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PARAMETRIZED MAXIMUM PRINCIPLE PRESERVING FLUX

LIMITERS FOR HIGH ORDER SCHEMES SOLVING

HYPERBOLIC CONSERVATION LAWS: ONE-DIMENSIONAL

SCALAR PROBLEM

ZHENGFU XU

Abstract. In this paper, we present a class of parametrized limiters used to
achieve strict maximum principle for high order numerical schemes applied to
hyperbolic conservation laws computation. By decoupling a sequence of pa-
rameters embedded in a group of explicit inequalities, the numerical fluxes are
locally redefined in consistent and conservative formulation. We will show that
the global maximum principle can be preserved while the high order accuracy
of the underlying scheme being maintained. The parametrized limiters are
less restrictive on the CFL number when applied to high order finite volume
scheme. The less restrictive limiters allow for the development of the high order
finite difference scheme which preserves the maximum principle. Within the
proposed parametrized limiters framework, a successive sequence of limiters
are designed to allow for significantly large CFL number by relaxing the limits
on the intermediate values of the multi-stage Runge-Kutta method. Numer-

ical results and preliminary analysis for linear and nonlinear scalar problems
are presented to support the claim. The parametrized limiters are applied to
the numerical fluxes directly. There is no increased complexity to apply the
parametrized limiters to different kinds of monotone numerical fluxes.

1. Introduction

Recently, Zhang & Shu [12] developed a class of maximum principle preserving
(MPP) limiters applied to the reconstructed high order polynomials in the finite
volume framework and the representing high order polynomials in the RK discon-
tinuous Galerkin (RKDG) methods for scalar hyperbolic conservation laws

ut +∇ · F(u) = 0, u(x, 0) = u0(x).(1.1)

The complication of solving nonlinear hyperbolic problems (1.1) arises from the
fact that irregularity could be developed in a short time period even the initial data
is smooth. It demands the consideration of the physically relevant weak solution, so-
called entropy solution to select a unique weak solution [4]. An important property
of the entropy solution is that it preserves the strict maximum principle, namely

um ≤ u(x, y, t) ≤ uM if um ≤ u0(x, y) ≤ uM .(1.2)

An example at the discrete level is the total variation diminishing (TVD) schemes
by Harten [1] satisfying the strict maximum principle. However, it is well known
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that the TVD scheme, where the total variation is measured by that of grid values,
degenerates to first order accuracy at extrema [5]. In the high order formulation of
one dimensional scalar problem

ut + f(u)x = 0, u(x, 0) = u0(x),(1.3)

semi-discrete high order finite volume schemes [14, 7, 3] with TVD property were
proposed. While the schemes satisfy the strict maximum principle and even local
maximum principle [3], the time evolution is implemented by characteristic method,
therefore only feasible in one dimension. It was not until the recent work [12], a gen-
uinely high order conservative scheme was designed to preserve the global maximum
principle. The technique was later generalized to positivity preserving (of density
and pressure) high order discontinuous Galerkin (DG) or finite volume schemes for
compressible Euler equations [13]. The MPP schemes are designed based on the
observation that not only the average volume of an underlying function but also
the function value itself should be bounded by the maximum and minimum values
of the function. The simple observation was held true for the reconstructed poly-
nomial after applying the MPP limiters, in the sense of rescaling the reconstructed
polynomial when necessary without destroying the designed accuracy of the high
order reconstruction. The innovative schemes designed by the authors maintain
high order accuracy while preserving the global maximum principle. Here we refer
to [12, 13] for the details.

In this paper, we would like to provide a different perspective regarding how to
achieve the MPP while preserving high order accuracy by applying limiting param-
eters to the numerical flux. Thereby, the major difference between this approach
and the work in [12] is that the focus here is on the numerical flux only. The recon-
struction can be any strategy in the literature, e.g., adaptive, hierarchy or central
high order reconstruction. The limiters can also be applied to numerical fluxes
with high order polynomial representation of the solution like in the Runge-Kutta
DG scheme. Another major difference is that our approach as presented through
the main algorithm in Section 4.3 allows for significantly large CFL number. The
large CFL number is achieved by relaxing the limits on the intermediate values for
multi-stage TVD Runge-Kutta (RK) time discretization.

To illustrate the idea of parametrized limiters, we can start with the problem
(1.3) on the interval [0, T ] × [0, 1] with unspecified initial condition and periodic
boundary. Let k be the time step size, xj = (j − 1

2 )h and xj+ 1
2
= jh, j = 0, 1, ...N

for a uniform partition h = 1/N . Cell Ij is defined by the interval [xj− 1
2
, xj+ 1

2
].

Without distinguishing point value and cell average evolution, we will choose unj as
approximate value produced by the one step forward Euler scheme

un+1
j = unj − λ(Ĥj+ 1

2
− Ĥj− 1

2
),(1.4)

where λ = k
h is the CFL number. unj could be approximate value of the solution

u(xj , tn) or its average 1
h

∫ x
j+1

2
x
j− 1

2

u(x, tn)dx. After all, the conservative finite differ-

ence and finite volume methods for solving (1.3) take the similar form as in (1.4).

Ĥj+ 1
2
is the high order numerical flux, the numerical approximation of the local

Riemann solver for the high order finite volume scheme. Let um = min
x

(u(x, 0))

and uM = max
x

(u(x, 0)). Assuming the property that needs to be satisfied is that

um ≤ unj ≤ uM
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and the current numerical fluxes Ĥj+ 1
2
may not be able to guarantee such property,

we resort to the limiters of the type

H̃j+ 1
2
= θj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
) + ĥj+ 1

2
(1.5)

such that

um ≤ unj − λ(H̃j+ 1
2
− H̃j− 1

2
) ≤ uM .(1.6)

Here ĥj+ 1
2
is a first order monotone numerical flux that preserves the strict maxi-

mum principle

um ≤ unj − λ(ĥj+ 1
2
− ĥj− 1

2
) ≤ uM .(1.7)

Therefore, the problem becomes whether there are locally defined θj+ 1
2
’s satisfying

(1.6). Meanwhile, for the purpose of high order accuracy, we would like the change

of the numerical flux H̃j+ 1
2
− Ĥj+ 1

2
after applying limiters stays on the scale of the

desired truncation error of the underlying scheme.
However, in the sequence of inequalities (1.6), the parameters θj+ 1

2
’s are coupled

together. In order to define the numerical flux in a local, conservative fashion, we
need to find explicit constraint on each of the θj+ 1

2
’s. Before we continue to discuss

the decoupling of (1.6), we would like to make the following comments:

Remark 1. The MPP finite volume or discontinuous Galerkin limiters can be
parametrized in the sense, that there are a group of locally defined values Λj+ 1

2
’s

such that for any sequence of θj+ 1
2
, if θj+ 1

2
∈ [0,Λj+ 1

2
] for j = 0, 1, 2, ...N , then

MPP is maintained. The limiting process introduced in [12] is consistent with this
description when applied to linear problem.

Remark 2. θj+ 1
2

= 0 for j = 0, 1, 2, ...N corresponds to the first order MPP

approximation. θj+ 1
2
= 1 for j = 0, 1, 2, ...N corresponds to the high order approx-

imation without limiters. Therefore most of the the numerical fluxes we have seen
so far are limited toward the first order monotone flux, especially the limiters used
for various stability consideration.

The numerical flux limiters designed for preserving particular solution structure
do not fall into this category. As an example, the anti-diffusive flux we designed in
[11] is not limited toward the first order monotone flux.

The original work by Zhang & Shu [12] can also be interpreted in the framework
of coupled inequalities. The decoupling of (1.6) was carried out with the recognition
that um ≤ u(xα) ≤ uM (xα represents Gauss Lobatto quadrature points) when
solving (1.3) by finite volume schemes or DG method. The original idea and the
limiting process was constructive and intuitively straightforward. The difference
is that the problem was addressed at the reconstruction level in [12], however, at
the level of building the numerical flux right after reconstruction in our approach.
The motivation of this work comes from the fact that there is tremendous difficulty
to generalize the idea in [12] to the high order finite difference method since the
maximal and minimal values for Hj+ 1

2
are partition dependent. Here the sliding

function H was introduced by Osher & Shu in [9] satisfying

f(u(x)) =
1

h

∫ x+h
2

x−h
2

H(ξ)dξ.(1.8)
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It is very difficult if not completely impossible to rescale the reconstructed polyno-
mial for H(x) to achieve MPP without destroying the high order accuracy. Within
the proposed flux limiting framework, a genuinely high order finite difference MPP
scheme is presented in Section 4. We also want to point out that the high order
finite difference MPP scheme presented in this paper is different from the positivity
preserving finite difference scheme designed recently by Zhang & Shu [15] for com-
pressible Euler equation. In [15], the design of the limiters relies on the assumption
that the exact density is genuinely larger than a positive constant. Strictly speak-
ing, the scheme described in [15] is not high order finite difference MPP scheme.
There is no such requirement for the high order finite difference MPP scheme that
we will discuss later in the paper.

Another observation of the Zhang & Shu limiters is that the limiting process is
based on one step Euler forward time stepping. Each of the intermediate values is
enforced to be within the range of [um, uM ]. For the TVD RK method, since un+1

j

is a convex combination of intermediate values, this provides a sufficient condition
for un+1

j to be within the range [um, uM ]. However, the accuracy inconsistency
between the first order time-stepping and the high order space discretization when
implementing the MPP idea inevitably leads to constraint on the CFL number (the
time step size) as has been observed but not addressed in [12]. Consider that the
intermediate values are not high order approximation of any numbers of interest,
it is reasonable to relax the requirement on the intermediate values in a controlled
manner and only enforce the final values be within the bounds. This new perspec-
tive leads to the designing of high order finite volume and finite difference schemes
with successive parametrized flux limiters which preserve maximum principle and
high order accuracy without restrictive CFL constraint.

The rest of the paper is organized as follows. In Section 2, the decoupling of (1.6)
will be presented within the high order, conservative formulation. In Section 3, we
shall discuss how the high order accuracy can still be maintained while the limiters
are applied to a high order finite volume scheme with suitable CFL condition. In
Section 4, we will show that for the Euler forward based approach in a multi-
stage RK method, when the CFL number is small enough, namely k = ch1.5, c >
0, the limiters applied to third order finite difference scheme maintain MPP and
third order accuracy. Explanation is given as for why a constraint on CFL is
necessary in the finite difference framework. In the same section, a successive flux
limiting process for TVD RK method is proposed as the main algorithm. Numerical
examples are given in both finite volume and finite difference framework for linear
and nonlinear one-dimensional scalar problems. Conclusion will be made in Section
5.

2. Decoupling for MPP flux limiting parameters

In this section, we will discuss the decoupling of (1.6) to identify the parameters
θj+ 1

2
’s which provide a sufficient condition for the conservative scheme to preserve

maximum principle. This decoupling process will be used as the building block of
the main algorithm presented in Section 4.3.

In the following discussion, without ambiguity, we will use uj for unj . The de-

coupling of (1.6) is purely algebraic and straightforward. The basic idea is that,
in order to obtain an independent pair of (θj− 1

2
, θj+ 1

2
) on cell Ij for the numerical

flux to be locally defined (the scheme to be conservative), we need to find a pair
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(1, 0) θ
j−1/2

θ
j+1/2

−

(ΛM

−1/2, I
j

, ΛM

+1/2, I
j

 )

θ
j−1/2

θ
j+1/2

−

(0, 1)

(ΛM

−1/2, I
j

, ΛM

+1/2, I
j

 )

Figure 1. Decoupling (2.1): Case 2 and 3.

(Λ− 1
2
,Ij ,Λ+ 1

2
,Ij ) such that any pair (θj− 1

2
, θj+ 1

2
) ∈ [0,Λ− 1

2
,Ij ]× [0,Λ+ 1

2
,Ij ] satisfies

(1.6). For this purpose, we can rewrite the inequality (1.6) as

λθj− 1
2
(Ĥj− 1

2
− ĥj− 1

2
)− λθj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
)− ΓM

j ≤ 0,(2.1)

where ΓM
j = uM − uj + λ(ĥj+ 1

2
− ĥj− 1

2
) ≥ 0. For the minimum value part, we

would like to have

0 ≤ λθj− 1
2
(Ĥj− 1

2
− ĥj− 1

2
)− λθj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
)− Γm

j ,(2.2)

where Γm
j = um − uj + λ(ĥj+ 1

2
− ĥj− 1

2
) ≤ 0. For abbreviation, we could use the

notation Fj+ 1
2
= Ĥj+ 1

2
− ĥj+ 1

2
. First, let us discuss the decoupling of (2.1) on cell

Ij :

(1) If Fj− 1
2
≤ 0 and Fj+ 1

2
≥ 0, it is obvious that the pair would be

(ΛM
− 1

2
,Ij
,ΛM

+ 1
2
,Ij

) = (1, 1).

(2) If Fj− 1
2
≤ 0 and Fj+ 1

2
< 0, the pair can be given as

(ΛM
− 1

2
,Ij
,ΛM

+ 1
2
,Ij

) = (1,min(1,
ΓM
j

−λFj+ 1
2

)).

(3) If Fj− 1
2
> 0 and Fj+ 1

2
≥ 0, the pair can be given as

(ΛM
− 1

2
,Ij
,ΛM

+ 1
2
,Ij

) = (min(1,
ΓM
j

λFj− 1
2

), 1).

(4) If Fj− 1
2
> 0 and Fj+ 1

2
< 0, when (θj− 1

2
, θj− 1

2
) = (1, 1) satisfies (2.1), the

pair can be given as (Λ− 1
2
,Ij ,Λ+ 1

2
,Ij ) = (1, 1). However, in the case that

the pair (θj− 1
2
, θj− 1

2
) = (1, 1) does not satisfy (2.1), intersection is given as

the pair

(ΛM
− 1

2
,Ij
,ΛM

+ 1
2
,Ij

) = (
ΓM
j

λFj− 1
2
− λFj+ 1

2

,
ΓM
j

λFj− 1
2
− λFj+ 1

2

).

The straight line in the figures is where

λθj− 1
2
(Ĥj− 1

2
− ĥj− 1

2
)− λθj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
)− ΓM

j = 0.
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θ
j−1/2

θ
j+1/2

−

(ΛM

−1/2, I
j

, ΛM

+1/2, I
j

 )=(1,1)

θ
j−1/2

θ
j+1/2

−

(ΛM

−1/2, I
j

, ΛM

+1/2, I
j

 )

(1, 1)

Figure 2. Decoupling (2.1): Case 4.

The negative sign at the origin indicates that the inequality (2.1) holds for the pair
(θj− 1

2
, θj+ 1

2
) = (0, 0). In the case of decoupling (2.2), the parameters can also be

given symmetrically by

(1) If Fj− 1
2
≥ 0 and Fj+ 1

2
≤ 0, the pair would be

(Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) = (1, 1).

(2) If Fj− 1
2
≥ 0 and Fj+ 1

2
> 0, the pair can be given as

(Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) = (1,min(1,
Γm
j

−λFj+ 1
2

)).

(3) If Fj− 1
2
< 0 and Fj+ 1

2
≤ 0, the pair can be given as

(Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) = (min(1,
Γm
j

λFj− 1
2

), 1).

(4) If Fj− 1
2
< 0 and Fj+ 1

2
> 0, when (θj− 1

2
, θj+ 1

2
) = (1, 1) satisfies (2.2), the

pair can be given as (Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) = (1, 1). Again, in the case that

(θj− 1
2
, θj+ 1

2
) = (1, 1) does not satisfy (2.2), intersection is given as the pair

(Λm
− 1

2
,Ij
,Λm

+ 1
2
,Ij

) = (
Γm
j

λFj− 1
2
− λFj+ 1

2

,
Γm
j

λFj− 1
2
− λFj+ 1

2

).

The locally defined limiting parameter can be chosen to be

Λ+ 1
2
,Ij = min(ΛM

+ 1
2
,Ij
,Λm

+ 1
2
,Ij

).(2.3)

For the scheme to be conservative, we shall define the local limiting parameter
for (1.6) as

θj+ 1
2
= Λj+ 1

2
= min(Λ+ 1

2
,Ij ,Λ− 1

2
,Ij+1

).(2.4)

Therefore, the modified MPP numerical flux will be

H̃j+ 1
2
= θj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
) + ĥj+ 1

2
.(2.5)

The flux redefined by (2.5) is obviously consistent since it is a convex combination
of high order flux with the first order flux. We would like to comment that
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Remark 3. For the scheme to achieve MPP property through the above proce-
dure, the construction of the parametrized limiters does not rely on the high order
polynomial reconstructing process, i.e., the ENO, WENO, or central WENO re-
construction. It only requires that the first order scheme to preserve maximum
principle.

Remark 4. Since intuitively the limiters are only needed for cells close to global
extrema, they will not take away the excellent capability of the regular ENO, WENO
schemes for resolving shock, contact type interfacial structure. For locally MPP, or
TVD type scheme, the limiters can be designed in the same way.
By decoupling the inequalities (1.6) in the above manner, we shall state the first
result

Theorem 5. The scheme (1.4) for solving (1.3) with newly defined numerical flux
(2.5) maintains the global maximum principle.

The proof won’t be necessary because of the way that the limiters are designed.
So far, the limiters defined by (2.3) and (2.4) provide a sufficient condition for the
underlying scheme to be MPP. A similar approach was investigated by Sweby [10]
to explore the total variation diminishing (TVD) limiters for a class of Entropy-
schemes for hyperbolic conservation laws. Since the scheme after the limiting pro-
cess was enforced to be TVD, the scheme there was at most first order accurate
in L1. For the limiting process described above, the question remains whether the
limiting procedure compromises the designed order of approximation and under
what condition, it maintains the desired high order accuracy. These questions shall
be answered in the following sections.

3. parametrized limiters for high order finite volume scheme

In this section, advection equation and Burgers’ equation are both computed
using a third order finite volume ENO scheme and a third order finite volume with
fixed stencil reconstruction with parametrized limiters to show the accuracy of the
approximation. Results are also compared to the high order finite volume ENO
scheme with Zhang & Shu limiters in [12]. The third order scheme is chosen as the
example because of the consistency of order in space and time discretization when
third order TVD RK time discretization is applied. Therefore, we can have a clear
understanding of how the CFL number affects the performance of the scheme with
parametrized flux limiters. Through the numerical tests within the finite volume
framework, we would like to make the following points:

(1) The choice of CFL number affects the accuracy of the numerical approxima-
tion. In order to obtain the designed order of accuracy with the parametrized
flux limiters, suitable CFL needs to be chosen.

(2) Preliminary analysis is given as explanation more than proof of why a mild
constraint on the CFL is necessary. However, when the parametrized MPP
flux limiters proposed in Section 2 are applied to each of the Euler forward
steps in the TVD RK third order finite volume scheme, the CFL can be
slightly larger than the CFL number proposed in [12]. This is confirmed
both analytically and numerically.

(3) The MPP flux limiting technique does not depend on the reconstruction
strategy for high order schemes.
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3.1. Computation of the advection equation. First, we would like to check
the order of accuracy if the finite volume scheme with parametrized limiters is used
to solve the advection problem f(u) = u. On the interval [0, 1], we will compute
the solution to the advection problem with initial condition u(x, 0) = sin(2πx)
assuming periodic boundary condition and T = 1. In space discretization, we
choose third order finite volume reconstruction. The high order numerical flux
Ĥj+ 1

2
is the interface value u−

j+ 1
2

reconstructed by the third order Harten ENO

scheme [2] using average integral ūj over the cells Ij ’s while the first order flux is

chosen as ĥj+ 1
2
= ūj . For the time stepping, we use the following third order TVD

RK method to be consistent with space discretization accuracy. The third order
TVD RK method for an ordinary differential equation ut = L(u) has the following
form [8]:

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

It can also be written in the form of a combination of multiple Euler forward steps:

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
(u(1) +∆tL(u(1))),(3.1)

un+1 =
1

3
un +

2

3
(u(2) +∆tL(u(2))).

Therefore the Euler forward based limiting procedure described in Section 2 can
be applied to each of the steps in (3.1) to ensure MPP property. In the work [12],
as it is pointed out by the authors that in order for the finite volume scheme with
polynomial of order 2 reconstruction to be MPP, the CFL number has to be less
than 1

6 . However, for the method discussed in the last two sections, the construction
of the limiters indicates that as long as CFL number is less than 1, the scheme with
the parametrized limiters always maintain MPP. However, the order of accuracy
will decrease while increasing CFL number. The choice of suitable CFL number
is meant to ensure high order accuracy in this framework. In Table 1, we choose
CFL = 0.15, 0.2, 0.25 separately using Harten’s ENO scheme [2] to construct u−

j+ 1
2

which is used as Ĥj+ 1
2
in the limiting process described in Section 2. Comparing the

Table 1. Third order finite volume ENO scheme with
parametrized limiters: advection equation.

CFL=0.15 CFL=0.2 CFL=0.25
N L∞ error order L∞ error order L∞ error order
40 2.18E-3 2.04E-3 2.13E-3
80 2.71E-4 3.00 2.56E-4 3.00 2.75E-4 2.95
160 3.37E-5 3.00 3.19E-5 3.00 4.15E-5 2.72
320 4.18E-6 3.01 3.99E-6 3.00 8.28E-6 2.32
640 5.18E-7 3.01 4.98E-7 3.00 2.07E-6 1.99
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numerical result shown in Table 1 with the analysis in [12], with the parametrized
limiters, the third order finite volume ENO scheme produces third order accurate
approximation when CFL number is less than 1/5 instead of 1/6. This is attributed
to the mild difference between those two approach that in the parametrized

limiting procedure, the limited end point value u−
j+ 1

2

are not restricted

to be in the range of [um, uM ] , even though limiting the reconstructed values
into the range of [um, uM ] is a natural requirement in the finite volume framework.
It seems that the requirement poses to be a stiff hurdle for designing high order
MPP finite difference scheme. The new alternative approach introduced in the last
two sections provides the opportunity of overcoming this hurdle.

3.2. Computation of Burgers’ equation. In this part of the paper, we will
present the numerical experiment of the flux limiting technique to the general non-
linear problem (1.3). Through the numerical test, we would like to show:

(1) The parametrized limiting process for nonlinear problem preserves max-
imum principle without destroying the designed order of accuracy with
suitable CFL number.

(2) The limiting process can be applied to different numerical flux other than
upwinding flux without increased complexity.

(3) The CFL number can still be slightly larger than 1/6 as suggested in [12] due
to the fact that the reconstructed interface values uj+ 1

2
’s are not demanded

to be in the range of [um, uM ].

When the high order reconstruction is applied to recover the values u+
j+ 1

2

and u−
j+ 1

2

at interface, the high order flux Ĥj+ 1
2
in the described limiting process takes the

form

Ĥj+/2 = Ffl(u
−

j+ 1
2

, u+
j+ 1

2

)(3.2)

when Lax-Friedrich flux

Ffl(a, b) =
1

2
(f(a) + f(b)− α(b − a))(3.3)

is used, where α = max
u

|f ′(u)|. It is obvious that when the first order numerical

flux ĥj+/2 = Ffl(ūj , ūj+1) is used, the scheme has MPP property. The redefined
numerical flux has the following form

H̃j+ 1
2
= θj+ 1

2
(Ĥj+ 1

2
− Ffl(ūj , ūj+1)) + Ffl(ūj , ūj+1).(3.4)

The corresponding sufficient condition for the high order scheme to be MPP can
be written as

λθj− 1
2
(Ĥj− 1

2
− Ffl(ūj−1, ūj))− λθj+ 1

2
(Ĥj+ 1

2
− Ffl(ūj, ūj+1))− ΓM

j ≤ 0(3.5)

for the maximum value part. Here

ΓM
j = uM − ūj + λFfl(ūj , ūj+1)− λFfl(ūj−1, ūj) ≥ 0.

For the minimum value part, it can be written as

0 ≤ λθj− 1
2
(Ĥj− 1

2
− Ffl(ūj−1, ūj))− λθj+ 1

2
(Ĥj+ 1

2
− Ffl(ūj, ūj+1))− Γm

j ,(3.6)

where Γm
j = um − ūj + λFfl(ūj , ūj+1)− λFfl(ūj−1, ūj) ≤ 0. The same decoupling

process described in Section 2 can be applied.
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In the case of inviscid Burgers’ equation f(u) = u2

2 with initial condition u(x, 0) =

0.5(1 + sin(2πx)) on the interval [0, 1], we run the simulation to T = 1
2π on a

uniformly distributed partitions. Here we choose a fixed stencil, namely Sj =

{Ij−1, Ij , Ij+1} to reconstruct the values at interface, u−
j+ 1

2

and u+
j− 1

2

. The choice

of fixed stencil is only to avoid the order degeneracy due to the frequent switch-
ing of stencils in the adaptive stencil-picking process of the Harten ENO scheme
[6], which is not the issue we consider here. This is also an example that the
reconstruction process is relatively irrelevant for preserving MPP property in the
parametrized limiters framework. Third order RK method (3.1) is applied to the
time discretization. In both linear and nonlinear cases, the error is measured by

Table 2. Third order finite volume scheme with parametrized lim-
iters: Burgers’ equation.

CFL=0.15 CFL=0.2 CFL=0.4
N L∞ error order L∞ error order L∞ error order
40 1.90E-3 1.89E-3 1.87E-3
80 2.80E-4 2.75 2.80E-4 2.75 2.79E-4 2.75
160 3.71E-5 2.91 3.71E-5 2.91 3.69E-5 2.91
320 4.67E-6 2.98 4.67E-6 2.98 9.03E-6 2.03
640 5.84E-7 3.00 5.84E-7 3.00 2.30E-6 1.97

L∞ norm. Table 2 shows that the scheme preserves third order accuracy when
parametrized limiters are applied with CFL being 1/5. It can also be observed
from Table 1 & 2 that the accuracy of approximation degenerates to second order
when large CFL number is used. We will not test the limiting procedure on other
high order finite volume ENO, WENO schemes. However, those two examples in-
dicate that the parametrized limiters applied to high order finite volume schemes
do not compromise the order of accuracy of underlying schemes when the suitable
CFL number is chosen.

3.3. CFL constraint. As revealed in the previous computation for both linear and
nonlinear problems, the parametrized limiters guarantees the scheme to be MPP.
Accuracy of the scheme will be decided by not only the order of the reconstructed
polynomials, but also the CFL number because of the way CFL number being built
into the limiters. We will devote this section to investigating how the CFL number
affects the reconstruction of the high order numerical flux, thereby the overall accu-
racy of the numerical approximation to the exact solution. We will prove that the
third order finite volume scheme with parametrized limiters preserves third order
accuracy subject to mild CFL constraint. This is explained from the truncation
error point of view. In the following analysis, we use linear advection problem as
example for simplicity. However the analysis can be carried over to nonlinear prob-
lem without major difficulty since the analysis only depends on Taylor expansion,
which is just algebraically more tedious in the nonlinear case. Before presenting the
main result, we will introduce a few lemmas in order to prove the main theorem.
In the following analysis, O(h3) denotes a number that |O(h3)| ≤ ch3, where c is
grid independent positive constant.
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Lemma 6. For a function u(x), assuming |D(α)u| ≤ C for α ≤ 3, where C is a

positive constant, if λ ≤
√

1/12, then

ūj − λ(uj+ 1
2
− uj− 1

2
) ≤ uM +O(h3),(3.7)

where h = xj+ 1
2
− xj− 1

2
, ūj =

1
h

∫ x
j+ 1

2
x
j− 1

2

udx, uj± 1
2
= u(xj± 1

2
) and uM = maxu(x).

Proof. First, let us consider the case that u reaches maximum at xM ∈ [xj− 1
2
, xj+ 1

2
].

The other cases will be discussed separately. The Taylor expansion about xM can
be written as

u(x) = uM + u′(xM )(x− xM ) +
u′′(xM )

2
(x− xM )2 +O(h3).(3.8)

Therefore, we have

u(x) = uM +
u′′(xM )

2
(x− xM )2 +O(h3)(3.9)

since u′(xM ) = 0. Now substitute x = xj± 1
2
into (3.9) and simplify, we have

u(xj+ 1
2
)− u(xj− 1

2
) = u′′(xM )h(xj − xM ) +O(h3).(3.10)

Integrate (3.9) over [xj− 1
2
, xj+ 1

2
] to find ūj that

ūj = uM +
u′′(xM )

6h
{(xj+ 1

2
− xM )3 − (xj− 1

2
− xM )3}+O(h3).(3.11)

Combine (3.10) with (3.11) and simplify, we have

ūj − λ(uj+ 1
2
− uj− 1

2
) = uM + u′′(xM )R+O(h3),(3.12)

where

R(xM ) =
1

2
(xM − xj)

2 + h2/24− λh(xj − xM ).(3.13)

To prove (3.7) from (3.12), it suffices to show that R ≥ 0 if λ ≤
√

1/12 since

u′′(xM ) ≤ 0. It is obvious R(xj+ 1
2
) ≥ 0. In order for R(xj− 1

2
) ≥ 0, λ ≤ 1/3 must

hold. Differentiate R with respect to xM , there is

R′(xM ) = xM − xj + λh.(3.14)

R as function of xM reaches its minimum at xc = xj − λh

R(xc) = −
1

2
λ2h2 + h2/24.(3.15)

We have R(xc) ≥ 0 when λ ≤
√

1/12.
If u(x) reaches local maximum at xj+ 1

2
or inside the interval [xj− 1

2
, xj+ 1

2
], then

(3.7) automatically holds based on the above analysis. If u(x) reaches its local
maximum at xj− 1

2
, then the Taylor expansion about xj− 1

2
takes the form

u(x) = uj− 1
2
+ u′(xj− 1

2
)(x − xj− 1

2
) +

u′′(xj− 1
2
)

2
(x− xj− 1

2
)2 +O(h3).

Following the previous calculation, we have

ūj − λ(uj+ 1
2
− uj− 1

2
) = uj− 1

2
+ u′(xj− 1

2
)(1/2− λ)h

+
u′′(xj− 1

2
)

2
(1/3− λ)h2 +O(h3).(3.16)
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When λ ≤ 1/3, (3.16) can be rewritten as

ūj − λ(uj+ 1
2
− uj− 1

2
)

= u(xj− 1
2
− h

√

1/3− λ) + u′(xj− 1
2
)h(1/2− λ+

√

1/3− λ) +O(h3)

≤ uM +O(h3)(3.17)

since u′(xj− 1
2
) ≤ 0. Combining the above discussion, the lemma is proven. �

Lemma 7. If λ ≤ 1/3, then

ūj − λ(uj+ 1
2
− ūj−1) ≤ uM +O(h3),(3.18)

where ūj−1 = 1
h

∫ x
j− 1

2
x
j− 3

2

udx.

Proof. Here we only consider the case that u reaches its maximum uM inside the
interval, the case that the accuracy is most likely to be affected by the limiters.
Other cases can be considered like in Lemma 6. Again, use the Taylor expansion
(3.9) to evaluate uj+ 1

2
, ūj−1, we can have

ūj − λ(uj+ 1
2
− ūj−1) = uM + u′′(xM )R +O(h3),(3.19)

where

R(xM ) = 1
6h {(xj+ 1

2
− xM )3 − (xj− 1

2
− xM )3} −

λ

2
(xj+ 1

2
− xM )2

+
λ

6h
{(xj− 1

2
− xM )3 − (xj−3/2 − xM )3}.(3.20)

Once again, we have R(xj+ 1
2
) > 0 and R(xj− 1

2
) ≥ 0 when λ ≤ 1/3. It suffices to

require R(xc) ≥ 0 at its critical points. Differentiate the form (3.20),

R′(xM ) = xM − xj − λ(xM − xj+ 1
2
) + λ(xM − x̄j−1),(3.21)

to find the critical point xc = xj −
3h
2 λ. The value of R(xc) is

R(xc) =
h2

4
(1/6 + 5/3λ− 9/2λ2).(3.22)

This proves (3.18) since λ can be roughly computed as about 0.45 for R ≥ 0. �

To cover all the cases in the decoupling process, we also need

Lemma 8. If λ ≤ 1, then

ūj − λ(ūj − uj− 1
2
) ≤ uM +O(h3).(3.23)

The is trivial due to the fact that the left side of (3.23) can be written as (1 −
λ)ūj+λuj− 1

2
≤ uM . With the help of Lemma 6, 7, 8, we can prove the main result.

Theorem 9. For the third order finite volume reconstruction of numerical flux
Ĥj+ 1

2
= u−

j+ 1
2

to the advection equation, the redefined numerical flux H̃j+ 1
2

by

(2.5) maintains third order accurate approximation to uj+ 1
2
when CFL <

√

1/12.

Proof. Consider the limiters for the maximum value case. No limiters are intro-
duced in case 1 decoupling, therefore accuracy is not affected. Starting with case
4, we would like to show that H̃j+ 1

2
defined by (2.3) is third-order approximation
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of uj+ 1
2
if Ĥj+ 1

2
is the third order approximation of uj+ 1

2
. It is sufficient to show

that when (Λ− 1
2
,Ij ,Λ+ 1

2
,Ij ) = (

ΓM
j

λF
j− 1

2

−λF
j+ 1

2

,
ΓM
j

λF
j− 1

2

−λF
j+ 1

2

) is chosen,

Λ+ 1
2
,Ij (Ĥj+ 1

2
− ūj) + ūj − Ĥj+ 1

2
= O(h3)

and
Λ− 1

2
,Ij (Ĥj− 1

2
− ūj−1) + ūj−1 − Ĥj− 1

2
= O(h3)

holds. We will prove the former estimate and the later is similar. This is equivalent
to prove

Γj − (λFj− 1
2
− λFj+ 1

2
)

λFj− 1
2
− λFj+ 1

2

Fj+ 1
2
= O(h3),(3.24)

when Γj < λFj− 1
2
− λFj+ 1

2
. Since Fj− 1

2
> 0 and Fj+ 1

2
< 0, 0 < −

F
j+ 1

2

λF
j− 1

2

−λF
j+ 1

2

≤

1/λ, recalling that

Γj − (λFj− 1
2
− λFj+ 1

2
) = uM − {ūj − λ(Ĥj+ 1

2
− Ĥj− 1

2
)} < 0,(3.25)

it suffices to show that

uM − {ūj − λ(Ĥj+ 1
2
− Ĥj− 1

2
)} = O(h3).(3.26)

According to Lemma 6 and (3.7), we have uM − {ūj − λ(uj+ 1
2
− uj− 1

2
)} ≥ O(h3).

With Ĥj± 1
2
− uj± 1

2
= O(h3) and (3.25), it follows that

O(h3) ≤ uM − {ūj − λ(Ĥj+ 1
2
− Ĥj− 1

2
)} < 0,(3.27)

which means that (3.26) holds. For the case 2, we only need to consider when

Λ+ 1
2
,Ij =

Γj

−λF
j+ 1

2

< 1 is chosen,

H̃j+ 1
2
− Ĥj+ 1

2
=

Γj + λFj+ 1
2

−λ
=
uM − {ūj − λ(Ĥj+ 1

2
− ūj−1)}

−λ
.(3.28)

In order for H̃j+ 1
2
− Ĥj+ 1

2
= O(h3), it suffices to require uM − {ūj − λ(Ĥj+ 1

2
−

ūj−1)} = O(h3). Notice that
Γj

−λF
j+ 1

2

< 1 means

uM − {ūj − λ(Ĥj+ 1
2
− ūj−1)} < 0.(3.29)

However, from Lemma 7 and (3.18), we have

O(h3) ≤ uM − {ūj − λ(uj+ 1
2
− ūj−1)}.

Again, since Ĥj+ 1
2
− uj+ 1

2
= O(h3), it follows that

O(h3) ≤ uM − {ūj − λ(Ĥj+ 1
2
− ūj−1)} < 0,(3.30)

therefore, uM − {ūj − λ(Ĥj+ 1
2
− ūj−1)} = O(h3). We can conclude that the third

order accuracy is maintained too in case 2. The case 3 is very similar to case 2. We
shall not repeat it. �

To summarize, the third order finite volume scheme with parametrized limiters
produce third order approximation of the numerical flux from the truncation point
of view. The proof of Theorem 9 shows that we can have a general conclusion for
polynomial reconstruction of order r that
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Theorem 10. If there exists a positive constant λ such that

ūj − λ(uj+ 1
2
− uj− 1

2
) ≤ uM +O(hr+1),(3.31)

ūj − λ(uj+ 1
2
− ūj−1)) ≤ uM +O(hr+1),(3.32)

ūj − λ(ūj − uj− 1
2
) ≤ uM +O(hr+1),(3.33)

then the newly defined flux H̃j+ 1
2
is still r + 1-th order approximation of u(xj+ 1

2
),

i.e., H̃j+ 1
2
− u(xj+ 1

2
) = O(hr+1).

Therefore to extend this approach to higher order (higher than third order), it
is equivalent to find suitable λ such that higher order version of Lemma 6, 7, 8
holds. In the next section, we will discuss how to establish a fourth order version
of Lemma 6 as an example to extend the result and analysis to higher order. It is
necessary to point out that even though the analysis and numerical test validates
the claim stated in the Theorem 9, in both the Table 1 and 2 the third order of
convergence can only be achieved for CFL number up to about 1/5, which is less

than the CFL number
√

1/12 given in the Theorem 9. This gap can be explained
by:

(1) Same as what have been done in [12] and for most of the high order methods,
the above analysis is purely for spatial discretization from the perspective of
the truncation error. Which means that without considering time evolution,
the truncation error and order of convergence for spatial discretization is
on the scale of O(h3) for CFL number up to

√

1/12.
(2) When the MPP limiters are added onto the numerical fluxes, the limiters

serve as hard caps on the intermediate values for the RK type time inte-
gration. As is well understood, the RK type time integration depends on
the cancellation between lower order approximates to achieve high order
accuracy. The hard caps introduced by the flux limiters inevitably create
obstacles for the cancellation of low order terms, as has been observed in
both [12] and this paper.

(3) The CFL number
√

1/12 is optimal estimate based on the results shown in
Table 3.

To numerically verify those claims, for two functions, we compute the L∞ measure
of the spatial discretization error

(u(xj +
1

2
h)− u(xj −

1

2
h))/h− (H̃(xj +

1

2
h)− H̃(xj −

1

2
h))/h.

We compare the errors for different CFL numbers: CFL =
√

1/12 and slightly

larger CFL = 1.1 ×
√

1/12 respectively. The results in Table 3 clearly indicate

that third order accuracy is preserved for CFL number
√

1/12, while the spatial

approximation degenerates for CFL number 1.1 ×
√

1/12. For all the other µ we

tried, the spatial discretization is uniform third order for CFL =
√

1/12.

3.4. Fourth order finite volume scheme with parametrized limiters. In the
previous section, for the third order finite volume scheme with the parametrized
limiters it is proven that the limiters do not compromise the high order approxi-
mation of the flux. To illustrate the limiters can be applied to higher order, fourth
order as example, we will give a lemma which is similar to Lemma 6 since Lemma
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Table 3. Error and order of convergence for third order finite vol-
ume spatial approximation with parametrized MPP flux limiters:
u(x) = sin(2π(x+µ)); Group 1: µ=0.39; CFL =

√

1/12; Group 2:

µ = 0.39; CFL = 1.1×
√

1/12; Group 3: µ = 0.58; CFL =
√

1/12;

Group 4: µ = 0.58; CFL = 1.1×
√

1/12.

N 40 80 160 320 640 1280
Group 1 2.02E-3 2.53E-4 3.17E-5 3.96E-6 4.95E-7 6.19E-8
order 2.99 2.99 2.99 2.99 2.99

Group 2 4.35E-3 2.29E-3 1.16E-3 5.85E-4 2.91E-4 1.46E-4
order 0.92 0.98 0.99 0.99 0.99

Group 3 2.02E-3 2.53E-4 3.17E-5 3.96E-6 4.95E-7 6.19E-8
order 2.99 2.99 2.99 2.99 2.99

Group 4 1.42E-2 7.24E-3 3.63E-3 1.82E-3 9.10E-4 4.55E-4
order 0.97 0.99 0.99 0.99 0.99

(6, 7, 8) are essentially the sufficient conditions for the scheme to maintain high
order accuracy.

Lemma 11. For a function u(x), assuming |D(α)u| ≤ C for α ≤ 4, if λ <
√

1/12,
then

ūj − λ(uj+ 1
2
− uj− 1

2
) ≤ uM +O(h4)(3.34)

where the notation carries the same meaning as in Lemma 6.

Proof. First, we consider the case that u reaches maximum at xM ∈ [xj− 1
2
, xj+ 1

2
].

The Taylor expansion about xM can be written as

u(x) = uM + u′(xM )(x− xM ) +
u′′(xM )

2
(x− xM )2

+
u′′′(xM )

6
(x − xM )3 +O(h4).(3.35)

Similar to the calculation for Lemma 6, after simplifying, we have the following

ūj − λ(uj+ 1
2
− uj− 1

2
) = uM +

u′′(xM )

2
R1 +

u′′′(xM )

6
R2 +O(h4),(3.36)

where

R1(xM ) = (xM − xj)
2 + h2/12− 2λh(xj − xM )(3.37)

and

R2(xM ) =
1

4h
{(xj+ 1

2
− xM )4 − (xj− 1

2
− xM )4} − λ{3h(xM − xj)

2 +
h3

4
}.

We seek a convex combination for (3.36) of the type

L.H.S = βu(xM + c1h) + (1− β)u(xM + c2h) +O(h4),(3.38)

where 0 ≤ β ≤ 1, c1, c2 shall be bounded, i.e., |c1|, |c2| < Cλ with Cλ > 0 and
independent of h. To match (3.38) with (3.36) up to the O(h4) level truncation
error after the Taylor expansion on the right hand of (3.38), we expect

βc21 + (1 − β)c22h
2 ≤ R1,(3.39)

βc31 + (1 − β)c32h
3 = R2,(3.40)
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which is a sufficient condition for the Lemma to hold since u
′′

(xM ) ≤ 0. Let c1 = 0,
which means a combination with maximum point value, (3.39) can be simplified to
one inequality

(1− β)R2
2 ≤ R3

1.(3.41)

Therefore 1− β can be chosen as min(1,
R3

1

max
xM

R2
2

). Consequently, c2 = ( R2

(1−β)h3 )
1/3.

When λ <
√

1/12, we have

R1 ≥
h2

1/12− λ2
(3.42)

by straightforward calculation (This is to obtain a lower bound on 1− β, therefore
upper bound on |c2|). Similar calculation for R2 shows that

λh3

4
≤ max

x
j− 1

2

≤xM≤x
j+1

2

|R2| ≤
(1 + 4λ)h3

4
.(3.43)

(3.42) and (3.43) indicates there is a c0 > 0 which only depends on λ such that

c0 ≤ 1− β and |c2| ≤
(1+4λ)
4c0

. This means that β is well defined and c2 is bounded

in the sense there is Cλ > 0, dependent on λ only, such that |c2| ≤ Cλ. Since
u(xM + c2h) ≤ uM , the Lemma is proven in this case. For the other cases, we will
not repeat the similar algebraic process. �

The above analysis indicates how the suitable CFL can be found for high order
(higher than third order) schemes with parametrized limiters to maintain high order
accuracy in terms of truncation error in spatial discretization. A less sharp CFL
constraint can be obtained by using the Gauss Lobatto quadrature rules for ūj as
used in [12]. However the Gauss Lobatto quadrature rule can not be applied to the
analysis for the high order finite difference scheme with parametrized limiters. In
the future, more efforts will be devoted to analyze the modified MPP flux limiters for
high order scheme presented in Section 4. The modified flux limiters are designed in
the similar way, but tailored for multiple stage time discretization. The successive
flux limiting approach is more appealing since it allows significantly larger CFL
number.

4. High order scheme with successively defined MPP flux limiters

In this section, we will discuss the implementation of the parametrized flux limit-
ing technique to high order finite difference scheme. Through the numerical results,
we would like to show that when the parametrized limiters are used to the third
order finite difference scheme, both global maximum principle and third order ac-
curacy are preserved. However, for the scheme to preserve third order accuracy in
this framework, we experience a very restrictive CFL number constraint, namely
k

h1.5max
u

|f ′(u)| ≤ c. It will be explained why the constraint is necessary through

preliminary analysis. Most important of all, a successively defined flux-limiters

strategy will be provided to relieve the very restrictive CFL constraint. The capabil-
ity of this modified flux limiting technique shall be demonstrated through numerical
experiments.
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Table 4. Third order finite difference ENO scheme with
parametrized limiters: Advection equation.

kα
h1.5=1 kα

h =0.1 kα
h =0.25

N L∞ error order L∞ error order L∞ error order
40 2.16-3 2.15E-3 2.27-3
80 2.72E-4 2.98 2.94E-4 3.00 4.07E-4 2.48
160 3.39E-5 3.00 3.49E-5 2.94 9.80E-5 2.05
320 4.22E-6 3.00 5.15E-6 2.76 2.47E-5 1.98
640 5.17E-7 3.00 9.97E-7 2.36 6.17E-6 2.00

4.1. Third order finite difference approximation with MPP property.

Consider the advection equation f(u) = u with initial condition u(x, 0) = sin(2πx)
on the interval [0, 1]. Let T be 1 which is one period of evolution. The only dif-
ference from Section 3.1 is the initial value. The rest of the limiting process is
completely the same. For repeatedly refined uniform partition of the computa-
tional interval, Table 4 shows the scheme produces third order accuracy when the
third order finite difference ENO scheme is used with the parametrized flux lim-
iters. However, in this case, MPP and third order accuracy is obtained with the
k

h1.5 = 1 type CFL condition. When the CFL number is on the scale of k
h = O(1),

the scheme degenerates to second order accuracy in L∞ norm.
For the Burgers’ equation considered in Section 3, we choose the first order Lax-

Friedrich flux as the one that the high order flux is limited toward. The high order
flux Ĥj+ 1

2
is constructed in the way that

Ĥj+ 1
2
= LF−

j+ 1
2

+ LF+
j+ 1

2

.(4.1)

LF−

j+ 1
2

is reconstructed on the fixed stencil Sj = {Ij−1, Ij , Ij+1} that

LF−

j+ 1
2

= p(xj+ 1
2
),
1

h

∫

Il

p(x)dx = 1/2(f(ul) + αul), Il ∈ Sj ,(4.2)

while LF+
j− 1

2

is reconstructed on the fixed stencil Sj that

LF+
j− 1

2

= p(xj− 1
2
),
1

h

∫

Il

p(x)dx = 1/2(f(ul)− αul), Il ∈ Sj .(4.3)

Again, α = max
u

|f ′(u)|, p(x) is the polynomial of order 2. The result in Table 5

shows that the third order reconstruction with parametrized limiters applied to the
Lax-Friedrich flux produces third order accurate approximation with very restrictive
CFL number.

4.2. The CFL constraint. The previous computation shows that the third order
finite difference scheme with parametrized limiters is MPP while maintaining third
order accuracy for both linear and nonlinear problem. However, there is a stiff
CFL constraint for the scheme to function properly. We would like to explain why
it is necessary using linear advection as example. Following the previous analysis,
in order for the scheme to preserve maximum principle and maintain high order
accuracy, it seems the lemma of the following type holds the key.
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Table 5. Third order finite difference scheme with parametrized
limiters: Burgers’ equation.

kα
h1.5=1 kα

h =0.2 kα
h =0.4

N L∞ error order L∞ error order L∞ error order
40 2.43E-3 2.43E-3 2.43-3
80 3.21E-4 2.92 3.21E-4 2.92 3.16E-4 2.93
160 3.98E-5 3.01 3.98E-5 3.01 5.05E-5 2.64
320 4.84E-6 3.04 4.83E-6 3.04 1.33E-5 1.91
640 5.94E-7 3.02 9.22E-7 2.39 3.41E-6 1.96

Lemma 12. If λ = ch0.5, where c is a positive constant, then

uj − λ(Hj+ 1
2
−Hj− 1

2
) ≤ uM +O(h3),(4.4)

where H is defined by u(x) = 1
h

∫ x+h/2

x−h/2 Hdx as in [9].

Proof. : Assuming u obtains maximum on the interval [xj− 1
2
, xj+ 1

2
], it follows the

Taylor expansion that

u(x) = uM +
u′′(xM )

2
(x − xM )2 +O(h3).(4.5)

By the definition of H , we have

H(x) = uM +
u′′(xM )

2
{(x− xM )2 − h2/12}+O(h3).(4.6)

Therefore, by substitution and simplification, it follows that

uj − λ(Hj+ 1
2
−Hj− 1

2
) = uM + u′′(xM )R+O(h3),(4.7)

where R = 1
2 (xj − xM )2 + λh(xM − xj). In order to satisfy (4.4), it suffices to

require that R ≥ 0 or R = O(h3). Since R(xM ) has minimum value − 1
2λ

2h2 at its

critical point xc = xj − λh, it is necessary to require that λ2h2 ≤ ch3 in order for
(4.4) to hold. Thereby, λ ≤ ch0.5. �

The purpose of this preliminary analysis is to point out that the stiff constraint
on the CFL number comes from the requirement that each intermediate value in
the RK steps should lie within the range of the initial value. In the next section, we
will tailor the parametrized flux limiting approach for multi-stage TVD RK time
stepping to adopt large CFL number without compromising the overall accuracy of
the underlying high order schemes while preserving the strict maximum principle.

4.3. Successive parametrized limiters in multi-stage TVD RK method:

The main algorithm. In this section, we will present the main algorithm with
the flux limiting technique discussed in Section 2 as the building block. The main
algorithm is designed by combining the limiting process with relaxed bounds for
the TVD RK time discretization.

Since the intermediate value of the multi-stage RK methods carries no valuable
meaning to the final numerical solution except that its combination produces high
order accurate approximation, it is reasonable not to enforce intermediate value
into the range [um, uM ]. Therefore, the stiff constraint on the CFL number can be
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relaxed. To demonstrate this idea, we use the third order RK method (3.1) for the
problem (1.3) as an example to give full description of this new approach.

Remember what is really expected is um ≤ un+1
j ≤ uM . Formulation wise, this

means that the third step in (3.1) can be enforced in the manner that

um ≤
1

3
unj +

2

3
(u

(2)
j +∆tL(u(2))) ≤ uM .(4.8)

Therefore for the embedded Euler forward step in (4.8), this is equivalent to

3

2
um −

1

2
unj ≤ u

(2)
j +∆tL(u(2)) ≤

3

2
uM −

1

2
unj .(4.9)

To achieve this in the previously described parametrized limiting process for the

one step Euler forward method, a sufficient requirement for u
(2)
j in the conservative

form (2.1) (limiting the high order flux toward the first order upwinding flux) shall
be

Φj = max(φj−1, φj , φj+1) ≤ u
(2)
j ≤ Ψj = min(ψj−1, ψj , ψj+1),(4.10)

where Φj = 3
2um − 1

2u
n
j and Ψj = 3

2uM − 1
2u

n
j . The upper and lower bounds

enforced in (4.10) are much less demanding than the requirement um ≤ u
(2)
j ≤ uM

since φj ≤ um and ψj ≥ uM . Consequently, the Euler forward in the second stage
of the RK method can also be relaxed to the following form

Φj ≤
3

4
unj +

1

4
(u

(1)
j +∆tL(u(1))) ≤ Ψj .(4.11)

In the one step Euler forward formulation, this is

ξj = 4Φj − 3unj ≤ u
(1)
j +∆tL(u(1)) ≤ ηj = 4Ψj − 3unj .(4.12)

Again, to achieve this in the parametrized limiters approach for the one step Euler

forward method, a sufficient requirement for u
(1)
j shall be

Ξj = max(ξj−1, ξj , ξj+1) ≤ u
(1)
j ≤ Ωj = min(ηj−1, ηj , ηj+1),(4.13)

which simply means for the first step in the RK steps, we will only need

Ξj ≤ unj +∆tL(un) ≤ Ωj(4.14)

instead of the previous stiff requirement um ≤ unj + ∆tL(un) ≤ uM . (4.10) and

(4.13) are sufficient conditions for the first order monotone scheme to satisfy the
bounds in (4.9) and (4.12). Therefore they ensure the existence of meaningful
limiters. To fully implement the above modified constraint in the parametrized
limiters approach, basically, it only requires to redefine ΓM

j and Γm
j . For the third

order RK method, in the maximum value case, at the first stage ΓM
j can be redefined

by

ΓM
j = Ωj − unj + λ(ĥnj+ 1

2

− ĥnj− 1
2

) ≥ 0,(4.15)

while at the second stage

ΓM
j = ηj − u

(1)
j + λ(ĥ

(1)

j+ 1
2

− ĥ
(1)

j− 1
2

) ≥ 0,(4.16)

and at the final stage

ΓM
j = ψj − u

(2)
j + λ(ĥ

(2)

j+ 1
2

− ĥ
(2)

j− 1
2

) ≥ 0.(4.17)
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In the minimum value case, for the three steps, Γj can be redefined by

Γm
j = Ξj − unj + λ(ĥnj+ 1

2

− ĥnj− 1
2

) ≤ 0,(4.18)

in the first step

Γm
j = ξj − u

(1)
j + λ(ĥ

(1)

j+ 1
2

− ĥ
(1)

j− 1
2

) ≤ 0,(4.19)

in the second step and

Γm
j = φj − u

(2)
j + λ(ĥ

(2)

j+ 1
2

− ĥ
(2)

j− 1
2

) ≤ 0(4.20)

in the final step. With those redefined steps, we would like to make the following
comments.

Remark 13. The modified limiters bounds updated values differently cell by cell
and step by step. This is very different from the limiters given in Section 2, where
universal bounds are set as um, uM .

Remark 14. To ensure existence of parametrized limiters such that (4.9), (4.12)
and (4.14) holds, therefore (4.8) to be true, we only need the inequalities in (4.15)—
(4.20) to be true when updating with first order upwinding scheme. This can be
checked consecutively from step 1 to step 3 using the definition of those limits for
each of the steps.

Since the algorithm presented above assumes that the first order numerical flux
includes two point values, the successive bounds shall be modified if the first order
monotone flux includes more than two point values. For the intermediate stages,
the truncation error is no longer at the level of designed accuracy. Therefore it
is unclear to the author how a thorough analysis of the scheme shall be laid out
at this moment. For other explicit time integration strategy, the corresponding
limiters can be designed in the similar way. The high order scheme with modified
limiters preserves strict maximum principle. The remaining question is whether it
maintains high order accuracy. In the next section, we will demonstrate that high
order accuracy is not compromised even when significantly large CFL number is
used.

4.4. CFL constraint revisited: Numerical tests. In this section, we would like
to demonstrate the capability of the successively defined flux limiting technique for
the multi-stage RK time stepping.

Test 1: Third order finite difference and finite volume scheme with

successive MPP flux limiters. The linear and nonlinear problems tested in pre-
vious sections will be recomputed by applying the successively defined parametrized
limiters to the third order finite volume (FV) and finite difference (FD) scheme.
CFL number is chosen to be 0.6 for finite volume computation and 0.3 for finite dif-
ference. The results in Table 6 show that with the modified flux limiters, third order
convergence (measured in L∞ norm) is achieved for all four cases. When applied to
the high order finite difference scheme, full analysis of the order of convergence is
very difficult if not impossible at this moment even from truncation point of view.
The reason is that the intermediate values are not high order approximation to any
meaningful analytic values. The full analysis of order of convergence also involves
order of accuracy in time discretization, which is not the main topic in this paper.
Nonetheless, the technique can be generalized to schemes of any order.
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Table 6. Error and order of convergence for third order finite
volume and finite difference scheme with successively defined lim-
iters.

FV; Advection FV; Burgers FD; Advection FD; Burgers
N error order error order error order error order
40 2.33E-3 1.86E-3 2.20E-3 2.43E-3
80 2.94E-4 2.98 2.76E-4 2.75 2.74E-4 3.00 3.19E-4 2.98
160 3.66E-5 3.00 3.65E-5 2.91 3.41E-5 3.00 3.97E-5 3.00
320 4.55E-6 3.00 4.60E-6 2.98 4.23E-6 3.01 4.83E-6 3.04
640 5.66E-7 3.00 5.75E-7 3.00 5.24E-7 3.01 5.93E-7 3.02

The difficulty is also related to the fact that we are applying different bounds for
each of the intermediate steps in a multi-stage TVD RK time integration. Those
different bounds further complicate the analysis of the time discretization accuracy
due to reasons stated in Section 3.3.

To make up for the lack of thorough analysis of the order of convergence for
high order schemes with parametrized limiters, we will provide more numerical
tests to demonstrate the capability of this approach. For the linear advection
problem, we choose u0(x) = sin(2πx)4 as initial condition for finite volume and
u0(x) = sin(2πx)6 for finite difference with fixed stencil to reconstruct the high
order numerical flux. L∞ errors are computed for refined grids and results are
compared with that without parametrized limiters. The CFL number again is
chosen to be 0.6 for finite volume and 0.3 for finite difference scheme. We run the
simulation to T = 1. The difference of this example with the previous one is that
the solution in this case has a relatively large flat valley where the numerical value
most likely exceeds its original bounds and the limiters are frequently triggered.
The example for finite difference test is tougher because of the square profile of
the initial value. Therefore, we hope that those two examples will help validate
this new approach. The results in Table 7 and 8 indicate that for all the refined
grids, the numerical solution exceeds the upper and lower bound of the initial value
for fixed stencil reconstruction without limiters. However, when the parametrized
limiters are applied, the numerical solution stays within the initial bounds up to
the machine error. Third order convergence is observed in all the simulation.

Table 7. Error and order of convergence for third order finite vol-
ume scheme w/o successively defined limiters for advection equa-
tion; WO=without limiters, WL=with limiters; u0(x) = sin(2πx)4.

N 40 80 160 320 640 1280
WO: error 6.90E-2 1.07E-2 1.39E-3 1.75E-4 2.19E-5 2.74E-6

order 2.67 2.95 2.99 2.99 2.99
min(uh) -3.42E-2 -6.29E-3 -8.33E-4 -1.05E-4 -1.31E-5 -1.64E-6
WL: error 6.79E-2 1.07E-2 1.39E-3 1.98E-4 2.71E-5 3.46E-6

order 2.65 2.94 2.81 2.87 2.96
min(uh) 8.92E-25 5.63E-33 1.94E-30 3.80E-23 6.26E-26 3.48E-21
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Table 8. Error and order of convergence for third order finite
difference scheme w/o successively defined limiters for advection
equation; WO=without limiters, WL=with limiters; u0(x) =
sin(2πx)6.

N 40 80 160 320 640 1280
WO: error 1.16E-1 2.24E-2 3.04E-3 3.84E-4 4.81E-5 6.02E-6

order 2.37 2.88 2.98 2.99 2.99
min(uh) -3.36E-2 -4.14E-3 -3.77E-4 -2.11E-5 -1.00E-6 -4.51E-8
WL: error 1.14E-1 2.24E-2 3.04E-3 3.84E-4 4.81E-5 6.02E-6

order 2.34 2.88 2.98 2.99 2.99
min(uh) 7.77E-22 4.72E-57 3.73E-36 4.33E-38 4.97E-40 3.17E-37

Test 2: Fifth order finite difference and finite volume WENO scheme

with successive MPP flux limiters. We also test the successive flux limiting
technique to fifth order finite volume and finite difference WENO schemes for the
advection equation and the Burgers’ equation. For the advection problem, we
choose initial value as u0(x) = sin(2πx)4 on the interval [0, 1] assuming periodic
boundary condition. We run the simulation to T = 0.2 with k = 0.6h5/3 for both
finite volume and finite difference computation. The minimum numerical value, the
numerical errors measured in L∞ norm and order of convergence are documented in
Table 9 for fifth order finite volume WENO scheme and Table 10 for finite difference
WENO scheme. The results indicate that the fifth order finite volume and finite
difference WENO scheme with successive MPP flux limiters produces fifth order
accurate numerical solution while preserving the strict maximum principle.

Table 9. Error and order of convergence for fifth order finite vol-
ume WENO scheme w/o successively defined limiters for advection
equation; WO=without limiters, WL=with limiters; u0(x) =
sin(2πx)4.

N 20 40 80 160 320 640
WO: error 2.35E-2 1.00E-3 3.43E-5 1.06E-6 3.32E-8 1.04E-9

order 4.54 4.91 4.97 4.99 4.99
min(uh) -1.79E-2 -7.60E-4 -2.18E-5 -4.59E-7 4.00E-10 9.40E-10
WL: error 2.40E-2 1.05E-3 5.41E-5 1.90E-6 6.45E-8 2.08E-9

order 4.51 4.28 4.82 4.88 4.95
min(uh) 1.62E-16 2.97E-14 3.22E-14 6.28E-8 1.30E-8 1.26E-9

We also compute the Burgers’ equation with fifth order finite volume and finite
difference WENO scheme with the same setup as in Test 1. Table 11 and 12 shows
that both the finite volume and the finite difference fifth order WENO schemes
with the successive MPP flux limiters produce fifth order accurate solution.

To demonstrate that the fifth order scheme with successive MMP flux limiters
preserves strict maximum principle for nonlinear problems, we test the fifth order
finite difference scheme on the Burgers’ equation with discontinuous initial condition

u0(x) =

{

0 x ≤ 0.5,

1 x > 0.5.
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Table 10. Error and order of convergence for fifth order finite dif-
ference WENO scheme w/o successively defined limiters for advec-
tion equation; WO=without limiters, WL=with limiters; u0(x) =
sin(2πx)4.

N 20 40 80 160 320 640
WO: error 5.44E-2 5.29E-3 8.75E-4 2.99E-5 7.16E-7 1.14E-8

order 3.36 2.59 4.87 5.38 5.96
min(uh) -9.54E-3 -1.28E-3 -2.27E-4 -8.14E-6 2.31E-8 -3.37E-10
WL: error 5.21E-2 4.77E-3 6.33E-4 2.89E-5 7.16E-7 1.14E-8

order 3.44 2.91 4.45 5.33 5.96
min(uh) 3.03E-3 4.23E-4 9.97E-6 3.01E-7 7.35E-10 2.46E-10

Table 11. Error and order of convergence for fifth order finite
volume WENO scheme w/o successively defined limiters for Burg-
ers’ equation; WO=without limiters, WL=with limiters; u0(x) =
0.5(1 + sin(2πx)).

N 20 40 80 160 320 640
WO: error 4.49E-3 5.33E-4 2.65E-5 9.64E-7 3.09E-8 9.70E-10

order 3.07 4.32 4.78 4.95 4.99
min(uh) 7.78E-3 2.00E-3 5.05E-4 1.27E-4 3.19E-5 8.00E-6
WL: error 4.49E-3 5.33E-4 2.65E-5 9.64E-7 3.09E-8 9.70E-10

order 3.07 4.32 4.78 4.95 4.99
min(uh) 7.78E-3 2.00E-3 5.05E-4 1.27E-4 3.19E-5 8.00E-6

Table 12. Error and order of convergence for fifth order fi-
nite difference WENO scheme w/o successively defined limiters
for Burgers’ equation; WO=without limiters, WL=with limiters;
u0(x) = 0.5(1 + sin(2πx)).

N 20 40 80 160 320 640
WO: error 1.05E-2 1.18E-3 5.92E-5 2.00E-6 6.19E-8 1.90E-9

order 3.15 4.32 4.88 5.01 5.01
min(uh) 6.92E-3 1.60E-3 3.90E-4 9.63E-5 2.39E-5 6.00E-6
WL: error 1.05E-2 1.18E-3 5.92E-5 2.00E-6 6.19E-8 1.90E-9

order 3.15 4.32 4.88 5.01 5.01
min(uh) 6.92E-3 1.60E-3 3.90E-4 9.63E-5 2.39E-5 6.00E-6

The results in Table 13 clearly indicate the maximum principle is preserved. We
would like to summarize the results into a comment that

Remark 15. Within the parametrized limiters framework provided in this paper,
high order finite volume and finite difference scheme with successively defined MPP
limiters for the multi-stage RK method allows for significantly large CFL number
while preserving maximum principle and high order accuracy.
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Table 13. Fifth order finite difference WENO scheme w/o suc-
cessively defined limiters for Burgers’ equation; WO=without lim-
iters, WL=with limiters.

N 20 40 80 160 320 640
WO: min(uh) -5.62E-5 -2.93E-5 -7.09E-5 -7.76E-5 -1.12E-4 -1.03E-4
WL: min(uh) 5.73E-14 2.14E-15 1.13E-15 9.75E-22 1.64E-38 3.16E-72

5. Conclusion

In this paper, we proposed a novel approach to design high order maximum prin-
ciple preserving schemes for hyperbolic conservation laws within the flux limiters
framework. The parametrized limiters are derived from decoupling a sequence of
explicit inequalities bounding the updated values. To the best knowledge of the
author, this simple and straightforward decoupling technique is surprisingly first
ever used to limiters for high order schemes. Different from the existing method
in the literature, the new strategy does not demand the rescaling of the recon-
structed polynomial around its average into a range of absolute reference values.
This flexibility allows for a less restrictive CFL number. Within the parametrized
limiters framework, both high order finite volume and finite difference schemes can
be designed to preserve maximum principle and high order accuracy. Analysis
and numerical evidence indicates that the high order finite difference scheme with
parametrized limiters preserve strict maximum principle while maintaining high or-
der accuracy with suitable CFL condition. The flexibility of the parametrized flux
limiters also allows for a successive parametrized limiting process for multi-stage
RK time discretization. The new successive limiting process adopts significantly
large CFL number for both high order finite volume and finite difference MPP
schemes. Complete analysis of the successively parametrized limiters for high or-
der finite difference scheme will be part of the future work. The decoupling of the
parameters in two-dimensional case will also be investigated. A systematic analysis
of the relation between achieving high order accuracy and CFL number shall be
explored in the future.
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