,L)L ⊂ K ⊂ R(K,L)L, we see that hK(u) = 0 if and only if hL(u) = 0.

Define the set ω by

ω := {u ∈ S1 : hK(u) = 0} = {u ∈ S1 : hL(u) = 0}.
Then, we have

r(K,L) ≤ hK(u)

hL(u)
≤ R(K,L),

for all u ∈ S1\ω. Thus, by Lemma 3.1, for u ∈ S1\ω, we get

|K| − 2
hK(u)

hL(u)
V (K,L) +

(hK(u)

hL(u)

)2

|L| ≤ 0.

Integrating both sides of this, with respect to the measure hLdSK , noticing that the
set ω is of measure 0 (whenever the respective measure is hLdSK or dVK), we obtain

0 ≥
∫
S1

(
|K| − 2

hK(u)

hL(u)
V (K,L) +

(hK(u)

hL(u)

)2

|L|
)
hL(u)dSK(u)

= −2|K|V (K,L) + 2|L|
∫
S1

hK(u)

hL(u)
dVK(u),

which implies (4.2).
If K and L are dilates or parallelograms with parallel sides, then it is easy to see

that equality holds in (4.2).
Now suppose equality holds in (4.2). Then,

|K| − 2
hK(u)

hL(u)
V (K,L) +

(hK(u)

hL(u)

)2

|L| = 0, for all u ∈ suppSK\ω. (4.3)

By Lemma 3.1, we have

hK(u)

hL(u)
∈ {r(K,L), R(K,L)} for all u ∈ suppSK\ω. (4.4)

Since K is a convex body, ω must be contained in an open subset of a half-sphere,
and suppSK cannot be concentrated on a half-sphere. Then suppSK\ω ̸= ∅. Without
loss of generality, we may assume that there exists a u0 ∈ suppSK\ω, such that
hK(u0) = r(K,L)hL(u0). From (4.3) and the equality conditions of Lemma 3.1 we
conclude that K must be a dilation of the Minkowski sum of L and a line segment.
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Thus, K = sL + I1 with s > 0, where I1 is a line segment. In fact, it can be seen
from the proof of Lemma 3.1 or from the following discussion that s = r(K,L).
If s > r(K,L), then a larger homothetic copy of L will be contained in K, a

contradiction. Thus, s ≤ r(K,L). Since r(K,L)L ⊂ K, we have

shL(u) + hI1(u) = hK(u) ≥ r(K,L)hL(u) for all u ∈ S1.

Then,

hI1(u) ≥ (r(K,L)− s)hL(u) ≥ 0 for all u ∈ S1.

Thus, o ∈ I1. If s < r(K,L), then hI1 > 0, which is impossible because I1 is a line
segment. Therefore,

hK(u) = r(K,L)hL(u) + hI1(u) for all u ∈ S1, (4.5)

with o ∈ I1.
Note that K and L are dilates if and only if I1 = {o}. Suppose K and L are

not dilates, then I1 is nondegenerate. From (4.5) and o ∈ I1, it follows that the set
Ω := {u ∈ S1 : hK(u) = r(K,L)hL(u)} is contained in a half-sphere. Since K has
interior points, suppSK cannot be concentrated on a half-sphere. This, together with
the fact that Ω is contained in a half-sphere, proves that suppSK\Ω must contain
at least one unit vector u1. Then, from (4.4) and the fact ω ⊂ Ω, we conclude that
hK(u1)/hL(u1) = R(K,L). By the same argument above (4.5) we deduce that

L =
1

R(K,L)
K + I2,

with o ∈ I2. This together with (4.5) implies that

K =
r(K,L)

R(K,L)
K + r(K,L)I2 + I1.

Note that K and L are not dilates if and only if r(K,L)/R(K,L) < 1. Thus, we have

K =
1

1− r(K,L)/R(K,L)

(
r(K,L)I2 + I1

)
,

which implies that K is a parallelogram with sides parallel to I1 and I2. Similarly,
we have

L =
1

1− r(K,L)/R(K,L)

( 1

R(K,L)
I1 + I2

)
,

which implies that L is also a parallelogram with sides parallel to I1 and I2. �

Proof of Proposition 4.1. Suppose K and L are at a dilation position, and
|K| = |L|. Note that the set {hK = 0} = {hL = 0} is of measure 0, whenever the
respective measure is VK or VL. If VK = VL, then, by Lemma 4.2, we have

1

2

∫
S1

hLdSK =

∫
S1

hL

hK

dVK

=

∫
S1

hL

hK

dVL



20 D. XI AND G. LENG

≤ 1

2

∫
S1

hKdSL

=
1

2

∫
S1

hLdSK .

Then, there is equality in (4.2), and hence K = L or K and L are parallelograms
with parallel sides and |K| = |L|. This implies (4.1).
By Theorem 1 and |K| = |L|, if (4.1) holds, then either K and L are parallelograms

with parallel sides or K = L, which implies VK = VL. �

There might be a direct proof of this equivalence that without the help of Lemma
4.2, and then it might be a new approach to consider the uniqueness of the logarithmic
Minkowski problem.

5. Properties of dilation position and equivalence of (1.9) and (1.10)

In this section, we prove several properties of dilation position, and show the
equivalence of (1.9) and (1.10).
The following lemma is a useful tool when dealing with the dilation position.

Lemma 5.1. Let K,L ∈ Kn.
(i) Suppose r(K,L)L is the biggest homothetic copy of L contained in K. Then, there
are u1, u2, ..., un+1 ∈ Sn−1 with o ∈ [u1, u2, ..., un+1], such that

hK(ui) = r(K,L)hL(ui),

for i = 1, 2, ..., n + 1. Here u1, u2, ..., un+1 may be distinctive or not. Furthermore,
there are xi ∈ ∂K ∩ ∂

(
r(K,L)L

)
, so that

hK(ui) = r(K,L)hL(ui) = xi · ui,

for i = 1, 2, ..., n+ 1.

(ii) Suppose there is an s > 0 so that sL ⊂ K, and there are u1, u2, ..., un+1 ∈ Sn−1

with o ∈ [u1, u2, ..., un+1], such that

hK(ui) = shL(ui),

for i = 1, 2, ..., n + 1. Then, sL is the biggest homothetic copy of L contained in K,
i.e., s = r(K,L).

Proof. (i) See [33, Page 414], it is easy to conclude that o ∈ conv{u ∈ Sn−1 : hK(u) =
r(K,L)hL(u)}. Then, by Carathéodory’s theorem (see [33, Theorem 1.1.4]), o is
the convex combination of n + 1 or fewer points of the set {u ∈ Sn−1 : hK(u) =
r(K,L)hL(u)}, which implies the first result.
Then, there are x1, x2, ..., xn+1 ∈ ∂

(
r(K,L)L

)
, so that

xi · ui = r(K,L)hL(ui),
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for i = 1, 2, ..., n+1. Since r(K,L)L ⊂ K, we see that xi ∈ K. This and xi·ui = hK(ui)
imply xi ∈ ∂K.

(ii) Suppose sL ⊂ K, and there are u1, u2, ..., un+1 ∈ Sn−1 with o ∈ [u1, u2, ..., un+1],
such that

hK(ui) = shL(ui),

for i = 1, 2, ..., n+ 1. If there is an s′ > s, and a t ∈ Rn, so that s′L+ t ⊂ K, then

s′hL(ui) + t · ui ≤ hK(ui) = shL(ui), (5.1)

for i = 1, 2, ..., n+1. Since o ∈ [u1, u2, ..., un+1], there are λi ∈ [0, 1], so that
n+1∑
i=1

λi = 1

and
n+1∑
i=1

λiui = 0.

This and (5.1) together with the sub-additivity of support function give

0 = (s′ − s)hL(0) ≤ (s′ − s)
n+1∑
i=1

λihL(ui) ≤ −t ·
n+1∑
i=1

λiui = 0.

Then, hL(ui) = 0 for i = 1, 2, ..., n+ 1. Since o ∈ [u1, u2, ..., un+1], L will not contain
an interior point, a contradiction.
Thus, sL is the biggest homothetic copy of L contained in K. �

The next lemma is important.

Lemma 5.2. Let K,L ∈ Kn with o ∈ K ∩ L. Suppose K and L are at a dilation
position. If s > 0, then K and L+ sK are also at a dilation position.

Proof. Set r = r(K,L) and R = R(K,L). Since K and L are at a dilation position.
we have

rL ⊂ K ⊂ RL.

Then it is trivial that

r

1 + sr
(L+ sK) ⊂ K ⊂ R

1 + sR
(L+ sK).

We remain to show that r(K,L+ sK) = r/(1+ sr) and R(K,L+ sK) = R/(1+ sR).
If there is a bigger homothetic copy of L+ sK contained in K, i.e.,

r′(L+ sK) + t0 ⊂ K,

with r′ > r/(1 + sr) and t0 ∈ Rn, then

r′hL(u) + t0 · u ≤ (1− sr′)hK(u) for all u ∈ Sn−1.

The case 1−sr′ ≤ 0 is impossible, because that hK ≥ 0, L has an interior point and t0
is a fixed point. So 1−sr′ > 0. Then a bigger homothetic copy of L will be contained
inK, because r′/(1−sr′) > r. This is a contradiction. Thus r(K,L+sK) = r/(1+sr).
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If there is a smaller homothetic copy of L+ sK containing K, i.e.,

r′(L+ sK) + t0 ⊂ K,

with 0 < R′ < R/(1 + sR) and t1 ∈ Rn, then

R′hL(u) + t1 · u ≥ (1− sR′)hK(u) for all u ∈ Sn−1.

Since 0 < R′ < R/(1 + sR), we have (1 − sR′)R > R′ > 0, and hence (1 − sR′) >
0. Then R′/(1 − sR′) < R, and (R′/(1 − sR′))L + (1/(1 − sR′))t1 contains K, a
contradiction. Therefore, R(K,L+ sK) = R/(1+ sR), and we complete the proof of
this lemma. �

The following lemma is needed, and natural.

Lemma 5.3. Let K,L ∈ Kn with o ∈ K ∩ L. If K and L are at a dilation position,
then (1− λ) ·K +o λ · L and K are also at a dilation position, for each λ ∈ [0, 1].

Proof. Set r = r(K,L), R = R(K,L), andQλ = (1−λ)·K+oλ·L. By lemma 5.1, there
are u1, u2, ..., un+1 ∈ Sn−1 with o ∈ [u1, u2, ..., un+1], and there are x1, x2, ..., xn+1 ∈
∂K ∩ ∂

(
r(K,L)L

)
, so that

xi · ui = rhL(ui),

for i = 1, 2, ..., n+ 1.
Since rL ⊂ K ⊂ RL, we have

R−λhK ≤ h1−λ
K hλ

L ≤ r−λhK .

By the definition (1.8),

Qλ =
∩

u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)
1−λhL(u)

λ},

we have

R−λK ⊂ Qλ ⊂ r−λK. (5.2)

Now xi ∈ K ∩
(
r(K,L)L

)
implies r−λxi · u ≤ hK(u)

1−λhL(u)
λ, which means r−λxi ∈

Qλ for i = 1, 2, ..., n+ 1. This and the fact xi · ui = rhL(ui) = hK(ui) give

hQλ
(ui) ≥ r−λxi · ui = hK(ui)

1−λhL(ui)
λ ≥ hQλ

(ui),

for i = 1, 2, ..., n + 1. Since o ∈ [u1, u2, ..., un+1], by Lemma 5.1, we see that rλQλ is
the biggest homothetic copy of Qλ contained in K.
Similarly, noticing that R−1K is the biggest homothetic copy of K contained in L,

we deduce that R−λK is the biggest homothetic copy ofK contained inQλ. Therefore,
(1− λ) ·K +o λ · L and K are also at a dilation position. �

Lemma 5.4. Let K,L ∈ Kn with o ∈ K ∩ L. If K and L are at a dilation position,
then

lim
λ→0+

|(1− λ) ·K +o λ · L| − |K|
λ

= n

∫
Sn−1

log
hL

hK

dVK .
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Note: the set {hK = 0} = {hL = 0} is of measure 0, with respect to the measure
VK . The proof of this lemma is just an examination of the proof of [26, Lemma 1], as
long as (1 − λ) ·K +o λ · L → K as λ → 0, which is guaranteed by Lemma 2.2. So
we omit it here.
The following lemma shows the equivalence of the log-Brunn-Minkowski inequality

(1.9) and the log-Minkowski inequality (1.10).

Lemma 5.5. The log-Brunn-Minkowski inequality (1.9) and the log-Minkowski in-
equality (1.10) are equivalent.

With the aid of Lemmas 5.3 and 5.4, we are able to use the idea in [5] to prove
this lemma. For the sake of completeness we present the proof here.

Proof. Let K,L ∈ K2 with o ∈ K∩L, and suppose K and L are at a dilation position.
Set Qλ = (1− λ) ·K +o λ · L, for λ ∈ [0, 1].
First suppose that we have the log-Minkowski inequality (1.10) for each pair of

convex bodies that at a dilation position. Now Lemma 5.3 tells us Qλ and K are
at a dilation position, and Qλ and L are also at a dilation position. Then the set
{hK = 0} = {hL = 0} = {hQλ

= 0} is of measure 0, with respect to VQλ
. By this, and

the fact that hQλ
= h1−λ

K hλ
L a.e. with respect to SQλ

, we know that hQλ
= h1−λ

K hλ
L

a.e. with respect to VQλ
. Then, we have

0 =
1

|Qλ|

∫
S1

log
h1−λ
K hλ

L

hQλ

dVQλ

= (1− λ)
1

|Qλ|

∫
S1

log
hK

hQλ

dVQλ
+ λ

1

|Qλ|

∫
S1

log
hL

hQλ

dVQλ

≥ (1− λ)
1

2
log

|K|
|Qλ|

+ λ
1

2
log

|L|
|Qλ|

(5.3)

=
1

2
log

|K|1−λ|L|λ

|Qλ|
.

This gives the log-Brunn-Minkowski inequality (1.9).
Suppose now that we have the log-Brunn-Minkowski inequality (1.9) for K,L and

λ ∈ [0, 1]. Lemma 5.4 shows

lim
λ→0+

|Qλ| − |K|
λ

= 2

∫
Sn−1

log
hL

hK

dVK . (5.4)

The log-Brunn-Minkowski inequality (1.9) says that λ 7→ log |Qλ| is a concave func-
tion, and hence

lim
λ→0+

log |Qλ| − log |K|
λ

≥ log |Q1| − log |Q0| = log |L| − log |K|.

This and (5.4) yield the log-Minkowski inequality (1.10). �
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6. The general log-Minkowski inequality under an assumption

From now on, we shall make use of the notations of RK , rK , and FK . Let K ∈ K2

with o ∈ K. We always set

RK = max
u∈S1

hK(u) and rK = min
u∈S1

hK(u).

In addition, suppose |K| = 1. Define FK as a set of planar convex bodies by

FK := {Q ∈ K2 : Q and K are at a dilation position, and |Q| = 1}

Consider the minimization problem,

inf

∫
S1

log hQdVK , Q ∈ FK . (6.1)

By the argument after Theorem 2, even for the case o ∈ ∂K ∩ ∂L, the integral in
(6.1) is well defined.
Our main purpose in this section is to establish the following version of the general

log-Minkowski inequality.

Theorem 6.1. Let K ∈ K2
o. Suppose the cone-volume measure VK satisfies the strict

subspace concentration inequality. If K and L are at a dilation position, then∫
S1

log
hL

hK

dVK ≥ |K|
2

log
|L|
|K|

. (6.2)

Equality holds if and only if K and L are dilates.

The following lemma shows that the set FK is closed.

Lemma 6.2. Let K ∈ K2 with o ∈ K. Suppose Lk ∈ FK , and Lk → L0 with respect
to the Hausdorff distance as k → ∞. Then L0 ∈ FK .

Proof. Since |Lk| = 1, and the volume is continuous with respect to the Hausdorff
distance, we have |L0| = 1. It remains to prove that K and L0 are at a dilation
position.
By Lemma 5.1, there are 3 sequences of vectors {ui,k} ⊂ S1, i = 1, 2, 3, such that

o ∈ [u1,k, u2,k, u3,k], and

R(Lk, K)hK(ui,k) = hLk
(ui,k), (6.3)

for i = 1, 2, 3 and k ∈ N. Since S1 is compact, and a subsequence of {Lk} is always
convergent, we may assume that

lim
k→∞

ui,k =: ui ∈ S1, (6.4)

for i = 1, 2, 3. Then o ∈ [u1, u2, u3]. This and the fact that K contains an interior
point show that there is a ui satisfying hK(ui) ̸= 0. We may assume

hK(u1) ̸= 0. (6.5)

This and (6.4) imply hK(u1,k) ̸= 0 for sufficiently large k.
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Now, from (6.3), (6.5) and Lk → L0, it follows that {R(Lk, K)} converges to an
R0 > 0, and

R0 := lim
k→∞

R(Lk, K) = lim
k→∞

hLk
(u1,k)

hK(u1,k)
=

hL0(u1)

hK(u1)
.

Then, Lk ⊂ R(Lk, K)K and (6.3) show that

L0 ⊂ R0K,

and
R0hK(ui) = hL0(ui),

for i = 1, 2, 3. Since o ∈ [u1, u2, u3], it follows from Lemma 5.1 that (1/R0)L0 is the
biggest homothetic copy of L0 contained in K.
Similarly, we have that {r(Lk, K)} converges to a number r0 > 0, and r0K is the

biggest homothetic copy of K contained in L0. Therefore, K and L0 are at a dilation
position. �
Lemma 6.3. Let K ∈ K2 with |K| = 1 and o ∈ K. If L0 ∈ FK is a minimizer of
the problem (6.1), then either L0 = K or L0 and K are parallelograms with parallel
sides.

Proof. By Lemma 5.2, (L0 + sK)/|L0 + sK| 12 ∈ FK , and by the assumption that L0

is a minimizer of the problem (6.1), we have∫
S1

log
hL0 + shK

|L0 + sK| 12
dVK −

∫
S1

log hL0dVK ≥ 0,

for all s > 0. Then, recalling |K| = 1, we have∫
S1

[log(hL0 + shK)− log hL0 ]dVK ≥ 1

2
log |L0 + sK| (6.6)

It is clear that (log(hL0+shK)− log hL0)/s → hK/hL0 a.e. as s → 0+, and |(log(hL0+
shK) − log hL0)/s| is dominated by hK/hL0 , which is integrable S1 with respect to
the measure VK . By the dominated convergence theorem, we know that the right
derivative of the left sides of (6.6) equals∫

S1

hK

hL0

dVK .

One the other hand, by (2.2), we have

lim
s→0+

|L0 + sK| − |L0|
s

= 2V (L0, K) = 2V (K,L0) =

∫
S1

hL0dSK .

Thus, by taking right derivative of both sides of (6.6) at s = 0, we have∫
S1

hK

hL0

dVK ≥ 1

2

∫
S1

hL0dSK .

But Lemma 4.2 tells us ∫
S1

hK

hL0

dVK ≤ 1

2

∫
S1

hL0dSK .
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Then, equality holds in (4.2). This and |K| = |L0| = 1 show that either L0 = K or
L0 and K are parallelograms with parallel sides. �

Lemma 6.4. Let K ∈ K2
o. Suppose K and L are at a dilation position. Then, there

exists a u1 ∈ S1 such that

r(L,K) =
hL(u1)

hK(u1)
≤ hL(−u1)

hK(−u1)
≤ 2cK · r(L,K). (6.7)

Here cK = RK/rK is a constant depends only on K.

Proof. By Lemma 5.1, there are unit vectors v1, v2, v3 (may be distinctive or not)
such that o ∈ [v1, v2, v3] and

hL(v1)

hK(v1)
=

hL(v2)

hK(v2)
=

hL(v3)

hK(v3)
= r(L,K).

Then, there are λ1, λ2, λ3 ∈ [0, 1], so that λ1 + λ2 + λ3 = 1 and
3∑

i=1

λivi = 0. Then,

there exists a λi ≥ 1
3
, say, λ1. It follows that

λ2

λ1

+
λ3

λ1

=
1− λ1

λ1

≤ 2. (6.8)

We may write

−v1 =
λ2

λ1

v2 +
λ3

λ1

v3.

Then, by the sub-additivity of support function and (6.8), we have

hL(−v1)

hK(−v1)
≤

λ2

λ1
hL(v2) +

λ3

λ1
hL(v3)

rK

= r(L,K)
λ2

λ1
hK(v2) +

λ3

λ1
hK(v3)

rK
≤ 2cK · r(L,K).

Let u1 = v1 and we are done. �

Lemma 6.5. Let K ∈ K2
o. Suppose its cone-volume measure VK satisfies the strict

subspace concentration inequality. Let {Lk} be a sequence of planar convex bodies in
FK . If {Lk} is not bounded, then the sequence∫

S1

log hLk
dVK

is not bounded from above.

Proof. Since K ∈ K2
o is fixed, from (2.3) and (2.4), and the facts that {Lk} is un-

bounded and |Lk| = 1, it is easy to see that

lim inf
k→∞

r(Lk, K) = 0, and lim sup
k→∞

R(Lk, K) = +∞.
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Therefore, there is a subsequence (also denoted by {Lk}) satisfying

lim
k→∞

r(Lk, K) = 0, and lim
k→∞

R(Lk, K) = +∞. (6.9)

By Lemma 6.4, there is a sequence {u1,k} ⊂ S1 satisfying

r(Lk, K) =
hLk

(u1,k)

hK(u1,k)
≤ hLk

(−u1,k)

hK(−u1,k)
≤ 2cK · r(Lk, K), (6.10)

where cK = RK/rK depends only on the convex body K. For each u1,k ∈ S1, denote
by u2,k ∈ S1 the unit vector that rotates u1,k clockwise by 90◦.
Since S1 is compact, {u1,k} has a convergent subsequence. Thus, we may assume

{u1,k} itself is convergent, and

lim
k→∞

u1,k = u1 ∈ S1. (6.11)

Since a subsequence of {Lk} will also satisfies (6.9), we have found a subsequence
satisfying all of (6.9), (6.10), and (6.11). It follows that lim

k→∞
u2,k = u2 ∈ S1, where

u2 is the unit vector that rotates u1 clockwise by 90◦.
Set h±1,k = hLk

(±u1,k), and h±2,k = hLk
(±u2,k). Clearly, (6.10) implies that

min{h1,k, h−1,k} ≥ c0(h1,k + h−1,k), (6.12)

where c0 is a constant depends only on the convex body K.
Then, by (6.10) and (6.9), we have

lim
k→∞

h1,k = lim
k→∞

h−1,k = 0. (6.13)

From Lemma 5.1 we know that there are unit vectors v1,k and v2,k such that

hLk
(v1,k)

hK(v1,k)
=

hLk
(v2,k)

hK(v2,k)
= R(Lk, K),

with v1,k · u2,k ≥ 0 and v2,k · u2,k ≤ 0. This implies

lim
k→∞

hLk
(v1,k) = lim

k→∞
R(Lk, K)hK(v1,k) ≥ rK lim

k→∞
R(Lk, K) = +∞.

From (6.9) and (6.10) we conclude that v1,k · u2,k > 0 and v2,k · u2,k < 0 for all
sufficiently large k. If v1,k ·u1,k ≥ 0, then we write v1,k = (v1,k ·u1,k)u1,k+(v1,k ·u2,k)u2,k.
By the subadditivity of support function, we have

h2,k = hLk
(u2,k) ≥

hLk
(v1,k)− (v1,k · u1,k)hLk

(u1,k)

v1,k · u2,k

≥ 1

2
hLk

(v1,k),

for all sufficiently large k. The last inequality is because lim
k→∞

hLk
(u1,k) = 0 and

lim
k→∞

hLk
(v1,k) = +∞. Then, we have

h2,k ≥
1

2
hLk

(v1,k) =
1

2
R(Lk, K)hK(v1,k) ≥

1

2
rKR(Lk, K), (6.14)

for all sufficiently large k. Similarly, when v1,k · (−u1,k) ≥ 0, we also have (6.14).
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In a similar way, we have

h−2,k ≥
1

2
hLk

(v2,k) =
1

2
R(Lk, K)hK(v2,k) ≥

1

2
rKR(Lk, K), (6.15)

for all sufficiently large k, and then

lim
k→∞

h2,k = lim
k→∞

h−2,k = +∞.

From (2.3), (6.14) and (6.15), it is obvious that for all sufficiently large k,

min{h2,k, h−2,k} ≥ c1(h2,k + h−2,k), (6.16)

where c1 is a constant depends only on the convex body K.
For δ ∈ (0, 2

5
), let Uδ be the neighborhood of {±u1} on S1, that is,

Uδ := {u ∈ S1 : |u · u1| > 1− δ}.
Let

V 1
δ := {u ∈ S1 : |u · u1| ≤ 1− δ and u · u2 ≥ 0},

and

V 2
δ := {u ∈ S1 : |u · u1| ≤ 1− δ and u · u2 ≤ 0}.

Then, Vδ := V 1
δ ∪ V 2

δ is the complement of Uδ.
Since VK satisfies the strict subspace concentration inequality, VK({±u1}) < 1

2
.

When δ is decreasing, the Uδ are also decreasing (with respect to set inclusion) and
have a limit of {±u1},

lim
δ→0+

VK(Uδ) = VK({±u1}).

Then, there is a δ0 ∈ (0, 2
5
) such that

VK(Uδ0) <
1

2
,

and then,

VK(Vδ0) = VK(S
1)− VK(Uδ0) >

1

2
.

By (6.11), we have |ui,k − ui| < δ0 for all sufficiently large k, where i = 1, 2. Note
that |u · u1|2 + |u · u2|2 = 1. Thus, for u ∈ V 1

δ0
, we have

u · u2 ≥ (1− (1− δ0)
2)

1
2 > 2δ0,

where the last inequality follows from the fact that δ0 <
2
5
. This shows that

u · u2,k = u · u2 − u · (u2 − u2,k)

≥ u · u2 − |u2,k − u2|
≥ 2δ0 − δ0

= δ0, (6.17)

for all sufficiently large k. For u ∈ V 2
δ0
, we have

u · (−u2) ≥ (1− (1− δ0)
2)

1
2 > 2δ0,
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which shows that

u · (−u2,k) = u · (−u2)− u · (u2,k − u2)

≥ u · (−u2)− |u2,k − u2|
≥ 2δ0 − δ0

= δ0, (6.18)

for all sufficiently large k.
By (6.10), for u ∈ Uδ0 and sufficiently large k, we have

hLk
(u) ≥ 1

cK
hLk

(u1,k)
hK(u)

hK(u1,k)
≥ 1

c2K
min{h1,k, h−1,k}. (6.19)

Let xk ∈ Lk and yk ∈ Lk be such that

hLk
(u2,k) = xk · u2,k, and hLk

(−u2,k) = yk · (−u2,k).

By (6.17) and (6.13), for u ∈ V 1
δ0

and sufficiently large k, we have

hLk
(u) ≥ xk ·

(
(u · u2,k)u2,k + (u · u1,k)u1,k

)
≥ δ0hLk

(u2,k)−max{h1,k, h−1,k}

≥ δ0
2
h2,k

≥ δ0
2
min{h2,k, h−2,k}. (6.20)

By (6.18) and (6.13), for u ∈ V 2
δ0

and sufficiently large k, we have

hLk
(u) ≥ yk ·

(
(u · (−u2,k))(−u2,k) + (u · u1,k)u1,k

)
≥ δ0hLk

(−u2,k)−max{h1,k, h−1,k}

≥ δ0
2
h−2,k

≥ δ0
2
min{h2,k, h−2,k}. (6.21)

Therefore, by (6.19), (6.20), (6.21), and then (6.12), (6.16), we have∫
S1

log hLk
(u)dVK(u) ≥ VK(Uδ0) log(

1

c2K
min{h1,k, h−1,k}) + VK(Vδ0) log(

δ0
2
min{h2,k, h−2,k})

≥ VK(Uδ0) log(
c0
c2K

(h1,k + h−1,k)) + VK(Vδ0) log(
δ0
2
(h2,k + h−2,k))

≥ (VK(Vδ0)− VK(Uδ0)) log(h2,k + h−2,k)

+ VK(Uδ0) log[(h1,k + h−1,k)(h2,k + h−2,k)]

+ VK(Uδ0) log(
c0
c2K

) + VK(Vδ0) log(
δ0
2
). (6.22)
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Since Lk is contained in the parallelogram∩
i=1,2

{x : x · ui,k ≤ hi,k, and x · u−i,k ≤ h−i,k},

we deduce
(h1,k + h−1,k)(h2,k + h−2,k) ≥ |Lk| = 1.

This and (6.22) together with the fact lim
k→∞

(h2,k + h−2,k) = +∞ imply the desired

result. �
Proof of Theorem 6.1. Firstly, assume |K| = |L| = 1. Let {Lk} be a minimizing

sequence of the minimization problem (6.1), i.e., a sequence of bodies in FK so that∫
S1 log hLk

dVK tends to the infimum (which may be −∞).
By Lemma 6.5, {Lk} is bounded, since otherwise

∫
S1 log hLk

dVK will be unbounded
from above, which is contradict to the fact that {Lk} is a minimizing sequence. Then
there is a subsequence of {Lk} converging to L0, and Lemma 6.2 implies L0 ∈ FK .
Thus, L0 is a minimizer of the problem (6.1). The fact that VK satisfies the strict
subspace concentration inequality implies that K is not a parallelogram. Thus, by
Lemma 6.3, we deduce L0 = K. Then, we have∫

S1

log
hL

hK

dVK ≥
∫
S1

log
hK

hK

dVK = 0.

Secondly, for arbitrary K and L, notice that V
K/|K|

1
2
= VK/|K| and L/|L| 12 ∈

F
K/|K|

1
2
. By the argument above, we have∫

S1

log
h
L/|L|

1
2

h
K/|K|

1
2

dV
K/|K|

1
2
≥ 0,

which implies the inequality (6.2).
If K and L are dilates, then it is easy to see that the equality in (6.2) holds.

If there is equality in (6.2), then the convex body L/|L| 12 must be a minimizer of

the problem (6.1) for K/|K| 12 . From Lemma 6.3 and the fact K is not a parallelo-
gram, it follows immediately that K and L are dilates. �

For the case that K is a parallelogram (not necessary o-symmetric) with o in its
interior, we can also use similar method and consider several cases to prove that the
inequality (6.2) holds. However, such a proof will be complicated, and it can be
replaced by the approximation lemmas in the next section. So we omit it.

7. Approximation process

We say a convex body K is strictly convex, if its boundary does not contain a line
segment. If K ∈ K2

o is strictly convex, then it is easy to see that its cone-volume
measure VK always satisfies the strictly subspace concentration inequality.
Given a pair of convex bodies that are at a dilation position. The main goal of this

section is to construct a new pair of convex bodies, so that one of them is strictly
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convex, and that they satisfy some other desired properties. Before this, we give a
lemma concerning concave functions. A concave function f is called strictly concave
on an interval [a, b], if

f((1− t)x+ ty) > (1− t)f(x) + tf(y),

for t ∈ (0, 1), x, y ∈ [a, b], and x ̸= y.

Lemma 7.1. Let f1, f2 be nonnegative concave functions defined on [b1, b2].
(i) Suppose f2 > f1 on [b1, b2]. Then, there is a strictly concave function g defined on
[b1, b2] so that g(b1) = f1(b1), g(b2) = f2(b2), and f1 ≤ g ≤ f2.
(ii) Let b1 < b0 < b2. Suppose f2 > f1 on [b1, b2], and

f2(x) >
b2 − x

b2 − b0
f2(b0) +

x− b0
b2 − b0

f2(b2), (7.1)

for b0 < x < b2. Then, there is a strictly concave function g defined on [b1, b2] so that
g(b1) = f1(b1), g(b0) = f2(b0), g(b2) = f2(b2), and f1 ≤ g ≤ f2.

Proof. (i) Since f1 is concave and f2(b2) > f1(b2), there exists a x0 ∈ [b1, b2) such that
the line through the point (b2, f2(b2)) tangent the graph of f1(x) at (x0, f1(x0)). Let

f 1(x) =

{
f1(x), x ∈ [b1, x0],

f1(x0) +
f2(b2)−f1(x0)

b2−x0
(x− x0), x ∈ [x0, b2].

Then, it is clear that f 1(x) is concave on [b1, b2], f 1(b1) = f1(b1), f 1(b2) = f2(b2), and
f 1 < f2 on [b1, b2).
Since f2 is concave, its left derivative f l

2 is decreasing, and it satisfies

f l
2(b2) ≤

f2(b2)− f2(x0)

b2 − x0

<
f2(b2)− f1(x0)

b2 − x0

.

From the fact that f l
2 is left-continuous, it follows that there exists an η with 0 <

η < min{ b2−b1
2

, b2 − x0}, such that

f l
2(x) <

f2(b2)− f1(x0)

b2 − x0

for all x ∈ [b2 − η, b2]. Thus, when

0 < c <
1

b2 − b1

(f2(b2)− f1(x0)

b2 − x0

−f l
2(b2−η)

)
, and c <

4

(b2 − b1)2
min

x∈[b1,b2−η]

(
f2(x)−f 1(x)

)
,

we have
f2(b2)− f1(x0)

b2 − x0

− c · (2x− b2 − b1) > f l
2(x) (7.2)

for all x ∈ [b2 − η, b2], and

c · (b2 − b1)
2

4
< f2(x)− f 1(x) (7.3)

for all x ∈ [b1, b2 − η].

Let g(x) = f 1(x) + c · [ (b2−b1)2

4
− (x − b2+b1

2
)2]. Then (7.2) and the fact g(x) =

g1(b2) −
∫ a

x
gl1(t)dt imply that g < f2 on [b2 − η, b2); (7.3) shows that g1 < f2
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on [b1, b2 − η]. Therefore, g(x) is a strictly concave function on [b1, b2] satisfying
g(b1) = f1(b1), g(b2) = f2(b2), and f1 ≤ g ≤ f2 on [b1, b2].

(ii) By the argument in (i), there is a strictly concave function g1 on [b1, b0], with
g1(b1) = f1(b1), g1(b0) = f2(b0), and f1 ≤ g1 ≤ f2 on [b1, b0].
Set a0 := (b0 + b2)/2. Define a function f 2 on [b0, b2] by

f 2(x) =

{ a0−x
a0−b0

f(b0) +
x−b0
b0−a0

f(a0), x ∈ [b0, a0],
b2−x
b2−a0

f(a0) +
x−a0
b2−a0

f(b2), x ∈ [a0, b2].

Then, f 2 ≤ f2 on [b0, b2].
For x ∈ [b0, b2], let

G(x) =
b2 − x

b2 − b0
f(b0) +

x− b0
b2 − b0

f(b2) + c0 · [
(b2 − b0)

2

4
− (x− a0)

2]

From (7.1), it follows that b2−x
b2−b0

f(b0) +
x−b0
b2−b0

f(b2) < f 2(x) for x ∈ (b0, b2). It is easy

to choose a sufficiently small and positive constant c0, so that G(x) ≤ f 2 ≤ f2 on
[b0, b2]. Let

g(x) =

{
g1(x), x ∈ [b1, b0],
G(x), x ∈ [b0, b2].

Then, g(x) is the desired function.
To prove that g is strictly concave, suppose x ∈ [b1, b0], y ∈ [b0, b2], and t ∈ [0, 1].

We may assume (1 − t)x + ty ∈ [b1, b0], since the case (1 − t)x + ty ∈ [b0, b2] is
similar. Then, there exists a t ≤ t0 ≤ 1, so that b0 = (1− t0)x + t0y. It follows that
(1− t)x+ ty = ((t0 − t)/t0)x+ (t/t0)b0. Then, we have

g((1− t)x+ ty) = g1
(t0 − t

t0
x+

t

t0
b0
)

> (1− t

t0
)g1(x) +

t

t0
f2(b0)

≥ (1− t

t0
)g1(x) +

t

t0
[(1− t0)f2(x) + t0f2(y)]

> (1− t

t0
)g1(x) + (

t

t0
− t)g(x) + tg(y)

= (1− t)g(x) + tg(y).

�
Let u ∈ S1. We shall make use of the notion of exposed face (also called support

set) F (K, u) of a convex body K. That is,

F (K, u) := K ∩ {x ∈ R2 : x · u = hK(u)}.

Lemma 7.2. Let K,L ∈ K2
o. Suppose K and L are not dilates, and they are at a

dilation position. Then, for each ϵ > 0, there are convex bodies Kϵ, Lϵ ∈ K2
o so that

Kϵ is strictly convex,
dH(Kϵ, K), dH(Lϵ, L) < c1ϵ,
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and Kϵ and Lϵ are at a dilation position. Here c1 is a constant depends only on K
and L.

Proof. Set r = r(L,K), R = R(L,K), and B = B2. Since K and L are not dilates,
we have r < R. By Lemma 5.1, there are ui, vi ∈ S1, xi ∈ ∂K ∩ ∂(1

r
L) and yi ∈

∂K ∩ ∂( 1
R
L), so that o ∈ [u1, u2, u3] ∩ [v1, v2, v3],

hL(ui) = rhK(ui) = rxi · ui, and hL(vi) = RhK(vi) = Ryi · vi, (7.4)

for i = 1, 2, 3. Here u1, u2, u3 may be distinctive or not, and so is the triple v1, v2, v3.
We will give 3 reasonable assumptions.

(A1) Assume yj /∈ F (K, vi) for yi ̸= yj.
Otherwise, suppose y2 ∈ F (K, v1) with y1 ̸= y2. This and the fact o ∈ [v1, v2, v3]

imply that −v3 must be a normal vector at y2. Letting y′1 = y2 and v′1 = v′2 = −v3,
we will consider the points {y′1, y2, y3} and vectors {v′1, v′2, v3}. Note: there does not
exist the case that y1 = y3 ∈ F (K, v1) and v1 = v2 = −v3, since otherwise K will not
contain an interior point. Therefore, the assumption (A1) is reasonable.

(A2) Similarly, assume xj /∈ F (K, ui) for xi ̸= xj.

(A3) Suppose {i, j, k} = {1, 2, 3}. If yi = yj, assume vi = vj = −vk; if xi = xj,
assume ui = uj = −uk.
Otherwise, suppose y1 = y2, and v1 ̸= v2. Since o ∈ [v1, v2, v3], then −v3 must be

a normal vector at y1. Letting v′1 = v′2 = −v3, we will consider the points {y1, y2, y3}
and vectors {v′1, v′2, v3}. Clearly, the assumption (A1) will be preserved. The discus-
sion for xi is similar.

Next, we use 2 procedures to construct the desired bodies. In fact, Procedure 1 is
to make the new bodyK1

ϵ satisfy that F (K1
ϵ , vi) contains only one point, for i = 1, 2, 3.

Procedure 1. Let K1
ϵ and L1

ϵ be defined by

K1
ϵ = [K, (1 + ϵ)y1, (1 + ϵ)y2, (1 + ϵ)y3], (7.5)

and

L1
ϵ = L ∩ R

1 + ϵ
K1

ϵ . (7.6)

Thus, for ϵ < R
r
− 1, we have

rK1
ϵ ⊂ L1

ϵ ⊂
R

1 + ϵ
K1

ϵ .

It can be seen that (1 + ϵ)yi ∈ ∂K1
ϵ ∩ ∂(1+ϵ

R
L1

ϵ), and xi ∈ ∂K1
ϵ ∩ ∂(1

r
L1

ϵ). Since
K1

ϵ ⊂ (1 + ϵ)K, we see that

hK(vi) ≤ (1 + ϵ)hK(vi) = (1 + ϵ)yi · vi.
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This, together with (1 + ϵ)yi ∈ K1
ϵ , gives

hK1
ϵ
(vi) = (1 + ϵ)yi · vi.

Then, by 1+ϵ
R
L1
ϵ ⊂ K1

ϵ and (1 + ϵ)yi ∈ 1+ϵ
R
L1
ϵ , we deduce that

1 + ϵ

R
hL1

ϵ
(vi) = (1 + ϵ)yi · vi = hK1

ϵ
(vi).

Since o ∈ [v1, v2, v3], by
1+ϵ
R
L1
ϵ ⊂ K1

ϵ and Lemma 5.1, we know that 1+ϵ
R
L1
ϵ is the

biggest homothetic copy of L1
ϵ contained in K1

ϵ .
Recall that for ϵ < R

r
− 1, we have xi ∈ K1

ϵ ⊂ 1
r
L1

ϵ ⊂ 1
r
L. Thus

xi · ui ≤ hK1
ϵ
(ui) ≤

1

r
hL1

ϵ
(ui) ≤

1

r
hL(ui) = xi · ui.

It follows that

rhK1
ϵ
(ui) = hL(ui).

Thus, by o ∈ [u1, u2, u3], rK1
ϵ ⊂ L1

ϵ and Lemma 5.1, we know that rK1
ϵ is the

biggest homothetic copy of K1
ϵ contained in L1

ϵ . Therefore K
1
ϵ and L1

ϵ are at a dilation
position, for ϵ < R

r
− 1.

From (7.5), it follows that

K ⊂ K1
ϵ ⊂ (1 + ϵ)K ⊂ K + ϵRKB. (7.7)

(7.5) and (7.6) give

L ⊂ (1 + ϵ)(L ∩ R

1 + ϵ
Kϵ) = (1 + ϵ)L1

ϵ ⊂ L1
ϵ + ϵL ⊂ L1

ϵ + ϵRLB. (7.8)

Now (7.7) implies dH(K
1
ϵ , K) < RKϵ, and (7.8) implies dH(L

1
ϵ , L) < RLϵ. Therefore,

we have

dH(K
1
ϵ , K) < c2ϵ, and dH(L

1
ϵ , L) < c2ϵ, (7.9)

where c2 = max{RK , RL}.
By (7.5), a point p in K1

ϵ can be written as

p =
k∑

i=1

λizi,

with λi ∈ [0, 1],
k∑

i=1

λi = 1, and zi ∈ K ∪ (1 + ϵ){y1, y2, y3}. Since we have assumed

yi · vj < hK(vj) for yi ̸= yj, it follows that F (K1
ϵ , vi) = {(1 + ϵ)yi} for i = 1, 2, 3.

Procedure 2. Set Rϵ = R/(1 + ϵ). From Procedure 1, we see that Rϵ = R(L1
ϵ , K

1
ϵ ),

and r = r(L1
ϵ , K

1
ϵ ). Let K2

ϵ = K1
ϵ + ϵ

Rϵ
B, K3

ϵ = K1
ϵ + ϵ

r
B, and Lϵ = L1

ϵ + ϵB. For

i = 1, 2, 3, define H−
i by

H−
i = {x ∈ R2 : x · vi ≤ (1 + ϵ)yi · vi +

ϵ

Rϵ

}.

Then (1 + ϵ)yi +
ϵ
Rϵ
vi is the unique point in F (K2

ϵ , vi), for i = 1, 2, 3.
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Since F (K1
ϵ , vi) = {(1 + ϵ)yi}, we know that xj · vi < hK1

ϵ
(vi). Let

η = min
i,j∈{1,2,3}

hK(vi)− xj · vi
1/r − 1/R

.

When ϵ < η, we have

xi +
1

r
ϵui ∈ ∂K3

ϵ ∩ int(H−
1 ∩H−

2 ∩H−
3 ),

for i = 1, 2, 3. Now we are able to construct the desired convex body.
Notice the assumption (A3). When ϵ is sufficiently small, the half-spacesH−

1 , H
−
2 , H

−
3

divide ∂K3
ϵ into 3 parts (may be distinctive or not), and we denote them by ∂12, ∂23

and ∂31. Here ∂ij = ∂K3
ϵ ∩ H−

i ∩ H−
j . Clearly, when ϵ is sufficiently small, ∂ij has

nonempty relative interior.
In fact, we only need to construct the boundary parts of the new convex body.

Our aim is to get new boundary parts ∂′
ij satisfying:

(B1) the support line that supports K3
ϵ at xi +

ϵ
r
ui also supports ∂′

12 ∪ ∂′
23 ∪ ∂′

31 at
xi +

ϵ
r
ui;

(B2) the support line that supports K2
ϵ at (1+ϵ)yi+

ϵ
Rϵ
vi also supports ∂′

12∪∂′
23∪∂′

31

at (1 + ϵ)yi +
ϵ
Rϵ
vi;

(B3) ∂′
12 ∪ ∂′

23 ∪ ∂′
31 is the boundary of the new convex body Kϵ = [∂′

12, ∂
′
23, ∂

′
31], and

Kϵ is strictly convex.

Without loss of generality, we study with ∂12. Define the body K4
ϵ by

K4
ϵ := K3

ϵ ∩H−
1 ∩H−

2 ∩H−
3 .

There may be the following 3 cases.

Case 1. ∂12 contains precisely 1 point in {x1 +
ϵ
r
u1, x2 +

ϵ
r
u2, x3 +

ϵ
r
u3}.

Case 2. ∂12 contains precisely 2 points in {x1 +
ϵ
r
u1, x2 +

ϵ
r
u2, x3 +

ϵ
r
u3}.

Case 3. ∂12 does not contain a point in {x1 +
ϵ
r
u1, x2 +

ϵ
r
u2, x3 +

ϵ
r
u3}.

In Case 1, assume x1 +
ϵ
r
u1 ∈ ∂12. Denote by v′1 the unit vector perpendicular to

v1 such that

(x1 +
ϵ

r
u1) · v′1 > (1 + ϵ)y1 · v′1.

For the direction v′1, consider the overgraph functions f(K2
ϵ ; ·) and f(K4

ϵ ; ·). Denote
by p1 the projection of (1+ ϵ)y1+

ϵ
Rϵ
v1 on l(ov1) (the line through o and v1). Denote

by p2 the projection of x1 +
ϵ
r
u1 on l(ov1). Since o ∈ [v1, v2, v3], by the definition of

K2
ϵ and K3

ϵ , we see that f(K2
ϵ ; ·) < f(K3

ϵ ; ·) on [p1, p2]. Then, it follows immediately
from (i) of Lemma 7.1 that there is a boundary part ∂l

12 through (1 + ϵ)y1 +
ϵ
Rϵ
v1

and x1 + ϵ
r
u1. In a similarly, we get a boundary part ∂r

12 through x1 + ϵ
r
u1 and

(1 + ϵ)y2 +
ϵ
Rϵ
v2. Then, ∂

′
12 = ∂l

12 ∪ ∂r
12 is the desired boundary part.
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In Case 2, assume x1 +
ϵ
r
u1, x2 +

ϵ
r
u2 ∈ ∂12. Consider the overgragh functions of

K2
ϵ and K4

ϵ with respect to the direction v′1, where v′1 is the same as in Case 1. The
assumption (A2) implies that [x1+

ϵ
r
u1, x2+

ϵ
r
u2] * ∂K3

ϵ . Then the functions f(K2
ϵ ; ·)

and f(K4
ϵ ; ·) satisfy all the conditions in (ii) of Lemma 7.1. Then there is a boundary

part ∂l
12 through (1 + ϵ)y1 +

ϵ
Rϵ
v1, x1 +

ϵ
r
u1 and x2 +

ϵ
r
u2, (1 + ϵ)y2 +

ϵ
Rϵ
v2. Similar

to Case 1, we get a boundary part ∂r
12 through x2 +

ϵ
r
u2 and (1 + ϵ)y2 +

ϵ
Rϵ
v2. Then,

∂′
12 = ∂l

12 ∪ ∂r
12 is the desired boundary part.

In Case 3, choose a point z0 ∈ ∂ij\{(1 + ϵ)yi +
ϵ
Rϵ
vi, (1 + ϵ)yj +

ϵ
Rϵ
vj}. By using

the same method as in Case 1, we get a desired boundary part through (1 + ϵ)y1 +
ϵ
Rϵ
v1, z0, (1 + ϵ)y2 +

ϵ
Rϵ
v2.

Then, we get the boundary parts ∂′
12, ∂

′
23, ∂

′
31. From our construction, it is obvious

that they satisfy (B1), (B2) and (B3). Recall that Kϵ = [∂′
12, ∂

′
23, ∂

′
31] and Lϵ =

L1
ϵ+ϵB. Now (B1), (B2), and Lemma 5.1 guarantee that Kϵ and Lϵ are at a dilation

position. By (7.9), we have

dH(Lϵ, L) ≤ dH(Lϵ, L
1
ϵ) + dH(L

1
ϵ , L) < (1 + c2)ϵ.

It is also easy to see that
K2

ϵ ⊂ Kϵ ⊂ K3
ϵ .

From this, K2
ϵ = K1

ϵ +
ϵ
Rϵ
B, K3

ϵ = K1
ϵ +

ϵ
r
B, and (7.9), we deduce

dH(Kϵ, K) ≤ dH(Kϵ, K
1
ϵ ) + dH(K

1
ϵ , K) < (

1

r
+ c2)ϵ.

Then we finished the proof of this lemma, provided c1 = max{1, 1
r
}+ c2. �

Lemma 7.3. Let K,L be planar convex bodies with o ∈ ∂K ∩ ∂L. Suppose K and L
are not dilates, and they are at a dilation position. Then, for each ϵ > 0, there are
convex bodies Kϵ, Lϵ ∈ K2

o so that Kϵ and Lϵ are at a dilation position, and

dH(Kϵ, K), dH(Lϵ, L) < ϵ.

Proof. Set r = r(L,K), R = R(L,K), and B = B2. By Lemma 5.1, there are ui, vi ∈
S1, xi ∈ ∂K ∩ ∂(1

r
L) and yi ∈ ∂K ∩ ∂( 1

R
L), so that o ∈ [u1, u2, u3] ∩ [v1, v2, v3],

hL(ui) = rhK(ui) = rxi · ui, and hL(vi) = RhK(vi) = Ryi · vi, (7.10)

for i = 1, 2, 3. Here u1, u2, u3 may be distinctive or not, and so is the triple v1, v2, v3.
We shall use the same assumptions (A1), (A2) and (A3) as in the proof of Lem-

ma 7.2, with the same reason. In addition, we should give the following assumption.

(A4) If o ̸= xi, assume o /∈ F (K, ui); if o ̸= yi, assume o /∈ F (K, vi).
Otherwise, suppose o ̸= x1 and o ∈ F (K,u1) (the discussion of the case o ̸= yi is

similar). Since L ⊂ RK, and o ∈ ∂(RK)∩ ∂L, we see that u1 is also a normal vector
of L at o. Then, we can replace x1 by o. That is, consider {o, x2, x3} with normal
vectors {u1, u2, u3}. Thus, this assumption is reasonable.

We will consider 2 cases.
Case 1. o /∈ {x1, x2, x3} ∩ {y1, y2, y3}.
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If o /∈ {y1, y2, y3}, then, by (A4), we deduce hK(vi) > 0, for i = 1, 2, 3. This makes
us be able to use Procedure 1 and Procedure 2 in the proof of Lemma 7.2 directly
to construct the desired bodies Kϵ and Lϵ. It is just an examination of the method
there, so we omit it. After Procedure 2, it is clear that the resulting bodies Kϵ and
Lϵ satisfy

1
R
ϵB ⊂ Kϵ and ϵB ⊂ Lϵ, thus they contain o in their interiors.

If o /∈ {x1, x2, x3}, then, by (A4), we deduce hL(ui) > 0, for i = 1, 2, 3. By chang-
ing the position of K and L, we can also use Procedure 1 and Procedure 2 in the
proof of Lemma 7.2 to construct the desire bodies.

Case 2. o ∈ {x1, x2, x3} ∩ {y1, y2, y3}. Assume without loss of generality that

x1 = y1 = o. (7.11)

Write uθ = (cos θ, sin θ), for θ ∈ [−π, π]. Define the half-spaces H−
θ by

H−
θ := {x : x · uθ ≤ 0},

and denote its boundary by Hθ. Without loss of generality, assume v1 = u0. There
are θ1, θ2 with θ1 ≤ 0 ≤ θ2, so that θ1 is the minimum in [−π, π] so that K ⊂ H−

θ1
,

and θ2 is the maximum in [−π, π] so that K ⊂ H−
θ2
.

In addition to (A3), it will be convenient to assume that

o ̸= x2 and o ̸= x3.

Let δ > 0. Define Kδ and Lδ as follows.
If {x2, x3, y2, y3} ∩Hθ1 ̸= ∅, let K1

δ = K and L1
δ = L; if {x2, x3, y2, y3} ∩Hθ1 = ∅,

let K1
δ = K ∩H−

θ1−δ and L1
δ = L ∩H−

θ1−δ.
If {x2, x3, y2, y3} ∩Hθ2 ̸= ∅, let Kδ = K1

δ and Lδ = L1
δ ; if {x2, x3, y2, y3} ∩Hθ2 = ∅,

let Kδ = K1
δ ∩H−

θ2+δ and Lδ = L1
δ ∩H−

θ2+δ.

Then, for sufficiently small δ > 0, the points o, x2, x3 are also in Kδ ∩ (1
r
Lδ), and

the points o, y2, y3 are also in Kδ ∩ ( 1
R
Lδ). Clearly, lim

δ→0+
Kδ = K and lim

δ→0+
Lδ = L.

Furthermore, by the definition of Kδ and Lδ, and (A4), there are 2 distinctive
facet (1-dimensional face) containing o. Thus, there are points z1δ , z

2
δ /∈ {o, y2, y3}, so

that

z1δ ∈ ∂Kδ ∩ ∂(
1

R
Lδ) ∩ (Hθ1−δ ∪Hθ1),

and

z2δ ∈ ∂Kδ ∩ ∂(
1

R
Lδ) ∩ (Hθ2+δ ∪Hθ2).

Let viδ be a unit normal vector at ziδ, for i = 1, 2. Then, v1 is a positive combination
of v1δ and v2δ .
Now o ∈ [v1δ , v

2
δ , v2, v3], by Carathéodory’s theorem, there are 3 or fewer members

of them containing o in their convex hull. Denote them by v′1, v
′
2, v

′
3, and denote the

corresponding boundary points by y′1, y
′
2, y

′
3. Then, o /∈ {y′1, y′2, y′3}. We can assume

that {y′1, y′2, y′3} and {v′1, v′2, v′3} satisfies (A1), and o /∈ {y′1, y′2, y′3} will be preserved.
Then, by using Procedure 1 and Procedure 2 in the proof of Lemma 7.2 for Kδ and
Lδ, we get the desired convex bodies. After Procedure 2, it is clear that the resulting
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bodies Kϵ and Lϵ satisfy 1
R
ϵB ⊂ Kϵ and ϵB ⊂ Lϵ, thus they contain o in their

interiors. �

Lemma 7.4. Let K,L ∈ K2
o. If K and L are at a dilation position, then∫
S1

log
hL

hK

dVK ≥ |K|
2

log
|L|
|K|

(7.12)

Equality holds if and only if K and L are dilates or K and L are parallelograms with
parallel sides.

Proof. First, suppose K and L are not dilates. By Lemma 7.2, there are Ki ∈ K2
o,

and Li ∈ K2
o, such that Ki are strictly convex, Ki → K and Li → L, and Ki and

Li are at a dilation position. Since Ki are strictly convex, the cone-volume measures
VKi

satisfy the strictly subspace concentration inequality. Thus, by Theorem 6.1, we
have ∫

S1

log
hLi

hKi

dVKi
≥ |Ki|

2
log

|Li|
|Ki|

.

Since Ki → K and Li → L, it follows that the functions log
hLi

hKi
converge to log hL

hK

uniformly on S1, and the cone-volume measures VKi
converge weakly to VK , then

(7.12) follows.
Next, if K and L are dilates or parallelogram with parallel sides, then it is easy to

see that the equality in (7.12) holds.

Finally, suppose equality holds in (7.12). Then the convex body L/|L| 12 must be a

minimizer of the problem (6.1) for K/|K| 12 . It follows immediately from Lemma 6.3
that K and L are dilates or parallelograms with parallel sides. �

Proof of Theorem 3. If K,L ∈ K2
o, then Theorem 3 follows immediately from

Lemma 7.4. Suppose o ∈ ∂K ∩ ∂L, and K and L are not dilates. By Lemma 7.3,
there are convex bodies Ki, Li ∈ K2

o, such that Ki → K and Li → L, and Ki and Li

are at a dilation position. By Lemma 7.4, and dVKi
= 1

2
hKi

dSKi
, we have

1

2

∫
S1

(
log

hLi

hKi

)
hKi

dSKi
≥ |Ki|

2
log

|Li|
|Ki|

.

Since r(K,L)L ⊂ K ⊂ R(K,L)L, we see that hK(u) = 0 if and only if hL(u) = 0.
Define the set ω by

ω := {u ∈ S1 : hK(u) = 0} = {u ∈ S1 : hL(u) = 0},

and define (log hL(u)
hK(u)

)hK(u) = 0 for u ∈ ω. Then, it is easy to see from r(L,K) ≤
hL

hK
≤ R(L,K) that the function (log hL

hK
)hK is well-defined and continuous on S1.

Since Ki → K and Li → L, by using the same method as in the proof of Lemma

6.2, we deduce that r(Li, Ki) → r(L,K) and R(Li, Ki) → R(L,K). Then, log
hLi

hKi
are

uniformly bounded. This, together with the fact that hKi
→ hK uniformly, shows

that (log
hLi

hKi
)hKi

→ (log hL

hK
)hK uniformly on S1. The fact Ki → K also implies that
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the surface area measures SKi
converge to SK weakly. From these, and the continuity

of Lebesgue measure, (1.10) follows.
If K and L are dilates or parallelograms with parallel sides, then it is easy to see

that the equality in (1.10) holds.

Suppose equality holds in (1.10). Then the convex body L/|L| 12 must be a mini-

mizer of the problem (6.1) for K/|K| 12 . It follows immediately from Lemma 6.3 that
K and L are dilates or parallelograms with parallel sides. . �

Proof of Theorem 2. By Lemma 5.5 and Theorem 3, the inequality (1.9) holds.
Suppose λ ∈ (0, 1). If K and L are dilates, or they are parallelograms with parallel
sides, then it is clear that the equality in (1.9) holds.
If equality holds in (1.9), then, by the proof of Lemma 5.5, equality in (5.3) holds.

From the equality condition for the log-Minkowski inequality (1.10), it follows that
either (1−λ) ·K+oλ ·L, K and L are dilates, or they are parallelograms with parallel
sides. �
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