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The collapsing rate of the Kähler–Ricci flow
with regular infinite time singularity
By Frederick Tsz-Ho Fong at Stanford and Zhou Zhang at Sydney

Abstract. We study the collapsing behavior of the Kähler–Ricci flow on a compact
Kähler manifold X admitting a holomorphic submersion � W X ! † inherited from its canon-
ical bundle, where † is a Kähler manifold with dimC † < dimC X . We show that the flow
metric degenerates at exactly the rate of e�t as predicted by the cohomology information, and
so the fibres ��1.z/, z 2 † collapse at the optimal rate diamt .�

�1.z// ' e�t=2. Conse-
quently, it leads to some analytic and geometric extensions to the regular case of works by
J. Song and G. Tian. Its applicability to general Calabi–Yau fibrations will also be discussed in
local settings.

1. Introduction

In this article, we let X be a closed connected Kähler manifold with dimC X D n which
admits the following fibration. Let .†; !†/ be a Kähler manifold with dimC † D n � r < n

and � W X ! † be a surjective holomorphic submersion. This submersion gives a smooth
fibration structure by classical results due to Ehresmann [5] and Fischer–Grauert [8]. For each
z 2 †, we call ��1.z/ a fibre based at z, which is a complex submanifold ofX with dimC D r .
Although X is a smooth fibre bundle over †, the induced complex structure on each fibre may
vary. In the case where the fibres are isomorphic, X is a holomorphic fibre bundle over †.
Here, we allow † to be a point, i.e. r D n.

Throughout the article, we assume that the first Chern class c1.X/ D ���˛ for some
Kähler class ˛ on † and so each fibre ��1.z/ is a Calabi–Yau manifold. We consider the
following normalized Kähler–Ricci flow on X , defined by

(1.1)
@!t

@t
D �Ric.!t / � !t ; !t jtD0 D !0;

with any Kähler metric !0 as the initial metric.
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96 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

The Kähler class Œ!t � at time t is precisely given by �c1.X/Ce�t .Œ!0�Cc1.X//, where
we have chosen the convention c1.X/ D ŒRic.!/� for any Kähler metric ! onX . The maximal
existence time T of (1.1) is uniquely determined by the optimal existence result due to Tian
and the second-named author in [26], namely

T D sup
®
t W �c1.X/C e

�t .Œ!0�C c1.X// is Kähler
¯
:

The infinite time singularity case (i.e. T D 1) in this article is as follows. We have a
surjective holomorphic submersion � as described above. Moreover, ��Œ!†� D �m � c1.X/
for some Kähler class Œ!†� over † and a positive integer m. In practice, we usually have �
generated by holomorphic sections of the line bundle m �KX as a map � W X ! CPN , where
KX is the canonical bundle of X , i.e. c1.KX / D �c1.X/, and † is the image of � . One can
take !† D !FSj† where !FS is the Fubini–Study metric on CPN , and Œ!†� is the restriction
of the hyperplane class of CPN to †. Under this setting, �c1.X/ is semi-ample and by the
optimal existence result, the flow exists forever. The limiting Kähler class as t !1 is exactly
�c1.X/. We call this regular infinite time singularity.

Define !1 D ��!† and set

O!t D !1 C e
�t .!0 � !1/:

Then O!t is a reference metric in the same Kähler class as the flow metric !t . The following is
the main result of this article:

Theorem 1.1. Let � W X ! † be a holomorphic submersion described above and let
!t satisfy the normalized Kähler–Ricci flow @t!t D �Ric.!t / � !t on X . Assume we have
regular infinite time singularity and the Kähler class Œ!t � limits to ��Œ!†� for some Kähler
metric !† on† (i.e. c1.KX / D ��Œ!†�). Then, using the notations introduced above, we have

C�1 O!t � !t � C O!t

where C is a uniform constant depending only on n; r; !0, and !†. Hence, !t ' e�t!0 along
fibres and the fibres have diameters uniformly bounded from above and below by exponentially
decaying terms, i.e.

C�1e�
t
2 � diamt .�

�1.z// � Ce�
t
2 for any z 2 †:

This result shares the same theme with several related works in the current literature. In
[21, 23], Song and Tian studied the collapsing behavior of elliptic and Calabi–Yau fibrations
with non-big semi-ample canonical bundle under the normalized Kähler–Ricci flow (1.1), and
showed that the metric on the regular part converges, as a current, to a generalized Kähler–
Einstein metric on the base manifold (see also [14]). In case of elliptic fibrations, it was
proved in [21] that the convergence is in C 1;˛-sense for any ˛ < 1 on the potential level.
The above Theorem 1.1 asserts that if the fibration is regular, then one can obtain an optimal
fibre-collapsing rate diamt ' e

�t=2, and more importantly, it shows that the C 1;˛-convergence
also holds for smooth Calabi–Yau fibrations of general dimensions (see Corollary 4.2).

There are analogous collapsing results for the unnormalized Kähler–Ricci flow
@t!t D �Ric.!t / with finite time singularity. For instance, the collapsing behavior of CP r -
bundles was studied by Song, Székelyhidi and Weinkove in [20, 24] (see also [10] by the
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Fong and Zhang, The collapsing rate of KRF with infinite time singularity 97

first-named author). The collapsing behavior of Ricci-flat metrics on Calabi–Yau manifolds
is also studied in [13, 27] by Gross, Tosatti and Y. Zhang. The common theme shared by all
the aforesaid works is that the limiting behavior of the Kähler metric can be read off by the
cohomological data.

Inspired by [13], we deduce several geometric and analytic consequences of Theorem
1.1 on toric fibrations, a special case of Calabi–Yau fibrations with complex tori as fibres. The
existence of semi-flat forms on toric fibrations with a good rescaling property allows us to make
use of Theorem 1.1 to further strengthen the C 1;˛-convergence. Using a parabolic analogue of
Gross–Tosatti–Zhang’s argument, we show that on toric fibrations if the initial Kähler class is
rational, then along the Kähler–Ricci flow we have (see Propositions 5.5, 5.6 and 5.8):

(i) the Riemann curvature kRmk!t is uniformly bounded;

(ii) !t converges smoothly to a generalized Kähler–Einstein metric on †; and

(iii) when restricted to each torus fibre, et!t converges smoothly to a flat metric on the fibre.

Some of the above statements, particularly (ii), were conjectured in [21, 23] (see also
[25]) on regular Calabi–Yau fibrations, and on general Calabi–Yau fibrations away from singu-
lar fibres. A recent preprint [12] by Gill gives an affirmative answer to the case where X is a
Cartesian product of a complex torus and a compact Kähler manifold with negative first Chern
class. Our results hence further affirm these conjectures on a wider class of regular toric fibra-
tions. One fundamental assumption in Propositions 5.5, 5.6 and 5.8 is that the initial Kähler
class is rational. It guarantees the existence of a suitable semi-flat form explicitly constructed
by Gross–Tosatti–Zhang in [13]. We hope that this technical assumption can be removed.

Acknowledgement. The first-named author would like to thank his advisor Richard
Schoen for his constant encouragement and support throughout the years at Stanford Univer-
sity. He would also like to thank Yanir Rubinstein, Jian Song and Ben Weinkove for many
valuable discussions and inspiring ideas.

The second-named author would like to thank Gang Tian for introducing him to this
interesting research area and constant support. He also like to thank the School of Mathematics
and Statistics at Sydney University for providing the great research environment.

Both authors would like to thank Valentino Tosatti especially for suggesting the use of
arguments developed in [13] which contributes to a great part of Section 5, and also for his
insightful comments on Section 6 in our previous draft. They also thank the referee for the
careful check and suggestions.

2. Some estimates on decay rates

In this section, we prove the necessary estimates for establishing Theorem 1.1. We
adopted the techniques developed, amongst others, in [21, 26, 27, 30]. Once the pointwise
decay of the volume form !nt is established, the rest of the argument will follows similarly as
in [9] by the first-named author (see also [27] for an elliptic analogue of the argument).

We rewrite the Kähler–Ricci flow (1.1) as a parabolic complex Monge–Ampère equation
in the same way as, e.g., in [21, 26]. We use the family of reference metrics O!t defined before,
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98 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

which is in the same Kähler class as !t . By the @N@-lemma, there exists a family of smooth
functions 't such that !t D O!t C

p
�1@N@'t . Let � be a volume form on X such that

p
�1@N@ log� D !1 D ��!†;

whose existence is clear from the cohomology consideration.
Then it is easy to check that the Kähler–Ricci flow (1.1) is equivalent to the following

scalar evolution equation (with a complex Monge–Ampère looking):

(2.1)
@'t

@t
D log

. O!t C
p
�1@N@'t /

n

e�rt�
� 't ; '0 D 0;

and so the solution 't also exists forever.

Convention. In this article, we denote by C > 0 a uniform constant which depends
only on n; r; !0; !†, and may change from line to line. � stands for the Laplacian with respect
to the flow metric !t .

We begin with the following 0th-order estimates.

Lemma 2.1. For (2.1), there exists a uniform constant C D C.n; r; !0; !†/ such that

j't j � C;
ˇ̌̌@'t
@t

ˇ̌̌
� C:

Proof. Because � W X ! † is a fibre bundle structure and O!nt ' e
�rt�, by a straight-

forward maximum principle argument, we have j't j � C .
Next we derive the bound for @'t

@t
. Taking the t -derivative of (2.1), we get

@

@t

�@'t
@t

�
D �

�@'t
@t

�
� e�t Tr!t .!0 � !1/ �

@'t

@t
C r:

We can also reformulate it to the following two equations:

@

@t

�
et
@'t

@t

�
D �

�
et
@'t

@t

�
� Tr!t .!0 � !1/C re

t ;

@

@t

�@'
@t
C 't

�
D �

�@'t
@t
C 't

�
� nC r C Tr!t !1:(2.2)

The difference of these two is

@

@t

�
.et � 1/

@'t

@t
� 't

�
D �

�
.et � 1/

@'t

@t
� 't

�
� Tr!t !0 C re

t
C n � r:

Applying the maximum principle and the bounds for 't , we have

@'t

@t
�
.n � r/t C ret C C

et � 1
� C:

For the lower bound, we can mimic the argument in [21] as follows:

n�n Tr!t O!t �
O!nt
!nt
D

O!nt

e
@'t
@t
C't�rt�

� Ce�
@'t
@t :

Brought to you by | Hong Kong University of Science and Technology
Authenticated

Download Date | 3/12/17 2:51 PM



Fong and Zhang, The collapsing rate of KRF with infinite time singularity 99

We can then combine� @
@t
��

��@'t
@t
C 't

�
D �nC r C Tr!t !1 � �nC r;� @

@t
��

�
't D

@'t

@t
� nC Tr!t O!t �

@'t

@t
� nC Ce�

@'t
@t

to arrive at � @
@t
��

��@'t
@t
C 2't

�
�
@'t

@t
� C C Ce�

@'t
@t :

Again applying the maximum principle and the bounds of 't , we can conclude the lower bound
for @'t

@t
.

Remark 2.2. For the unnormalized Kähler–Ricci flow with finite time singularity, the
first-named author assumed in [9] a uniform bound on Tr!0 Ric.!t / in order to derive an ap-
propriate pointwise decay of the volume form !nt . Note that such an assumption is not needed
in the setting of the present article.

In [22], there is a delicate argument to establish the same results as in Lemma 2.1 when
� is not assumed to be regular.

These 0th-order bounds provide the exact setting as in [22, 31], and lead to a sequence
of estimates which eventually prove the uniform bound of the scalar curvature. Among those
estimates, there is one which is useful for the purpose of this article:

(2.3) Tr!t �
�!† D Tr!t !1 � C;

uniformly for t 2 Œ0;1/.
Lemma 2.1 tells us that the volume form of !t behaves exactly as predicted by the coho-

mology information. Since it is useful for establishing the main theorem, we summarize it in
the following lemma:

Lemma 2.3. There exists a uniform constant C D C.n; r; !0; !†/ > 0 such that for
any t 2 Œ0;1/, we have

C�1e�rt� � !nt � Ce
�rt�:

We now show the Kähler potential 't decays at a rate of e�t after a suitable normalization
described below.

For each z 2 † and t 2 Œ0; T /, we denote by !t;z the restriction of !t on the fibre
��1.z/. For each t 2 Œ0; T /, we define a function ˆt W †! R by

ˆt .z/ D
1

Vol!0;z .��1.z//

Z
��1.z/

't !
r
0;z

which is the average value of 't over each fibre ��1.z/. The pull-back ��ˆt is then a function
defined on X . For simplicity, we also denote ��ˆt by ˆt .

Lemma 2.4. There exists a uniform constant C D C.n; r; !0; !†/ such that for any
t 2 Œ0;1/, we have

jet .'t �ˆt /j � C:
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100 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

Proof. Denote Q't D et .'t �ˆt /. For each z 2 †, we have O!t;z D e�t!0;z , and so

!t;z D e
�t!0;z C

p
�1@N@'t j��1.z/:

Since ˆt depends only on z 2 †, we have
p
�1@N@ˆt j��1.z/ D 0. By rearranging, we have

(2.4) et!t;z D !0;z C
p
�1@N@ Q't j��1.z/:

Regard (2.4) to be a metric equation on the manifold ��1.z/, and we have

(2.5)
�
!0;z C

p
�1@N@ Q't j��1.z/

�r
D .et!t;z/

r :

Using Lemma 2.3, we can see along ��1.z/ that

!rt;z

!r0;z
D
!rt ^ .�

�!†/
n�r

!r0 ^ .�
�!†/n�r

(2.6)

D
!rt ^ .�

�!†/
n�r

!nt
�

!nt
!r0 ^ .�

�!†/n�r

� C.Tr!t �
�!†/

n�r
� e�rt :

Combining (2.3) with (2.6), we see that (2.5) can be restated as�
!0;z C

p
�1@N@ Q't j��1.z/

�r
D Fz.�; t/.!0;z/

r ;

where Fz.�; t/ W ��1.z/ � Œ0; T /! R>0 is uniformly bounded from above.
Since

R
��1.z/ Q't!

r
0;z D 0, by applying Yau’s L1-estimate (see [28]) on (2.5), we then

have
sup

��1.z/�Œ0;T /

j Q't j � Cz;

where Cz depends on n; r; !0; !†; sup��1.z/�Œ0;T / Fz;Vol!0;z .�
�1.z//, the Sobolev and

Poincaré constants of ��1.z/ with respect to the metric !0;z , all of which can be bounded
uniformly independent of z. It completes the proof of the lemma.

Remark 2.5. Yau’s L1-estimate was proved by Moser’s iteration argument. For an
exposition of the proof we refer the reader to [19, Chapter 2].

Remark 2.6. In our setting, the uniform boundedness of Sobolev and Poincaré con-
stants of .��1.z/; !0;z/ follows from the compactness of † and the absence of singular fibres.
With the presence of singular fibres, there is a detail discussion in [27] in this regard. The
bounds of these constants can be derived using the fact that the ��1.z/ are minimal submani-
folds of X and the classical results in [2, 16, 17].
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3. Proof of Theorem 1.1

Now we can proceed to the proof of the main result about the collapsing rate.

Proof of Theorem 1.1. We apply the maximum principle to the quantity

Q WD log.e�t Tr!t !0/ � Ae
t .'t �ˆt /;

where A is a positive constant to be chosen. Denote � D @t ��, and we have

(3.1) � log.e�t Tr!t !0/ � C C C Tr!t !0;

where C depends on the curvature of !0.
We also need to compute the evolution equation for the second term in Q.

�Aet .'t �ˆt / D Aet
�@'t
@t
�
@ˆt

@t

�
C Aet .'t �ˆt / � Ae

t .�'t ��ˆt /

� Aet
�@'t
@t
�

Z
��1.z/

@'t

@t
!r0;z

�
� CA � Aet .n � Tr!t O!t ��ˆt /:

Using the lower bound of @'t
@t

given by Lemma 2.1, we have

(3.2) �Aet .'t �ˆt / � �CAet C Aet Tr!t O!t C Ae
t
�
�ˆt �

Z
��1.z/

@'t

@t
!r0;z

�
:

Combining (3.1) and (3.2), we have

�Q � CAet C C Tr!t !0 � Ae
t Tr!t

�
e�t!0 C .1 � e

�t /!1
�

(3.3)

� Aet
�
�ˆt �

Z
��1.z/

@'t

@t
!r0;z

�
� CAet C .C � A/Tr!t !0 � Ae

t
�
�ˆt �

Z
��1.z/

@'t

@t
!r0;z

�
:

By Lemma 2.1, we have @'t
@t
� C for some uniform constant C . It follows thatZ

��1.z/

@'t

@t
!r0;z � C:

Note that Vol!0;z .�
�1.z// is actually independent of z.

For the Laplacian term of ˆt , we have

�

Z
��1.z/

't!
r
0;z D Tr!t

Z
��1.z/

p
�1@N@'t ^ !

r
0;z

D Tr!t

Z
��1.z/

.!t � O!t / ^ !
r
0;z

� �Tr!t

Z
��1.z/

O!t ^ !
r
0;z

� �Tr!t

Z
��1.z/

�
!0 ^ !

r
0;z C �

�!† ^ !
r
0;z

�
:
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102 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

Since Tr!t �
�!† � C and

R
��1.z/.!0 ^ !

r
0;z C �

�!† ^ !
r
0;z/ is a smooth .1; 1/-form on †

independent of t , we have

�

Z
��1.z/

't!
r
0;z � �C

for some uniform constant C . Back to (3.3), we have

�Q � CAet C .C � A/Tr!t !0 � CAe
t
� Tr!t !0

if we choose A sufficiently large such that C � A � �1.
Hence, for any S > 0, at the point where Q achieves its maximum over X � Œ0; S�, we

have Tr!t .e
�t!0/ � C for some uniform constant C independent of S . Together with Lemma

2.4, it follows that for any t 2 Œ0;1/ we have

(3.4) C�1e�t!0 � !t :

Combining with the fact from (2.3) that !t � C�1��!†, we have

C�1 O!t � !t :

Together with Lemma 2.3 which indicates !nt � C O!nt , we also have !t � C O!t for any
t 2 Œ0;1/. It completes the proof of the theorem.

4. Convergence at time infinity

The argument in [21] can be directly applied to our regular infinite time singularity case
for general dimension and show that the Kähler–Ricci flow converges to the commonly called
generalized Kähler–Einstein metric. This is done in a more general setting in [23], and we
include it here for completeness.

We focus on the non-trivial case dimC † � 1. The fibres of the map � W X ! † are all
smooth Calabi–Yau manifolds, and so there is a Ricci-flat metric !0;z C

p
�1@N@‰.z/ for each

z 2 †. After normalizing ‰.z/ to have
R
��1.z/‰.z/!

r
0;z D 0, we have a smooth function ‰

over X with the smooth closed .1; 1/-form

!SF D !0 C
p
�1@N@‰

being Ricci flat on each fibre. We further define the following smooth function a priori on X :

F D
��

n
r

�
!n�r1 ^ !rSF

which makes sense despite the fact that !SF might not be a metric over X .
Since

p
�1@N@ log� D !1 D ��!† and !SF is a Ricci-flat metric along each fibre, we

know that F is constant along each fibre and so is the pull-back of a smooth function over †.
Over †, we always have a unique and smooth solution u to the following complex

Monge–Ampère equation, which is a classic elliptic equation when dimC † D 1,�
!† C

p
�1@N@u

�n�r
D Feu!n�r† ;

and we use the same notation for its pull-back on X .
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Fong and Zhang, The collapsing rate of KRF with infinite time singularity 103

Denote !GKE D !† C
p
�1@N@u. Direct computation as in [21] then shows that this

metric satisfies
Ric.!GKE/ D �!GKE C !WP

where !WP is the Weil–Petersson metric determined by the fibration � W X ! †. We also use
!GKE for its pull-back on X , and so on X , we have !GKE D !1 C

p
�1@N@u.

Our main result in this section is the following.

Theorem 4.1. The solution 't for (2.1) converges uniformly to u as t !1.

Proof. Set vt D 't � u � e
�t‰. Since the flow metric !t D O!t C

p
�1@N@'t and

O!t D !1 C e
�t .!0 � !1/, we have

!t D .!GKE � e
�t!1/C e

�t!SF C
p
�1@N@vt :

Meanwhile, since !n�rGKE D Fe
u!n�r1 and F D �

.nr/!
n�r
1 ^!rSF

, we have�
n
r

�
!n�rGKE ^ !

r
SF D �e

u:

Combine this to compute the evolution of v as follows:

@vt

@t
D
@'t

@t
C e�t‰

D log
ert
�
.!GKE � e

�t!1/C e
�t!SF C

p
�1@N@vt

�n
�

� ' C e�t‰

D log
ert
�
.!GKE � e

�t!1/C e
�t!SF C

p
�1@N@vt

�n�
n
r

�
!n�rGKE ^ !

r
SF

C u � ' C e�t‰

D log
ert
�
.!GKE � e

�t!1/C e
�t!SF C

p
�1@N@vt

�n�
n
r

�
!n�rGKE ^ !

r
SF

� vt :

Now we apply the standard maximum principle argument for vt by looking at the spatial ex-
tremal value as a function of t .

The following observation is very useful:

�Ce�t � log
ert
�
.!GKE � e

�t!1/C e
�t!SF

�n�
n
r

�
!n�rGKE ^ !

r
SF

� Ce�t :

Setting A.t/ D maxX vt , we have

dA

dt
� Ce�t � A

and so vt � Cte�t C Ce�t . Similarly vt � �Cte�t � Ce�t .
Hence we conclude j't � uj � Ce�t=2, and 't ! u exponentially.

Recall that Theorem 1.1 proves !t and O!t are uniformly equivalent. Combining with the
fact that Tr!0 O!t � C , one can show j�!0't j � C and hence we have the following result.

Corollary 4.2. The Kähler–Ricci flow !t converges to !GKE as t ! 1 in the sense
that the metric potential 't ! u in C 1;˛-norm for any ˛ < 1.
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104 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

5. Type III singularity of toric fibrations

In this section, we specialize on one category of Calabi–Yau fibrations, namely toric
fibrations, where all fibres ��1.z/ are complex tori Cr=ƒz . We again focus on regular fibra-
tions. We will provide another geometric application to the collapsing rate result (Theorem
1.1), obtaining the uniform boundedness of kRmk!t when the initial Kähler class Œ!0� is ra-
tional. A solution Q!s to the unnormalized Ricci flow @s Q!s D �Ric. Q!s/ is called Type III if
kRmk Q!s � C=s for some uniform constant C > 0. One can easily verify by the correspon-
dence !t D e�t Q!.et�1/ between normalized and unnormalized flows that Type III singularity
is equivalent to saying kRmk!t is uniformly bounded in the normalized flow. Furthermore, we
will show that in this special case the convergence of both 't and !t is in fact in C1-topology
which strengthens the result showed in Corollary 4.2.

Here is the setting in this section. Let � W Xn ! †n�r be a holomorphic submersion
fibred by complex tori such that c1.X/ D �Œ��!†� for some Kähler metric !† on†. For each
point z 2 †, there exists a neighborhood z 2 B � † such that ��1.B/ � X is trivialized, i.e.,
there exists a lattice section ƒz varying over z 2 B such that .B � Cr/=ƒz is biholomorphic
to ��1.B/.

From now on we assume the initial Kähler class Œ!0� is rational, i.e. Œ!0� 2 H 2.X;Q/,
and hence X must be projective. Then there exists a closed nonnegative semi-flat form !SF on
��1.B/, with a good rescaling property, such that on each fibre ��1.z/ we have !SFj��1.z/
cohomologous to !0j��1.z/. The semi-flat form !SF is a .1; 1/-form such that for each z 2 B
the restriction !SFj��1.z/ on the fibre ��1.z/ is flat.

Lemma 5.1 (Gross–Tosatti–Zhang [13]). Given that X is projective and Œ!0� is ratio-
nal, then one can find a closed nonnegative .1; 1/-form !SF such that there exists a smooth
function f W ��1.B/! R with

!SF � !0 D
p
�1@N@f;

and passing to the universal cover p W B �Cr ! B � .Cr=ƒz/, we have

p�!SF D
p
�1@N@ ;

where  W B �Cr ! R is a smooth function with the following rescaling property:

 .z; ��/ D �2 .z; �/ for any .z; �/ 2 B �Cr and � 2 R:

Denote by �t W B �Cr ! B �Cr the rescaling map .z; �/ 7! .z; et=2�/. One can easily
verify that

e�t��t p
�!SF D e

�t��t
p
�1@N@ D e�t

p
�1@N@. ı �t /(5.1)

D
p
�1@N@ D p�!SF:

As before, we rewrite the normalized Kähler–Ricci flow @!t
@t
D �Ric.!t / � !t as the

following complex Monge–Ampère equation (2.1):

@'t

@t
D log

. O!t C
p
�1@N@'t /

n

e�rt�
� 't ;
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Fong and Zhang, The collapsing rate of KRF with infinite time singularity 105

where O!t D e�t!0 C .1 � e
�t /��!† and !t D O!t C

p
�1@N@'t . Here � is a volume form

on X such that
p
�1@N@ log� D ��!†. We first establish the following lemma using Theorem

1.1:

Lemma 5.2. There is a constant C > 0 such that on B �Cr we have

C�1p�.��!† C !SF/ � �
�
t p
�!t � Cp

�.��!† C !SF/ for any t � 1:

Proof. First we use the metric equivalence of !t and O!t established in Theorem 1.1:

C�1 O!t � !t � C O!t :

For the sake of simplicity, we denote by !t ' O!t the above metric equivalence (and for any
other pair of metrics). Then,

��t p
�!t ' �

�
t p
�
O!t

D ��t p
�
�
e�t!0 C .1 � e

�t /��!†
�

D e�t��t p
�!0 C .1 � e

�t /p���!†:

Note that ��t p
���!† D p���!†, since �t rescales the fibre directions only. As

!0 ' !SF C �
�!†, we have

��t p
�!t ' e

�t��t p
�!SF C .1 � e

�t /p���!†

' p�!SF C .1 � e
�t /p���!†

' p�.!SF C �
�!†/ for t � 1:

Next we show that ��t p
�!t is locally cohomologous to p�.!† C !SF/ in B �Cr :

��t p
�!t D �

�
t p
�
�
e�t!0 C .1 � e

�t /��!†
�
C
p
�1@N@.'t ı p ı �t /

D e�t��t p
�!0 C .1 � e

�t /p���!† C
p
�1@N@.'t ı p ı �t /

D e�t��t p
�
�
!SF �

p
�1@N@f

�
C .1 � e�t /p���!† C

p
�1@N@.'t ı p ı �t /

D p�!SF �
p
�1@N@.e�tf ı p ı �t /C .1 � e

�t /p���!† C
p
�1@N@.'t ı p ı �t /:

On the open ball B � †, the Kähler metric !† can be locally expressed as
p
�1@N@� for some

smooth function � W B ! R. Therefore, we have

(5.2) ��t p
�!t D p

�.!SF C �
�!†/C

p
�1@N@ut ;

where ut D 't ı p ı �t � e
�t .f ı p ı �t / � e

�t .� ı p/. As 't is uniformly bounded on X ,
we have ut being uniformly bounded on B �Cr .

One can show the following higher-order estimates using Evans–Krylov’s and Schauder’s
estimates:

Lemma 5.3. Given any compact setK � B�Cr and any k � 0, there exists a constant
C D C.K; k/ such that

k��t p
�!tkCk.K;ı/ � C;

where ı is the Euclidean metric of B �Cr .
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106 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

Proof. We first derive a complex Monge–Ampère equation for ut : from the Kähler–
Ricci flow equation, we have

!nt D e
@'t
@t
C't�rt�:

By rescaling, we have

.��t p
�!t /

n
D ��t p

�!nt D
�
e
@'t
@t
C't�rt ı p ı �t

�
� ��t p

��:

Since
p
�1@N@ log� D ��!†, we have

p
�1@N@ log�j��1.z/ D 0 for each z 2 B . By the

compactness of the toric fibres ��1.z/, we conclude that � depends only on z 2 † and hence
e�rt��t p

�� D p��. Therefore, from (5.2) the potential ut satisfies the following equation:

(5.3) log
�
p�.!SF C �

�!†/C
p
�1@N@ut

�n
D

�@'t
@t
C 't

�
ı p ı �t C log.p��/:

The following quantities are uniformly bounded according to the gradient and Laplacian esti-
mates due to [3, 16] (see also, e.g., [18, 21, 23, 30])

kr!t . P't C 't /k!t � C; j�. P't C 't /j � C:

Hence,

kr��t p
�!t . P't C 't / ı p ı �tk��t p�!t � C;

j���t p�!t . P't C 't / ı p ı �t j � C:

By Lemma 5.2, we have ��t p
�!t ' p�.!SF C ��!†/ ' ı on K � B � Cr . Hence,

applying Evans–Krylov’s theory (see [6, 15]) on (5.3), one can get a uniform C 2;˛-estimate
on ut . Finally, by Schauder’s estimate (see, e.g., [11]) and a bootstrapping argument, one can
complete the proof of the lemma. Here we supply the detail of the bootstrapping argument:

LetD be any first-order differential operator on B�Cr . Differentiating (5.3) byD gives

���t p�!t .Dut / D �Tr��t p�!t Dp
�.!SF C �

�!†/(5.4)

CD
°
��t p

�
�@'t
@t
C 't

�±
CD log.p��/:

From (2.2), one can show using the chain rule that

@

@t

°
��t p

�
�@'t
@t
C 't

�±
D ��t p

�
°
�!t

�@'t
@t
C 't

�
� nC r C Tr!t �

�!†

±
C

rX
jD1

��t p
� @

@�j

�@'t
@t
C 't

�
�
1

2
e
t
2 �j

C

rX
jD1

��t p
� @

@� Nj

�@'t
@t
C 't

�
�
1

2
e
t
2 N�j

D ���t p�!t�
�
t p
�
�@'t
@t
C 't

�
� nC r C Tr��t p�!t p

���!†

C
1

2

rX
jD1

@

@�j

°
��t p

�
�@'t
@t
C 't

�±
� �j

C
1

2

rX
jD1

@

@� Nj

°
��t p

�
�@'t
@t
C 't

�±
� N�j :
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Fong and Zhang, The collapsing rate of KRF with infinite time singularity 107

Hence, ��t p
�.@'t

@t
C 't / satisfies the following parabolic equation:

(5.5)
� @
@t
����t p�!t

�
H D h@EH; @� C N@�iı � nC r C Tr��t p�!t p

���!†;

where @E denotes the flat connection on B �Cr and @� D .�1; : : : ; �r/ 2 Cr .
Assume that ut 2 C k;˛ for some k � 2 and 0 < ˛ < 1. Then by (5.2) we have

��t p
�!t 2 C

k�2;˛. By the uniform bound of ��t p
�!t , one also has .��t p

�!t /
�1 2 C k�2;˛.

Hence applying the parabolic Schauder estimate on (5.5), one gets

��t p
�
�@'t
@t
C 't

�
2 C k;˛:

The controls are uniform in time because we already have uniform controls on the metric and
C 0-norm of the evolution term.

Hence the coefficients of the elliptic equation (5.4) are in C k�2;˛, and applying the el-
liptic Schauder estimate, one has Dut 2 C k;˛ and therefore ut 2 C kC1;˛ which is one
higher-order up than our assumption. Since Evans–Krylov’s theory asserts that ut 2 C 2;˛, this
bootstrapping argument implies ut 2 C1 which completes the proof of the lemma.

Lemma 5.3 proves smooth convergence of the modified potential ut . The uniform bound
on kRmk!t can hence be established by the following argument.

Remark 5.4. In fact, a uniform bound for the C 4-norm of ut is sufficient to prove
the uniform boundedness of kRmk!t . The higher order estimates will be used to obtain later
results.

For each point x 2 X , find a compact subset K containing x such that

K � ��1.B/ � B � .Cr=ƒz/

for some small open ball B � †. We then get

sup
K

kRmk!t D sup
K0
kRmkp�!t

for some K 0 � B �Cr such that p.K 0/ D K. Therefore,

sup
K

kRmk!t D sup
��1t .K0/

kRmk��t p�!t :

As ��1t .K
0/ D ¹.z; e�t=2�/ W .z; �/ 2 K 0º, one can easily see that

S
t>0 �

�1
t .K

0/ is precom-
pact. By Lemma 5.3, one has sup��1.K0/kRmk��t p�!t � CK where CK depends on K. By
covering the compact manifold X by finitely many such K we have proved:

Proposition 5.5. Suppose � W X ! † is a smooth holomorphic submersion fibred by
complex tori such that the initial Kähler class Œ!0� is rational. Then along the normalized
Kähler–Ricci flow (1.1), we have kRmk!t � C for some constant C > 0 independent of t , i.e.,
the flow encounters Type III singularity.
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108 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

Another consequence of Lemma 5.3 is the C1-convergence of !t to the generalized
Kähler–Einstein metric, which strengthened the C 1;˛-convergence result (on the potential
level) in Corollary 4.2. Recall that 't ! u as t ! 1 where u W † ! R is the potential
function such that !GKE D !† C

p
�1@N@u. Under the setting in this section, we have the

following proposition:

Proposition 5.6. Under the same assumption as in Proposition 5.5, we have

(i) 't ! u in C1.X; !0/-topology, and

(ii) !t ! ��!GKE in C1.X; !0/-topology.

Remark 5.7. From now on all the C k-norms below are with respect to a time-indepen-
dent metric. Also, by uniform bounds on C k-norms we mean that the bounds are independent
of t but may depend on k.

Proof. First fix a compact set K � M and find K 0 � B � Cr such that K 0 and K are
biholomorphic via p, i.e. p.K 0/ D K. From Theorem 4.1 we already know that 't ! u in
C 0-norm, hence to prove (i) it suffices to establish uniform bounds on k'tkCk.K/. Note that

p�!t D p
�
O!t C

p
�1@N@.'t ı p/

and it is straightforward to check that kp� O!tkCk.K0/ � C.K 0; k/ for some constant C > 0

depending only on K 0 and k. We are left to show that kp�!tkCk.K0/ is uniformly bounded
independent of t .

Denote by ¹zi ; �˛º the base-fibre coordinates on B � Cr , i.e. i D 1; : : : ; n � r and
˛ D 1; : : : ; r . The local components of p�!t and ��t p

�!t are related by

.p�!t /i Nj .z; �/ D .�
�
t p
�!t /i Nj .z; e

�t=2�/;

.p�!t /i N̨ .z; �/ D e
�t=2.��t p

�!t /i N̨ .z; e
�t=2�/;

.p�!t /ˇ Nj .z; �/ D e
�t=2.��t p

�!t /ˇ Nj .z; e
�t=2�/;

.p�!t /˛ Ň.z; �/ D e
�t .��t p

�!t /˛ Ň.z; e
�t=2�/:

By Lemma 5.3, the local components of ��t p
�!t are uniformly bounded in every C k-norm.

It is easy to check from the above relations that the local components of p�!t are also uni-
formly bounded in every C k-norm. Combining with the uniform C k-bounds on p� O!t , we
establish the uniform bounds on kp�'tkCk.K0/ and hence k'tkCk.K/. One can then prove (i)
by covering M by finitely many compact subsets K.

(ii) is a direct consequence of Theorem 4.1 and (i) above. Now we have 't ! ��u

and O!t ! ��!† both in C1-topology. Hence !t ! ��!† C �
�
p
�1@N@u D ��!GKE in

C1-topology as t !1.

To finish this section, we prove a result concerning fibre-wise convergence. We establish
that the flow metric restricted on each fibre converges smoothly, after a suitable rescaling, to a
flat metric on the torus fibre. Precisely, we have the following proposition.
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Fong and Zhang, The collapsing rate of KRF with infinite time singularity 109

Proposition 5.8. Under the same assumption as in Proposition 5.5, we have

(i) ut ! u ı p in C1loc .B �Cr/ as t !1,

(ii) et!t j��1.z/ ! !SFj��1.z/ in C1.��1.z//-topology.

Proof. By the proof of Lemma 5.3 we have uniform bounds on kutkCk.K/ for any
compact subsetK � B �Cr . Hence for (i) it suffices to show ut ! u ıp in C 0-norm. Recall
that ut is defined by

ut D 't ı p ı �t � e
�t .f ı p ı �t / � e

�t .� ı p/;

where f and � are time-independent functions and hence are bounded on any compact subset
of B � Cr . It suffices to show 't ı p ı �t ! u ı p in C 0-norm, which can be established by
Lemma 2.4 and Theorem 4.1 as below:

j't ı p ı �t .z; �/ � u ı p.z; �/j � j't .z; e
t=2�/ � 't .z; �/j ı p C j't .z; �/ � u.z; �/j ı p

D O.e�t /CO.e�t=2/ D O.e�t=2/:

Taking t !1 completes the proof of (i).
To prove (ii), we restrict (5.2) to the fibres,

��t p
�!t j¹zº�Cr D p

�!SFj¹zº�Cr C
p
�1@N@ut j¹zº�Cr :

Pulling-back by ��t defined by .z; �/ 7! .z; e�t=2�/ gives

p�!t j¹zº�Cr D �
�
�tp
�!SFj¹zº�Cr C �

�
�t

p
�1@N@ut j¹zº�Cr :

By the rescaling property of !SF given by (5.1), we have

���tp
�!SF D e

�tp�!SF:

Note also that in the Euclidean space Cr D ¹zº �Cr ,�
���t
p
�1@N@ut j¹zº�Cr

�
.z; �/ D e�t

�p
�1@N@ut j¹zº�Cr

�
.z; e�t=2�/:

Combining these, we have�
etp�!t j¹zº�Cr

�
.z; �/ D

�
p�!SFj¹zº�Cr

�
.z; �/C

�p
�1@N@ut j¹zº�Cr

�
.z; e�t=2�/:

From (i), we have ut ! u ı p in C1loc .B � Cr/ and since u ı p depends only on z 2 B , we
have

p
�1@N@ut j¹zº�Cr ! 0

as t ! 1 in C1loc -topology. Therefore, we deduce that etp�!t j¹zº�Cr ! p�!SFj¹zº�Cr in
C1loc .¹zº �Cr/-topology, and so

etp�!t j��1.z/ ! p�!SFj��1.z/

in C1.��1.z//-topology. It completes the proof of (ii), since p�!SFj��1.z/ is a flat metric for
each z 2 †.
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110 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

6. Remarks

The totally collapsing case of † being a point (and so c1.X/ D 0) is considered in
H. D. Cao’s work [1] on the Ricci flow proof of the Calabi–Yau theorem. The convergence
of the flow metric to the point metric is certainly in very strong sense, and coincides with our
scenario.

We briefly describe a possible approach to adjust the previous argument to the general
situation allowing singular fibres. We use the same setting as in [27] as described below, and
stick to the existing notations in the current work.

In the general case, the smooth fibration � W X ! † is replaced by a holomorphic map
F W X ! Y between complex manifolds with the image † D F.X/ being possibly singular.
In practice, this map is generated by the line bundle mKX for some large positive integer m
and this manifold Y is some complex projective space CPN .

There is a subvariety S in X with the restriction of F to X n S ! † n F.S/ being a
submersion. Now !† D !Y j† for some Kähler metric !Y over Y .

We still consider the collapsing case of dimC X D n > n � r D dimC Y , and then the
restricted F gives a smooth bundle over † n F.S/ of fibre dimension r .

As in [27], there is a smooth function H over X defined by

!n�r1 ^ !r0 D H!
n
0

which vanishes exactly at S and is locally comparable with a (finite) sum of the squares of the
norms of holomorphic functions. Furthermore, one can have another smooth real non-negative
function � over Y vanishing exactly at F.s/. Obviously we have

p
�1@� ^ N@� � C!Y ; �C!Y �

p
�1@N@� � C!Y :

We also use � to denote its pull-back on X .
Now we consider the arguments from the previous sections in this general situation.
Lemma 2.1 is still valid by recent work of Song and Tian [22], and so is (2.3). Thus

Lemma 2.3 still holds.
The estimate in Lemma 2.4 needs to be replaced by

jet .'t �ˆt /j � Ce
B���

over X nS for some positive constants C , B and �. Exactly the same argument works with the
exception of the end where the Poincaré constant and Green’s function bound would no longer
be uniform, resulting in the degeneracy of the estimate. Please see [27] for the details.

For the maximum principle argument in Section 3, in the same spirit as [21], we consider
the term QQ D e�B�

��

�Q. Clearly,

r QQ D e�B�
��

rQCQre�B�
��

;

and so rQ D eB�
��

r QQ C BQr���. In this work, r means @ and .�; �/ is the Hermitian
product with respect to the flow metric !t . Then we have the following computation:

� QQ D e�B�
��

�Q �Q�e�B�
��

� 2Re.rQ;re�B�
��

/

D e�B�
��

�Q �Q
�
�Be�B�

��

���� C B2e�B�
��

jr���j2
�

� 2Re
�
eB�

��

r QQC BQr���;�Be�B�
��

r���
�
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D e�B�
��

�QC 2BRe.r QQ;r���/

C BQe�B�
��

���� C B2Qe�B�
��

jr���j2:

The following useful estimates can be established by the properties of � summarized
earlier:

jr���j2 D �2��2��2jr� j2

D �2��2��2 Tr!t .
p
�1@� ^ N@�/

� C��2��2 Tr!t .C!1/

� C��2��2;

j����j � �����1j�� j C j�.�C 1/����2jr� j2j

� �����1jTr!t .
p
�1@N@�/j C �.�C 1/����2 Tr!t .

p
�1@� ^ N@�/

� C����2 Tr!t .C!1/

� C����2:

Meanwhile, the lower bound for �ˆt is replaced by the degenerate term �C���.
Combining all these, we have

� QQ � e�B�
���

CAet��� C CAet C .C � A/Tr!t !0
�
C 2BRe.r QQ;r���/

C CBjQje�B�
��

����2 C CB2jQje�B�
��

��2��2:

Now we apply the maximum principle to get an upper bound for the term

QQ D e�B�
��

�Q D e�B�
��

�
�
log Tr!t !0 � t � Ae

t .'t �ˆt /
�
:

Clearly, we only need to look at the case Q > 0 at the point being considered. Then at the
maximum value point in the region X � Œ0; S� with t > 0 (which is clearly not in S ), we have

0 �
�
CAet��� C CAet C .C � A/Tr!t !0

�
C CBQ����2 C CB2Qe�2��2:

Again, we take a sufficiently large A such that C � A < �1. Using

Q D log Tr!t !0 � t � Ae
t .'t �ˆt / � log Tr!t !0 � t C CAe

B��� ;

we end up with
Tr!t !0 � C�

�2��2 log Tr!t !0 C Ce
te.BC�/�

��

for some � > 0. So we have
Tr!t !0 � Ce

te.B0C�/�
��

;

from which we conclude
QQ � C:

Hence we have e�t!0 � F.�/!t which is a degenerate analogue of (3.4). By the same
argument as in Section 3, one concludes that

1

G.�/
O!t � !t � G.�/ O!t ;

indicating that the metric collapses along fibres ��1.z/ for z 2 † n F.S/.
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112 Fong and Zhang, The collapsing rate of KRF with infinite time singularity

For the discussion in Section 4, the general case is essentially more involved. For exam-
ple, the complex Monge–Ampère equation in the definition of !GKE,

.!† C
p
�1@N@u/n�r D Feu!n�r† ;

is now over a (possibly) singular variety †. One could pull it back to the desingularization
of †, and the results in [4, 7, 29] give a bounded weak solution which is also continuous by
[29]. However, in order to apply the argument as in [21] for the flow convergence, one needs
sufficient regularity away from S . Fortunately, this has been done explicitly in [23], where
the local uniform convergence at the level of metric potential away from S is also achieved.
Combining with the local collapsing (in fact just bound) of flow metric, we have the local
convergence in C 1;˛<1-norm away from S .

The discussion in Section 5 is local, as primarily in the original work of [13], and so all
the conclusions in Section 5 are valid in the local sense.

For the general case, the convergence so far is only local which brings little control on
the global geometry. The global control remains to be an interesting problem. Nonetheless, we
know that the scalar curvature on the whole manifold is uniformly bounded. See [30] for the
non-collapsing case, and [22] for the general case including the collapsing case.
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