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Abstract We show that expanding Kähler–Ricci solitons which have positive holo-
morphic bisectional curvature and are C2-asymptotic to a conical Kähler manifold at
infinity must be the U (n)-rotationally symmetric expanding solitons constructed by
Cao.

Mathematics Subject Classification Primary 53C44; Secondary 35C08

1 Introduction

An expanding gradient Ricci soliton is a Riemannian manifold (M, g) which satisfies
2Ric + g = 2D2 f for some smooth function f , called the soliton potential. Solitons
provide local models for singularity formulation under the Ricci flow, and play a
central role in the Hamilton–Perelman theory of Ricci flow. The fundamental object
of study in this paper are expanding Kähler–Ricci solitons, which are expanding Ricci
solitons that are also Kähler metrics. These solitons may be expressed in holomorphic
coordinates as

2Ri j̄ + gi j̄ = 2Di D j̄ f, Di D j f = 0. (1.1)

In particular, ∇ f must be a real holomorphic vector field on M .
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In addition to providing singularity models for the Ricci flow, solitons are also of
interest for a variety of other reasons. For example, the soliton equation is a natural
generalization of the Einstein equation, which has been the subject of a great deal of
study in both the Riemannian and Kähler settings. Additionally, expanding solitons
are related to the Harnack inequality for the Ricci flow, cf. [7] for the relationship
between the Harnack inequality for Kähler–Ricci flowswith nonnegative holomorphic
bisectional curvature and expanding Kähler–Ricci solitons. Also, the Kähler–Ricci
solitons constructed in e.g. [17] provide interesting examples in which it is possible
to continue Kähler–Ricci flow through a singular time. As such, they provide a model
case to study the (yet unresolved) problem of constructing a good theory of weak
solution to the Ricci flow, similar to the theory for other geometric heat equations,
e.g. Brakke flow for mean curvature flow. The interested reader might consult [17,
Theorem1.6] and the introduction in [18].

The (steady and expanding)Kähler–Ricci solitons constructed onCn byCao in [6,7]
and (shrinking and expanding) solitons on complex line bundles overCPn constructed
by Feldman–Ilmanen–Knopf in [17] are rotationally symmetric. The expanding soli-
tons constructed in these works may be seen to be solutions of Ricci flow with
initial conditions (in the Gromov–Hausdorff sense) a Kähler cone on C

n\{0} and
(Cn\{0})/Zk respectively, see [17] for further discussion concerning this point. These
constructions have been generalized in several works, including [16] and [18] to pro-
duce Kähler–Ricci solitons on holomorphic bundles over Kähler–Einstein manifolds
via various cohomogeneity-one ansatzes. The interested reader may refer to the survey
[8] concerning recent progress in the study of Ricci solitons.

In this paper, we study expanding Kähler–Ricci solitons with positive bisectional
curvature, under the assumption that they are asymptotically conic at infinity.Complete
Kähler manifolds with positive (and non-negative) holomorphic bisectional curvature
have been extensively studied. There is a well known conjecture, known as the Yau’s
Uniformization Conjecture, which says that any complete non-compact Kähler man-
ifold with positive holomorphic bisectional curvature must be biholomorphic to C

n .
Many interesting results verify that this conjecture is true under certain geometric and
analytic assumptions (see the survey paper [14] and the references therein). In partic-
ular, it was shown by Chau–Tam in [13, Corollary 1.1] (building on the work of Ni in
[25]) that any complete noncompact Kähler manifold with nonnegative and bounded
holomorphic bisectional curvature and of maximal volume growth must be biholo-
morphic to C

n . The maximal volume growth hypothesis clearly holds if the metric
has a U (n)-rotationally symmetric tangent cone at infinity (in the Gromov–Hausdorff
sense) and hence such a manifold must be biholomorphic to C

n .
In order to state the precise conical asymptotic assumptions on the expanding

Kähler–Ricci solitons we are considering here, we first define the U (n)-rotationally
symmetric Kähler cone metrics by gα := 2Re(∂∂̄|z|2α) (we discuss these metrics fur-
ther in Sect. 2.1). We also define ρλ : Cn → C

n to be the dilation by λ > 0 map, i.e.
ρλ(z) = λz. Given these definitions, we may now define the asymptotic assumptions
which we will consider in this paper:

Definition 1.1 AKähler manifold (M2n, g) is asymptotically conical with cone angle
2πα ∈ (0, 2π) if there is a biholomorphism F : Cn\K1 → M2n\K2 (for K1, K2
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Rotational symmetry of conical Kähler–Ricci solitons 779

compact sets) so that

lim
λ→∞ λ−2αρ∗

λ(F∗g) = gα

in C2
loc(C

n\K1, gα).

Our main result is:

Theorem 1.1 Suppose, for n ≥ 2, that (M2n, g, f ) is an expanding gradient Kähler–
Ricci soliton with positive holomorphic bisectional curvature which is asymptotically
conical in the sense of Definition 1.1. Then, (M, g, f ) is isometric to one of the U (n)-
rotationally symmetric expanding gradient solitons on C

n, as constructed by Cao.

We remark that the expanding Kähler–Ricci solitons constructed by Cao in [7],
are asymptotically conical as solitons and have positive bisectional curvature. Fur-
thermore, they are the unique (up to isometry) U (n)-invariant expanding solitons
asymptotic to a cone with a fixed cone angle (see [17, Theorem 1.3]). We also remark
that in (complex) dimension one, gradient Ricci solitons are completely classified:
they are all rotationally symmetric as seen by considering the Killing vector J∇ f
(where J is some compatible complex structure). For example, there is exactly one
expanding solitons with positive curvature, as discussed in [21]. See also the recent
work [2] and the references contained within for a complete classification.

Some context for the above result may be found in the recent works of Schulze–
Simon and Cabezas-Rivas–Wilking [12,28]. In particular, by [12, Remark 7.3], given
a manifold with nonnegative complex sectional curvature (in particular, this holds for
a manifold with nonnegative holomorphic bisectional curvature), one may construct a
smooth Ricci flowwith initial conditions (in the Gromov–Hausdorff sense) the tangent
cone at infinity of this manifold. There is a well established theory of uniqueness
for Ricci flow with bounded curvature when the initial metric a complete metric of
bounded curvature (cf. [15] and also [10] for uniqueness for threemanifoldswithout the
bounded curvature condition on the flow, but with the assumption that the initial metric
has nonnegative, bounded Ricci curvature). However, very little is known (except in
dimension two, see [19]) concerning uniqueness of the Ricci flow with initial metrics
which are not smooth/not complete, as in the examples constructed by Schulze–Simon
and Cabezas-Rivas–Wilking.

Our argument is inspired by the recent works of Brendle [3,4], establishing O(n)-
symmetry of certain steady solitons. In particular, Brendle was able to resolve a
question posed by Perelman in his first paper [26], concerning rotational symmetry of
steady solitons in three dimensions:

Theorem 1.2 (S. Brendle [3]) If (M3, g, f ) is a non-flat, κ-noncollapsed, steady,
gradient Ricci soliton, then it must be the O(3)-rotationally symmetric Bryant soliton
constructed in [5].

Brendle has also shown in [4] that in dimensions greater than three, a steady soli-
ton with positive sectional curvature which (parabolically) blows down to shrinking
cylinder must be O(n)-rotationally invariant. One of the main ideas in [3,4] is to use
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the soliton equations to perturb approximate Killing vectors into actual Killing vec-
tors. The approximate Killing vectors come from an assumption about the asymptotic
geometry of the soliton (these assumptions are always satisfied in three dimensions,
as long as the soliton is κ-noncollapsed).

The approximate Killing vector technique of Brendle was subsequently used by the
first named author in [11] to show that expanding (Riemannian) Ricci solitons which
are asymptotic in a certain sense to the O(n)-rotationally symmetric conical metric
hα = dr2 + r2(1− α)gSn−1 must be O(n)-rotationally invariant themselves. We note
that such O(n)-rotationally symmetric solitons asymptotic to these cones have been
constructed by Bryant in [5], see also [11, Appendix A].

However, several new arguments are needed to handle the Kähler setting in this
paper. In particular, one interesting feature of the present work is that instead of per-
turbing the approximate Killing vectors to become actual Killing vectors, we show that
the original Killing vector fields of the rotationally symmetric Kähler conemust in fact
beKilling vectors on the soliton as well, by a combination of a Liouville type argument
and a barrier argument for a Lichnerowicz PDE. The latter is a barrier argument in the
vein of [11, Proposition 5.1], but we remark that it is also somewhat different because
instead of using positive sectional curvature, wemust use the positivity of holomorphic
bisectional curvature (which is a weaker condition than positive sectional curvature).
We finally note that thanks to the strength of our Liouville type theorem, we are also
able to weaken somewhat the asymptotic conditions as compared with [11].

Finally,we remark that after this paperwas posted,Kotschwar–Wang showed in [22]
that shrinking Ricci solitons asymptotic to cones have a strong uniqueness property.
They employ techniques of a rather different nature than the approximate Killing
vector technique used here; as a result, they are able to consider a large class of cones
and do not require a curvature assumption. However, the techniques do not seem to
extend to steady and expanding solitons, and indeed one may construct examples of
two non-isometric expanding solitons asymptotic to the same cone (one of which is
incomplete; see the discussion in [11, Section 1]). As showed by Kotschwar–Wang,
such examples cannot exist in the class of asymptotically conical shrinkers.

The paper is organized as follows.We first give relevant definitions and background
material in Sect. 2, including a discussion ofKähler cones and holomorphic bisectional
curvature. In Sect. 3, we show that the asymptotically conic assumption implies a
refined asymptotic statement. In particular, we show that if Definition 1.1 holds, then
the soliton potential function is controlled in a C2-sense and we may perturb the
coordinate system (while still preserving the asymptotically conical condition) so that
the soliton potential achieves its minimum at the origin. This will later prove crucial
for the proof, as then ∇ f and the Killing vectors on C

n corresponding to rotational
symmetry will both vanish at the origin.

In Sect. 4, we present the key ingredients which will be used to establish the main
result. We begin by recalling that if a vector field U satisfies �U + DX U − 1

2U = 0
(here X = ∇ f is the soliton vector field) on an expanding Ricci soliton, then the Lie
derivative h = LX g satisfies the Lichnerowicz PDE,�L h +LX h −h = 0. We show,
using a Liouville type argument that if a real holomorphic vector field approximately
satisfies the first PDE and if it vanishes in the same place as X , then it must in fact
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Rotational symmetry of conical Kähler–Ricci solitons 781

satisfy the PDE exactly. We also show, using 2Ric + g as a barrier, that solutions to
the Lichnerowicz PDE which decay at infinity must vanish identically.

The proof of the main theorem is given in Sect. 5. The main idea of the proof
is that, after “centering” the asymptotically conical coordinate system, we may take
vectors fields on C

n corresponding to the Killing vectors generating rotations of the
Kähler cone. Then, pushing them forward to the soliton, the asymptotics will imply
that they are approximate Killing vectors and that they approximately satisfy the first
PDE discussed above. Then, by the results of Sect. 4, we first see that they must satisfy
the vector field PDE exactly. Furthermore, using our results concerning solutions to
the Lichnerowicz PDE, we see that they are exact Killing vectors for the soliton.

2 Preliminaries

In this section, we introduce relevant definitions and background material. We first
remark that in the remainder of the of the work it will be convenient to define X = ∇ f
to be the soliton vector field.We remark that because theRicci tensorRic and themetric
g are of (1, 1)-type, the soliton equation (1.1) forces X to be real holomorphic (recall
that a vector field U is real holomorphic if the (1, 0) part of U has holomorphic
coefficients).

2.1 Kähler cones

For any α ∈ (0, 1), denote by gα the Kähler cone metric with cone angle 2πα, i.e.

gα = 2Re
(
∂∂̄|z|2α

)
,

where |z| is the Euclidean norm of z = (z1, . . . , zn) ∈ C
n\{0}.

The cone metric is a warped product of (0,∞) and S2n−1 with a Berger’s sphere
metric (we emphasize that this is not the family of O(n)-invariant cones considered
in e.g. [11] as the O(n)-invariant cones have cross sections of constant sectional
curvature, in contrast with the U (n)-invariant Kähler cones just defined). The metric
gα may be written in the equivalent forms

gα = dr2 + r2
(

α2

4
dθ2 + α

4
π∗gFS

)

= dr2 + (dr ◦ J )2 + αr2

4
π∗gFS

Here S1 → S2n−1 π−→ CP
n−1 is the Hopf fibration map and θ denotes the S1-fiber

direction. J is the unique complex structure such that gα is J -Hermitian. Furthermore,
gFS is the Fubini-Study metric of CPn−1. The group U (n) acts on these Kähler cones
in manner which preserves the norm |z|.
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782 O. Chodosh, F. T.-H. Fong

Remark 2.1 We note that the radial distance function r with respect to gα is equal to
|z|α . In particular, we caution the reader that gα is not uniformly equivalent to the flat
metric δ on C

n . In particular, when we use r in the remainder of the work, we will
only mean the radial distance function with respect to gα .

To refine this remark, we note that in standard {zi } coordinates, the cone metric can
be expressed as

(gα)i j̄ = α|z|2(α−1)
(
δi j + (α − 1)|z|−2 z̄i z j

)
.

The eigenvalues of (gα)i j̄ are

α2|z|2(α−1), α|z|2(α−1), . . . , α|z|2(α−1)

which tend to 0 as |z| → ∞.
This is coherent with our remark above, and we see that if we have control of the

norm of some quantity, the norm taken with respect to one of the metrics δ and gα , then
we may also control the norm with respect to the other (with a different rate of decay,
corresponding these eigenvalues). We will make use of this in the proof of Lemma 4.1.
On the other hand, F∗g and gα are uniformly equivalent by the asymptotically conic
condition, as established in Corollary 3.1.

2.2 Holomorphic bisectional curvature

A Kähler manifold is a triple (M, J, g) where J is the complex structure and g is a
J -invariant metric such that J is parallel with respect to g. On a Kähler manifold, one
can define the holomorphic bisectional curvature KC as

KC(X, Y ) = Rm(X, J X, Y, JY )

|X |2|Y |2 − g(X, Y )2

for any X, Y ∈ T M . On the complexified tangent bundle TCM = T 1,0M ⊕ T 0,1M ,
if one denotes

U = 1

2

(
X − √−1J X

)
∈ T 1,0M

V = 1

2

(
Y − √−1JY

)
∈ T 1,0M,

then it is not hard to see that

KC(X, Y ) = Rm(U, U , V , V )

|U |2|V |2 − |g(U, V )|2 .

We say (M, J, g) has positive holomorphic bisectional curvature if KC(X, Y ) > 0
for any non-zero X, Y ∈ T M , or equivalently, Rm(U, U , V , V ) > 0 for any U, V ∈
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Rotational symmetry of conical Kähler–Ricci solitons 783

T 1,0M . Note that positive sectional curvature implies positive holomorphic bisectional
curvature, but not vice versa. Moreover, positive holomorphic bisectional curvature
implies positive Ricci curvature, but again not vice versa.

It was proved by Siu–Yau in [29] that any compact Kähler manifold with positive
bisectional curvature must be biholomorphic to CPn (see also [24]). Moreover, it was
shown by Bando [1], Mok [23] and Shi [27] that positivity of holomorphic bisectional
curvature is preserved under theKähler–Ricci flow. For complete, non-compactKähler
manifolds with positive bisectional curvature, it is conjectured by Yau that any such
manifold must be biholomorphic to C

n . This conjecture remains unresolved, in spite
of many partial results as discussed in the introduction to this work.

3 Refined conical asymptotics

In this sectionwe consider an expandingKähler–Ricci solitonwith positive bisectional
curvature, which is asymptotically conical in the sense of Definition 1.1. It will be
necessary for the analysis in the subsequent sections to show that the asymptotically
conical condition implies several refined properties which are a priori more restrictive.
We first show that we may extend the biholomorphism in Definition 1.1 inwards to
give a global biholomorphism between Cn and M2n in which the asymptotics are still
valid.1

Lemma 3.1 For n ≥ 2, if (M2n, g, f ) is an expanding Kähler–Ricci soliton which is
asymptotically conical and has positive holomorphic bisectional curvature, then we
may extend the biholomorphism F : Cn\K1 → M2n\K2 into the compact set K1,
yielding F : Cn → M2n a biholomorphism still satisfying Definition 1.1.

Proof By the work of Chau–Tam and Ni (as discussed in the introduction) M2n is
biholomorphic to C

n (see [13, Corollary 1.1]). The issue here however, is whether
we can find a biholomorphism F which still has the desired conical asymptotic prop-
erties. Fixing global holomorphic coordinates {zi }n

i=1 on M2n , we may consider the
components of the map F : Cn\K1 → M2n\K2 with respect to these coordinates
F = (F1, . . . , Fn). Now (enlarging the compact sets if necessary so that their com-
plement is connected) Hartogs’ extension theorem (which applies because we have
assumed that n ≥ 2) guarantees that the Fi extend inward giving holomorphic maps
F̂i : Cn → M2n .

Now, we claim that F̂ = (F̂1, . . . , F̂n) is a biholomorphism. First of all, the set
where DF̂ does not have maximal rank is a holomorphic subvariety of codimension
1. Such a set, if non-empty, cannot be contained in a compact set, e.g. K1 by the
maximum principle. Thus we see that DF̂ has maximal rank in all of Cn , so it must
be an immersion and thus a covering map. Finally, there must be points in M2n\K2
with a single preimage, and thus F̂ is a bijection. ��

By the previous lemma, we can (and will) assume, without loss of generality,
that K1 = K2 = ∅ in Definition 1.1. We now show that we may precompose the

1 We thank Yasha Eliashberg for explaining to us the proof of Lemma 3.1.
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784 O. Chodosh, F. T.-H. Fong

biholomorphism from Definition 1.1 by any shifting automorphism of Cn without
changing any asymptotic conditions stated in Corollary 3.1. This will allow us to
construct a biholomorphism F : Cn → M such that F(0) is the (unique) critical point
of f in M . This will be crucial in the proof of Lemma 4.1. Given any point p ∈ C

n ,
we define the shift map �p : Cn → C

n by �p(z) = z + p.

Lemma 3.2 Shifting the coordinate system via �p preserves the asymptotically con-
ical condition. More precisely, if F̃ : C

n → M is a biholomorphism so that
Definition 1.1 is satisfied, then by defining F := F̃ ◦ �p, we have that F is a biholo-
morphism still satisfying Definition 1.1, i.e. the metric F∗g satisfies

lim
λ→∞ λ−2αρ∗

λ(F∗g)) = gα

in C2
loc(C

n\{0}, gα).

Proof We first claim that for j = 0, 1, 2, r j |∇ j (�∗
pgα − gα)| = o(1) as r → ∞. To

see this, first observe that

g−1
α

(
�∗

pgα − gα

)
= g−1

α

(
�∗

pgα

)
− Id. (3.1)

The eigenvalues of the endomorphism g−1
α (�∗

pgα) with respect to the standard zk-
coordinate basis are

|z + p|2(α−1)

|z|2(α−1)
, . . . ,

|z + p|2(α−1)

|z|2(α−1)

which tend uniformly to 1 as |z| → ∞. Thus, the above claim holds for j = 0.
Furthermore, by differentiating (3.1) and using the fact that �p is linear, one can
verify that in fact the claim holds when j = 1, 2 as well. The assertion follows easily
from this fact. ��

As a result of the above lemma, we may “center” the biholomorphism F in the
asymptotically conical condition, i.e. by an appropriate shift, we have that F(0) is the
(unique) critical point of the potential function f (there a unique critical point due to
the fact that it the potential is strongly convex as seen from the soliton equation in com-
bination with non-negativity of the Ricci curvature). We now identify the asymptotic
behavior of the soliton potential function.

Lemma 3.3 If (M, g, f ) is an expanding Kähler–Ricci soliton which asymptotically
conical, then the soliton potential function satisfies

lim
λ→∞ λ−2α f ◦ F ◦ ρλ = r2

4

in C2
loc(C

n\{0}, gα).
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Proof By, e.g. [9, Lemma 2.2.3], we know that | f − d2

4 | ≤ O(1) where d is the
distance function on M from the minimum point of f . The conical asymptotics imply
that d ◦ F = r + o(r), so we may write d2

4 ◦ F = r2
4 + ϕ for some ϕ = o(r2). As

such, we see that

∣∣∣∣ f ◦ F − r2

4
− ϕ

∣∣∣∣ ≤ O(1).

Pulling back by ρλ and rescaling this yields

∣∣∣∣λ−2α f ◦ F ◦ ρλ − r2

4
− λ−2αϕ ◦ ρλ

∣∣∣∣ ≤ Cλ−2α

By the above asymptotic behavior of ϕ, we thus have established C0
loc convergence.

Now,we establish the convergence of the higher derivatives. First, recall that the soliton
equation may be written as 2Ricg + g = D2

g f . Pulling back by F ◦ ρλ and rescaling
by λ−2α yields (using the fact that the Ricci tensor does not scale under scalings of
the metric)

2λ−2αRicλ−2αρ∗
λ(F∗g) + λ−2αρ∗

λ(F∗g) = 2D2
λ−2αρ∗

λ(F∗g)

(
λ−2α f ◦ ρλ ◦ F

)
. (3.2)

By the asymptotically conical assumption, the left hand side of this expression con-
verges as λ → ∞. This establishes the convergence of D2

gα
λ−2α f ◦ F ◦ ρλ. Finally,

rescaling Hamilton’s identity |∇ f |2 + R = f (see [20]) in the same manner gives

|∇(λ−2α f ◦ ρλ ◦ F)|2
λ−2αρ∗

λ(F∗(g))
+ Rλ−2αρ∗

λ(F∗(g)) = λ−2α( f ◦ ρλ ◦ F) (3.3)

which, in combination with the conical asymptotics, shows that at the very least the
gradient of the rescaled potential is bounded. Given this, it is clear that the above
convergence results imply the full claim. ��

The following corollary is a straightforward consequence of the above results, and
is written in a form which is more convenient for later analysis.

Corollary 3.1 The asymptotically conical condition, Definition 1.1, implies that there
is a biholomorphism F : Cn → M so that F(0) is a critical point of the potential
function f and moreover

1. the pulled back metric satisfies F∗g = gα + k for some tensor k satisfying
r j |∇ j k| = o(1) as r → ∞ for j = 0, 1, 2, and

2. the soliton potential function satisfies r j−2|∇ j ( f ◦ F − r2
4 )| = o(1) as r → ∞

for j = 0, 1, 2.

We will always choose such an F in the subsequent sections.
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4 PDE’s for approximate killing vector fields

We first recall the following results from [11], which are valid for any expanding
soliton. Recall that �L is the Lichnerowicz Laplacian, defined in any unitary frame
{η1, . . . , ηn} by

�L hik̄ = �hik̄ + 2Rmi j̄ k̄l hl̄k − Rici l̄ hlk̄ − Riclk̄hil̄

for any J -invariant (0, 2)-tensor h.

Proposition 4.1 [11, Proposition 3.1] If a vector field U satisfies �U +DX U − 1
2U =

0, then h := LU (g) satisfies

�L h + LX h − h = 0.

This follows by direct computation, using the soliton equation. As a corollary of this,
we have

Corollary 4.1 [11, Corollary 3.2] The soliton vector field X satisfies �X + DX X −
1
2 X = 0 and thus LX (g) = 2Ric + g satisfies

�L(2Ric + g) + LX (2Ric + g) − (2Ric + g) = 0.

In the remainder of this section, we will prove two results which will allow us to
analyze solutions to the two PDEs just discussed.Wewill crucially use the assumption
that M is biholomorphic to Cn in order to apply the classical Liouville theorem in the
following lemma. This will eventually play a key role in our proof that the approximate
Killing vectors obtained from the asymptotically conic assumption are actually exact
Killing vectors.

Lemma 4.1 Suppose U is a real holomorphic vector field on M which vanishes at
a critical point of f in M. If the vector field Q := �U + DX U − 1

2U satisfies
|Q|g = o(r), then necessarily Q ≡ 0.

Proof It is not hard to see from the soliton equation (1.1) that

Q = �U + Ric(U ) − [X, U ]

where X = ∇ f is the soliton vector field (cf. [11, Section 3]).HereRic is regarded as an
endomorphism on T M . Furthermore, using the fact that X andU are real holomorphic
it is not hard to check that [X, U ]1,0 = [X1,0, U 1,0]. Thus, by the Kähler condition
(i.e. J is parallel) we see that

Q1,0 = �U 1,0 + Ric(U 1,0) − [X1,0, U 1,0].
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Rotational symmetry of conical Kähler–Ricci solitons 787

On the other hand, because U is real holomorphic, a simple computation in local
coordinates gives that

�U 1,0 = gl j̄ (Dl D j̄ + D j̄ Dl)

(
U k ∂

∂zk

)

= gl j̄ ∂

∂ z̄ j

(
U k�i

lk
∂

∂zi

)
= −gl j̄Rick j̄U

k ∂

∂zl

and therefore,

�U 1,0 + Ric(U 1,0) = 0.

As such, we see that Q1,0 = [U 1,0, X1,0]. In particular, this shows that if we write
F∗Q1,0 = Qk ∂

∂zk (where zk are the coordinates fixed by Definition 1.1) then the

coefficients Qk are holomorphic functions onCn . We claim that the Qk have sublinear
growth as holomorphic functions on Cn . To see this, recall that the eigenvalues of gα

with respect to the standard {zk}-coordinates are given by

α2|z|2(α−1), α|z|2(α−1), . . . , α|z|2(α−1).

Therefore, we have

1

C
|z|2(α−1)|Qk |2 ≤ 1

C
|z|2(α−1)

n∑
j=1

|Q j |2

≤ |(gα)i j̄ Qi Q j̄ |
= |Q|2gα

= o(r2) = o(|z|2α)

and so for each k, we have |Qk | ≤ o(|z|). In other words, Qk has sublinear growth
as a holomorphic function on C

n . Thus, the classical Liouville’s theorem implies Qk

are constants for any k. Finally, we would like to conclude they vanish identically. To
do so, it is enough to show that Qk = 0 at some point in C

n . However, this follows
easily from the formula Q1,0 = [U 1,0, X1,0] and the assumption that X and U both
vanish at a common point in M , namely a critical point of f . ��

The next proposition is the Kähler analogue of [11, Proposition 5.1]. We use the
weaker assumption of positive bisectional curvature (as opposed to positive sectional
curvature, as used in [11, Proposition 5.1]) in order to apply a barrier argument to the
Lichnerowicz PDE. This proposition will allow us to conclude that the approximate
Killing vectors represent actual symmetries.

Proposition 4.2 Suppose h is a J -invariant (0, 2)-tensor on M which satisfies

�L h + LX h − h = 0

and |h| = o(1) as r → ∞. Then h ≡ 0.
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Proof Since 2Ric + g ≥ g, one can find θ large enough such that θ(2Ric + g) ≥ h.
Now define

θ0 = inf{θ ∈ [0,∞) : θ(2Ric + g) − h ≥ 0}.

ByKählerity of themetric and the assumptions in the lemma, note thatw := θ0(2Ric+
g) − h is J -invariant.

We will show that θ0 > 0 leads to a contradiction. If θ0 > 0, by the choice of
θ0 and the fact that |h| = o(1), there exists p ∈ M and real vector e1 ∈ Tp M
such that w(e1, e1) = 0 at p. Parallel translating e1 in a neighborhood of p, we
see that the function w(e1, e1) has a local minimum at p so (�w)(e1, e1) ≥ 0 and
(DXw)(e1, e1) = 0 at p.

Now we complexify the tangent bundle, and define the (complex) tangent vector
field

η1 = 1

2
(e1 − √−1Je1)

which is the (1, 0)-part of e1. One may easily check that

R : T 1,0
p M × T 1,0

p M → C

(U, V ) �→ Rm(η1, U , η1, V )

is self-adjoint, since

R(U, V ) = Rm(η1, U , η1, V ) = Rm(η1, U, η1, V ) = Rm(η1, V , η1, U ) = R(V, U ).

Choose a unitary basis {η1, η2, . . . , ηn} for T 1,0
p M such that Rm(η1, η j , η1, ηk) is

a diagonal matrix at p. We thus have that Rm(η1, η j , η1, ηk) = μ jδ jk . Clearly, by
positive bisectional curvature, μ j = Rm(η1, η j , η1, η j ) > 0 for all j .

Evaluating �Lw + LXw − w = 0 at p and in the (ηi , ηi ) direction for any
i ∈ {1, . . . , n} gives

0 = (�w)(ηi , ηi ) + 2
∑
k,l

Rm(ηi , ηk, ηi , ηl)w(ηk, ηl) − 2w(Ric(ηi ), ηi )

+ (LXw)(ηi , ηi ) − w(ηi , ηi )

Note that

(LXw)(ηi , ηi ) = (DXw)(ηi , ηi ) + w(Dηi X, ηi ) + w(ηi , Dηi X)

= (DXw)(ηi , ηi ) + 2w(Dηi X, ηi ).

Furthermore, by the soliton equation, we have 2Ric(ηi ) = 2Dηi X − ηi .
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Thus, we see that

0 = (�w)(ηi , ηi ) + 2
∑
k,l

Rm(ηi , ηk, ηi , ηl)w(ηk, ηl) + (DXw)(ηi , ηi ). (4.1)

At p, taking i = 1, we have

0 = (�w)(η1, η1) + 2
∑

k

μkw(ηk, ηk) + 0 ≥ 2
∑

k

μkw(ηk, ηk).

Here we have used the fact that �w and DXw are J -invariant, so that

(�w)(η1, η1) = 1

4
{(�w)(e1, e1) + (�w)(Je1, Je1)} ≥ 0

and similarly for DXw.
Since μk > 0 by the positivity of bisectional curvature and w ≥ 0, we must have

w(ηk, ηk) = 0 for all k at p. Thus, summing (4.1) over i , we have

�(Trw) + 2
∑
k,l

Ric(ηk, ηl)w(ηk, ηl) + DX (Trw) = 0,

�(Trw) + DX (Trw) = −2
∑
k,l

Ric(ηk, ηl)w(ηk, ηl) ≤ 0.

by the positivity of the Ricci curvature combined with the non-negativity of w.
However, Trw = 0 at p and Trw ≥ 0 near p implies Trw attains an interior local

minimum at p. By Hopf’s strong maximum principle it implies Trw ≡ 0 and hence
w ≡ 0. However, θ0(2Ric+ g) ≡ h violates the asymptotics of h, by positivity of the
Ricci curvature. This shows θ0 = 0 and hence h ≤ 0. Applying the same argument to
−h shows that h ≡ 0. ��

5 Proof of the main result

We may now combine the above results to give a proof of Theorem 1.1.

Proof (of Theorem 1.1) Because the Kähler cone metric gα is U (n)-rotationally sym-
metric, we may pick a basis for the corresponding Killing vector fields on C

n , which
we denote {Ua}n2

a=1. We note that [r ∂
∂r , Ua] = 0 for all a. This is true because J (r ∂

∂r )

is the Reeb Killing vector field associated to the action diag(e
√−1θ , . . . , e

√−1θ )

in the U (n)-group. Clearly this diagonal action commutes with all other U (n)-
actions, and hence [J (r ∂

∂r ), Ua] = 0. Moreover, the Ua’s are real holomorphic hence
[J V, Ua] = J [V, Ua] for any vector field V . This shows [r ∂

∂r , Ua] = 0 for any a. We
further note that |Ua |gα = O(r).

We will now show that these Ua push forward under the biholomorphism F :
C

n → M to Killing vector fields for the soliton metric g (we will use the “centered”
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biholomorphism F constructed in Lemma 3.2). As F is a biholomorphism, F∗Ua

is a real holomorphic vector field in M for each a. By the asymptotically conical
assumption, we see that

|LUa F∗g| = |LUa k| = o(1)

and similarly

∣∣∣∣div
(
LUa (F∗g)

) − 1

2
∇F∗g

(
trF∗g LUa (F∗g)

)∣∣∣∣ = o(1).

Thus, on M , this yields |LF∗Ua (g)| = o(1) and

∣∣∣∣div
(
LF∗Ua g

) − 1

2
∇ (

trLF∗Ua g
)∣∣∣∣ = o(1).

Finally, (2) in Lemma 3.2 shows that F∗ X = r
2

∂
∂r + Y where Y is a vector field so

that |Y | = o(r) and |∇Y | = o(1). Thus, because the Ua were chosen so that their
Lie bracket with any purely radial vector field vanishes, we have that [Ua, F∗ X ] =
[Ua, Y ] = o(r) (using the fact that |Ua | + |∇Ua | = O(r) and the asymptotics of Y ).

For simplicity, we denote Ũa := F∗Ua . Now, by the computation in [11, Section 3],
the above results combine to show that the Ũa’s satisfy

∣∣∣∣�Ũa + DX Ũa − 1

2
Ũa

∣∣∣∣ = o(r).

We may thus apply Lemma 4.1 (using the fact that the Ũa clearly vanish at F(0) ∈ M
by how we chose the Ua and how we refine F in Lemma 3.2) to conclude that in fact

�Ũa + DX Ũa − 1

2
Ũa = 0.

As such, by Proposition 4.1, we see that h(a) := LŨa
(g) satisfies

�L h(a) + LX (h(a)) − h(a) = 0.

Becausewehave arranged that |h(a)| = o(1) above andby the fact that ha is J -invariant
(since Ũa is real holomorphic), we may thus apply Proposition 4.2 to conclude that
h(a) ≡ 0. Thus, the Ũa are exact Killing vectors for g. Finally, we observe that by
the computation in Lemma 4.1 we have that [Ũa, X ]1,0 = 0. Since Ũa and X are
real vector fields, we must have [Ũa, X ] = 0. Thus we have shown that (M, g, f ) is
U (n)-rotationally symmetric, as desired. ��
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